当前位置:文档之家› 600MW亚临界锅炉低NOx燃烧改造设计与数值模拟

600MW亚临界锅炉低NOx燃烧改造设计与数值模拟

600MW亚临界锅炉低NOx燃烧改造设计与数值模拟
600MW亚临界锅炉低NOx燃烧改造设计与数值模拟

申请上海交通大学工程硕士学位论文

600MW亚临界锅炉低NOx燃烧 改造设计与数值模拟

学校:上海交通大学

院系:机械与动力工程学院

工程领域:动力工程

交大导师:章明川 教授

企业导师:张建文 教授级高工

工程硕士:张维侠

学号:1060222019

上海交通大学机械与动力工程学院

2008年11月15日

申请上海交通大学工程硕士学位论文

600MW亚临界锅炉低NOx燃烧

改造设计与数值模拟

学校:上海交通大学

院系:机械与动力工程学院

工程领域:动力工程

专业方向:煤粉低NOx燃烧

交大导师:章明川 教授

企业导师:张建文 教授级高工

培养单位:上海锅炉厂有限公司

工程硕士:张维侠

学号:1060222019

关键词:LNTFS低NOx燃烧系统 600MW亚临界机组 数值模拟 改造

上海交通大学机械与动力工程学院

2008年11月15日

600MW亚临界锅炉低NOx燃烧改造设计与数值模拟

摘 要

我国电力工业中燃煤火力发电占主导地位,但燃煤锅炉排放的大量氮氧化物(NOx)对生态环境造成了严重危害。国家最新出台的《火电厂大气污染物排放标准》对排放标准进行了严格限制。新的排放标准的及收费政策的出台使整个火电行业面临异常严峻的环保形势。采取措施减少氮氧化物的排放,是火电厂面临的一项刻不容缓的工作。

目前已有的控制常规燃煤电站锅炉NOx 排放的技术措施可分为低NOx 燃烧技术和烟气净化技术两类。尾部烟气脱硝技术投资及运行费用昂贵,而先进低NOx 燃烧技术可降低排放浓度到450~650 mg/Nm3。对于烟煤可降低到450mg/Nm3以下,对已经投运600MW机组亚临界锅炉进行低NOx燃烧系统改造,目前还是一项空白。因此进行本课题的研究很有意义。

本论文通过对某600MW亚临界机组锅炉工程燃用煤种(神府东胜煤)和运行数据的分析,结合对已经运行锅炉的NOx排放数据进行分析,开发适合本改造工程的LNTFS低NOx的燃烧系统。本论文在改造设计方面的主要工作有:

1.改进的燃烧系统的设计;

2.改进的二次风配风方式的设计;

3.改进的一、二次风喷嘴的设计;

4.对锅炉NOx排放进行预测,并对运行调整提出建议。

在完成改造方案的基础上,通过数值模拟等方法验证此系统的减排效果及NOx排放数据;并通过数值模拟验证煤粉细度、风量分布等对锅炉性能指标的影响规律指导锅炉的运行。

关键词:LNTFS低NOx燃烧系统,600MW亚临界机组,数值模拟,改造

THE REBUILDING DESIGN AND NUMERICAL

SIMULATION OF 600MW SUB-CRITICAL BOILER

LOW NO X FIRING SYSTEM

ABSTRACT

Pulverized coal firing boilers account for mostly in our electric power industry, but the large amount of NOx emission from the pulverized coal firing boilers do great harm to our environment.To strictly limit the pollutant gas emission, our country have issued the emission standard for the pulverized coal firing power plant.The new standard and charging for the pollutant have put the pulverized coal firing plants into a servere environment protection situation. Great efforts have to be taken to reduce the NOx in most of the pulverized coal firing power plants.

At Present, there are two ways to decrease the NOx emission: the Low NOx Firing Technology and the Flue Gas Cleaning technology. Flue Gas Cleaning (SCR, i.e. selective catalytic reduction) are expensive to build and maintain comparing to the low NOx Firing Technology. Advanced low NOx firing technology can cut down the NOx concentration to 450-650mg/Nm3(O2=6%),450mg/Nm3 for bituminous coal.We have never rebuilt the low NOx firings system in the sub-critical unit ,so it is very meaningful to rebuilt the project.

By analyzing the designed coal (shenfu dongshen coal) of the 600MW sub-critical unit and the performance parameters of the project, this paper aim to exploit a LNCFS (Low NOx Concentric Firing System) which will be suitable to the project.The main tasks of the thesis are as follows:

Firstly: the design of the improved firing system;

Secondly: the design of the improved distributed mode of the secondary air;

Thirdly: the design of the improved primary and secondary air nozzle.

Fourthly: forcasting the NOx emission of the project and giving proposals for the coming operation of the unit.

On the basis of finishing the scheme of the project, numerical simulation is used to validate the amout of NOx ,And by the numerical simulation to test how the fineness of the coal,air distribution and other factors influence the performance of the boiler and then guide the operation of the boiler.

KEY WORDS:LNCFS low NOx Concentric Firing System,

600MW sub-critical unit, Numerical Simulation, Rebuild

目 录

摘要...............................................................I ABSTRACT....................................................................................III 第一章 概述 (1)

1.1课题的背景 (1)

1.2国内外现状 (1)

1.3论文工作内容 (2)

1.4改造目标 (2)

1.5工程意义 (2)

第二章 某电厂3号炉原设计及运行情况 (4)

2.1锅炉总体设计情况介绍 (4)

2.2 燃烧系统介绍 (4)

2.3锅炉的总体运行情况 (7)

第三章 LNCFS低NOX燃烧技术研究 (12)

3.1NOx生成机理 (12)

3.1.1热力型NOx的生成机理及其控制 (13)

3.1.2快速NOx的生成机理及其控制 (14)

3.1.3燃料型NOx的生成机理及控制 (15)

3.2 低NOx 技术的研究与发展 (18)

3.3 低NOx 燃烧技术 (19)

3.3.1 低NOx 燃烧技术概述 (19)

3.3.2 空气分级燃烧 (19)

3.4 LNTFS低NOx燃烧器 (23)

3.4.1煤粉燃烧时NOx的生成 (23)

3.4.2 LNTFS的组成 (23)

3.4.3控制NOx的CCOFA和SOFA (25)

3.4.4用于控制NOx的预置水平偏角的辅助风喷嘴(CFS)的作用 (27)

3.4.5用于控制NOx的宽调节比煤粉喷嘴(WR)的作用 (27)

第四章 低NOX燃烧改造方案 (29)

4.1改造方案的提出背景 (29)

4.2 此改造工程煤种分析 (29)

4.2.1设计煤种资料 (29)

4.2.2煤质评价 (30)

4.3低NOx 燃烧系统改造方案 (32)

4.4 燃烧系统初步设计参数 (35)

4.4.1 燃烧器的主要设计参数 (35)

4.4.2 燃烧器的面积改造 (36)

4.5燃烧器结构改造 (37)

4.5.1增加4个SOFA燃烧器 (37)

4.5.2 SOFA燃烧器介绍 (37)

4.5.3 SOFA风系统改造 (38)

4.5.4其他的改造 (38)

4.5.5 二次风喷嘴 (39)

4.5.6燃烧器二次风挡板的控制原则 (40)

第五章 燃烧器改造方案的数值模拟 (42)

5.1数值模拟技术简介 (42)

5.2模拟工况的建立 (43)

5.2.1 边界条件 (44)

5.2.2 计算域及网格划分 (45)

5.3 炉内场参数特性分析 (46)

5.3.1 风速分布 (47)

5.3.2 温度场 (49)

5.4 炉内水冷壁面特性分析 (52)

5.4.1 燃尽风量对炉内水冷壁面特性影响的研究 (52)

5.4.2 分离燃尽风级数对炉内水冷壁面特性影响的研究 (56)

5.5 炉内特性参数影响的研究 (62)

5.5.1 燃尽风量对炉内特性参数影响 (63)

5.5.2 分离燃尽风级数对炉内特性参数影响 (64)

5.5.3各工况屏底和还原区特性参数比较 (65)

5.5.4 各工况NOx 排放特性比较 (67)

第六章总结与展望 (69)

参考文献 (70)

致谢 (73)

攻读学位期间发表的论文 (74)

