当前位置:文档之家› 基于MODBUS现场总线技术的电力仪表远程通讯软件开发

基于MODBUS现场总线技术的电力仪表远程通讯软件开发

基于MODBUS现场总线技术的电力仪表远程通讯软件开发
基于MODBUS现场总线技术的电力仪表远程通讯软件开发

基于MODBUS现场总线技术的电力仪表远程通讯软件开发

发布时间:2010-04-23 https://www.doczj.com/doc/502189379.html,

摘要:原来的电力系统中,高低压配电柜中往往要安装各种各样的仪表,(如电度表、电流表、电压表等)实现对电力系统的监视。而如果在一些大厂往往就有很多仪表,每隔一段时间就要有专人带着纸笔到厂区内的所有仪表点巡视一番,并将所有的数值记录下来,带回办公室作数据分析和处理。

一、前言

原来的电力系统中,高低压配电柜中往往要安装各种各样的仪表,(如电度表、电流表、电压表等)实现对电力系统的监视。而如果在一些大厂往往就有很多仪表,每隔一段时间就要有专人带着纸笔到厂区内的所有仪表点巡视一番,并将所有的数值记录下来,带回办公室作数据分析和处理。

随着计算机科学技术的发展,计算机在电力监控领域中得到了越来越广泛的应用。使用多功能智能电力仪表代替机械式的电力仪表是工业自动化的大势所趋。由于多功能仪表不但可以一表多用,而且一般的多功能仪表都可以通过其通讯接口来实现对仪表的编程、数据采集等功能。所以使用多功能电力仪表能够在很大程度上减少人们的劳力,并且可以极大地提高效率。由于实现对电力多功能仪表的监视,功能比较单一,且市场上的组态软件也比较昂贵。在这里作者就是用MSComm控件实现对串口的控制,实现对阴长江斯菲尔电力仪表公司的多功能电力仪表远程读取电能数据,从而达到软件的设计。MSComm控件是Microsoft提供的扩展控件,用于支持VB程序对串口的访问,该控件“隐藏”了大部分串口通讯的底层运行过程和许多烦琐的处理过程,同时支持查询方法和事件驱动通讯的机制。因此用其实现微机串口的数据通讯相当简单,以很少的程序代码就可以轻松串口的访问和数据通讯。

二、MODBUS通讯协议分析:

由于江阴长江斯菲尔电力仪表公司CD194E系列的多功能电力仪表是采用远程

RS-485 数字接口(差分、半双工)和使用MODBUS-RTU通讯协议,来实现对仪表的编程、数据采集等功能,所以先介绍MODBUS 协议:

MODBUS 协议是一种主从式点对点的通讯协议,允许一台主机和多台从机之间进行数据通信,在CD194E 系列的多功能电力仪表通讯系统中,主机是微机(PC、工控机、PLC),从机是CD194E列仪表。在该通讯系统中,允许系统连接多达128 个仪表及1200米的通讯距离。通讯方式采用主机请求,从机应答。即:主机提出命令请求,从机响应接收数据后作数据分析,如果数据满足通讯规约,从机做数据响应。主、从机间的通讯每一帧数据包含以下信息(16进制):

从机地址、命令字、信息字、校验码

从机地址(1个字节):从机设备号,主机利用从机地址来识别进行通讯从机设备。

命令字(1个字节):设定主机对从机的通讯内容。

信息字(N个字节):包括进行两机通讯中各种数据地址、数据长度、数据信息。

校验码(2个字节):用于检测数据通讯错误,采用循环冗余码CRC16。

通讯参数的设置:通过仪表上的编程键盘对仪表的仪表地址(1-247)、通讯速度(4800或9600)和

数据格式(1个起始位,8个数据位,1个停止位,可选择无校验位、奇校验位、偶校验位。)进行设置。

网络连线如图一如示:

在这里,作者使用的是台湾泓格科技有限公司的232/485转换模块I-7520。由主控计算机送出的命令是通过RS-232 串行通信端口发送出去,此信号经过232/485 转换模块(模块编号I-7520)将信号标准电位及类型转换后,在485网络上传播开来。多功能电力仪表收到属于自身的命令后,会进行分析控制的操作,最后将结果送至485网络,让此信号再通过I-7520的转换后,可由计算机的RS-232串行通信端口接收进来。整个送收过程全是以串行处理。

三、软件的设计和开发

注:从CD194E 系列的多功能电力仪表传过来的电功率数据就存放在Byte1到Byte4 内。

3. 通信步骤:

⑴加入通信控件。也就是MSComm控件

⑵设置通信端口号码。即CommPort属性CONTROL ENGINEERING China版权所有,在本文使用Com1。

⑶设置通讯参数。即Settings 属性。在本文设置为9600,n https://www.doczj.com/doc/502189379.html,,8,1。即通讯速度为9600,数据格式为1 个起始位CONTROL ENGINEERING China版权所有,8个数据位https://www.doczj.com/doc/502189379.html,,1个停止位,无校验位。注意必须与多功能

电力仪表的设置一致,不然就会通信失败。

⑷设置其它参数。必要时再加上其它的属性设置。

⑸打开通信端口。即PortOpen 属性设成True。

⑹每隔500毫秒送出字符串或读入字符串。即发送命令4(读N 个字节)来读取电功率参数,使用Input 及Output属性。

⑺使用完MSComm控件后https://www.doczj.com/doc/502189379.html,,将通信端口关闭。

4. 人机界面:

5.程序代码:

'API 函数声名

Private Declare Function GetTickCount Lib "kernel32" ()As Long

'点击结束程序按钮

Private Sub CmdEnd_Click()

End

End Sub

'点击读取电功率按钮

Private Sub CmdRead_Click()

Timer1.Enabled = Not Timer1.Enabled

If Timer1.Enabled Then

CmdRead.Caption = "停止读数"

Else

CmdRead.Caption = "读取电功率"

End If

End Sub

'程序初始化

Private Sub Form_Load()

MSComm1.InputMode = comInputModeBinary

MSComm1.PortOpen = True

Timer1.Enabled = False

End Sub

Private Sub Timer1_Timer()

Dim C4%, C5%, C6%, C7%

Dim Tick&

Dim Data As Double

Dim Buf()As Byte

Dim ByteOut(7)As Byte

MSComm1.InputLen = 0

Buf = MSComm1.Input

'重新定义数据输入缓冲区CONTROL ENGINEERING China版权所有, 发送命令4

MSComm1.InputLen = 1

ByteOut(0)= &H1

ByteOut(1)= &H4

ByteOut(2)= &H0

ByteOut(3)= &H5C

ByteOut(4)= &H0

ByteOut(5)= &H4

ByteOut(6)= &H31

ByteOut(7)= &HDB

MSComm1.Output = ByteOut(0)& ByteOut(1)& ByteOut(2)& ByteOut (3)& ByteOut(4)& ByteOut(5)&

