当前位置:文档之家› 初中数学竞赛讲解教材 第五讲 三角形的五心

初中数学竞赛讲解教材 第五讲 三角形的五心

初中数学竞赛讲解教材   第五讲  三角形的五心
初中数学竞赛讲解教材   第五讲  三角形的五心

第五讲 三角形的五心

三角形的外心、重心、垂心、内心及旁心,统称为三角形的五心.

一、外心.

三角形外接圆的圆心,简称外心.与外心关系密切的有圆心角定理和圆周角定理.

例1.过等腰△ABC 底边BC 上一点P 引PM ∥CA 交AB 于M ;

引PN ∥BA 交AC 于N .作点P 关于MN 的对称点P ′.试证:P ′点在△ABC 外接圆上.

(杭州大学《中学数学竞赛习题》) 分析:由已知可得MP ′=MP =MB ,NP ′=NP =NC ,故点M 是△P ′BP 的外心,点

N 是△P ′PC 的外心.有 ∠BP ′P =21∠BMP =2

1∠BAC , ∠PP ′C =21∠PNC =2

1∠BAC . ∴∠BP ′C =∠BP ′P +∠P ′PC =∠BAC .

从而,P ′点与A ,B ,C 共圆、即P ′在△ABC 外接圆上. 由于P ′P 平分∠BP ′C ,显然还有

P ′B :P ′C =BP :PC .

例2.在△ABC 的边AB ,BC ,CA 上分别取点P ,Q ,S .证明以

△APS ,△BQP ,△CSQ 的外心为顶点的三角形与△ABC 相似.

(B ·波拉索洛夫《中学数学奥林匹克》)

分析:设O 1,O 2,O 3是△APS ,△BQP ,

△CSQ 的外心,作出六边形 O 1PO 2QO 3S 后再由外

心性质可知 ∠PO 1S =2∠A , ∠QO 2P =2∠B ,

∠SO 3Q =2∠C .

∴∠PO 1S +∠QO 2P +∠SO 3Q =360°.从而又知∠O 1PO 2+

∠O 2QO 3+∠O 3SO 1=360°

将△O 2QO 3绕着O 3点旋转到△KSO 3,易判断△KSO 1≌△

A B C P P M N 'A B C Q

K P O O O ....S 123

O 2PO 1,同时可得△O 1O 2O 3≌△O 1KO 3.

∴∠O 2O 1O 3=∠KO 1O 3=2

1∠O 2O 1K =2

1(∠O 2O 1S +∠SO 1K ) =2

1(∠O 2O 1S +∠PO 1O 2) =2

1∠PO 1S =∠A ; 同理有∠O 1O 2O 3=∠B .故△O 1O 2O 3∽△ABC .

二、重心

三角形三条中线的交点,叫做三角形的重心.掌握重心将每 条中线都分成定比2:1及中线长度公式,便于解题.

例3.AD ,BE ,CF 是△ABC 的三条中线,P 是任意一点.证明:

在△P AD ,△PBE ,△PCF 中,其中一个面积等于另外两个面积的和. (第26届莫斯科数学奥林匹克) 分析:设G 为△ABC 重心,直线PG 与AB ,BC 相交.从A ,C ,D ,E ,F 分别 作该直线的垂线,垂足为A ′,C ′, D ′,E ′,F ′.

易证AA ′=2DD ′,CC ′=2FF ′,2EE ′=AA ′+CC ′, ∴EE ′=DD ′+FF ′.

有S △PGE =S △PGD +S △PGF .

两边各扩大3倍,有S △PBE =S △P AD +S △PCF .

例4.如果三角形三边的平方成等差数列,那么该三角形和由它

的三条中线围成的新三角形相似.其逆亦真.

分析:将△ABC 简记为△,由三中线AD ,BE ,CF 围成的三角形

简记为△′.G 为重心,连DE 到H ,使EH =DE ,连HC ,HF ,则△′就是△HCF .

(1)a 2,b 2,c 2成等差数列?△∽△′.

若△ABC 为正三角形,易证△∽△′.

不妨设a ≥b ≥c ,有

CF =222222

1c b a -+, BE =222222

1b a c -+, A A 'F F 'G E E 'D 'C 'P C B D

AD =

222222

1a c b -+. 将a 2+c 2=2b 2,分别代入以上三式,得 CF =a 23,BE =b 23,AD =c 2

3. ∴CF :BE :AD =

a 23:

b 23:

c 23 =a :b :c .

故有△∽△′.

(2)△∽△′?a 2,b 2,c 2成等差数列.

当△中a ≥b ≥c 时,

△′中CF ≥BE ≥AD .

∵△∽△′,

∴?

?S S '=(a CF )2. 据“三角形的三条中线围成的新三角形面积等于原三角形面积的

43”,有??S S '=43. ∴22a

CF =43?3a 2=4CF 2=2a 2+b 2-c 2 ?a 2+c 2=2b 2.

三、垂心

三角形三条高的交战,称为三角形的垂心.由三角形的垂心造成的四个等(外接)圆三角形,给我们解题提供了极大的便利. 例5.设A 1A 2A 3A 4为⊙O 内接四边形,H 1,H 2,H 3,H 4依次为

△A 2A 3A 4,△A 3A 4A 1,△A 4A 1A 2,△A 1A 2A 3的垂心.求证:H 1,H 2,H 3,H 4四点共圆,并确定出该圆的圆心位置. (1992,全国高中联赛) 分析:连接A 2H 1,A 1H 2,H 1H 2,记圆半径

为R .由△A 2A 3A 4知 .O A A A A 1234

H H 12

1

3212sin H A A H A ∠=2R ?A 2H 1=2R cos ∠A 3A 2A 4; 由△A 1A 3A 4得

A 1H 2=2R cos ∠A 3A 1A 4.

但∠A 3A 2A 4=∠A 3A 1A 4,故A 2H 1=A 1H 2.

易证A 2H 1∥A 1A 2,于是,A 2H 1 A 1H 2

, 故得H 1H 2 A 2A 1

.设H 1A 1与H 2A 2的交点为M ,故H 1H 2与A 1A 2关于M 点成中心对称.

同理,H 2H 3与A 2A 3,H 3H 4与A 3A 4,H 4H 1与A 4A 1都关于M

点成中心对称.故四边形H 1H 2H 3H 4与四边形A 1A 2A 3A 4关于M 点成中心对称,两者是全等四边形,H 1,H 2,H 3,H 4在同一个圆上.后者的圆心设为Q ,Q 与O 也关于M 成中心对称.由O ,M 两点,Q 点就不难确定了.

例6.H 为△ABC 的垂心,D ,E ,F 分别是BC ,CA ,AB 的中心.

一个以H 为圆心的⊙H 交直线EF ,FD ,DE 于A 1,A 2,B 1,B 2,C 1,C 2.

求证:AA 1=AA 2=BB 1=BB 2=CC 1=CC 2.

(1989,加拿大数学奥林匹克训练题) 分析:只须证明AA 1=BB 1=CC 1即可.设 BC =a , CA =b ,AB =c ,△ABC 外 接圆半径为R ,⊙H 的半径为r . 连HA 1,AH 交EF 于M . A 21A =AM 2+A 1M 2=AM 2+r 2-MH 2

=r 2+(AM 2-MH 2), ①

又AM 2-HM 2=(21AH 1)2-(AH -2

1AH 1)2 =AH ·AH 1-AH 2=AH 2·AB -AH 2

=cos A ·

bc -AH 2, ② 而ABH

AH ∠sin =2R ?AH 2=4R 2cos 2A , A

a sin =2R ?a 2=4R 2sin 2A . ∴AH 2+a 2=4R 2,AH 2=4R 2-a 2. ③ 由①、②、③有

∥=∥=H H H M A B B A A B C C C F 12111222D

E

A 2

1A =r 2+bc a c b 22

22-+·bc -(4R 2-a 2) =2

1(a 2+b 2+c 2)-4R 2+r 2. 同理,21BB =2

1(a 2+b 2+c 2)-4R 2+r 2, 21CC =2

1(a 2+b 2+c 2)-4R 2+r 2. 故有AA 1=BB 1=CC 1.