第一章 概述

1.1课题的背景

我国是一个煤炭资源十分丰富的国家,煤炭占我国一次能源的75% [1]左右。我国电力工业中燃煤火力发电占主导地位,但燃煤锅炉排放的大量氮氧化物(NOx)对生态环境造成了严重危害,既要电力又要环保,我国政府为此颁布最新的《火电厂大气污染物排放标准》[2 ](GB13223-2003),并从2004 年7 月开始逐步对火电厂征收氮氧化物排放费。毫无疑问,这项新的收费政策的出台使整个火电行业面临的环保形势异常严峻。采取措施减少氮氧化物的排放,是火电厂面临的一项刻不容缓的工作。目前已有的控制常规燃煤电站锅炉NOx排放的技术措施可分为低NOx燃烧技术和烟气净化技术两类。烟气净化技术是通过脱除烟气中NOx来降低NOx的最终排放量。尾部烟气脱硝技术比较彻底,NOx 排放浓度通常能够低于200mg/Nm3,但其投资与运行维护费用昂贵;而先进低NOx 燃烧技术可降低排放浓度到450~650 mg/Nm3以下,低NOx 燃烧技术的核心之一是分级燃烧技术,包括空气分级和燃料分级两种。燃料分级技术又称为燃料再燃(还原NOx)技术。国内外煤粉锅炉采用最广泛、技术最为成熟的主流低NOx 燃烧技术是空气分级技术。目前空气分级在我国300MW到1000MW等级的电站锅炉上已经得到广泛采用。

1.2国内外现状

目前对于NOx排放控制技术主要包括:SCR、天燃气再燃、低NOx 燃烧等技术。采用SCR 法降低NOx的排放量,按工业发达国家估计,设备改造成本约20$/KW,一台30万千瓦锅炉的改造费约达600万美元,费用相当昂贵[3]。而采用低NOx燃烧技术,其费用相对低廉。因此,电站锅炉采用低NOx燃烧投入少,见效快,适合我国国情。低NOx燃烧技术主要包括低过量空气系数燃烧、空气分级燃烧、再燃燃烧、烟气再循环和低NOx燃烧器,一般情况下,这些低NOx技术的NOx减排量不超过60%。在这些技术中,空气分级燃烧技术能够降低NOx排放25%~60%[4],并且投资低、运行成本低、易于锅炉改装。

对已经投运的燃煤锅炉进行低NOx燃烧改造,在国外已经有大量的运行业绩,但在我国还刚刚起步,取得的改造业绩也比较少,而且机组的容量都不大,至今还没有对600MW机组亚临界

1

锅炉进行低NOx燃烧系统改造的业绩。因此进行本课题的研究很有意义。

1.3论文工作内容

通过对某600MW亚临界锅炉机组燃用煤种(神府东胜煤)和运行数据的分析,结合对已经运行锅炉的NOx排放数据进行分析,开发适合本改造工程的低NOx的燃烧系统,并通过数值模拟等方法预测NOx排放数据,验证此系统的减排效果。通过数值模拟验证煤粉细度、风量分布等对锅炉性能指标的影响规律,并指导锅炉的运行。

拟解决的关键问题:

1.改进的燃烧系统的设计;

2.改进的二次风配风方式的设计;

3.改进的一、二次风喷嘴的设计;

4.对锅炉NOx排放进行预测,并对运行调整提出建议。

1.4改造目标

本文是对某600MW亚临界锅炉进行低NOx燃烧改造设计,改造后保证锅炉不投油低负荷稳燃能力及锅炉燃烧效率和锅炉效率基本不变情况下,显著降低NOx排放;降低炉膛出口烟温偏差;并有利于解决低熔点煤种的炉内结渣问题。为锅炉燃用神化煤在降低NOx等方面奠定基础,并为以后600MW亚临界锅炉低NOx燃烧设计和改造工程提供理论依据。

改造后达到如下效果:

1.显著降低NOx排放;

2.保证锅炉不投油低负荷稳燃能力不变;

3.保证锅炉燃烧效率和锅炉效率基本不变;

4.有利于解决低熔点煤种的炉内结渣问题;

5.降低炉膛出口烟温偏差。

1.5工程意义

完成某电厂600MW亚临界机组的低NOx的改造设计方案,在满足低NOx排放的同时,开发出既能满足燃用低熔点烟煤的防结渣、又能降低炉膛出口烟温偏差等性能指标的燃烧器,并且

2

该改造方案在以后相同类型机组的改造或设计中具有借鉴意义;通过课题研究有助于所在单位提高在低NOx燃烧电站锅炉的改造市场中的竞争力,得到市场认可;数值模拟的结果可以指导电厂的运行。

本章小结:本章对国内大容量亚临界燃煤机组的NOx排放现状进行了分析,提出采用低NOx 燃烧技术改造600MW亚临界燃煤机组锅炉比较适合我国的国情,并提出了论文的主要工作和目的以及此工程改造的意义所在。

3

第二章 某电厂3号炉原设计及运行情况

2.1锅炉总体设计情况介绍

某发电有限公司600MW 机组配上海锅炉厂生产的亚临界压力一次中间再热控制循环汽包炉,设计燃用神华煤。采用单炉膛、平衡通风、П型、露天布置,全钢架悬吊构架,固态排渣。

炉膛宽度19558mm,深度17448.5mm,炉顶标高73600mm。炉前布置三台低压头炉水循环泵,炉后布置两台三分仓容克式空气预热器。除尘器采用二室四电场的电除尘,共有两台。烟风系统中有引风机两台、送风机两台、一次风机两台、火检冷却风机两台、密封风机两台、高压离心风机两台。其中一次风机、送风机为轴流式动叶可调风机,引风机为轴流式静叶可调风机。炉膛上部布置了分隔屏、后屏及屏式再热器,前墙及两侧墙前部均设有墙式辐射再热器,水平烟道深度为8548mm,由水冷壁延伸部分和后烟井延伸部分组成,内部布置有末级再热器和末级过热器。后烟井内设有低温过热器和省煤器。锅炉布置如图1 所示。

锅炉采用正压直吹式制粉系统,每台锅炉配有六台HP983型中速磨煤机,五台磨煤机运行可带锅炉BMCR负荷,一台备用。燃烧器是四角切圆燃烧摆动燃烧器,每台磨煤机有四根煤粉管连接至炉膛同一层煤粉喷嘴。锅炉设计参数如表1 所示。

每角燃烧器设有三层启动及助燃油枪,共12支。为了节约燃油,在F层(最底层)燃烧器的四个角还装有等离子发生器,用于直接点燃煤粉。

过热器的汽温调节主要采用喷水减温调节,再热器的汽温调节主要采用燃烧器摆动及过量空气系数调节,另在再热器进口管道上装有事故喷水装置。

2.2 燃烧系统介绍

锅炉采用中速磨冷一次风机正压直吹式制粉系统,燃烧器采用四角布置切向燃烧方式。燃烧器共设置6 层煤粉喷嘴,锅炉配备六台HP-983型中速磨煤机,每台磨的出口由4 根煤粉管接至炉膛四角的同一层煤粉喷嘴,五台磨煤机运行可带锅炉MCR 负荷,一台备用。燃烧器的一、

4

二次风喷嘴呈间隔排列,一次风间距为1860,顶部设有OFA 二次风。最上排燃烧器喷口中心线标高34870 mm,距分隔屏屏底20130 mm,最下排燃烧器喷口中心线标高25570 mm,距炉底冷灰斗转角5969 mm。每角燃烧器设有三层启动及助燃油枪。燃烧器总图见图2(立面)、图3(平面)燃烧器布置采用所谓的“对冲同心正反切布置(SBWL-CFS)”,一次风近乎对冲布置;大部分二次风按顺时针方向偏转 (BC,CD,EF 层为4.5°,DE 层为15°),这部分二次风称为启旋二次风,与此相反,顶部OFA层与AA 层二次风喷嘴为25°逆时针方向偏转,AB 层为20°逆时针方向偏转,这部分二次风称为消旋二次风。见图4-1~4-7燃烧器二次风喷嘴。整个炉膛形成一个假想的顺时针旋转的切圆,1号3号角形成切圆直径为1425mm, 2号4号角形成切圆直径为2449mm,一次风煤粉喷嘴采用WR 型宽调节比结构,见图5,所有一次风喷口周围都布置有周界风以提高一次风刚性,保护喷口。燃烧器喷嘴高度布置见表2

表1 锅炉设计参数

锅炉型号 SG-2028/17.5-M907

汽包压力 18.36MPa

过热蒸汽流量 2028t/h

过热蒸汽压力 17.48MPa

过热蒸汽温度 541℃

再热蒸汽流量 1678t/h

再热蒸汽压力 3.84/3.66MPa

再热蒸汽温度 323/541℃

给水温度 279℃

冷风温度 26/33℃(二/一次风)

热风温度 321/302℃(二/一次风)