ByteOut(6)& ByteOut(7)

' 等待多功能电力仪表响应的数据到达串口

Tick = GetTickCount()

Do

If (GetTickCount()- Tick)/ 1000# > 10 Then

MsgBox "时间过久控制工程网版权所有,请检查多功能电力仪表及传输状态!", vbCritical + vbOKOnly控制工程网版权所有, "系统信息"

Exit Sub

End If

DoEvents

Loop Until MSComm1.InBuFFerCount >= 9

'从输入缓冲区读数据

Buf = MSComm1.Input

If Buf(0)<> 1 Then

MsgBox "地址错误!", vbCritical + vbOKOnly控制工程网版权所有, "系统信息"

Exit Sub

End If

Buf = MSComm1.Input

If Buf(0)<> 4 Then

MsgBox "长度错误!", vbCritical + vbOKOnly控制工程网版权所有, "系统信息"

Exit Sub

End If

Buf = MSComm1.Input

C4 = Buf(0)

Buf = MSComm1.Input

C5 = Buf(0)

Buf = MSComm1.Input

C6 = Buf(0)

Buf = MSComm1.Input

C7 = Buf(0)

Buf = MSComm1.Input

Buf = MSComm1.Input

Data = Power(C4, C5, C6控制工程网版权所有, C7)

TxtPower.Text = CStr(Data)

End Sub

' 自定义功率换算函数

Private Function Power(C4%, C5%, C6%, C7%)

Dim PowerExp As String, Mantissa As String

Dim ReadValue#

Dim ValueSign&

If ((C4 And &H80)/ 2 ︿7)= True Then

ValueSign = -1

Else

ValueSign = 1

End If

PowerExp = CStr((C4 And &H7F)*2 + (C5 And &H80)/ 2 ︿7)

Mantissa = CStr((&H80 or C5)*2 ︿16 + C6 *2 ︿8 + C7)

ReadValue = ValueSign *2 ︿(Val(PowerExp)- 126)*Val(Mantissa)/ (256 *65536)

Power = ReadValue

End Function

窄带电力线通信技术-longsy

1.窄带电力线通信技术: 1)中压窄带载波一般采用10-500KHz频段 2)速率150-2400bps,采用OFDM调制可达100kbps以上 3)传输距离较长,架空线路距离大于10km 4)调制技术FSK、PSK,新型技术采用OFDM 近年来,随着低压电力线载波通信技术逐步完善,国内有十余家企业专注于技术开发和应用,采用 的技术主要有扩频加窄带频移键控(FSK)、扩频加窄带相移键控(PSK)、正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)等,在用电信息采集、智能家居能源管理、楼宇监视和路 灯控制等领域均有大规模的应用。 国内比较主流的低压电力线窄带载波通信技术方案及应用如错误!未找到引用源。所示: 表 1国内比较主流的低压电力线窄带载波应用现状 除了以上低压电力线载波通信方案,近两年在国家电网集中招标中也出现过100kHz、175kHz、300kHz 等多种频率方案,由于大部分通信厂家采用各自的企业标准,频率选择、调制方式、传输技术及组网技 术各有特点,难以实现互操作问题。 国内窄带电力载波通信技术发展现状 一、国内现有载波通信技术特点 现有的低压载波通信芯片的技术特点可以从调制方式、传输速率、通信频率、通信功率、EMI标准、

芯片技术等方面来分析。 1.调制方式与传输速率 目前电力线载波通信常用的扩频技术主要有:直接序列扩频、线性调频Chirp和正交频分复用OFDM 等。此外,跳频FH、跳时TH以及上述各种方式的组合扩频技术也较为常用。 国内载波通信产品主要采用直接序列扩频技术。其中 东软为FSK,15 位直序列扩频通信; 福星晓程DPSK 63 位直序扩频; 弥亚微为QPSK扩频调相、过零同步、分时传输; 鼎信为二进制连续相位移频FSK,过零同步、分时传输。 上述各家的扩频技术各有不同特点。对载波通信芯片性能最直接影响在于可靠性和传输速率。 目前这四家中,传输速率分别为: 弥亚微,同时提供200、400、800、1600bps四种可变速率; 东软:330bps; 福星晓程:250/500bps; 鼎信:100bps。 按照现阶段现场实际应用状况来看100至500bps速水平仅能用于普通抄表功能,如果涉及到远程控制(断送电)和管理功能则需要提供更高速率保证。 2.通信频率 关于通信频率,在美国由联邦通信委员会FCC规定了电力线频带宽度为100~450kHZ;在欧洲由欧洲电气标准委员会的EN50065-1规定电力载波频带为3~148.5kHZ。这些标准的建立为电力载波技术的发展做出了显著的贡献,目前全球AMR系统均采用该频段标准。 国内载波通信芯片中符合欧洲标准的为2家,分别是福星晓程120KHz和弥亚微57.6KHz/76.8KHz/115.2KHz三种可选。 3.通信功率及EMI指标 国内东软、福星晓程、鼎信等多数载波通信方案为了针对国内电力信道环境中的衰减,均采取加大通信传输功率等做法。在实际产品化的过程中,基本上做到3W至5W,有的电表厂甚至做到了8W,这种做法是绝对不可取的。 首先,这种做法导致电表产生的功耗损失无疑增加的线损,造成大量的能源浪费,这也有悖于国网公司上集抄系统的初衷; 其次,如此大的功率传输将会严重污染电力线信道环境,我们原来是恶劣的电力线信道环境的受害者,现在却也能成为最大的制造者。 就目前研究了解的情况,国内只有弥亚微的载波芯片Mi200E采取低功耗设计。其发送信号时的功率仅为0.4W,在保证可靠的通信性能的同时该芯片EMI等相关指标满足欧洲标准。 4.芯片技术 严格意义上讲,国内载波通信方案供应商并不完全都是芯片设计研发企业,像东软和鼎信均是采用MOTROLA的MC3361+单片机通过软件完成物理层、MAC层、网络层的模式。其优点是降低了研发难度,但该模式会导致其核心技术(相关软件)容易泄密或被解密,安全性值得探讨。福星晓程和弥亚微均是完全自主开发的载波通信芯片产品。 二、国内载波芯片产品分析

电表通讯规约(2005)

电子式三相多功能电能表通信规约 该通信规约是参照《中华人民共和国电力行业标准(DL/T 645—1997)》多功能电能表通信规约(1998—02—10发布,1998—06—01实施)而制定的。 1.1 字节格式 每字节含8位二进制码,传输时加上一个起始位(0)、一个偶校验位和一个停止位(1)共11位。 其传输序列如图1。D0是字节的最低有效位,D7是字节的最高有效位。先传低位,后传高位。 起始位 8位数据偶校验位停止位 图1 字节传输序列 1.2 帧格式 帧是传送信息的基本单元。帧格式如图2所示。 图2 帧格式 1.2.1 帧起始符68H:标识一帧信息的开始,其值为68H=01101000B。 1.2.2 地址域A0~A5:地址域由6个字节构成,每字节2位BCD码。地址长度为12位十进制数,低地 址位在先,高地址位在后。当地址为999999999999H时,为广播地址。 1.2.3控制码C:控制码的格式如下所示。