四、内心

三角形内切圆的圆心,简称为内心.对于内心,要掌握张角公式,还要记住下面一个极为有用的等量关系:

设I 为△ABC 的内心,射线AI 交△ABC 外接圆于A ′,则有

A ′I =A ′

B =A ′

C .换言之,点A ′必是△IBC 之外心(内心的等

量关系之逆同样有用).

例7.ABCD 为圆内接凸四边形,取 △DAB ,△ABC ,△BCD ,

△CDA 的内心O 1, O 2,O 3, O 4.求证:O 1O 2O 3O 4为矩形.

(1986,中国数学奥林匹克集训题)

证明见《中等数学》1992;4

例8.已知⊙O 内接△ABC ,⊙Q 切AB ,AC 于E ,F 且与⊙O 内

切.试证:EF 中点P 是△ABC 之内心.

(B ·波拉索洛夫《中学数学奥林匹克》)

分析:在第20届IMO 中,美国提供的一道题实际上是例8的一

种特例,但它增加了条件AB =AC .当AB ≠AC ,怎样证明呢? 如图,显然EF 中点P 、圆心Q ,BC 中点K 都在∠BAC 平

分线上.易知AQ =αsin r . ∵QK ·AQ =MQ ·QN , ∴QK =AQ

QN MQ ? =α

sin /)2(r r r R ?-=)2(sin r R -?α. 由Rt △EPQ 知PQ =r ?αsin . A B C

D O O O 234O 1

A ααM

B C K

N E

R O Q F r P

∴PK =PQ +QK =r ?αsin +)2(sin r R -?α=R 2sin ?α. ∴PK =BK .α

利用内心等量关系之逆定理,即知P 是△ABC 这内心.

五、旁心

三角形的一条内角平分线与另两个内角的外角平分线相交于 一点,是旁切圆的圆心,称为旁心.旁心常常与内心联系在一起, 旁心还与三角形的半周长关系密切.

例9.在直角三角形中,求证:r +r a +r b +r c =2p .

式中r ,r a ,r b ,r c 分别表示内切圆半径及与a ,b ,c 相切

的旁切圆半径,p 表示半周.

(杭州大学《中学数学竞赛习题》)

分析:设Rt △ABC 中,c 为斜边,先来证明一个特性:

p (p -c )=(p -a )(p -b ).

∵p (p -c )=21(a +b +c )·21(a +b -c ) =41[(a +b )2-c 2] =21ab ; (p -a )(p -b )=21(-a +b +c )·2

1(a -b +c ) =41[c 2-(a -b )2]=2

1ab . ∴p (p -c )=(p -a )(p -b ). ① 观察图形,可得

r a =AF -AC =p -b ,

r b =BG -BC =p -a ,

r c =CK =p .

而r =2

1(a +b -c ) =p -c .

∴r +r a +r b +r c

=(p -c )+(p -b )+(p -a )+p

=4p -(a +b +c )=2p .

由①及图形易证.

K r r r r O O O 213A O

E C B a b c

例10.M 是△ABC 边AB 上的任意一点.r 1,r 2,r 分别是△AMC ,

△BMC ,△ABC 内切圆的半径,q 1,q 2,q 分别是上述三角形在∠ACB 内部的旁切圆半径.证明:

11q r ·22q r =q r . (IMO -12)

分析:对任意△A ′B ′C ′,由正弦定理可知

OD =OA ′·2

'sin A =A ′B ′·'

''sin 2'sin B O A B ∠·2'sin A =A ′B ′·2

''sin 2'sin 2'sin B A B A +?, O ′E = A ′B ′·2

''sin 2'cos 2'cos B A B A +. ∴2

'2''B tg A tg E O OD =. 亦即有 11q r ·2

2q r =2222B tg CNB tg CMA tg A tg ∠∠ =22B tg A tg =q

r . 六、众心共圆

这有两种情况:(1)同一点却是不同三角形的不同的心;(2)同一图形出现了同一三角形的几个心.

例11.设在圆内接凸六边形ABCDFE 中,AB =BC ,CD =DE ,EF =F A .

试证:(1)AD ,BE ,CF 三条对角线交于一点;

(2)AB +BC +CD +DE +EF +F A ≥AK +BE +CF . (1991,国家教委数学试验班招生试题)

分析:连接AC ,CE ,EA ,由已知可证AD ,CF ,EB 是△ACE

A ...'

B '

C 'O O '

E D

的三条内角平分线,I 为△ACE 的内心.从而有ID =CD =DE , IF =EF =F A ,

IB =AB =BC .

再由△BDF ,易证BP ,DQ ,FS 是它的三条高,I 是它的垂心,利用 不等式有: BI +DI +FI ≥2·(IP +IQ +IS ).

不难证明IE =2IP ,IA =2IQ ,IC =2IS . ∴BI +DI +FI ≥IA +IE +IC .

∴AB +BC +CD +DE +EF +F A =2(BI +DI +FI ) ≥(IA +IE +IC )+(BI +DI +FI ) =AD +BE +CF .

I 就是一点两心.

例12.△ABC 的外心为O ,AB =AC ,D 是AB 中点,E 是△ACD

的重心.证明OE 丄CD .

(加拿大数学奥林匹克训练题)

分析:设AM 为高亦为中线,取AC 中点

F ,E 必在DF 上且DE :EF =2:1.设

CD 交AM 于G ,G 必为△ABC 重心. 连GE ,MF ,MF 交DC 于K .易证: DG :GK =31DC :(3

121-)DC =2:1. ∴DG :GK =DE :EF ?GE ∥MF .

∵OD 丄AB ,MF ∥AB ,

∴OD 丄MF ?OD 丄GE .但OG 丄DE ?G 又是△ODE

之垂心.

易证OE 丄CD .

例13.△ABC 中∠C =30°,O 是外心,I 是内心,边AC 上的D

点与边BC 上的E 点使得AD =BE =AB .求证:OI 丄DE ,OI =DE .

(1988,中国数学奥林匹克集训题)

分析:辅助线如图所示,作∠DAO 平分线交BC 于K . 易证△AID ≌△AIB ≌△EIB ,

∠AID =∠AIB =∠EIB . 利用内心张角公式,有

∠AIB =90°+21∠C =105°, Erdos ..I P A B C D E F Q S

A B C D E F O K G O A B

C D E F I K 30°

∴∠DIE =360°-105°×3=45°.

∵∠AKB =30°+2

1∠DAO =30°+2

1(∠BAC -∠BAO ) =30°+2

1(∠BAC -60°) =2

1∠BAC =∠BAI =∠BEI . ∴AK ∥IE .

由等腰△AOD 可知DO 丄AK ,

∴DO 丄IE ,即DF 是△DIE 的一条高.

同理EO 是△DIE 之垂心,OI 丄DE .

由∠DIE =∠IDO ,易知OI =DE .

例14.锐角△ABC 中,O ,G ,H 分别是外心、重心、垂心.设外

心到三边距离和为d 外,重心到三边距 离和为d 重,垂心到三边距离和为d 垂.