排烟温度 134℃

锅炉计算效率 93.54%

炉膛宽×深 19558×17448.5

炉膛顶棚管标高 73000mm

汽包中心线标高 74000mm

炉膛容积热负荷 84.85kW/m3

截面热负荷 4553kW/m2

5

Fig. 1 The arrangement drawing of the boiler 图1锅炉总图布置示意

6

表2 燃烧器喷嘴的高度布置

序号 风室代号 风室名称 备注

1 OFA 消旋二次风

2 AA 消旋二次风

带周界风

3 A 煤粉喷嘴

包括油枪,侧点火器

4 AB 消旋二次风

带周界风

5 B 煤粉喷嘴

6 BC 启转二次风

带周界风

7 C 煤粉喷嘴

包括油枪,侧点火器

8 CD 启转二次风

带周界风

9 D 煤粉喷嘴

10 DE 启转二次风

带周界风

11 E 煤粉喷嘴

包括油枪,侧点火器

12 EF 启转二次风

带周界风

13 F 煤粉喷嘴

14 FF 直吹二次风

2.3锅炉的总体运行情况

2.3.1效率测定:广东省电力试验研究所2006年4月10日至2006年4月18日对3号锅炉进行热效率调整试验,第一次热效率测试的结果为89.97%,第二次热效率测试的结果为89.89%,两者相差为0.08%[5],符合试验的要求(两次试验效率值偏差不大于1%),故此次热效率测试的结果为两次热效率测试的算术平均值,即89.93%。与考核值89.20%相比,能满足设计要求。

7

8

Fig. 2 The vertical drawing of the burner

图2燃烧器立面

9

Fig. 3 The horizontal drawing of the burner

图3 燃烧器平面

10

Fig. 4-1 AA & OFA level -25°

图4-1 AA 及OFA 层为-25°

Fig. 4-2 AB level nozzle -20° 图4-2 AB 层小喷嘴为-20°

Fig. 4-3 AB level middle nozzle -4.5°

图4-3 AB 层中喷嘴为-4.5°

Fig. 4-4 BC, CD, EF level 4.5° 图4-4 BC,CD,EF 层为

4.5° Fig. 4-5 CD,EF level nozzle 4.5°

图4-5 CD、EF 层中喷嘴为4.5° Fig. 4-6 DE level 15° 图4-6 DE 层为15°

11

Fig. 4-7 FF level nozzle 图4-7 FF层喷嘴 Fig. 5 WR type primary air nozzle 图5 WR型一次风喷嘴

2.3.2排烟温度:A侧的排烟温度测试结果为两次测试的算术平均值,即127.36℃;B侧的排烟温度测试结果为两次测试的算术平均值,即126.74℃[5];与设计值130℃相比,能满足设计要求。

2.3.3空预器漏风:A侧空预器漏风率为两次试验结果算术平均,即4.44%。B侧空预器漏风率为两次试验结果算术平均,即4.18%,满足设计的要求(空预器漏风率在投产第一年内不高于6%,运行一年后不高于8%)。炉膛温度的测量显示,锅炉燃烧稳定,无火焰偏心的现象。

2.3.4 NOx排放测定:3号炉在2006年4月10日至4月15日检测时为NOx排放为530mg/Nm3

(O2=6%),在2006年4月15日至4月18日检测时为为672mg/Nm3(O2=6%)[5];在2004年6月27日检测时为NOx排放为511mg/Nm3(O2=6%),NOx排放值大多超过450mg/Nm3(O2=6%),NOx排放已经不满足目前的环保要求,(《火电厂大气污染物排放标准》(GB13223-2003))[2]。

本章小结:本章对某电厂600MW亚临界燃煤机组3号炉的总体设计情况和运行情况作了介绍,锅炉的总体运行情况良好,锅炉热效率、排烟温度、空预器等均能满足设计要求。但是NOx 排放偏高,已无法满足目前的环保要求。因此电厂迫切需要对原机组进行改造以降低NOx排放。

燃煤锅炉低氮燃烧器改造浅谈

燃煤锅炉低氮燃烧 器改造浅谈ABSTRACT:To reduce the running costs of SCR De NOx, Zhangjiakou Power Plant No. 3 boiler burner for transformation after transformation, the burner will reduce the coal combustion process in the furnace of NOx generation. This article focuses on the boiler burners with low nitrogen transformation programs, combined with the 3rd Zhangjiakou Power Plant boiler burner and effect the transformation of the actual situation, On the mechanism of coal-fired units generate NOx boilers and burners for NOx generated control. KEY WORD:Retrofit NOx Boiler 摘要:为降低脱硝SCR的运行费用,张家口发电厂对3号锅炉燃烧器进行改造,改造后的燃烧器将降低燃煤在炉膛燃烧过程中NOx的生成量。本文重点介绍锅炉低氮燃烧器改造的方案,并结合张家口发电厂3号锅炉燃烧器改造的实际情况及效果,浅谈燃煤机组锅炉NOx生成机理和燃烧器对NOx生成的控制。 关键词:锅炉燃烧器改造 NOx 1 概况 1.1 脱硝的必要性 在国家“十二五”规划中,对火电发电企业大气污染物排放作出了严格的规定。其中,京津唐地区要求NOx排放量小于100mg/Nm3。机组烟气脱硝改造在降低烟气NOx含量的同时,高昂的脱硝运行费用又使发电企业不堪重负。于是,为了减少SCR入口处NOx含量,降低脱硝运行费用,低氮燃烧器的改造已逐渐成为火力发电企业降低烟气NOx含量的重点改造之一。在今后火力发电机组的脱硝改造中,“先降后脱”的方案必然是大势所趋。1.2 氮氧化物的形成 煤燃烧过程中氮氧化物的生成量和排放量与煤的燃烧方式,特别是燃烧温度和过量空气系数等燃烧条件有关。研究表明,在煤的燃烧过程中生成NOx的主要途径有三个: a 热力型NO x是空气中的氧(O2)和氮(N2)在燃料燃烧时所形成的高温环境下生成的NO和NO2的总和,其总反应式为: N2+O2←→2NO NO+O2←→NO2 当燃烧区域的温度低于1000℃时,NO 的生成量很小,而温度在1300~1500℃时,NO的浓度大约为500~1000ppm,而且随着温度的升高,NOx的生成速度按指数规律增加。因此,温度对热力型NOx的生成具有决定作用。 b 快速型NOx主要是指燃料中的碳氢化合物在燃料浓度较高区域燃烧时所产生的烃与燃烧空气中的N2分子发生反应,形成的CN、HCN,继续氧化而生成的NOx。因此,快速型NOx主要产生于碳氢化合物含量较高、氧浓度较低的富燃料区,多发生在内燃机的燃烧过程。而在燃煤锅炉中,其生成量很小。 c 燃料型NOx是燃料中的氮化合物在燃烧过程中氧化反应而生成的NOx。燃煤电厂锅炉中产生的NOx中大约75~90%是燃料型NOx。在一般情况下,燃料型NOx 的主要来源是挥发份N,其占总量的60~80%,其余为焦炭N所形成。在氧化性环境中生成的NOx遇到还原性气氛时,会还原成N2,因此,锅炉燃烧最初形成的NOx,并不等于其排放浓度,而随着燃烧条件的改变,生成的NOx可能被还原,或

锅炉燃烧过程控制系统设计毕业论文

锅炉燃烧过程控制系统设计毕业论文

毕业论文 锅炉燃烧过程控制系统设计

毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。 作者签名:日期:

学位论文原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。 作者签名:日期:年月日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 涉密论文按学校规定处理。 作者签名:日期:年月日 导师签名:日期:年月日

锅炉燃烧系统

锅炉燃烧系统 一、基本知识点 1、发电能源的种类 火力发电→发电的主要形式; 水利发电、核能发电; 新能源发电:地面太阳能发电、卫星太阳能发电、地面风能发电、高空风能发电、地壳热能发电、岩浆热能发电、潮汐发电、波浪发电、海水温差发电、核聚变能发电等。 2、火力发电厂的生产过程中能量转换形式及设备 燃料的化学能→蒸汽的热能(锅炉); 蒸汽的热能→机械能(汽轮机); 机械能→电能(发电机)。 3、锅炉的作用 使燃料在炉内燃烧放热,并将锅内工质由水加热成具有足够数量和一定质量(温度、压力)的过热蒸汽,供汽轮机使用。 4、锅炉四大系统 ①制粉系统→将初步破碎的原煤磨制成符合锅炉燃烧要求的细小煤粉颗粒【燃煤炉】; ②燃烧系统→使燃料燃烧放出热量,产生高温火焰和烟气; ③烟风系统→供应助燃氧气、排除燃烧产生的烟气; ④汽水系统→通过换热设备将高温火焰和烟气的热量传递给锅炉内的工质。 5、锅炉容量 锅炉额定蒸汽参数,额定给水温度并使用设计燃料时,每小时的最大连续蒸发量。 De =130t/h De=36.1kg/s 6、蒸汽参数 锅炉出口处的蒸汽温度和蒸汽压力。 t=500℃,t=813K p=13.5MPa 7、锅炉的燃料 煤(主要燃料)、油、气体以及其他可燃物(如生活垃圾)。