D7=0:由主站发出的命令帧 D7=1:由从站发出的应答帧 D6=0:从站正确应答 D6=1:从站对异常信息的应答 D5=0:无后续数据帧 D5=1:有后续数据帧 D4~D0:请求及应答功能码 00000:保留 00001:读数据 00010:读后续数据 00011:重读数据 00100:写数据 01000:广播校时 01010:写设备地址 01100:更改串口通信速率 01111:修改密码 10000:最大需量清零 11001:厂家保留 11010:厂家保留 1.2.4 数据长度L:L为数据域的字节数。读数据时L≤200,写数据时L≤50,L=0 表示无数据域。1.2.5 数据域DATA:数据域包括数据标识和数据、密码等,其结构随控制码的功能而改变。传输时发 送方按字节进行加33H处理,接收方按字节进行减33H处理。 1.2.6 校验码CS:从帧起始符开始到校验码之前的所有各字节的模256的和,即各字节二进制算术和,不计超过256的溢出值。 1.2.7结束符号16H:标识一帧信息的结束,其值为16H=00010110B。 2.传输 2.1传输次序 所有数据项均先传送低位字节,后传送高位字节。 2.2 传输响应

仪表调试记录范文.doc

序测量 实测值 仪表位号低位低位高位号范围 报警联锁报警 1 TIA-R0101a0-100 2 PIA-R0101a 3 IIA-R0101a 0-20 4 TIA-R0101b0-100 5 PIA-R0101b 6 IIA-R0101b 0-20 7 TIA-R0102a0-105 8 TIA-R0102b0-105 9 TIA-R0103a0-75 10 TIA-R0103b0-75 11 TIA-R0103c 0-75 12 TIA-R0104a 0-70 13PIA-R0104a-1 14LAI-R0104a 15PIA-R0104a-2 16TIA-R0104b0-70 17PIA-R0104b 18LAI-R0104b 19PIA-R0104b-2 20IIA-R0201a0-20 21TIA-R0201a0-25 22PIA-R0201a-1 23PIA-R0201a-2 24IIA-R0201b0-20 25TIA-R0201b0-25 26PIA-R0201b-1 27PIA-R0201b-2 28IIA-R0201c0-20 29TIA-R0201c0-25 30PIA-R0201c-1 31PIA-R0201c-2 32IIA-R0201d0-20 33TIA-R0201d0-25 34PIA-R0201d-1 35PIA-R0201d-2 36IIA-R0201e0-20 37TIA-R0201e0-25 38PIA-R0201e-1 酮系列生产装置、西酞普兰系列生产装置 报警其他调试高位单位 显示功能结果联锁 ℃ MPa A ℃ MPa A ℃ ℃ ℃ ℃ ℃ ℃ MPa m MPa ℃ MPa m MPa A ℃ MPa MPa A ℃ MPa MPa A ℃ MPa MPa A ℃ MPa MPa A ℃ MPa

PD1008-9S4多功能电力仪表MODBUS通讯规约

(MODBUS RTU协议) 一、概述 本规约采用MODBUS RTU 协议,为主从问答式连接(即半双工)。主站(如PC机)发送包含地址的消息,从站识别主站发来的消息,决定产生何种行动。如需回应,从站将生成反馈信息并用本规约发出。 1、字格式 采用异步串行通讯方式,通讯信息为11位的字格式: 每个字节的位: ●1个起始位 ●8个数据位 ●无奇偶校验位 ●1个停止位 地址码: 地址码是每次通讯帧的第一字节,从1到255。主机通过将要联络的从机的地址放入消息中的地址码域来选通从机。当从机发送回应消息时,把自己的地址放入回应的地址码域中,以便使主机知道是哪一个从机作出回应。每个从机都必须有唯一的地址码。并且只有符合地址码的从机才能响应并返回信息。地址0为广播地址,所有从机均响应广播命令,但不需要信息返回。 功能码: 功能码是通讯信息帧传送的第二个字节。范围为1到127。作为主机请求发送,通过功能码告诉从机应执行什么行为。作为从机响应,从机返回的功能码与从主机发送来的功能码一样,表明从机已响应主机并且已进行相关的操作。如有某种错误发生,在向主机回送信息时,将功能码的最高位置为1。 功能码定义: 数据区: 数据区包括需要由从机返送何种信息或执行什么动作。 错误校验码(CRC校验): 本协议的采用CRC(冗余循环码)校验,包含2个字节,即16位二进制数。CRC码由发送设备计算,放置于发送信息帧的尾部。接收信息的设备再重新计算接收到信息的CRC,比较计算得到的CRC是否与接收到的相符,如果两者不相符,则表明出错,错误的数据将被放弃(无论是发送还是接收)。 在进行CRC计算时只用8个数据位,起始位及停止位,如有奇偶校验位也包括奇偶校验位,都不参与CRC计算。 说明:CRC校验码的计算方法: 1、置一16位寄存器为全1;

电力线载波通信---有线通信

抄表系统及其方法 本发明公开了一种抄表系统包括电力线宽带载波通信单元、无线通信单元、时钟单元、控制单元以及存储单元;所述电力线宽带载波通信单元用于收发通过电力线载波方式传送的抄表信号;所述无线通信单元用于收发通过无线通信方式传送的抄表信号;控制单元用于信道状况的侦测,根据侦测结果控制抄表系统在电力线宽带载波通信以及无线通信之间的信道自动切换,切换信道后进行自动组网,并将从电力线宽带载波通信单元以及无线通信单元接收到的抄表信号进行格式转换生成电表数据。本抄表系统利用宽带载波通信可靠性高、数据传输率高、数据容量大、双向传输等特点,将无线通信方式以及电力线通信方式相互结合,使抄表布线等现场施工工作变得简便灵活。 电力线载波Power Line Carrier - PLC通信是利用高压电力线在电力载波领域通常指 35kV及以上电压等级中压电力线指10kV电压等级或低压配电线380/220V用户线作为信息传输媒介进行语音或数据传输的一种特殊通信方式 PLC = Power Line Carrier,电力线载波 电力线载波(PLC)是电力系统特有的通信方式,电力线载波通讯是指利用现有电力线,通过载波方式将模拟或数字信号进行高速传输的技术。最大特点是不需要重新架设网络,只要有电线,就能进行数据传递。 近年来电力线载波技术突破了仅限于单片机应用的限制,已经进入了数字化时代,并且随着电力线载波技术的不断发展和社会的需要中/低压电力载波通信的技术开发及应用亦出现了方兴未艾的局面。电力线载波通信这座被国外传媒喻为未被挖掘的金山正逐渐成为一门电力通信领域乃至关系到千家万户的热门专业。 但是电力线载波通讯因为有以下缺点,导致PLC主要应用--“电力上网”未能大规模应用: 1、配电变压器对电力载波信号有阻隔作用,所以电力载波信号只能在一个配电变压器区域范围内传送; 2、三相电力线间有很大信号损失(10 dB -30dB)。通讯距离很近时,不同相间可能会收到信号。一般电力载波信号只能在单相电力线上传输; 3、不同信号藕合方式对电力载波信号损失不同,藕合方式有线-地藕合和线-中线藕合。线-地藕合方式与线-中线藕合方式相比,电力载波信号少损失十几dB,但线-地藕合方式不是所有地区电力系统都适用; 4、电力线存在本身因有的脉冲干扰。目前使用的交流电有50HZ和 60HZ,则周期为20ms和16.7ms,在每一交流周期中,出现两次峰值,两次峰值会带来两次脉冲干扰,即电力线上有固定的100HZ或120HZ脉冲干扰,