求证:1·d 垂+2·d 外=3·d 重. 分析:这里用三角法.设△ABC 外接圆 半径为1,三个内角记为A ,B , C . 易知d 外=OO 1+OO 2+OO 3 =cos A +co sB +cos C ,

∴2d 外=2(cos A +cos B +cos C ). ①

∵AH 1=sin B ·AB =sin B ·(2sin C )=2sin B ·sin C ,

同样可得BH 2·CH 3.

∴3d 重=△ABC 三条高的和

=2·(sin B ·sin C +sin C ·sin A +sin A ·sin B ) ②

∴BCH

BH sin =2, ∴HH 1=cos C ·BH =2·cos B ·cos C .

同样可得HH 2,HH 3.

∴d 垂=HH 1+HH 2+HH 3

=2(cos B ·cos C +cos C ·cos A +cos A ·cos B ) ③

欲证结论,观察①、②、③,

须证(cos B ·cos C +cos C ·cos A +cos A ·cos B )+( cos A + cos B + cos C )=sin B ·sin C +sin C ·sin A +sin A ·sin B .即可.

B C O I

A

O G H O G H G O G H 123112233

练 习 题

1.I 为△ABC 之内心,射线AI ,BI ,CI 交△ABC 外接圆于A ′, B ′,C ′.则AA ′+BB ′+CC ′>△ABC 周长.(1982,澳大利 亚数学奥林匹克)

2.△T ′的三边分别等于△T 的三条中线,且两个三角形有一组角相等.求证这两个三角形相似.(1989,捷克数学奥林匹克)

3.I 为△ABC 的内心.取△IBC ,△ICA ,△IAB 的外心O 1,O 2,O 3.求证:△O 1O 2O 3与△ABC 有公共的外心.(1988,美国数学奥林匹克)

4.AD 为△ABC 内角平分线.取△ABC ,△ABD ,△ADC 的外心O ,O 1,O 2.则△OO 1O 2是等腰三角形.

5.△ABC 中∠C <90°,从AB 上M 点作CA ,CB 的垂线MP ,MQ .H 是△CPQ 的垂心.当M 是AB 上动点时,求H 的轨迹.(IMO -7)

6.△ABC 的边BC =2

1(AB +AC ),取AB ,AC 中点M ,N ,G 为重心,I 为内心.试证:过A ,M ,N 三点的圆与直线GI 相切.(第27届莫斯科数学奥林匹克)

7.锐角△ABC 的垂心关于三边的对称点分别是H 1,H 2,H 3.已知:H 1,H 2,H 3,求作△ABC .(第7届莫斯科数学奥林匹克)

8.已知△ABC 的三个旁心为I 1,I 2,I 3.求证:△I 1I 2I 3是锐角三角形.

9.AB ,AC 切⊙O 于B ,C ,过OA 与BC 的交点M 任作⊙O 的弦EF .求证:(1)△AEF 与△ABC 有公共的内心;

(2)△AEF 与△ABC 有一个旁心重合.

(完整word版)高中数学竞赛平面几何讲座第5讲三角形的五心

第五讲三角形的五心 三角形的外心、重心、垂心、内心及旁心,统称为三角形的五心、外心. 三角形外接圆的圆心,简称外心. 与外心关系密切的有圆心角定理和圆周角定理. 例1.过等腰△ ABC底边BC上一点P引PM∥CA交AB 于M;引PN∥BA交AC于N.作点P关于MN 的对称点P′.试证:P′点在△ ABC外接圆上. (杭州大学《中学数学竞赛习题》)分析:由已知可得MP′=MP=MB,NP′ =NP =NC,故点M 是△ P′BP 的外心,点 N 是△ P′PC的外心. 有11 ∠BP′P= 1 2∠ BMP= 1∠BAC, 22 11 ∠ PP′C= ∠ PNC= ∠BAC. 22 ∴∠BP′C=∠BP′P+∠P′PC=∠BAC. 从而,P′点与 A,B,C共圆、即P′在△ ABC外接圆上. 由于P′P平分∠ BP′C,显然还有P′B:P′C=BP:PC. 例2.在△ABC的边AB,BC,CA上分别取点P,Q,S.证明以△ APS,△BQP,△CSQ的外心为顶点的三角形与△ ABC 相似. ( B ·波拉索洛夫《中学数学奥林匹克》) 分析:设O1,O2,O3 是△APS,△BQP, △CSQ的外心,作出六边形 O1PO2QO3S后再由外心性质可知 ∠PO1S=2∠A, ∠QO2P=2∠B, QC ∠SO3Q=2∠C. ∴∠PO1S+∠QO2P+∠SO3Q=360°.从而又知∠ O1PO2+ ∠O2QO3+∠O3SO1=360° 将△ O2QO3绕着O3点旋转到△ KSO3,易判断△ KSO1≌△ O2PO1,同时可得△O1O2O3≌△ O1KO3. 1 ∴∠ O2O1O3=∠KO1O3= ∠O2O1K 2 1( ∠ O2O1S+∠ SO1K) 2 1 = ( ∠ O2O1S+∠ PO1O2) 1 = 1∠ PO1S=∠ A; 2 同理有∠ O1O2O3=∠B.故△O1O2O3∽△ ABC.

高中数学竞赛教案讲义(7)解三角形

第七章 解三角形 一、基础知识 在本章中约定用A ,B ,C 分别表示△ABC 的三个内角,a, b, c 分别表示它们所对的各边长,2 c b a p ++=为半周长。 1.正弦定理:C c B b A a sin sin sin ===2R (R 为△ABC 外接圆半径)。 推论1:△ABC 的面积为S △ABC =.sin 2 1sin 21sin 21B ca A bc C ab == 推论2:在△ABC 中,有bcosC+ccosB=a. 推论3:在△ABC 中,A+B=θ,解a 满足) sin(sin a b a a -=θ,则a=A. 正弦定理可以在外接圆中由定义证明得到,这里不再给出,下证推论。先证推论1,由正弦函数定义,BC 边上的高为bsinC ,所以S △ABC =C ab sin 2 1;再证推论2,因为B+C=π-A ,所以sin(B+C)=sinA ,即sinBcosC+cosBsinC=sinA ,两边同乘以2R 得bcosC+ccosB=a ;再证推论3,由正弦定理B b A a sin sin =,所以)sin()sin(sin sin A a A a --=θθ,即sinasin(θ-A)=sin(θ-a)sinA ,等价于21-[cos(θ-A+a)-cos(θ-A-a)]= 2 1-[cos(θ-a+A)-cos(θ-a-A)],等价于cos(θ-A+a)=cos(θ-a+A),因为0<θ-A+a ,θ-a+A<π. 所以只有θ-A+a=θ-a+A ,所以a=A ,得证。 2.余弦定理:a 2=b 2+c 2-2bccosA bc a c b A 2cos 2 22-+=?,下面用余弦定理证明几个常用的结论。 (1)斯特瓦特定理:在△ABC 中,D 是BC 边上任意一点,BD=p ,DC=q ,则AD 2=.22pq q p q c p b -++ (1) 【证明】 因为c 2=AB 2=AD 2+BD 2 -2AD ·BDcos ADB ∠, 所以c 2=AD 2+p 2-2AD ·pcos .ADB ∠ ① 同理b 2=AD 2+q 2-2AD ·qcos ADC ∠, ② 因为∠ADB+∠ADC=π, 所以cos ∠ADB+cos ∠ADC=0, 所以q ×①+p ×②得 qc 2+pb 2=(p+q)AD 2+pq(p+q),即AD 2=.22pq q p q c p b -++ 注:在(1)式中,若p=q ,则为中线长公式.2 222 22a c b AD -+=