简单蒸汽动力装置流程图

二、锅炉燃烧系统 1、锅炉燃烧设备的组成 炉膛+燃烧器+点火装置 2、锅炉燃烧设备的发展方向 高效、低污染的燃烧技术和设备 3、与炉内燃烧过程相关的问题 (1) 受热面积灰、结渣; (2) 受热面金属表面的高温腐蚀; (3) 蒸发受热面中水动力的安全性; (4) 氧化氮等污染物的生成; (5) 火焰在炉膛容积中的充满程度。 4、高炉煤气与转炉煤气特性 高炉煤气:炼铁过程中产生的副产品,主要成分为:CO, C02, N 2、H 2、CH 4等,其中可燃成 分CO 含量约占25%左右,H 2含量约占1.5~1.8%、CH 4的含量很少,CO 2, N 2的含量分别占15%,55% 左右,热值不高,仅为3500KJ/m 3左右,燃点530~650℃。 主要性质:无色无味有剧毒易燃易爆。 转炉煤气:炼钢过程中,铁水中的碳在高温下和吹入的氧生成一氧化碳和少量二氧化碳的混合气体。回收的炉气含一氧化碳60~80%,二氧化碳15~20%。热值较高,为8000KJ/m 3左右,燃点650~700℃。 主要性质:无色无味有剧毒易燃易爆。 5、气体燃烧器 (1) 按燃烧方法【主要分类方式】: ▼ 扩散式燃烧器:煤气中不预混空气,一次空气系数01=α,燃气经燃烧器喷入炉内,借助扩散作用与空气边混合边燃烧; ▼ 大气式(半预混式)燃烧器:燃气中预先混入一部分空气,一次空气系数75.045.01-=α; ▼ 无焰式(预混式)燃烧器:燃气与空气完全预混,一次空气系数11≥α。 (2) 按空气供给方式: ▼ 自然引风式:靠炉膛负压将空气吸入炉膛;

锅炉燃烧时时序控制工作原理

标题:锅炉燃烧时时序控制工作原理现代内燃机动力装置的船舶上,辅助蒸汽锅炉(简称辅锅炉)是对水进行加热而产生蒸汽的设备。锅炉自动控制环节主要包括:水位自动调节、蒸汽压力自动控制、燃烧程序控制以及报警和保护环节。其中水位自动调节的任务是保证锅炉给水量适应蒸发量的变化,使水位波动不超过一定范围。允许变化范围是60—120mm,一般采用双位控制;燃烧过程的自动调节主要任务是使锅炉气压维持在规定值或规定之允许的的范围内,同时为了保证工作良好必须使供风量与供油量相适应;报警环节是为了在锅炉运行过程中为了达到安全、可靠、无人值班的目的,除了对锅炉水位与燃烧采用自动控制外还必须对各种危险工况采取安全保护措施。 燃烧程序自动控制辅助锅炉燃烧时序程序控制是指给锅炉一个起动信号后,能按时序的先后自动进行预扫风、预点火、喷油点火,点火成功后对锅炉进行预热,接着转入正常燃烧的负荷控制阶段。同时对锅炉的运行进行一系列的安全保护。辅助锅炉燃烧时序控制框图如图3-1所示。按下锅炉起动按钮后,自动起动姗烧油泵和鼓风机,关闭燃油电磁阀使ilk油在锅炉外面打循环,此时风门开得最大,以大风量进行预扫风,防止锅炉内残存的油气在点火时发生冷爆。预扫风的时间根据锅炉的结构形式不同而异,炉燃烧时序控制框图一般20s-60s。达到预扫风的时间自动关小风门,同时点火电极给出电火花进行预点火,时间为3秒左右。然后打开燃油电磁阀,或开大回油阀,或让一个油头喷油工作,即以小风量和少喷油进行点火。点火成功后维持一段时间低火燃烧即进入正常的负荷控制阶段。在预定的时间内若点火不成功,或风机失压,或中间熄火等现象发生,会自动停炉,待故障排除后按复位按钮方能重新起动锅炉。 炉燃烧时序控制框图一般20s-60s。达到预扫风的时间自动关小风门,同时点火电极给出电火花进行预点火,时间为3秒左右。然后打开燃油电磁阀,或开大回油阀,或让一个油头喷油工作,即以小风量和少喷油进行点火。点火成功后维持一段时间低火燃烧即进入正常的负荷控制阶段。在预定的时间内若点火不成功,或风机失压,或中间熄火等现象发生,会自动停炉,待故障排除后按复位按钮方能重新起动锅炉。

燃气锅炉低氮改造方案培训课件

燃气锅炉低氮改造方案 燃气锅炉低氮排放成为了新时代的新要求,为了保护环境,保证国人健康,燃气锅炉低氮排放势在必行,使命必达。 远大锅炉紧跟时代步伐,积极响应国家政策,时刻不忘研发新产品,不忘为用户谋福利。 远大低氮燃气锅炉:FGR烟气再循环低氮燃烧技术;国外原装进口低氮燃烧器; 压力、水位多重安全防护;PLC触摸屏智能化控制技术。 远大锅炉低氮技术研发历程: 保护环境,节能减排,绿色生产,可持续发展是每一个企业的使命,远大锅炉每年按销售额的5%提取新产品研发费用,专注低氮、节能锅炉技术的研发。 2015年,远大锅炉与芬兰奥林、德国欧科、意大利利雅路、意科法兰等积极合作,通过使用超低NOx燃烧器,增加烟气外循环设计,实现氮氧化物<30mg/m 3排放标准。 NOx成分分析及产生机理: 在燃烧过程中所产生的氮的氧化物主要为NO和NO2,通常把这两种氮氧化物通称为氮氧化物NOx。大量实验结果表明,燃烧装置排放的氮氧化物主要为NO,平均约占95%,而NO2仅占5%左右。

燃料燃烧过程生成的NOx,按其形成分类,可分为三种: 1、热力型NOx (Thermal NOx),它是空气中的氮气在高温下氧化而生成的NOx; 2、快速型NOx(Prompt NOx),它是燃烧时空气中的氮和燃料中的碳氢离子团如CH等反应生成的NOx; 3、燃料型NOx(Fuel NOx),它是燃料中含有的氮化合物在燃烧过程中热分解而又接着氧化而生成的NOx; 燃烧时所形成NO可以与含氮原子中间产物反应使NO还原成NO2。实际上除了这些反应外,NO 还可以与各种含氮化合物生成NO2。在实际燃烧装置中反应达到化学平衡时,[NO2]/[NO]比例很小,即NO转变为NO2很少,可以忽略。 降低NOx的燃烧技术: NOx是由燃烧产生的,而燃烧方法和燃烧条件对NOx的生成有较大影响,因此可以通过改进燃烧技术来降低NOx,其主要途径如下: 1选用N含量较低的燃料,包括燃料脱氮和转变成低氮燃料; 2降低空气过剩系数,组织过浓燃烧,来降低燃料周围氧的浓度; 3在过剩空气少的情况下,降低温度峰值以减少“热反应NO”; 4在氧浓度较低情况下,增加可燃物在火焰前峰和反应区中停留的时间。 减少NOx的形成和排放通常运用的具体方法为:分级燃烧、再燃烧法、低氧燃烧、浓淡偏差燃烧和烟气再循环等。 目前低氮改造方案 1、FGR技术: 即自身再循环燃烧器,对于天燃气锅炉来说目前主流成熟低氮排放技术就是分级燃烧加烟气再循环法即FGR技术,

锅炉燃烧控制系统仿真

锅炉燃烧过程控制系统仿真 目的:通过该项目的训练,掌握串级控制、比值控制、前馈控制在锅炉燃烧过程控制系统的综合应用。 原理简述: 燃烧过程控制系统:燃油锅炉的燃烧过程控制主要由三个子系统构成:蒸汽压力控制系统、燃料空气比值控制系统以及炉膛负压控制系统。 1 、蒸汽压力控制和燃料空气比值控制系统 锅炉燃烧的目的是生产蒸汽供其他生产环节使用。一般生产过程中蒸汽的控制是通过压力实现的,后续环节对蒸汽的生产用量不同,反映在蒸汽锅炉环节就是蒸汽压力的波动。维持蒸汽压力恒定是保证生产正常进行的首要条件。 保证蒸汽压力恒定的主要手段是随着蒸汽压力波动及时调节燃烧产生的热量,而燃烧产生热量的调节是通过控制所供应的燃料量以及适当比例的助燃空气的控制实现的。 因此,蒸汽压力是最终被控制量,可以根据生成情况确定; 燃料量是根据蒸汽压力确定的;空气供应量根据空气量与燃料量的合理比值确定。 2 、炉膛负压控制系统 锅炉炉膛负压过小时,炉膛内的热烟、热气会外溢,造成热量损失,影响设备安全运行甚至会危及工作人员安全;当炉膛负压太大时,会增加燃料损失、热量损失和降低热效率。 使外部大量冷空气进入炉膛,改变燃料和空气比值,