PLC电力线通信技术简介

什么是PLC? 通常,我们上网的方式一般有:利用电话线的拨号?xdsl方式;利用有线电视线路的cable modem方式,或利用双绞线的以太网方式。 现在,我们又多了一种更方便,更经济的选择:利用电线,这就是plc!plc的英文全称是power line communication,即电力线通信。通过利用传输电流的电力线作为通信载体,使得plc具有极大的便捷性,只要在房间任何有电源插座的地方,不用拨号,就立即可享受4.5~45mbps的高速网络接入,来浏览网页?拨打电话,和观看在线电影,从而实现集数据?语音?视频,以及电力于一体的"四网合一"!另外,可将房屋内的电话、电视、音响、冰箱等家电利用plc连接起来,进行集中控制,实现"智能家庭"的梦想。目前,plc 主要是作为一种接入技术,提供宽带网络"最后一公里"的解决方案,适用于居民小区,学校,酒店,写字楼等领域。 plc的技术原理 plc利用1.6m到30m频带范围传输信号。在发送时,利用gmsk或ofdm调制技术将用户数据进行调制,然后在电力线上进行传输,在接收端,先经过滤波器将调制信号滤出,再经过解调,就可得到原通信信号。目前可达到的通信速率依具体设备不同在4.5m~45m之间。plc设备分局端和调制解调器,局端负责与内部plc调制解调器的通信和与外部网络的连接。在通信时,来自用户的数据进入调制解调器调制后,通过用户的配电线路传输到局端设备,局端将信号解调出来,再转到外部的internet。典型的plc网络如下图: plc的优点

1.实现成本低由于可以直接利用已有的配电网络作为传输线路,所以不用进行额外布线,从而大大减少了网络的投资,降低了成本。 2.范围广电力线是覆盖范围最广的网络,它的规模是其他任何网络无法比拟的。plc 可以轻松地渗透到每个家庭, 为互联网的发展创造极大的空间。 3.高速率 plc能够提供高速的传输。目前,其传输速率依设备厂家的不同而在 4.5m~45mbps之间。远远高于拨号上网和isdn,比adsl更快!足以支持现有网络上的各种应用。更高速率的plc产品正在研制之中。 4.永远在线 plc属于"即插即用",不用烦琐的拨号过程,接入电源就等于接入网络! 5.便捷不管在家里的哪个角落,只要连接到房间内的任何电源插座上,就可立即拥有plc带来的高速网络享受! plc的应用 1.可以为用户提供高速internet访问服务、话音服务,从而为用户上网和打电话增加了新的选择。 2.通过与控制技术的结合,为在现有基础上实现"智能家庭"提供有力支持。利用电力线路为物理媒介,可将遍布住宅各角落的信息家电、pc等连为一体,接入internet,实现远程、集中的管理控制。 3.不用额外的布线,就可将家中的多太电脑连接起来,组建家庭局域网。 4.实现远程水、电、气等的自动抄表,一张收费单就可解决用户生活中的所有收费项目。 5.利用plc的"永远在线"特点,构件防火、防盗、防有毒气体泄露等保安监控系统和医疗救护系统。 主要介绍PIC技术在智能家居系统中的运用,给出PLC网络化控制系统的结构.描述智能家居系统控制端设备和局端设备的设计方法.以厦设备的电磁兼容性。该系统实现了家电智能 控制、安防控制和上网功能。 目前,中国的智能家居系统以智能安防为主,正逐渐向家电的网络化控制延伸。如何更有效地解决安防、家电智能控制、上网等问题,逐渐成为研究的热点。电力线通信(Power Line Communication,PLC),是指利用中、低压电力线作为通信介质,实现数据、语音、图像等综合业务传输的通信技术。利用PLC实现智能家居的网络化控制无需架线,不破坏住宅结构,连接方便、快捷,是智能家居网络化控制的理想选择。本系统采用Intcllon公司的INT5200芯片作为电力载波芯片,网络数据由与家电设备相连的电力线传送,并通过HomePlug协议实现交互,采用OFDM(Orthogonal Frequency Division Multiplexing)正交频分复用技术进行调制解调,从而实现家电控制、PLC上网和家庭安防。

MODBUS_RTU通信规约

MODBUS_RTU通讯规约(本协议采用主从问答方式) PDM系列仪表/变送器: PDM系列仪表/变送器采用全新的设计,革命性地改变了传统电表的概念;具有多功能、高精度、数字式、可编程、结构紧凑、多画面显示的特点,它可以满足电力工业未来对电表的需求。 MODBUS通讯协议: ModBus通讯规约允许PDM系列仪表/变送器与施耐德、西门子、AB、GE等多个国际著名品牌的可编程顺序控制器(PLC)、RTU、SCADA系统、DCS或与第三方具有ModBus 兼容的监控系统之间进行信息交换和数据传送。 PDM系列仪表/变送器只要简单地增加一套基于计算机(或工控机)的监控软件(如:组态王、Intouch、FIX、synall等)就可以构成一套电力监控系统。 广泛的系统集成: PDM系列仪表/变送器提供了标准的RS-485/422通讯接口及ModBus通讯协议,这个通讯协议已广泛被国内外电力行业及工控行业作为系统集成的标准。 通讯数据的类型及格式: 信息传输为异步方式,并以字节为单位。在主站和从站之间传递的通讯信息是11位的字格式: 字格式(串行数据) 11位二进制 起始位1位 数据位8位 奇偶校验位1位:有奇偶校验位/无:无奇偶校验位 停止位1位:有奇偶校验位/2位:无奇偶校验位 ●通讯数据(信息帧)格式 数据格式:地址码功能码数据区错误校检 数据长度:1字节1字节N字节 16位CRC码(冗余循环码) ★ 注:1、1个字节由8位二进制数组成(既8 bit)。 2、ModBus是Modicon公司的注册商标。