初中数学奥林匹克竞赛方法与测试试题大全

初中数学奥林匹克竞赛方法与试题大全

————————————————————————————————作者:————————————————————————————————日期:

初中数学奥林匹克竞赛教程

初中数学竞赛大纲(修订稿) 数学竞赛对于开发学生智力,开拓视野,促进教学改革,提高教学水平,发现和培养数学人才都有着积极的作用。目前我国中学生数学竞赛日趋规范化和正规化,为了使全国数学竞赛活动健康、持久地开展,应广大中学师生和各级数学奥林匹克教练员的要求,特制定《初中数学竞赛大纲(修订稿)》以适应当前形势的需要。 本大纲是在国家教委制定的九年义务教育制“初中数学教学大纲”精神的基础上制定的。《教学大纲》在教学目的一栏中指出:“要培养学生对数学的兴趣,激励学生为实现四个现代化学好数学的积极性。”具体作法是:“对学有余力的学生,要通过课外活动或开设选修课等多种方式,充分发展他们的数学才能”,“要重视能力的培养……,着重培养学生的运算能力、逻辑思维能力和空间想象能力,要使学生逐步学会分析、综合、归纳、演绎、概括、抽象、类比等重要的思想方法。同时,要重视培养学生的独立思考和自学的能力”。 《教学大纲》中所列出的内容,是教学的要求,也是竞赛的要求。除教学大纲所列内容外,本大纲补充列出以下内容。这些课外讲授的内容必须充分考虑学生的实际情况,分阶段、分层次让学生逐步地去掌握,并且要贯彻“少而精”的原则,处理好普及与提高的关系,这样才能加强基础,不断提高。 1、实数 十进制整数及表示方法。整除性,被2、3、4、5、8、9、11等数整除的判定。 素数和合数,最大公约数与最小公倍数。 奇数和偶数,奇偶性分析。 带余除法和利用余数分类。 完全平方数。 因数分解的表示法,约数个数的计算。 有理数的表示法,有理数四则运算的封闭性。 2、代数式 综合除法、余式定理。 拆项、添项、配方、待定系数法。 部分分式。 对称式和轮换对称式。 3、恒等式与恒等变形 恒等式,恒等变形。 整式、分式、根式的恒等变形。 恒等式的证明。 4、方程和不等式 含字母系数的一元一次、二次方程的解法。一元二次方程根的分布。 含绝对值的一元一次、二次方程的解法。

初中数学竞赛辅导讲义及习题解答 第21讲 从三角形的内切圆谈起

第二十一讲 从三角形的内切圆谈起 和多边形的各边都相切的圆叫做多边形的内切圆,这个多边形叫做圆的外切多边形.三角形的内切圆的圆心叫做这个三角形的内心,圆外切三角形、圆外切四边形有下列重要性质: 1.三角形的内心是三角形的三内角平分线交点,它到三角形的三边距离相等; 2.圆外切四边形的两组对边之和相等,其逆亦真,是判定四边形是否有外切圆的主要方法. 当圆外切三角形、四边形是特殊三角形时,就得到隐含丰富结论的下列图形: 注:设Rt △ABC 的各边长分别为a 、b 、c (斜边),运用切线长定理、面积等知识可得到其内切圆半径的不同表示式: (1)2 c b a r -+=; (2)c b a ab r ++= . 请读者给出证 【例题求解】 【例1】 如图,在Rt △ABC 中,∠C=90°°,BC=5,⊙O 与Rt △ABC 的三边AB 、

BC、AC分相切于点D、E、F,若⊙O的半径r=2,则Rt△ABC的周长为.思路点拨AF=AD,BE=BD,连OE、OF,则OECF为正方形,只需求出AF(或AD)即可. 【例2】如图,以定线段AB为直径作半圆O,P为半圆上任意一点(异于A、B),过点P作半圆O的切线分别交过A、B两点的切线于D、C,AC、BD相交于N点,连结ON,NP,下列结论:①四边形ANPD是梯形;②ON=NP:③DP·P C为定值; ④FA为∠NPD的平分线,其中一定成立的是( ) A.①②③ B.②③④ C.①③④ D.①④ 思路点拨本例综合了切线的性质、切线长定理、相似三角形,判定性质等重要几何知识,注意基本辅助线的添出、基本图形识别、等线段代换,推导出NP∥AD∥BC是解本例的关键. 【例3】如图,已知∠ACP=∠CDE=90°,点B在CE上,CA=CB=CD,过A、C、D 三点的圆交AB于F,求证:F为△CDE的内心.

三角形五心性质概念整理(超全)

重心 1、重心到顶点的距离与重心到对边中点的距离之比为2:1。 2、重心和三角形3个顶点组成的3个三角形面积相等。 3、重心到三角形3个顶点距离平方的和最小。 证明方法: 设三角形三个顶点为(x 1,y 1 ),(x 2 ,y 2 ),(x 3 ,y 3 ) 平面上任意一点为(x,y)则该点到三顶点距离平 方和为: (x 1-x)2+(y 1 -y)2+(x 2 -x)2+(y 2 -y)2+(x 3 -x)2+(y 3 -y)2 =3x2-2x(x 1+x 2 +x 3 )+3y2-2y(y 1 +y 2 +y 3 )+x 1 2+x 2 2+x 3 2+y 1 2+y 2 2+y 3 2 =3[x-1/3*(x 1+x 2 +x 3 )]2+3[y-1/3*(y 1 +y 2 +y 3 )]2+x 1 2+x 2 2+x 3 2+y 1 2+y 2 2+y 3 2-1/3(x 1 +x 2 +x 3 )2-1/3(y 1 +y 2 +y 3 )2 显然当x=(x 1+x 2 +x 3 )/3,y=(y 1 +y 2 +y 3 )/3(重心坐标)时 上式取得最小值x 12+x 2 2+x 3 2+y 1 2+y 2 2+y 3 2-1/3(x 1 +x 2 +x 3 )2-1/3(y 1 +y 2 +y 3 )2 。 最终得出结论。 4、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均数, 即其坐标为[(X1+X2+X3)/3,(Y1+Y2+Y3)/3]; 空间直角坐标系——横坐标:(X1+X2+X3)/3,纵坐标:(Y1+Y2+Y3)/3,纵坐标:(Z1+Z2+Z3)/3 5、三角形内到三边距离之积最大的点。 6、在△ABC中,若MA向量+MB向量+MC向量=0(向量),则M点为△ABC的重心,反之也成立。 7、设△ABC重心为G点,所在平面有一点O,则向量OG=1/3(向量OA+向量OB+ 向量OC) —

初中数学竞赛教程

七年级 第一讲 有理数(一) 一、【能力训练点】 1、正负数,数轴,相反数,有理数等概念。 2、有理数的两种分类: 3、有理数的本质定义,能表成 m n (0,,n m n ≠互质)。 4、性质:① 顺序性(可比较大小); ② 四则运算的封闭性(0不作除数); ③ 稠密性:任意两个有理数间都存在无数个有理数。 5、绝对值的意义与性质: ① (0)||(0) a a a a a ≥?=? -≤? ② 非负性 2 (||0,0)a a ≥≥ ③ 非负数的性质: i )非负数的和仍为非负数。ii )几个非负数的和为0,则他们都为0。 二、【典型例题解析】: 1. 如果m 是大于1的有理数,那么m 一定小于它的( ) A.相反数 B.倒数 C.绝对值 D.平方 2.已知两数a 、b 互为相反数,c 、d 互为倒数,x 的绝对值是2,求 22006 ()( )()x a b c d x a b c d -+++++-的值。 3.如果在数轴上表示a 、b 两上实数点的位置,如下图所示,那么||||a b a b -++化简的结果等于( ) A.2a B.2a - C.0 D.2b 4.有3个有理数a,b,c ,两两不等,那么,, a b b c c a b c c a a b ------中有几个负数? 5.设三个互不相等的有理数,既可表示为1,,a b a +的形式式,又可表示为0, b a ,b 的形式,求20062007a b +。