控制方案: 某锅炉燃烧系统要求对系统进行蒸汽压力控制。本项目采用燃烧炉蒸汽压力控制和燃料空气比值控制系统,并辅以炉膛负压控制的方案,控制系统框图如图所示。 已知控制系统传递函数: 燃料流量系统的数学模型:G(s)=s e s 31 122-+

空气流量模型:G(s)=s e s 21102-+ 引风量与负压关系模型:G(s)=s e s -+156 送风量对负压的干扰模型:G(s)=122 +s 并取: 燃料流量至蒸汽压力关系约为:G(s)=4 蒸汽压力至燃料流量关系约为:G(s)=1/4 燃料流量与控制流量比值:G(s)=2 空气流量与燃料流量比值:G(s)=1 实现步骤: 1、系统稳定性分析 作出伯德图,如果相角裕度Pm>0°或幅值裕度Gm>1,表示系统稳定。 (1) 燃料流量系统数学模型:G(s)=s e s 31122-+的伯德图: 空气流量数学模型G(s)=s e s 21102 -+的伯德图:

火电厂锅炉低氮燃烧改造及运行优化调整 孙光奇

火电厂锅炉低氮燃烧改造及运行优化调整孙光奇 发表时间:2020-01-14T11:29:06.207Z 来源:《基层建设》2019年第28期作者:孙光奇朱少春 [导读] 摘要:随着我国经济的不断发展,人民对于电力资源的需求愈加严重,尤其是在当今社会发展阶段中,电力资源已经是充斥了我们生活每一个角落,可以不夸张的说,小到生活日常所需,大到科技发展,社会进步都离不开电力资源的支撑。 济南锅炉集团有限公司 摘要:随着我国经济的不断发展,人民对于电力资源的需求愈加严重,尤其是在当今社会发展阶段中,电力资源已经是充斥了我们生活每一个角落,可以不夸张的说,小到生活日常所需,大到科技发展,社会进步都离不开电力资源的支撑。就以当前我国的科技水平来说,其火力发电还是主要产电方式。虽然其火力发电产出的电力资源相当可观,但是该类产电方式对环境的污染较为严重,有时会达到一个无法接受的程度。对此,为满足国家的可持续发展道路,就要相应的实施火电厂锅炉低氮燃烧改造,从根本上解决火电厂的污染问题。本文就以火电厂锅炉低氮燃烧改造和运行优化进行探讨。 关键词:火电厂;锅炉;低氮改造;运行优化 1火电厂锅炉低氮改造重要性 目前,我国的主要发电类型就是火力发电,其它的发电方式产出效率较为低下,还不足以满足我国如此庞大的人口用电所需,而核能发电则是因为科技还不够完善,目前还存在些许的问题。因此,火力发电仍然是我国现阶段的主要供电来源。但是其火力发电的污染较为严重,需要相应的引入新技术,在这种情况下,低氮燃烧改造技术应势而生,将低氮燃烧技术良好的应用于火电厂锅炉发电进程中,可以有效的减少锅炉的烟气排放量,加强烟气净化系统,降低循环流化床锅炉的烟气产生量,极大的解决烟气排放所导致的一系列环境污染问题。为顺应当代可持续发展观念,同时还要满足我国十几亿人口的用电所需,就要对低氮燃烧改造技术的应用重视起来,并相应的加大对该技术的研究力度。 2火电厂锅炉运行优化的重要性和影响因素 2.1锅炉运行优化的重要性 作为火电厂的重要组成部分,锅炉运行的好坏直接影响着火电厂的整体运行效果。进行锅炉系统的全面优化可以帮助火电厂解决多种问题,主要表现为:降低了氮氧化物、飞灰含碳量等;在一定程度上改进了减温水量、热效率、煤耗等;有利于过热器与再热器超温和受热面结焦结渣的控制。另外,锅炉运行的优化可以实现锅炉各组成部分的协调控制,并可以发现和挖掘锅炉更多的空间。 2.2影响锅炉运行优化的因素 在锅炉运行过程中存在很多影响因素,为了提高锅炉的利用率和运行效率,应对锅炉的运行方式进行调整,有效减少各种损失,同时还应在一定程度上提高蒸汽的参数,从而降低锅炉的排污量与减温水量。对于运行中的锅炉来说,其热损失主要来自未充分燃烧和排烟两方面。其中,未充分燃烧是指燃料在锅炉内没有完全燃烧,没有发挥全部的热能而造成热损失。而排烟热损失的影响因素有很多,主要包括:受热面积积灰和结渣,其原因是锅炉在运行过程中,预热器、炉膛和烟道等处的受热面容易出现积灰,从而影响排烟造成热损失;漏风问题,其主要出现在制粉系统、炉膛、烟道等处,当发生漏风时会直接增加排烟热损失,另外,排烟温度会随着炉膛漏风系数的增大而升高,进而造成排烟热损失增加;外界因素影响,即入炉煤的成分、空气预热器入口的温度等因素的影响,煤成分的大小影响着炉膛内燃烧程度,如果煤质不好导致燃烧不充分,会增加烟气量,导致排烟热损失增大。 3火电厂锅炉低氮燃烧改造优化 3.1火电厂锅炉燃烧改造 因为目前的中国科技技术还达不到全面实现核能产电,因此,其主要发电方式仍为火电厂发电,为解决其环境污染问题,就要相应的应用低氮化燃烧改造技术,使得我国的火电厂发电走向可持续发展道路。其低氮化燃烧改造的核心就是使用垂直煤粉超浓缩分离技术,将传统的燃烧方式升级为立体分级燃烧方式。在实际的改造过程当中,需要将原锅炉中的燃烧器进行重新改进和布局,全面更换为低氮燃烧器、其煤粉喷嘴换为上下摆动结构并且垂直浓淡分离,以达到提升低氮燃烧器的烧热效率和降低NOx排放量的目的。 3.2火电厂低氮燃烧运行优化 将传统燃烧器全面更换为低氮燃烧器后,需要进行相应的优化工作,以达到全面保证锅炉的正常运作的同时提高其电能产出率,扩大火电厂经济效益,减小汽温和两侧烟温的差距。目前我国所常用到的火电厂低氮燃烧运行优化措施大致分为调整摆角和燃尽风;调整一次风、二次风、周界风;调整炉膛氧量;调整煤粉细度等几个措施。 调整摆角和燃尽风指在汽温较高的情况下,适当的降低燃烧器摆角并且优化燃尽风,可以有效降低含氧量,适当上部燃烧率升高,明显提高其低氮燃烧效率。 调整一次风、二次风、周界风指通过实现二次风组合适当将主燃烧区实现低氧燃烧,结合相应的参数进行实际调整,通过实际的低氮燃烧情况进行更加适合的调整二次风工作。调整炉膛氧量指将炉膛中的含氧量控制在2.5%-3.5%之间,可以明显达到降低NOx排放量的作用,还可以保证锅炉长期维持一个良好的工作效率状况。 调整煤粉细度则是对分离器挡板进行适当调整,使得其变小,降低煤粉细度,最终使得煤粉燃烧更加充分,可以有效防止由于低氧环境而导致温度超标使得受热面超温的情况发生,可以提高其锅炉运作的安全稳定性。 4探析锅炉运行的优化措施 4.1关于优化锅炉设备本体 近些年以来,很多电厂锅炉逐渐增大了异常运行的概率,其中根源就在于较长的锅炉投产年限。在现有的锅炉异常现象中,较为典型的就是磨煤机出现卡涩、过热器脱落氧化皮、较高的脱硫风机能耗以及其他运行故障。经过全方位的燃烧技术转型与技术优化后,锅炉本体设备将会达到更好的运行性能指标。火力发电厂具体在改造现有的锅炉设备时,关键措施在于同步控制锅炉系统目前的耗电量以及系统运行阻力,确保实现显著降低的系统耗电比例,提升锅炉装置现有的系统阻力。并且针对挡板频繁出现卡涩的情况来讲,重点应当关注优化现有的磨煤机系统,以便于灵活调节分离器。 4.2关于优化现有的锅炉运行方式 实质上,锅炉运行方式决定于较多的锅炉燃烧因素,其中典型因素就在于煤质因素。锅炉燃烧效率在根本上决定于煤质的改变,并且