一、通讯信息传输过程: 当通讯命令由发送设备(主机)发送至接收设备(从机)时,符合相应地址码的从机接收通讯命令,并根据功能码及相关要求读取信息,如果CRC校验无误,则执行相应的任务,然后把执行结果(数据)返送给主机。返回的信息中包括地址码、功能码、执行后的数据以及CRC校验码。如果CRC校验出错就不返回任何信息。 1.1 地址码: 地址码是每次通讯信息帧的第一字节(8位),从0到255。这个字节表明由用户设置地址的从机将接收由主机发送来的信息。每个从机都必须有唯一的地址码,并且只有符合地址码的从机才能响应回送信息。当从机回送信息时,回送数据均以各自的地址码开始。主机发送的地址码表明将发送到的从机地址,而从机返回的地址码表明回送的从机地址。相应的地址码表明该信息来自于何处。 1.2 功能码: 是每次通讯信息帧传送的第二个字节。ModBus通讯规约可定义的功能码为1到127。PDM系列仪表/变送器仅用到其中的一部分功能码。作为主机请求发送,通过功能码告诉从机应执行什么动作。作为从机响应,从机返回的功能码与从主机发送来的功能码一样,并表明从机已响应主机并且已进行相关的操作。 表8.1 MODBUS部分功能码 功能码定义操作(二进制) 02 读开关量输入读取一路或多路开关量状态输入数据 01 读开关量输出读取一路或多路开关量输出状态数据 03 读寄存器数据读取一个或多个寄存器的数据 05 写开关量输出控制一路继电器“合/分”输出 06 写单路寄存器把一组二进制数据写入单个寄存器 10 写多路寄存器把多组二进制数据写入多个寄存器 1.3 数据区: 数据区包括需要由从机返送何种信息或执行什么动作。这些信息可以是数据(如:开关量输入/输出、模拟量输入/输出、寄存器等等)、参考地址等。例如,主机通过功能码03告诉从机返回寄存器的值(包含要读取寄存器的起始地址及读取寄存器的长度),则返回的数据包括寄存器的数据长度及数据内容。对于不同的从机,地址和数据信息都不相同(应给出通讯信息表)。 PDM系列仪表/变送器采用Modbus通讯规约,主机(PLC、RTU、PC机、DCS等)利用通讯命令(功能码03),可以任意读取其数据寄存器(其数据信息表详见附录)。PDM 系列仪表/变送器的数据寄存器存储的电量多达几百个(如:电流、电压、功率、0~31次谐波分量等),并且都是16位(2字节)的二进制数据,并且高位在前;一次最多可读取寄存器数(既各种电量的数量)是50个。 PDM响应的命令格式是从机地址、功能码、数据区及CRC码。数据区的数据都是两个字节,并且高位在前(电能量除外)。 注:1、PDM-820AC/ACM/ACR、PDM-800AC/ACM具有“03”、“06”、“10”功能码; 2、如果PDM采用MODBUS ASCII通讯协议,其通讯数据格式为;7个数据位,1个 停止位,偶校验。

电力线载波通信系统解读

摘要 电力线载波通信是以输电线路为载波信号的传输媒介的电力系统通信。由于输电线路具备十分牢固的支撑结构,并架设3条以上的导体(一般有三相良导体及一或两根架空地线),所以输电线输送工频电流的同时,用之传送载波信号,既经济又十分可靠。这种综合利用早已成为世界上所有电力部门优先采用的特有通信手段。这次的课程设计通过电力线在波芯片设计一个电力线载波通信系统。 电力线载波通信具有广阔的应用前景但由于电力线的噪声和干扰对信道的污染很大,严重影响了低压电线载波通信的质量。本文就电力线载波通信的优点缺点及发展现状进行了讨论,并分析了电力信道的噪声分类,特性及对我们信号的影响。以及我们对噪声的滤波耦合等。并且详细的介绍了电力线载波通信的具体实现形式方法和步骤最终形成一个系统达到我们的要求。 课程设计选用青岛东软的SSC1641的电力线载波芯片该芯片具有调制解条,a/d,d/a通信的功能,该芯片直接对信号数字信号处理,极大地提高了通信的可靠性。文中包括了他的外围电路,信号放大,耦合,滤波等最终实现功能。 实现了接收电力线的含有噪声的信号,然后对这个信号滤波模数转换等处理后通过串行通信的方式发送到过单片机,单片机经过数据处理后通过LCD1602显示出来,并且也通过串行通信发送到PC机显示出来。PC机或开关电路输入信号经过SSC1641处理后通过电力线发送。这样一个系统阶完成了接收与发送信号,形成了一个通信系统。 关键字:电力线载波通信系统SSC1641 调制解调 1、绪论 1.1设计任务及要求 电力线载波通信系统设计基本要求:下图一个电力线载波通信模块的结构组成,请看懂,并查阅资料了解电力线载波通信的原理和电力线载波芯片的技术资料。根据系统结构,完成载波芯片外的其他器件选型、配套硬件电路设计(包括原理图、PCB图)、软件设计和仿真调试。系统至少具备以下特性: 1)开关量输入和输出各5路; 2)系统24V供电; 3)具有通信状态指示功能; 4)有232、485或USB有线通信接口; 5)断电继续工作能力; 6)其他自己发挥的功能。