6.三个有理数,,a b c 的积为负数,和为正数,且||||||||||||a b c ab bc ac X a b c ab bc ac = +++++则321ax bx cx +++的值是多少? 7.若,,a b c 为整数,且2007 2007||||1a b c a -+-=,试求||||||c a a b b c -+-+-的值。 第二讲 有理数(二) 一、【能力训练点】: 1、绝对值的几何意义 ① |||0|a a =-表示数a 对应的点到原点的距离。② ||a b -表示数a 、b 对应的两点间的距离。 2、利用绝对值的代数、几何意义化简绝对值。 二、【典型例题解析】: 1.若20a -≤≤,化简|2||2|a a ++- 2.试化简|1||2|x x +-- 3.若|5||2|7x x ++-=,求x 的取值范围。 4.已知()|1||2||3||2002|f x x x x x =-+-+-++-求()f x 的最小值。 5.若|1|a b ++与2 (1)a b -+互为相反数,求321a b +-的值。

(完整版)初中数学竞赛相似三角形专题

初二竞赛专题:相似三角形 1.如图,AB BD ⊥,CD BD ⊥,垂足分别为B 、D ,AC 和BD 相交于点E ,EF BD ⊥,垂足为F .证明: 111 AB CD EF += . 2.如图,在梯形ABCD 中,AB CD ∥, 129AB CD ==,,过对角线交点O 作EF CD ∥交AD BC ,于E F ,,求EF 的长. 3.如图,在梯形ABCD 中,AD BC ∥,396AD BC AB ===,,,4CD =,若EF BC ∥,且 梯形AEFD 与梯形EBCF 的周长相等,求EF 的长. 两个常见模型:如图,已知直线EF BC ∥,直线EF 分别与直线AB 、AC 、AD 相交于E 、F 、G 点, 则 BD EG DC FG = . O F E D C B A F E D C B A F E D C B A G F E D C B A B D A E G F C

4.一条直线与三角形ABC的三边BC,CA,AB(或其延长线)分别交于D,E,F(如图2-68所示).求证: 5.如图所示.P为△ABC内一点,过P点作线段DE,FG,HI分别平行于AB,BC和CA,且DE=FG=HI=d,AB=510,BC=450,CA=425.求d. 6.如图,边长为1的等边ABC △,BC边上有一点D,1 3 BD=,AC上有一点E ,60 ADE ∠=o,求EC的长.7.已知,B是AC中点,D、E在AC的同侧,且ADB EBC ∠=∠,DAB BCE ∠=∠,证明:BDE ADB ∠=∠. E D C B A D E B C A

8.如图,在ABC △中,60BAC ∠=o ,点P 是ABC △内一点,且APB BPC CPA ∠=∠=∠,若8PA =,6PC =,求PB 的长. 9.如图,在锐角ABC △中,AD 、CE 分别为BC 、AB 边上的高,ABC △和BDE △的面积分别等于18和2, 22DE =,求点B 到AC 的距离. 10.如图所示,已知3个边长相等的正方形相邻并排,求EBF EBG ∠+∠. 11.如图,在ABC △中,AD 平分BAC ∠,AD 的垂直平分线交AD 于E ,交BC 的延长线于F ,求证: 2FD FB FC =?. E D C A B P C B A H G B A

三角形五心的经典考题

有关三角形五心的经典试题 三角形的外心、重心、垂心、内心及旁心,统称为三角形的五心. 一、外心. 三角形外接圆的圆心,简称外心.与外心关系密切的有圆心角定理和圆周角定理. 例1.过等腰△ABC 底边BC 上一点P 引PM ∥CA 交AB 于M ;引PN ∥BA 交AC 于N .作点P 关于 MN 的对称点P ′.试证:P ′点在△ABC 外接圆上. (杭州大学《中学数学竞赛习题》) 分析:由已知可得MP ′=MP =MB ,NP ′=NP =NC ,故点M 是△P ′BP 的外心,点 N 是△P ′PC 的外心.有 ∠BP ′P =21∠BMP =21∠BAC , ∠PP ′C =21∠PNC =2 1 ∠BAC . ∴∠BP ′C =∠BP ′P +∠P ′PC =∠BAC . 从而,P ′点与A ,B ,C 共圆、即P ′在△ABC 外接圆上. 由于P ′P 平分∠BP ′C ,显然还有 P ′B :P ′C =BP :PC . 例2.在△ABC 的边AB ,BC ,CA 上分别取点P ,Q ,S .证明以△APS ,△BQP ,△CSQ 的外心为 顶点的三角形与△ABC 相似. (B ·波拉索洛夫《中学数学奥林匹克》) 分析:设O 1,O 2,O 3是△APS ,△BQP , △CSQ 的外心,作出六边形 O 1PO 2QO 3S 后再由外 心性质可知 ∠PO 1S =2∠A , ∠QO 2P =2∠B , ∠SO 3Q =2∠C . ∴∠PO 1S +∠QO 2P +∠SO 3Q =360°.从而又知∠O 1PO 2+ ∠O 2QO 3+∠O 3SO 1=360° 将△O 2QO 3绕着O 3点旋转到△KSO 3,易判断△KSO 1≌△O 2PO 1,同时可得△O 1O 2O 3≌△O 1KO 3. ∴∠O 2O 1O 3=∠KO 1O 3=2 1 ∠O 2O 1K = 21 (∠O 2O 1S +∠SO 1K ) =21 (∠O 2O 1S +∠PO 1O 2) =2 1 ∠PO 1S =∠A ; 同理有∠O 1O 2O 3=∠B .故△O 1O 2O 3∽△ABC . 二、重心 三角形三条中线的交点,叫做三角形的重心.掌握重心将每 A B C P P M N 'A B C Q K P O O O ....S 123

三角形竞赛练习题(难)

三角形 一.选择题(共8小题) 1.如图,四边形ABCD的对角线AC与BD互相垂直,若AB=3,BC=4,CD=5,则AD的长为() A.3B.4 C.2D.4 2.如图,在线段AE同侧作两个等边三角形△ABC和△CDE(∠ACE<120°),点P 与点M分别是线段BE和AD的中点,则△CPM是() A.钝角三角形B.直角三角形 C.等边三角形D.非等腰三角形 3.如图,M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN于点N,且AB=10,BC=15,MN=3,则△ABC的周长是() A.38 B.39 C.40 D.41 (1)(2)(3) 4.如图,在四边形ABCD中,∠B=135°,∠C=120°, AB =,AD=1+,CD=2,则BC边的长为() A.2﹣B .C .D . 5.已知某等腰三角形的腰和底分别是一元二次方程x2﹣6x+5=0的两根,则此三角形的周长是() A.11 B.7 C.8 D.11或7 6.如图,四边形ABCD中,AC,BD是对角线,△ABC是等边三角形.∠ADC=30°,AD=3,BD=5,则CD的长为() A .B.4 C .D. 7.如图,在△ABC中,AB=AC=m,P为BC上任意一点,则PA2+PB?PC的值为()A.m2B.m2+1 C.2m2D.(m+1)28.如图,在△ABC中,AC=BC,∠ACB=90°,AD平分∠BAC,BF⊥AD,AD的延长线交BF于E,且E为垂足,则结论①AD=BF,②CF=CD,③AC+CD=AB,④BE=CF,⑤BF=2BE,其中正确的结论的个数是() A.4 B.3 C.2 D.1 (6)(7)(8) 二.填空题(共12小题) 9.如图所示△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC中点,两边PE、PF分别交AB、AC于点E、F,给出以下四个结论: ①AE=CF;②△EPF为等腰直角三角形;③S四边形AEPF =;④EF=AP; 当∠EPF在△ABC内绕顶点P旋转时(点E不与点A、B重合),上述结论始终正确的有(填序号). 10.如图所示,在梯形ABCD中,AD∥BC(BC>AD),∠D=90°,BC=CD=12,∠ABE=45°,若AE=10,则CE的长为. 11.如图所示,点E、F分别是正△ABC的边AC、AB上的点,AE=BF,BE,CF相交于点P,CQ⊥BE于Q,若PF=1,PQ=3,则BE=. (9)(10)(11) 12.如图,已知△ABC中,AB=AC,D是BC上一点,且AD=DB,DC=CA,则∠BAC