燃气锅炉低氮改造施工方案

燃气锅炉低氮改造施工方案 项目名称:xxx燃气锅炉低氮改造工程编制单位: 编制时间:2016年10月13日

第一章工程概况 1.1工程简介 1.1.1本工程为xxx燃气锅炉低氮改造工程。首先需采购新锅炉,拆除原有锅炉、烟囱、电气设备、部分水暖和燃气管道等;然后安装新锅炉,管道、烟囱重新布置。 1.1.2本项目施工范围 1.锅炉房内原有锅炉、采暖及燃气管线、电气设备、烟囱的拆除; 2.锅炉房设备管道安装,其中有锅炉、管道等安装; 3.电气工程,包括电气动力和电气照明; 4.烟囱安装; 5.燃气工程。 第二章施工准备 在工程正式开工前,需现场勘查,确认实际施工条件和工程量,以利于施工的计划的安排和顺利进行。另一方面应该积极设备供货厂家,了解设备技术参数、基础做法、安装尺寸等,为施工做好充足准备。 2.1临时设施 根据现场实际情况,由甲方指定地点作为临时设施存放和现场预制场地。 2.2临时用电 临时用电由甲方指定的地点挂表接入,现场用电包括生产用电和生活用电,施工用电主要为电焊机、切割机、磨光机、照明设施等。临时用电采用三级配电,两级保护,保证用电安全。 2.3临时用水 临时用水从甲方指定地点接入。主要用于生活用水和施工用水,施工用水主要为土建砌筑用水和混凝土基础养护、打压和冲洗用水等。 2.4生产准备

重点完成工作场地布置、临时水源、临时电源、人员组织及进场、机械设备组织及进场计划、工程材料准备及进场计划、图纸会审及设计交底、现场纵横基准线与标高基准点复核等。 2.5技术准备 施工前要认真研究和熟悉本工程设计文件并进行现场核实,组织有关人员学习设计文件,图纸及其它有关资料,使施工人员明确设计者的设计意图,熟悉设计图纸的细节,对设计文件和图纸进行现场校对。 2.6材料准备 针对本工程的施工内容,在开工之前对工程所需锅炉设备、电气、管道、烟囱等制定采购计划,积极联系资质优良的材料厂家并提出详细的进场计划,严格执行验收与检测程序,确保原材料的质量。 第三章施工进度安排 3.1施工部署 本工程为低氮改造工程,首先得安排设备采购订货,尤其是锅炉的采购,预计需要四十天; 其次,组织施工进场,在甲方指定位置引入水电,安排临时生活设施和现场预制加工场地; 第三,拆除需改造设备,锅炉、管路、线路、烟囱等; 第四,根据设计文件和设备参数复核设备基础位置标高,规划管线安装路由、力求布局科学合理; 第五,锅炉、烟囱、电气等新购设备的进场验收; 第六,锅炉、烟囱、管道、仪器仪表、燃气管道设备及电气管线设备安装; 第七,管道系统水压试验、冲洗、防腐保温; 第八,系统冷态调试; 第九,锅炉点火试运行;

锅炉燃烧系统的控制系统设计解析

目录 1锅炉工艺简介 (1) 1.1锅炉的基本结构 (1) 1.2工艺流程 (2) 1.2煤粉制备常用系统 (3) 2 锅炉燃烧控制 (4) 2.1燃烧控制系统简介 (4) 2.2燃料控制 (4) 2.2.1燃料燃烧的调整 (4) 2.2.2燃烧调节的目的 (5) 2.2.3直吹式制粉系统锅炉的燃料量的调节 (6) 2.2.4影响炉内燃烧的因素 (7) 2.3锅炉燃烧的控制要求 (11) 2.3.1 锅炉汽压的调整 (11) 3锅炉燃烧控制系统设计 (14) 3.1锅炉燃烧系统蒸汽压力控制 (14) 3.1.1该方案采用串级控制来完成对锅炉蒸汽压力的控制 (14) 3.2燃烧过程中烟气氧含量闭环控制 (17) 3.2.1 锅炉的热效率 (18) 3.2.2反作用及控制阀的开闭形式选择 (20) 3.2.3 控制系统参数整定 (20) 3.3炉膛的负压控制与有关安全保护保护系统 (21) 3.3.1炉膛负压控制系统 (22) 3.3.2防止回火的连锁控制系统 (23) 3.3.3防止脱火的选择控制系统 (24) 3.4控制系统单元元件的选择(选型) (24) 3.4.1蒸汽压力变送器选择 (24) 3.4.2 燃料流量变送器的选用 (25) 4 DCS控制系统控制锅炉燃烧 (26) 4.1DCS集散控制系统 (26) 4.2基本构成 (28)

锅炉燃烧系统的控制 4.3锅炉自动燃烧控制系统 (31) 总结 (34) 致谢 (35) 参考文献 (36)

1锅炉工艺简介 1.1锅炉的基本结构 锅炉整体的结构包括锅炉本体和辅助设备两大部分。 1、锅炉本体 锅炉中的炉膛、锅筒、燃烧器、水冷壁、过热器、省煤器、空气预热器、构架和炉墙等主要部件构成生产蒸汽的核心部分,称为锅炉本体。锅炉本体中两个最主要的部件是炉膛和锅筒。 炉膛又称燃烧室,是供燃料燃烧的空间。将固体燃料放在炉排上进行火床燃烧的炉膛称为层燃炉,又称火床炉;将液体、气体或磨成粉状的固体燃料喷入火室燃烧的炉膛称为室燃炉,又称火室炉;空气将煤粒托起使其呈沸腾状态燃烧、适于燃烧劣质燃料的炉膛称为沸腾炉,又称流化床炉;利用空气流使煤粒高速旋转并强烈火烧的圆筒形炉膛称为旋风炉。炉膛的横截面一般为正方形或矩形。燃料在炉膛内燃烧形成火焰和高温烟气,所以炉膛四周的炉墙由耐高温材料和保温材料构成。在炉墙的内表面上常敷设水冷壁管,它既保护炉墙不致烧坏,又吸收火焰和高温烟气的大量辐射热。炉膛的结构、形状、容积和高度都要保证燃料充分燃烧,并使炉膛出口的烟气温度降低到熔渣开始凝结的温度以下。当炉内的温度超过灰熔点时,灰便呈熔融状态。熔融的灰渣颗粒在触及炉内水冷壁管或其他构件时会粘在上面。粘结的灰粒逐渐增多,遂形成渣块,称为结渣。结渣会降低锅炉受热面的传热效果。严重时会堵塞烟气流动的通道,影响锅炉的安全和经济运行。一般用炉膛容积热负荷和炉膛截面热负荷或炉排热负荷表示其燃烧强烈程度。炉膛容积热负荷是单位炉膛容积中每单位时间内释放的热量。在锅炉技术中常用炉膛容积热负荷来衡量炉膛大小是否恰当。容积热负荷过大,则表示炉膛容积过小,燃料在炉内的停留时间过短,不能保证燃料完全燃烧,使燃烧效率下降;同时这还表示炉墙面积过小,难以敷设足够的水冷壁管,结果炉内和炉膛出口处烟气温度过高,受热面容易发生结渣。室燃炉的炉膛截面热负荷是单位时间内单位炉膛横截面上燃料燃烧所释放的热量。在炉膛容积确定以后,炉膛截面热负荷过大会使局部区域的壁面温度过高而引起结渣。层燃炉的炉排热负荷是单位时间内燃料燃烧所释放的热量与炉排面积的比值。炉排热负荷过高会使飞灰大大增加。炉膛设计需要充分考虑使用燃料的特性。每台锅炉应尽量燃用原设计的燃料。燃用特性差别较大的燃料时,锅炉运行的经济性和可靠性都可能降低。 锅筒它是自然循环和多次强制循环锅炉中接受省煤器来的给水、联接循环回路,并向过热器输送饱和蒸汽的圆筒形容器。锅筒筒体由优质厚钢板制成,是锅炉中最重的部件之一。锅筒的主要功能是储水,进行汽水分离,在运行中排除锅水中的盐水和泥渣,

锅炉低氮改造施工组织设计方案网络版

锅炉低氮燃烧器安装 方 案 文 件 建设单位: 施工单位:

目录 一、编制依据 二、工程概况 三、主要施工内容 四、施工组织 五、施工技术措施 六、质量保证措施 七、安全措施 八、企业人员资质 编制人: 审核人: 日期:2017年月日