电力系统常用通信规约简介

电力系统常用通信规约简介 1.电力系统通信规约产生的背景 为了满足经济社会发展的新需求和实现电网的升级换代,以欧美为代表的各个国家和组织提出了“智能电网”概念,各国政府部门、电网企业、装备制造商也纷纷响应。智能电网被认为是当今世界电力系统发展变革的新的制高点,也是未来电网发展的大趋势。 2.研究智能电网标准体系的国际主要标准组织与机构 (1)国际电工委员会(IEC),IEC的标准化管理委员会(SMB)组织成立了“智能电网国际战略工作组(SG3)”,由该工作组牵头开展智能电网技术标准体系的研究; (2)美国国家标准及技术研究所(NIST),研究智能电网的标准体系和制定智能电网标准。NIST的前身是美国国家标准(National Bureau of Standards,NBS),隶属美国商务部,负责美国全国计量、标准的研究、开发和管理工作。 (3)电气和电子工程师协会(IEEE),于2009年发布了“P2030指南”,标志着IEEE正式启动了智能电网标准化工作。 3.IEC对智能电网标准的认识 IEC认为智能电网包括电力系统从发电、输变电到用户的所有领域,要求在电网的各个建设阶段以及在系统的各个组成单元之间以及子系统间实现高度的信息共享,因而标准化工作对于智能电网的成功建设非常关键。 1.应该对必要的接口和产品标准化,并避免对具体应用和商业案例进行标准化,否则将严重阻碍智能电网的创新和发展。应为智能电网的进一步提升提供先决条件。 2.描述通用需求,避免对细节标准化 4.IEC相关标准体系工作组织 IEC组织成立了第三战略工作组—智能电网国际战略工作组(IECSG3) 1.对涉及智能电网的标准进行系统性分析,建立智能电网标准体系框架 2.提出原有标准修订、新标准制定、设备和系统互操作的规约和模型等方面的标准化建议,逐步提供一套更加完整、一致的支持智能电网需求的全球标准。 5.三项主要任务 1. 系统描述标准体系整体框架:描述电网及电力系统的专业概念和关联模型,相关标准全面综述,定义IEC标准整体框架,是智能电网协调的基础 2. 确定核心标准:选择在智能电网实际应用中的重要标准,对这些标准的提升和改进是IEC为智能电网解决方案提供技术支持的关键,是IEC智能电网标准化路线图中的核心部分。 3. 制定行动路线图,确定优选增补标准:填补近期急需制定的标准,中长期行动路线图,以实现智能电网的远景制定行动路线图。由于智能电网的投资是长期的,有必要为投资者提供一套标准体系,为将来可持续投资提供坚实基础。 6.IEC SG3确定的5个核心标准 1.IEC/TR 62357 电力系统控制和相关通信.目标模型、服务设施和协议用参考体系结构; 2.IEC 61850 - 变电站自动化; 3.IEC 61970 - 电力管理系统- 公共信息模型(CIM)和通用接口定义(GID)的定义; 4.IEC 61968 - 配电管理系统- 公共信息模型(CIM)和用户信息系统(CIS)的定义; 5.IEC 62351 - 安全性。

通信领域中电力线载波通信的应用及其原理

通信领域中电力线载波通信的应用及其原理 Power Line Carrier 电力线载波Power Line Carrier - PLC通信是利用高压电力线在电力载波领域通常指35kV及以上电压等级中压电力线指10kV电压等级或低压配电线380/220V用户线作为信息传输媒介进行语音或数据传输的一种特殊通信方式。 近年来高压电力线载波技术突破了仅限于单片机应用的限制,已经进入了数字化时代,并且随着电力线载波技术的不断发展和社会的需要中/低压电力载波通信的技术开发及应用亦出现了方兴未艾的局面。电力线载波通信这座被国外传媒喻为未被挖掘的金山正逐渐成为一门电力通信领域乃至关系到千家万户的热门专业。在这种形势下,本文旨在通过对电力线载波通信技术的发展及所涉及的一些技术问题的讨论,阐明电力线载波通信的发展历程特点及技术关键。 电力通信网是为了保证电力系统的安全稳定运行而应运而生的,它同电力系统的安全稳定控制系统,调度自动化系统,被人们合称为电力系统安全稳定运行的三大支柱。目前,它更是电网调度自动化网络运营市场化和管理现代化的基础,是确保电网安全稳定经济运行的重要手段,是电力系统的重要基础设施。由于电力通信网对通信的可靠性保护控制信息传送的快速性和准确性具有及严格的要求,并且电力部门拥有发展通信的特殊资源优势,因此世界上大多数国家的电力公司都以自建为主的方式建立了电力系统专用通信网[1]。长期以来,电力线载波通信网一直是电力通信网的基础网络。目前,在长达670000km的35kV以上电压等级的输电线路上,多数已开通电力线载波通道[1]。形成了庞大的电力线载波通信网,该网络主要用于地市级或以下供电部门构成面向终端变电站及大用户的调度通信远动及综合自动化通道使用。 近年来,随着光纤通信的发展,电力线载波通信已从主导的电力通信方式改变为辅助通信方式,但是由于我国电力通信发展水平的不平衡,由于电力通信规程要求主要变电站必须具有两条

电力线通信(LC)技术的应用及未来

电力线通信(PLC)技术的应用及未来 电力线高速数据通信技术,简称PLC或PLT,是一种利用中、低压配电网作为通信介质,实现数据、话音、图像等综合业务传输的通信技术,不仅可以作为解决宽带末端接入瓶颈的有效手段,而且可以为电力负荷监控、远程抄表、配用电自动化、需求侧管理、企业内部网络、智能家庭以及数字化社区提供高速数据传输平台。 PLC按应用的配电网电压等级划分为低压PLC和中压PLC。低压PLC利用低压(220V/380V)电力线作为传输媒介,为用户提供Internet接入、家庭局域网、远程抄表、智能家居等应用。中压PLC利用中压(10KV)电力线作为通信链路,为接入骨干网、配电网自动化、用户需求侧管理及农村电话等应用提供传输通道。 近10年,特别是2000年以来,由于人们对带宽需求的不断增长,包括ADSL、PLC技术在内的宽带接入技术得到了快速发展。特别是PLC技术,由于充分利用最为普及的电力网络资源,建设速度快、投资少、户内不用布线,能够通过遍布各个房间的电源插座进行高速上网,实现“有线移动”,具备了其它接入方式不可比拟的优势,受到国内外的广泛关注。 二、PLC技术的发展现状 (一)国外发展现状 目前国际上专用PLC调制解调芯片主要有:以色列Yitran公司传输速率为2.5Mbps的芯片、美国Intellon公司14Mbps芯片、西班牙DS2公司45Mbps 和200Mbps芯片,其中美国Intellon公司14Mbps芯片应用最为普遍,大部分PLC系统都是基于该芯片开发的。近期,美国Intellon公司推出了芯片速率

为85Mbps的样片,法国Spidcom公司也开发了224Mbps芯片,正在测试之中。 欧盟为促进PLC技术的发展,从2004年1月1日开始启动了一个称之为OPERA(OpenPLCEuropeanResearchAlliance)的计划,旨在联合欧洲的主要PLC研究开发力量致力于制定欧洲的PLC统一技术标准、推动大规模商业化应用,并将PLC作为实现“eEurope”(信息化欧洲)的重要技术手段。美国联邦通信委员会(FCC)一直在鼓励启用新的基于现有设施的宽带平台,促进美国的宽带业务。2004年2月12日,FCC批准对某些技术规则的修改意见,目的是通过促进电力线宽带接入技术的推广应用,把美国电力网的巨大潜力利用起来。美国、欧洲等国许多大的电力企业也积极进行中压及低压PLC的试验,美国的Cinergy等17家电力企业、德国、奥地利、西班牙等15个欧洲国家的32个电力企业建立了PLC试验网络,有的还进行了PLC商业化运营,如德国的MVV等。亚洲开展PLC研究和试验的国家和地区除中国大陆外,还有日本、韩国、新加坡、中国香港、中国台湾等地,日本对PLC的态度,经历了从初期怀疑否定、到开放试验、直至今日的积极推动的三个阶段。目前日本的东京电力、新加坡电力、香港中华电力等建立了一定规模的试验网络。据不完全统计,截止2004年年底,PLC的试验网络遍及欧洲、亚洲、北美洲、南美洲、非洲以及大洋洲的40多个国家和地区。 (二)国内PLC技术的研发及应用 国外在电力线通信技术方面的进展,引起了国家电力公司的高度重视和科研单位的密切关注。国家电力(电网)公司先后八次立项,由中国电力科学研究院、国电通信中心等单位承担电力线高速数据通信技术相关课题的研究工作。由