新人教版八年级数学竞赛教程附练习汇总(共15套)

新人教版八年级数学竞赛教程附练习汇总(共15套) 1、用提公因式法把多项式进行因式分解 【知识精读】 如果多项式的各项有公因式,根据乘法分配律的逆运算,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式。 提公因式法是因式分解的最基本也是最常用的方法。它的理论依据就是乘法分配律。多项式的公因式的确定方法是: (1)当多项式有相同字母时,取相同字母的最低次幂。 (2)系数和各项系数的最大公约数,公因式可以是数、单项式,也可以是多项式。 下面我们通过例题进一步学习用提公因式法因式分解 【分类解析】 1. 把下列各式因式分解 (1)-+--+++a x abx acx ax m m m m 2 2 13 (2)a a b a b a ab b a ()()()-+---3 2 2 22 分析:(1)若多项式的第一项系数是负数,一般要提出“-”号,使括号内的第一项系数是正数,在提出“-”号后,多项式的各项都要变号。 解:-+--=--+++++a x abx acx ax ax ax bx c x m m m m m 2 2 1323() (2)有时将因式经过符号变换或将字母重新排列后可化为公因式,如:当n 为自然数时,()()()()a b b a a b b a n n n n -=--=----222121;,是在因式分解过程中常用的因式变 换。 解:a a b a b a ab b a ()()()-+---3 2 2 22

) 243)((] 2)(2))[(() (2)(2)(222 223b b ab a b a a b b a a b a b a a b a ab b a a b a a ++--=+-+--=-+-+-= 2. 利用提公因式法简化计算过程 例:计算1368 987 521136898745613689872681368987123? +?+?+? 分析:算式中每一项都含有987 1368 ,可以把它看成公因式提取出来,再算出结果。 解:原式)521456268123(1368987 +++?= =?=987 1368 1368987 3. 在多项式恒等变形中的应用 例:不解方程组23 532x y x y +=-=-?? ? ,求代数式()()()22332x y x y x x y +-++的值。 分析:不要求解方程组,我们可以把2x y +和53x y -看成整体,它们的值分别是3和-2, 观察代数式,发现每一项都含有2x y +,利用提公因式法把代数式恒等变形,化为含有2x y +和53x y -的式子,即可求出结果。 解:()()()()()()()223322233253x y x y x x y x y x y x x y x y +-++=+-+=+- 把2x y +和53x y -分别为3和-2带入上式,求得代数式的值是-6。 4. 在代数证明题中的应用 例:证明:对于任意自然数n,32322 2n n n n ++-+-一定是10的倍数。 分析:首先利用因式分解把代数式恒等变形,接着只需证明每一项都是10的倍数即可。 3 23233222 222n n n n n n n n ++++-+-=+-- =+-+=?-?33122110352 22n n n n ()() Θ对任意自然数n,103?n 和52?n 都是10的倍数。 ∴-+-++3 2322 2n n n n 一定是10的倍数 5、中考点拨: 例1。因式分解322x x x ()()--- 解:322x x x ()()---

初中数学竞赛专题训练之例题及三角形边角不等关系

A. B. 33 C. 39 D. 15 C A B C P 图 8-2 图 8-1 D A A. 4cm 10cm B. 5cm 10cm C. 4cm 2 3cm D. 5cm 2 3cm a C. D. 初中数学竞赛专项训练(8) (命题及三角形边角不等关系) 一、选择题: 1、如图 8-1,已知 AB =10,P 是线段 AB 上任意一点,在 AB 的同侧分别以 AP 和 PB 为边作两个等边三 角形 APC 和 BPD ,则线段 CD 的长度的最小值是 ( ) A. 4 B. 5 C. 6 D. 5( 5 - 1) 2、如图 8-2,四边形 ABCD 中∠A =60°,∠B =∠D =90°,AD =8,AB =7, 则 BC +CD 等于 ( ) A. 6 3 B. 5 3 C. 4 3 D. 3 3 3、如图 8-3,在梯形 ABCD 中,AD ∥BC ,AD =3,BC =9,AB =6,CD =4,若 EF ∥BC ,且梯形 AEFD 与梯形 EBCF 的周长相等,则 EF 的长为 ( ) 45 7 5 5 2 C D A D D E F B 图 8-3 4、已知△ABC 的三个内角为 A 、B 、C 且α =A+B ,β =C+A ,γ =C+B ,则α 、β 、γ 中,锐角的个数 最多为 ( ) A. 1 B. 2 C. 3 D. 0 5、如图 8-4,矩形 ABCD 的长 AD =9cm ,宽 AB =3cm ,将其折叠,使点 D 与点 B 重合,那么折叠后 DE 的长和折痕 EF 的长分别为 ( ) E A D B F C B C C 图 8-4 6、一个三角形的三边长分别为 a ,a ,b ,另一个三角形的三边长分别为 a ,b ,b ,其中 a>b ,若两个三角 形的最小内角相等,则 的值等于 ( ) b A. 3 + 1 2 B. 5 + 1 2 3 + 2 2 5 + 2 2 7、在凸 10 边形的所有内角中,锐角的个数最多是 ( ) A. 0 B. 1 C. 3 D. 5 8、若函数 y = kx (k > 0) 与函数 y = 1 x 的图象相交于 A ,C 两点,AB 垂直 x 轴于 B ,则△ABC 的面积为 ( ) A. 1 B. 2 C. k D. k 2 二、填空题 1、若四边形的一组对边中点的连线的长为 d ,另一组对边的长分别为 a ,b ,则 d 与 ______ a + b 2 的大小关系是_

八年级数学竞赛讲座全等三角形附答案

第十讲全等三角形 全等三角形是平面几何内容的基础,这是因为全等三角形是研究特殊三角形、四边形等图形性质的有力工具,是解决与线段、角相关问题的一个出发点,运用全等三角形,可以证明线段相等、线段的和差倍分关系、角相等、两直线位置关系等常见的几何问题. 利用全等三角形证明问题,关键在于从复杂的图形中找到一对基础的三角形,这对基础的三角形从实质上来说,是由三角形全等判定定理中的一对三角形变位而来,也可能是由几对三角形组成,其间的关系互相传递,应熟悉涉及有公共边、公共角的以下两类基本图形: 例题求解 【例1】如图,∠E=∠F=90°,∠B=∠C,AC=AF,给出下列结论:①∠1=∠2;②BE=CF;③△ACN≌△ABM;④CD=DN,其中正确的结论是 (把你认为所有正确结论的序号填上). (广州市中考题) 思路点拨对一个复杂的图形,先找出比较明显的一对全等三角形,并发现有用的条件,进而判断推出其他三角形全等. 注两个三角形的全等是指两个图形之间的一种‘对应”关系,“对应’两字,有“相当”、“相应”的含意,对应关系是按一定标准的一对一的关系,“互相重合”是判断其对应部分的标准.实际遇到的图形,两个全等三角形并不重合在一起,但其中一个三角形是由另一个三角形按平行移动、翻拆、旋转等方法得到,这种改变位置,不改变形状大小的图形变动叫三角形的全等变换. 【例2】在△ABC中,AC=5,中线AD=4,则边AB的取值范围是( ) A.1