第一章编制依据 一、JB/T1613《锅炉受压元件焊接技术条件》; 二、JB/T1612《锅炉水压试验技术条件》作为技术标准、质量要求。 第二章工程概况 本工程位于北京市锅炉房。现场交通状况良好,现有水压、电力容量能够满足施工要求。 现场锅炉设备情况如下表(详见后附锅炉低氮燃烧改造告知书): 第三章主要施工内容 根据甲方要求和锅炉低氮改造要求,本工程主要施工内容有:提供全新原装进口设备并进行相关施工,满足甲方的各项要求,达到甲方的使用目的,达到烟气环保排放标准。 (1)燃烧器选型及说明: 将甲方原有 2.8MW锅炉配置的旧燃烧器更换为德国欧科EKEVO7.3600 G FGR型低氮电子比调燃烧器及其配套阀门组件。 EKEVO7.3600 G FGR是低氮燃烧器加烟气再循环技术,这种技术组合可以达到低于30mg/m3的NOx排放浓度,在稳定达到《锅炉大气污染物排放标准》(DB11/139-2015)中高污染燃料禁燃区内在用锅炉2017年4月1日起执行的80mg/m3排放限值的基础上留有一定的富余,以防止运行不稳定造成NOx超标; 采用烟气再循环技术辅助低氮燃烧时,同样额定功率的锅炉炉膛尺寸要比常规锅炉适当放大,以保证NOx的控制效果。本项目为旧锅炉改造,鉴于旧锅炉的炉膛尺寸相对偏小,需适当降低锅炉的额定

出力以确保NOx的控制效果。 (2)燃烧器安装改造说明: 2.1锅炉燃烧器连接法兰改造:2.8MW热水锅炉的燃烧器原有安装接口比EKEVO7.3600 G FGR型燃烧器所需接口要大,所以需要制作一块过渡安装法兰,安装法兰与锅炉原有旧法兰板满焊焊接连接,以达到连接稳固的目的。 2.2燃烧器燃烧头长度选择:根据不同的锅炉前炉墙的厚度,选用EKEVO7.3600 G FGR型燃烧器加长头,使燃烧器燃烧头伸入锅炉炉膛燃烧室之内,以保障燃烧时火焰完全在锅炉炉膛燃烧室内。 2.3燃烧器电气方面改造: EKEVO7.3600 G FGR型燃烧器电机功率动力电源配线无需改口。控制线路进行改动;燃烧机自配控制柜须安装在燃烧器3米以内,完成该控制柜与燃烧器之间的电气布线和接线。 2.4烟气再循环管道施工: EKEVO7.3600 G FGR型燃烧器的烟气再循环FGR接口口径为DN200以上。整个FGR管路最多有3个90度弯头,总长度不超过13米。锅炉出口烟道的FGR取出管口必须是45度迎风面切口。整个FGR管路做保温处理以减少冷凝水的产生。FGR管进入燃烧器前,必须在FGR管的最低位置做冷凝水排水管,排水管口径为DN15,2个180°弯头,向下的排水管长度要大于300mm。 (3)质监局与环保局测试验收: 按照北京市海淀区质量技术监督局要求进行锅炉安全性能调试验收。由北京市海淀区环境保护局委托第三方验收机构对现场锅炉燃烧器

锅炉燃烧调整总结

锅炉燃烧调整总结-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

#2 炉优化调整 机组稳定运行已有3个多月,但在调试结束后我厂#2机组在3月份前在满负荷时床温在960℃左右,总风量大,风机电流大,厂用电率居高不下,一直困扰着我们。通过三个月的分析、调整,近期床温整体回落,总结出主要原因有以下两点: 一、煤颗粒度的差异。前一段时间负荷300MW时床温高炉膛差压在1.5KPa,下部压力2.6KPa,近期炉膛差压在2.1KPa,下部压力3.6KPa,这说明锅炉外循环更好了,分离器能捕捉更多的物料返回炉膛,同时也减少了飞灰含碳量,否则小于1mm的煤粒份额太多分离器使分离效率下降,小于1mm细颗粒太多就烧成煤粉炉的样子,从而导致高床温细颗粒全给飞灰含碳量做贡献了,大于10mm煤粒太多就烧成鼓泡床了,导致水冷壁磨损加剧爆管、冷渣器不下渣和燃烧恶化等一系列问题,所以控制好入炉煤粒度(1—9mm)是保证燃烧的前提,当煤颗粒度不合适时只能通过加大风量使床温下降,在煤颗粒度不合适时加负荷一定要先把风量加起来,否则负荷在300MW时床温会上升到接近980℃,甚至会因床温高被迫在高负荷时解床温高MFT保护,如果处理不当造成结焦造成非停。所以循环流化床锅炉控制煤粒度是决定是否把锅炉烧成真正循环流化床最为重要的因素,可以说粒度问题解决了,锅炉90%的问题都解决了,国内目前最好的煤破碎系统为三级筛分两级破碎。 二、优化燃烧调整。3月份以来#2炉床温虽然整体下降,但仍不够理想,由于我厂AGC投入运行中加减负荷频繁,所以在负荷变

化时锅炉床温变化幅度较大,在最大出力和最小出力时床温相差接近200℃,不断的调整风煤配比使其达到最优燃烧工况,保证床温维持在850℃-900℃。负荷150MW时使总风量维持32万NM3/h左右,一次流化风量21万NM3/h,二次风量11万NM3/h左右,同时关小下二次风小风门(开度20%左右,减小密相区燃烧,提高床温)和开大上二次小风门(开度40%左右,增强稀相区燃烧,提高循环倍率),可使床温维持850℃左右,正常运行中低负荷时一次风量保证最小临界流化风量的前提下尽可能低可使床温维持高一点,以保证最佳炉内脱硫脱硝温度。负荷300MW时总风量维持62万NM3/h左右,一次风量27万NM3/h左右,二次风量35万NM3/h左右,同时开大下二次小风门(开度80%左右,增强密相区扰动,降低床温),关小上二次小风门(开度60%左右,使稀相区进入缺氧燃烧状态),因为东锅厂设计原因,二次上下小风门相同开度情况下上二次风是下二次风风量的三倍,所以加减负荷时根据负荷及时调整二次小风门开度对床温影响较大。高负荷时在床温不高的情况下尽量减小一次风,以达到减少磨损的目的,二次风用来维持总风量,高负荷时床温尽量接近900℃,以达到最佳炉内脱硫脱硝温度,同时加负荷时停止部分或全部冷渣器,床压高一点增强蓄热量可降低床温,减负荷相反,稳定负荷后3台左右冷渣器可保证床压稳定。 在优化燃烧调整基本成熟的基础上,配合锅炉主管薛红军进行全负荷低氧量燃烧运行,全负荷使床温尽量靠近900℃。根据#2炉目前脱硝系统运行情况,负荷150MW时根据氧量及时减减小二次

燃气锅炉低氮改造施工方案

燃气锅炉低氮改造施工方案

项目名称:xxx燃气锅炉低氮改造工程 编制单位: 编制时间:2016年10月13日 第一章工程概况 1.1工程简介 1.1.1本工程为xxx燃气锅炉低氮改造工程。首先需采购新锅炉,拆除原有锅炉、烟囱、电气设备、部分水暖和燃气管道等;然后安装新锅炉,管道、烟囱重新布置。 1.1.2本项目施工范围 1.锅炉房内原有锅炉、采暖及燃气管线、电气设备、烟囱的拆除; 2.锅炉房设备管道安装,其中有锅炉、管道等安装; 3.电气工程,包括电气动力和电气照明; 4.烟囱安装; 5.燃气工程。 第二章施工准备 在工程正式开工前,需现场勘查,确认实际施工条件和工程量,以利于施工的计划的安排和顺利进行。另一方面应该积极设备供货厂家,了解设备技术参数、基础做法、安装尺寸等,为施工做好充足准备。 2.1临时设施 根据现场实际情况,由甲方指定地点作为临时设施存放和现场预制场地。

2.2临时用电 临时用电由甲方指定的地点挂表接入,现场用电包括生产用电和生活用电,施工用电主要为电焊机、切割机、磨光机、照明设施等。临时用电采用三级配电,两级保护,保证用电安全。 2.3临时用水 临时用水从甲方指定地点接入。主要用于生活用水和施工用水,施工用水主要为土建砌筑用水和混凝土基础养护、打压和冲洗用水等。 2.4生产准备 重点完成工作场地布置、临时水源、临时电源、人员组织及进场、机械设备组织及进场计划、工程材料准备及进场计划、图纸会审及设计交底、现场纵横基准线与标高基准点复核等。 2.5技术准备 施工前要认真研究和熟悉本工程设计文件并进行现场核实,组织有关人员学习设计文件,图纸及其它有关资料,使施工人员明确设计者的设计意图,熟悉设计图纸的细节,对设计文件和图纸进行现场校对。 2.6材料准备 针对本工程的施工内容,在开工之前对工程所需锅炉设备、电气、管道、烟囱等制定采购计划,积极联系资质优良的材料厂家并提出详细的进场计划,严格执行验收与检测程序,确保原材料的质量。 第三章施工进度安排 3.1施工部署 本工程为低氮改造工程,首先得安排设备采购订货,尤其是锅炉的采购,预计需要四十天; 其次,组织施工进场,在甲方指定位置引入水电,安排临时生活设施和现场预制加工场地;