HY系列仪表通讯协议

HY系列仪表串行通讯接口协议说明 HY系列人工智能调节器/多路巡检仪/流量积算仪的HY通讯接口协议,具备16位的求和校正码,通讯可靠,支持1200,2400,4800,9600,19200等多种波特率,并且将上位机访问一台仪表的平均时间缩短到0.1秒以下.仪表允许在一个RS485通讯接口上连接多达101台仪表。 一、接口规格 HY系列仪表使用异步串行通讯接口,接口电平符合RS232C或RS485标准中的规定。数据格式为1个起始位,8位数据,无校验位,一个或2个停止位。通讯传输数据的波特率可调为1200--19200 bit/S(波特率为19200时需配界高速光耦的通讯模块。HY仪表采用多机通讯协议,如果采用RS485通讯接口,则可将1—101台的仪表同时连接在一个通讯接口上。采用RS232C通讯接口时,一个通讯接口只能联接一台仪表。 RS485通讯接口通讯距离长达1KM以上,只需两根线就能使多台HY仪表与计算机进行通讯,优于RS232通讯接口。为使用普通个人计算机PC能作上位机,可使用RS232C/RS485型通讯接口转换器,将计算机上的RS232C通讯口转为RS485通讯口。 按RS485接口的规定,RS485通讯接口可在一条通讯线路上连接最多32台仪表或计算机。需要联接更多的仪表时需要中继器,也可选择采用特殊芯片的通讯接口,则最多可连接100台HY仪表在一条通讯线路上,目前生产的HY仪表通讯接口模块通常采用特殊芯片,具备一定的防雷和防静电功能,且无需中继器即可连接约101台仪表。 HY仪表的RS232C及RS485通讯接口采用光电隔离技术将通讯接口与仪表的其他部分线路隔离,当通讯线路上的某台仪表损坏或故障时,并不会对其它仪表产生影响。同样当仪表的通讯部分损坏或主机发生故障时,仪表仍能正常进行测量及控制,并可通过仪表键盘对仪表进行操作。16位校验码不仅保证数据可靠性,并保证在通讯异常,比如网络上有地址相同的仪表或有其他公司产品时,仪表和计算机机仍能分别正常工作,不会产生数据混乱的问题,因此采用HY仪表组成的集散型控制系统具有较高工作可靠性。 由于采用普通计算机作上位机,其软件资源丰富,发展速度极快。新的HY上位机软件广泛采用WINDOWS作为操作环境,不仅操作直观方便,而且功能强大。 二、通讯指令 HY仪表采用16进制数据格式来表示各种指令代码及数据。HY仪表软件通讯指令经过优化设计,只有两条,一条为读指令,一条为写指令,两条指令使得上位机软件编写容易。不过却能100%完整地对仪表进行操作。 地址代号:为了在一个通讯接口上连接多台HY仪表,需要给每台HY仪表编一个互不相同的代号。HY有效的地址为0—100。所以一条通讯线路上最多可连接101台HY仪表。仪表的地址代号由参数Addr决定。 仪表内部采用整型数据表示参数及测量值等,数据最大范围为:-2999—+32767。因此采用-32768—-7160之间的数值来表示地址代号,来降低因数据与地址重复造成冲突的可能性。HY仪表通讯协议规定,地址代号为两个字节,其数值范围(16进制数)是80H—BFH,两个字节必需相同,数值为(仪表地址+80H)。例如,仪表参数Addr=10(16进制数为0AH,0A+80H=8AH),则该仪表的地址表示为:8AH 8AH 参数代号:仪表的参数用1个8位二进制数(一个字节,写为16进制数)的参数代号来表示。它在指令中表示要读/写的参数名。参数代号见下表:

电力系统的远动通讯规约IEC 61850

电力系统的远动通讯规约IEC 61850 电气班 摘要:IEC-61850标准是IECTC一57技术委员会在新时代制定出具有开放性和互操作性的新一代变电站通信网络和系统协议。本文在介绍电力系统远动规约的基础上进一步介绍了电力系统的IEC-61850标准。通过介绍IEC-61850标准的结构体系,同IEC60870-5-103/104规约,进一步突出了IEC-61850标准的优点和特点。最后举了一个IEC-61850标准在变电站应用的例子来说明它的应用。 关键词:IEC-61850标准、IEC60870-5-103/104规约、变电站通信 1、电力系统远动通信规约 通信规约(协议)是指通信双方必须共同遵守的题中约定,也称为通信控制规程或传输控制规程。通信规约的内容包括两个方面:一个是信息传送格式,它包括信息收发方式、传送速率、帧结构、帧同步字、位同步方式、干扰措施等;一个是信息传送的具体步骤,它是指将信息分类、分循环周期传送,系统对时数据收集方式和设备状态监视方式。 通行规约按传输模式可以分为循环传输规约(CDT)、问答式传输规约(Polling),按传输的基本单位可以分为面向字符的通信规约和面向比特的通信规约。 (1)循环传输规约(CDT) CDT属于同步通信方式,其以厂站RTU为主动方,以固定速率循环地向调度端上传数据。数据依规定的帧格式连续循环,周而复始地传送。一个循环传送的信息字越多,其传输延时越长,传输内容出错剔除后,在下个循环可得以补传。 CDT采用可变帧长度,多种帧类别按不同循环周期传送,变位遥信优先传送重要遥测量平均循环时间较短,区分循环量、随机和插入量采用不同形式传送信

电力线载波通信技术的发展与特点

电力线载波通信技术的发展及特点 摘要 本文介绍了电力线载波通信的发展及特点,文中主要就高压电力线载波通信、中压配电网电力线载波数据通信和低压用户配电网电力线载波通信,以及与其相关的关键技术问题进行了讨论。 0 引言 电力线载波(Power Line Carrier - PLC)通信是利用高压电力线(在电力载波领域通常指35kV及以上电压等级)、中压电力线(指10kV电压等级)或低压配电线(380/220V用户线)作为信息传输媒介进行语音或数据传输的一种特殊通信方式。近年来,高压电力线载波技术突破了仅限于单片机应用的限制,已经进入了数字化时代。并且,随着电力线载波技术的不断发展和社会的需要,中/低压电力载波通信的技术开发及应用亦出现了方兴未艾的局面,电力线载波通信这座被国外传媒喻为“未被挖掘的金山”正逐渐成为一门电力通信领域乃至关系到千家万户的热门专业。在这种形势下,本文旨在通过对电力线载波通信技术的发展及所涉及的一些技术问题的讨论,阐明电力线载波通信的发展历程、特点及技术关键。 2 电力线载波通信的特点