初1数学竞赛教程含例题练习及答案⑾

初一数学竞赛讲座 第11讲染色和赋值 染色方法和赋值方法是解答数学竞赛问题的两种常用的方法。就其本质而言, 染色方法是一种对题目所研究的对象进行分类的一种形象化的方法。而凡是能用染色方法来解的题, 一般地都可以用赋值方法来解, 只需将染成某一种颜色的对象换成赋于其某一数值就行了。赋值方法的适用范围要更广泛一些, 我们可将题目所研究的对象赋于适当的数值, 然后利用这些数值的大小、正负、奇偶以及相互之间运算结果等来进行推证。 一、染色法 将问题中的对象适当进行染色, 有利于我们观察、分析对象之间的关系。像国际象棋的棋盘那样, 我们可以把被研究的对象染上不同的颜色, 许多隐藏的关系会变得明朗, 再通过对染色图形的处理达到对原问题的解决, 这种解题方法称为染色法。常见的染色方式有:点染色、线段染色、小方格染色和对区域染色。 例1用15个“T”字形纸片和1个“田”字形纸片(如下图所示), 能否覆盖一个8×8的棋盘? 解:如下图, 将 8×8的棋盘染成黑白相间的形状。如果15个“T”字形纸片和1个“田”字形纸片能够覆盖一个8×8的棋盘, 那么它们覆盖住的白格数和黑格数都应该是32个, 但是每个“T”字形纸片只能覆盖1个或3个白格, 而1和3都是奇数, 因此15个“T”字形纸片覆盖的白格数是一个奇数;又每个“田”字形纸片一定覆盖2个白格, 从而15个“T”字形纸片与1个“田”字形纸片所覆盖的白格数是奇数, 这与32是偶数矛盾, 因此, 用它们不能覆盖整个棋盘。 例2如左下图, 把正方体分割成27个相等的小正方体, 在中心的那个小正方体中有一只甲虫, 甲虫能从每个小正方体走到与这个正方体相邻的6个小正方体中的任何一个中去。如果要求甲虫只能走到每个小正方体一次, 那么甲虫能走遍所有的正方体吗?

初中数学竞赛常用公式

初中数学竞赛常用公式Last revision on 21 December 2020

初中数学常用公式 1 过两点有且只有一条直线 2 两点之间线段最短 3 同角或等角的补角相等 4 同角或等角的余角相等 5 过一点有且只有一条直线和已知直线垂直 6 直线外一点与直线上各点连接的所有线段中,垂线段最短 7 平行公理经过直线外一点,有且只有一条直线与这条直线平行 8 如果两条直线都和第三条直线平行,这两条直线也互相平行 9 同位角相等,两直线平行 10 内错角相等,两直线平行 11 同旁内角互补,两直线平行 12两直线平行,同位角相等 13 两直线平行,内错角相等 14 两直线平行,同旁内角互补 15 定理:三角形两边的和大于第三边 16 推论:三角形两边的差小于第三边 17 三角形内角和定理:三角形三个内角的和等于180° 18 推论1:直角三角形的两个锐角互余 19 推论2:三角形的一个外角等于和它不相邻的两个内角的和 20 推论3:三角形的一个外角大于任何一个和它不相邻的内角 21 全等三角形的对应边、对应角相等 22边角边公理(SAS):有两边和它们的夹角对应相等的两个三角形全等 23 角边角公理( ASA):有两角和它们的夹边对应相等的两个三角形全等 24 推论(AAS):有两角和其中一角的对边对应相等的两个三角形全等 25 边边边公理(SSS):有三边对应相等的两个三角形全等 26 斜边、直角边公理(HL):有斜边和一条直角边对应相等的两个直角三角形全等

27 定理1:在角的平分线上的点到这个角的两边的距离相等 28 定理2:到一个角的两边的距离相同的点,在这个角的平分线上 29 角的平分线是到角的两边距离相等的所有点的集合 30 等腰三角形的性质定理:等腰三角形的两个底角相等 (即等边对等角) 31 推论1:等腰三角形顶角的平分线平分底边并且垂直于底边 32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合 33 推论3:等边三角形的各角都相等,并且每一个角都等于60° 34 等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边) 35 推论1:三个角都相等的三角形是等边三角形 36 推论 2:有一个角等于60°的等腰三角形是等边三角形 37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半 38 直角三角形斜边上的中线等于斜边上的一半 39 定理:线段垂直平分线上的点和这条线段两个端点的距离相等 40 逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合 42 定理1:关于某条直线对称的两个图形是全等形 43 定理 2:如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 44定理3:两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上 45逆定理:如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称

三角形的五心性质以及典型问题--初中数学竞赛

三角形的五心 三角形的“五心”指的是三角形的外心,内心,重心,垂心和旁心. 一.三角形的外心 定理1:三角形的三条边的垂直平分线交于一点,这点称为三角形的外心(外接圆圆心). 定理2:三角形的外心到三角形的三个顶点距离相等. 都等于三角形的外接圆半径. 定理3:锐角三角形的外心在三角形内; 直角三角形的外心在斜边中点; 钝角三角形的外心在三角形外. 定理4:AOB C AOC B BOC A ∠=∠∠=∠∠= ∠2 1 ,21,21 1.如图所示,在锐角ABC ?中,BC AD ⊥于D ,AC DE ⊥于E ,AB DF ⊥于F ,O 为ABC ?的外心. 求证:(1)AEF ?∽ABC ? (2)EF AO ⊥ O F E D C B A 2.设O 为锐角ABC ?的外心,连接CO BO AO ,,并延长分别交对边于N M L ,,,则 CN BM AL 1 11++的值是_______________.(设R 为ABC ?外接圆半径) 二.三角形的内心 定理1:三角形的三条内角平分线交于一点,这点称为三角形的内心(内切圆圆心). 定理2:三角形的内心到三边的距离相等,都等于三角形内切圆半径. 定理3:内切圆半径r 的计算: 设三角形面积为S ,并记p =12(a +b +c ),则r =S p . 特别的,在直角三角形中,有 r =1 2 (a +b -c ). A B C O I K H E F A B C M

B C D A I B C E D A 定理4:I 为三角形的内心,A 、B 、C 分别为三角形的三个顶点,延长AO 交BC 边于N ,则有AI: IN=AB:BN=AC:CN=(AB+AC):BC 定理5:,2 1 90A BIC ∠+ =∠ B CIA ∠+=∠2190 , C AIB ∠+=∠2190 。 3.如图所示,⊙1O 与⊙2O 相交于B A ,两点,且2O 在⊙1O 的圆周上,弦C O 2交⊙2O 于D 。证明:D 是ABC ?的内心. 4.如图,在ABC ?中,点D 、E 是ABC ∠,ACB ∠的三等分线的交点,当?=∠60A 时,求BDE ∠度数 5.如图,I 是ABC ?的内心,AI 的延长线交ABC ?的外接圆于D ,则,DC DB DI ==