锅炉过热蒸汽温度控制系统设计

课程设计任务书 题目: 锅炉过热蒸汽温度控制系统设计 摘要 本文是针对锅炉过热蒸汽温度控制系统进行的分析和设计。控制系统采用串级控制以提高系统的控制性能,在系统中采用了主控-串级控制的切换装置,使系统可以适用于不同的工作环境。通过使用该系统,可以使得锅炉过热器出口蒸汽温度在允许的范围内变化,并保护过热器营壁温度不超过允许的工作温度。 关键字:过热蒸汽控制串级控制系统自动控制主控-串级切换 目录 1 生产工艺介绍 .................................................. 错误!未定义书签。 1.1 锅炉设备介绍............................................................................ 3 1.2 蒸汽过热系统的控制................................................................ 52控制原理简介 ..................................................................................... 6 2.1控制方案选择............................................................................. 6 2.1.1单回路控制方案................................................................. 6

锅炉自动燃烧控制系统

锅炉自动燃烧控制系统 1、实时数据采集 能够对锅炉本体和辅助设备各种运行数据(包括总供回水温度、压力、流量、省煤器进出口水温度﹑压力烟气温度、除尘器进出口烟气温度压力、鼓引风压力、炉膛温度压力含氧量、煤层厚度、室外温度、鼓引风炉排电机频率速度电流状态、除渣除尘状态) 等信号通过总线进行动态采集,控制中心能够实时监控到锅炉本体﹑锅炉上煤﹑除渣等辅助设备的运行情况。 2、完整的报警机制 当锅炉调节系统发生异常情况时或报警时,上位机人机界面自动接受控制系统器发送报警信号,将报警状态及异常点在上位机上进行显示,并诊断提出相应问题大概原因,提供相应的处理办法提示,系统自动能把报警分为高中低三种报警级别,低级别的报警只做提示用,当发生低级别报警时不影响燃烧自动调节,中级别报警发生时需要做相应处理,高级别报警发生时系统能立即连锁停炉,并发出尖锐声光报警和相关提示信息,等待工程师处理后再次投入运行,所有报警系统会自动的写入永久数据库备份,供以后随时查询和故障诊断和决策处理。 报警内容有: 系统报警 包括DCS控制器自诊断硬件或致命软件命令错误

自动启动燃烧失败 通讯建立连接失败 数据报警 炉膛温度超高低报警 炉膛负压超高低报警 锅炉出口温度超高低报警 锅炉出口压力超高低报警锅炉回水温度﹑压力超高低报警 引风机风压高低报警 鼓风机风压高低报警 高级别报警 引风机变频器(电流﹑电压﹑故障)超速等报警 连锁控制保护报警 鼓风机变频器(电流﹑电压﹑故障)超速等报警 上煤系统综合保护报警 炉排机变频器(电流﹑电压﹑故障)超速等报警 除渣系统综合保护报警 3、循环水控制系统 循环水是锅炉系统与外界交互的接口,循环系统通过泵不断的把热水源源不断的输送给用户或热站,把经过热释放后的二次低温水循环到锅炉系统再加热。我们采用保持循环水进、出口温差恒定,通过改变循环流量来控制热负荷的方式,是一种新方式。

小型锅炉低氮改造技术说明

小型锅炉低氮改造技术说明 烟台龙源电力技术股份有限公司 2012-11

一、概述 为响应国家“节能减排”号召,进一步降低锅炉氮氧化物排放浓度,全国电厂都在进行锅炉低氮燃烧改造。我公司在这一领域起步最早,一直处于国内领先地位。 目前,我公司的锅炉低氮改造技术主要有三种:一是双尺度低氮燃烧技术,主要针对四角切圆机组,通过空间尺度上的改造和过程尺度上的控制达到三场特性差异化,从而在两个尺度上形成炉内利于防渣、低NOx、稳燃功能的三场特性。二是旋流低氮燃烧技术,主要针对前后墙对冲机组,通过更换煤粉燃烧器及改造二次风、三次风来降低锅炉氮氧化物含量。三是W火焰锅炉低氮燃烧技术,把锅炉前后拱煤粉燃烧器更换为特殊结构的低氮燃烧器,为尽可能减少正常运行中对燃烧组织的影响,二次风的结构基本不变。以上三种低氮燃烧技术,在改造中都取得了很好的降氮效果。 现在,有许多小型锅炉(100MW及以下机组,主要是四角切圆形式)也需要进行低氮改造,但如果采用我公司常规的低氮改造技术,投资成本相对较高,对于小型锅炉来讲,可能不能承受,经济效益也会受影响。针对这种情况,我公司经过认真研究、仔细分析推出了小型锅炉低氮改造技术,通过对影响锅炉氮氧化物产生的主要过程进行控制与改造,以较小的改造成本达到大幅降低锅炉氮氧化物排放浓度的目的。 小型锅炉低氮改造方案设计、技术标制作、技术支持及工程设计调试由微油事业部负责。 二、小型锅炉低氮改造技术方案 1、改造煤质要求:一般情况下要求Var>18%,Aar<35%。NOx排放浓度<300mg/m3。如果煤质较差需具体分析。 2、具体改造方案: (1)增加燃尽风。为了实现炉膛空气深度分级燃烧,预留出较大的燃尽空间及还原空间。在炉膛四角上部各设立1个燃尽风喷口(可上下摆动,采用高位燃尽风布置方式,保证足够的还原高度)。燃尽风管道上设有插板门。燃尽风喷嘴设有密封装置。燃尽风的改造是降低燃料型及热力型NOx的主要手段。 (2)取消三次风。三次风喷口取消,原来三次风管道加装分离器,经过浓淡分离后的风,浓侧加入到上二次风,淡侧充当燃尽风。将三次风引入到二次风中,可以减少原主燃烧器区域二次风量,同时,可以把三次风中的一部分煤粉提前(与原来的高位布置相比)送入炉膛中,因为位置降低,也就相当于延长了三次风中煤粉在炉内的燃烧时间,

锅炉的燃烧系统

河北艺能锅炉有限责任公司

1.简介 燃烧系统是指为使燃料在锅炉炉膛内充分燃烧,并将燃烧生成的烟气排入大气所需的设备和相应的烟、风、煤(煤粉)管道的组合。燃烧系统应根据燃用燃料的类型,如固体、液体或气体燃料、电站锅炉的类型和燃烧方式,合理选择工艺流程、决定设备和管道的规格、数量,充分考虑必要的裕度,使锅炉和燃烧系统在最安全和经济的情况下运行。燃料系统的功能在于保证燃烧器燃烧所需的燃料。燃烧系统的任务是将燃料中蕴藏的化学能通过燃烧释放出来,转换成可被汽水吸收的热能。因此,燃烧系统的好坏将直接影响到锅炉的热效率。 组成介绍 送风系统 送风系统的功能在于向燃烧室里送入一定风速和风量的空气,其主要部件有:风机马达、壳体、风门控制器、风机叶轮、风枪火管、风门档板、扩散盘。 风机马达:主要为风机叶轮和高压油泵的运转提供动力,也有一些燃烧器采用单独电机提供油泵动力。某些小功率燃烧器采用单相电机,功率相对较小,大部分燃烧器采用三相电机,电机只有按照确定的方向旋转才能使燃烧器正常工作。 壳体:是燃烧器各部件的安装支架和新鲜空气进风通道的主要组成部分。从外形来看可以分为箱式和枪式两种,箱式燃烧器多数有一个注塑材料的外罩,且功率一般较小,大功率燃烧器多数采用分体式壳体,一般为枪式。壳体的组成材料一般为高强度轻质合金铸件。 风门控制器:是一种驱动装置,通过机械连杆控制风门档板的转动。一般有液压驱动控制器和伺服马达驱动控制器两种,前者工作稳定,不易产生故障,后者控制精确,风量变化平滑。 风机叶轮:通过高速旋转产生足够的风压以克服炉膛阻力和烟囱阻力,并向燃烧室吹入足够的空气以满足燃烧的需要。它由装有一定倾斜角度的叶片的圆柱状轮子组成,其组成材料一般为高强度轻质合金钢,也有注塑成形的产品,所有合格的风机叶轮均具有良好的动平衡性能。

相关主题
文本预览
相关文档 最新文档