2.1 高压载波路由合理,通道建设投资相对较低高压电力线路的路由走向沿着终端站到枢纽站,再到调度所,正是电力调度通信所要求的合理路由,并且载波通道建设只需结合加工设备的投入而无须考虑线路投资,因此当之无愧成为电力通信的基本通信方式,尤其在边远地区更是这样。电力线载波通道往往先于变电站完成建设,对于新建电站的通信开通十分有利。为此,只要妥善解决电力线载波信道的容量问题,载波通信的优势就会显现出来。在中压配电网载波和低压用户电网载波中,节省线路建设费用,无须考虑破坏家庭已装修环境,也仍然是载波通信的优势。 2.2 传输频带受限,传输容量相对较小 在高压电网中,一般考虑到工频谐波及无线电发射干扰电力线载波的通信频带限制于40~500kHz之内,按照单方向占用4kHz带宽计算,理想情况下一条线路可安排115条高频载波通道。但由于电力线路各相之间及变电站之间的跨越衰减有限(13~43dB),不可能理想地按照频谱紧邻的方式安排载波通道,因此,真正组成电力线载波通信网所实现的载波通道是有限的,在当今通信业务已大大开拓的情况下,载波通道的信道容量已成为其进一步应用的“瓶颈”问题。尽管我们在载波频谱的分配上研究了随机插空法、分小区法、分组分段法、频率阻塞法及地图色法和计算机频率分配软件,并且规定不同电压等级的电力线路之间不得搭建高频桥路,使载波频率尽量得以重复使用,但还是不能满足需要。近来随着光纤通信的发展和全数字电力线载波机的出现,稍微缓解了载波频谱的紧张程度。在10kV中压配电

07电表的通信规约跟通讯协议

竭诚为您提供优质文档/双击可除07电表的通信规约跟通讯协议 篇一:dlt645-20xx多功能电能表通信协议20xx0417 ics备案号: 中华人民共和国电力行业标准 多功能电能表通信协议 multi-functionwatt-hourmetercommunicationprotocol (与国际标准一致性程度的标识) (报批稿) 中华人民共和国国家经济贸易委员会发布 dl/t—20 目次 前言................................................. . (ii) 1范围................................................. (1)

2规范性引用文件................................................. .. (1) 3术语................................................. (1) 4物理层................................................. . (2) 5数据链路层................................................. (6) 6数据标识................................................. .. (8) 7应用层................................................. . (9) 附录a(规范性附录)数据编码................................................. .. (15) a.1数据格式说

低压电力线载波通信传输线参数测试与分析

SPWMcontrolbasedoncompensationfunctionformatrixconverter WANGRutian,WANGJianze,JIYanchao,ZENGFanpeng (SchoolofElectricalEngineeringandAutomation,HarbinInstituteofTechnology,Harbin150001,China) Abstract:Non-controlledrectificationandSPWM(SinePulseWidthModulation)areappliedtothevirtualrectifierandvirtualinverterofmatrixconverterequivalentAC/DC/ACmodelrespectively.VirtualrectifiergeneratesfluctuantDCvoltagewhensymmetricorunsymmetricthree-phasevoltagesaresupplied.InordertoeliminatetheeffectofthefluctuantDCvoltageontheSPWMoutputvoltageandcurrentofvirtualinverter,thecompensationfunctionisdeducedformodulationwavebasedontheconceptofswitchingfunction.Theprincipleisthat,asinewave,whichfollowsthefluctuantDCvoltagewithreversedpolarity,isinjectedtothemodulationwavetoeliminatethelowharmonicsofoutputvoltage.Thismethodisalsoapplicabletounsymmetricinputvoltageconditionanditsrealizationisverysimple.SimulationswithMatlab/Simulinkshowthat,highqualityoutputvoltagesareobtainedunderbothsymmetricandunsymmetricthree-phaseinputvoltageconditions,whichverifiesthevalidityandeffectivenessoftheproposedcontrolmethod. Keywords:matrixconverter;indirectconversion;switchingfunction;compensationfunction 0引言 低压配电网电力线通信是一个日益看好的数字 通信网络,逐步在工业和民用系统中得到应用。但是,低压配电网电力线通信稳定性有待于进一步提高。电力线信道特性的分析是当前电力线载波通信研究的一个重要内容,也是作为提高稳定性研究的非常重要的组成部分。国内外一些专家学者在信道估计与选择、信道编码、滤波设计、功率分配等方面作了 较为深入的研究[1-12]。在进行信道估算时的一个主要问题在于低压配电网负载复杂,存在输入阻抗不匹配问题,信号衰减严重。所以,有必要对电力线通信传输线的阻抗特性参数进行理论分析、总结和实际测试。在文献[2]中对在40kHz ̄1.5MHz频率范围内的10kV中压电力线信道传输特性进行了测试,并根据测量结果,结合传输线的基本模型,对信道的传输特性作了深入分析。该文对于中压电力线通信的传输特性研究具有研究方法上的指导意义,同样,对于研究低压电力线的传输特性也有参考意义。现从传输线阻抗特性出发,分别对基于理想均匀传输线理论、集肤效应传输线理论条件下的电力线传输特 低压电力线载波通信传输线 参数测试与分析 黄文焕1,戚佳金2,黄南天3,李 琰2 (1.吉林化工学院化工与材料工程学院,吉林吉林132022; 2.哈尔滨工业大学电气工程及自动化学院,黑龙江哈尔滨150001; 3.吉林化工学院信息与控制工程学院,吉林吉林132022) 摘要:为给低压配电网电力线载波通信信道估算提供参考依据,有必要对电力线通信传输线的阻抗特性参数进行理论分析和实际测试研究。在简述配电网电力线载波通信传输线理论和传输线方程的基础上,总结了理想均匀传输线理论下和考虑集肤效应的电力线参数模型。使用HP4194阻抗相位增益分析仪对3+1芯交联聚乙烯绝缘聚氯乙烯护套钢带铠装电力电缆线进行实际测试,并根据测试结果使用Matlab计算出单位长度导线的电阻、电感以及两导线间的电容和电导,验证了电力线物理参数模型公式的准确性和其实际可使用性。同时,这些实测参数也为电力线通信信道特性分析和估算提供了一定的参考依据。 关键词:电力线通信;传输线方程;阻抗特性中图分类号:TN913.6;TM934 文献标识码:A 文章编号:1006-6047(2008)04-0041-04收稿日期:2007-07-16;修回日期:2007-09-13基金项目:黑龙江省自然科学基金资助(F200508) 电力自动化设备 ElectricPowerAutomationEquipment Vol.28No.4Apr.2008 第28卷第4期2008年4月 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 41

相关主题
文本预览
相关文档 最新文档