数学竞赛三角形五心讲义

数学竞赛讲义第一节 一.高中数学竞赛介绍 一试 考试时间为上午8:00-9:20,共80分钟。试题分填空题和解答题两部分,满分120分。其中填空题8道,每题8分;解答题3道,分别为16分、20分、20分。 加试(二试) 考试时间为9:40-12:10,共150分钟。试题为四道解答题,前两道每题40分,后两道每题50分,满分180分。试题内容涵盖平面几何、代数、数论、组合数学。 二.答题策略 保证1试所有知识点都练习过的基础上,2试选择平面几何+1题的方式去练习。 三.考试知识点 一试 全国高中数学联赛的一试竞赛大纲,完全按照全日制中学《数学教学大纲》中所规定的教学要求和内容,即高考所规定的知识范围和方法,在方法的要求上略有提高,其中概率和微积分初步不考。 二试 1、平面几何 基本要求:掌握初中数学竞赛大纲所确定的所有内容。 补充要求:面积和面积方法。 几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。 几个重要的极值:到三角形三顶点距离之和最小的点--费马点。到三角形三顶点距离的平方和最小的点--重心。三角形内到三边距离之积最大的点--重心。 几何不等式。 简单的等周问题。了解下述定理:

在周长一定的n边形的集合中,正n边形的面积最大。 在周长一定的简单闭曲线的集合中,圆的面积最大。 在面积一定的n边形的集合中,正n边形的周长最小。 在面积一定的简单闭曲线的集合中,圆的周长最小。 几何中的运动:反射、平移、旋转。 复数方法、向量方法。 平面凸集、凸包及应用。 2、代数 在一试大纲的基础上另外要求的内容: 周期函数及周期,带绝对值的函数的图像。 三倍角公式,三角形的一些简单的恒等式,三角不等式。 第二数学归纳法。 递归,一阶、二阶递归,特征方程法。 函数迭代,求n次迭代,简单的函数方程。 n个变元的平均不等式,柯西不等式,排序不等式及应用。 复数的指数形式,欧拉公式,棣美弗定理,单位根,单位根的应用。 圆排列,有重复的排列及组合,简单的组合恒等式。 一元n次方程(多项式)根的个数,根及系数的关系,实系数方程虚根成对定理。 简单的初等数论问题,除初中大纲中所包括的内容外,还应包括无穷递降法,同余,欧几里得除法,非负最小完全剩余类,高斯函数,费马小定理,欧拉函数,孙子定理,格点及其性质。 3、立体几何 多面角,多面角的性质。三面角、直三面角的基本性质。 正多面体,欧拉定理。 体积证法。

初中数学奥林匹克竞赛教程

初中数学奥林匹克竞赛教程

初中数学竞赛大纲(修订稿) 数学竞赛对于开发学生智力,开拓视野,促进教学改革,提高教学水平,发现和培养数学人才都有着积极的作用。目前我国中学生数学竞赛日趋规范化和正规化,为了使全国数学竞赛活动健康、持久地开展,应广大中学师生和各级数学奥林匹克教练员的要求,特制定《初中数学竞赛大纲(修订稿)》以适应当前形势的需要。 本大纲是在国家教委制定的九年义务教育制“初中数学教学大纲”精神的基础上制定的。《教学大纲》在教学目的一栏中指出:“要培养学生对数学的兴趣,激励学生为实现四个现代化学好数学的积极性。”具体作法是:“对学有余力的学生,要通过课外活动或开设选修课等多种方式,充分发展他们的数学才能”,“要重视能力的培养……,着重培养学生的运算能力、逻辑思维能力和空间想象能力,要使学生逐步学会分析、综合、归纳、演绎、概括、抽象、类比等重要的思想方法。同时,要重视培养学生的独立思考和自学的能力”。 《教学大纲》中所列出的内容,是教学的要求,也是竞赛的要求。除教学大纲所列内容外,本大纲补充列出以下内容。这些课外讲授的内容必须充分考虑学生的实际情况,分阶段、分层次让学生逐步地去掌握,并且要贯彻“少而精”的原则,处理好普及与提高的关系,这样才能加强基础,不断提高。 1、实数 十进制整数及表示方法。整除性,被2、3、4、5、8、9、11等数整除的判定。 素数和合数,最大公约数与最小公倍数。 奇数和偶数,奇偶性分析。 带余除法和利用余数分类。 完全平方数。 因数分解的表示法,约数个数的计算。 有理数的表示法,有理数四则运算的封闭性。 2、代数式 综合除法、余式定理。 拆项、添项、配方、待定系数法。 部分分式。 对称式和轮换对称式。 3、恒等式与恒等变形 恒等式,恒等变形。 整式、分式、根式的恒等变形。 恒等式的证明。 4、方程和不等式 含字母系数的一元一次、二次方程的解法。一元二次方程根的分布。 含绝对值的一元一次、二次方程的解法。 含字母系数的一元一次不等式的解法,一元一次不等式的解法。 含绝对值的一元一次不等式。

最新三角形五心定律教学内容

垂心 三角形的三条高的交点叫做三角形的垂心。 锐角三角形垂心在三角形内部。 直角三角形垂心在三角形直角顶点。 钝角三角形垂心在三角形外部。 垂心是高线的交点 垂心是从三角形的各顶点向其对边所作的三条垂线的交点。 三角形三个顶点,三个垂足,垂心这7个点可以得到6个四点圆。 三角形上作三高,三高必于垂心交。 高线分割三角形,出现直角三对整, 直角三角有十二,构成六对相似形, 四点共圆图中有,细心分析可找清, 重心 重心是三角形三边中线的交点,三线交一可用燕尾定理证明,十分简单。证明过程又是塞瓦定理的特例。 重心的几条性质: 1、重心到顶点的距离与重心到对边中点的距离之比为2:1。 2、重心和三角形3个顶点组成的3个三角形面积相等。 3、重心到三角形3个顶点距离的平方和最小。 4、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均,即其坐标为((X1+X2+X3)/3,(Y1+Y2+Y3)/3);空间直角坐标系——横坐标:(X1+X2+X3)/3纵坐标:(Y1+Y2+Y3)/3竖坐标:(z1+z2+z3)/3

5、三角形内到三边距离之积最大的点 内心 内心是三角形三条内角平分线的交点,即内切圆的圆心。 内心是三角形角平分线交点的原理:经圆外一点作圆的两条切线,这一点与圆心的连线平分两条切线的夹角(原理:角平分线上点到角两边距离相等)。 内心定理:三角形的三个内角的角平分线交于一点。该点叫做三角形的内心。 注意到内心到三边距离相等(为内切圆半径),内心定理其实极易证。 若三边分别为l1,l2,l3,周长为p,则内心的重心坐标为(l1/p,l2/p,l3/p)。 直角三角形的内心到边的距离等于两直角边的和减去斜边的差的二分之一。 双曲线上任一支上一点与两焦点组成的三角形的内心在实轴的射影为对应支的顶点。 希望对你有帮助!三角形五心定律 三角形的重心,外心,垂心,内心和旁心称之为三角形的五心。三角形五心定律指是三角形重心定律,外心定律,垂心定律,内心定律,旁心定律的总称。 一、三角形重心定律 三角形的三条边的中线交于一点。该点叫做作三角形的重心。三中线交于一点可用燕尾定理证明,十分简单。(重心原是一个物理概念,对于等厚度的质量均匀的三角形薄片,其重心恰为此三角形三条中线的交点,重心因而得名) 重心的性质:

相关主题
文本预览
相关文档 最新文档