当前位置:文档之家› 绿色荧光蛋白GFP的研究进展及应用_吴沛桥

绿色荧光蛋白GFP的研究进展及应用_吴沛桥

绿色荧光蛋白GFP的研究进展及应用_吴沛桥
绿色荧光蛋白GFP的研究进展及应用_吴沛桥

■通信作者 E mail :baxiaoge1957@yahoo .com .cn

绿色荧光蛋白GFP 的研究进展及应用

吴沛桥1

,巴晓革

2■

,胡海1,赵静

1

(1.南京农业大学生命科学学院,南京210095;2.山东药品食品职业学院,威海264210)

摘要:源于多管水母属等海洋无脊椎动物的绿色荧光蛋白(GFP ),是一种极具应用潜力的标记物,有着

极其广泛的应用前景。我们就GFP 的理化性质、荧光特性、改进和应用研究进行了综述。

关键词:绿色荧光蛋白(GFP );标记物;荧光特性;进展;改进;应用

中图分类号:Q51,503;R318 文献标识码:A 文章编号:1672-6278(2009)01-0083-04

Research Progress and Application of Green Fluorescent Protein

WU Peiqiao 1

,BA Xiaoge 2

,HU Hai 1

,ZHAO Jing

1

(1.Nanjing Agricultu ral University ,College of Life Science ,Nanj ing 210095,China ;

2.Shandong Drug and Food V ocatio nal College ,W eihai 264210,China )

A bstract :The green fluorescent protein (GFP )from the jellyfish Aequorea vietoria is a great potential for application of the marker ,has a wide range of applications .The article on the physical and chemical properties ,the fluorescence characteristics ,improvement and application of GFP are reviewed .

Key words :Green fluorescent protein ;Marker ;Fluorescence characteristics ;Progress ;Improvement ;Application

1 引 言

发光是海洋无脊椎动物中普遍存在的现象,一些腔肠动物包括水母、水螅和珊瑚等受到机械性干扰时都可发射绿色荧光,而栉水母类发射蓝色荧光。绿色荧光蛋白(Green fluorescent pr otein ,GFP )是一类存在于这些腔肠动物体内的生物发光蛋白。1962年Shimomura 等

[1]

首先从多管水母(Ae quoria victoria )

中分离出一种分子量为20kD 的称为A equorin 的蛋白。由于水母整体荧光及提取的蛋白质颗粒荧光都呈绿色,因此,人们将这种蛋白命名为绿色荧光蛋白。随后,人们从不同动物体内提取出了各种不同的GFP ,其中研究较为深入的是来自多管水母科(Aequorleidae )和海紫罗兰科(Renillidae )的GFP ,即

Ae quoria GFP 和Renilla GFP 。

2 GFP 的理化性质,荧光特性及其改进

2.1 GFP 的理化性质

从水母体内分离到的GFP 基因,长达2.6kD ,由

3个外显子组成,分别编码69、98和71个氨基酸。GFP 本身是一种酸性,球状,可溶性天然荧光蛋白。A equoria GFP 分子量约27×103

,一级结构为一个由238个氨基酸残基组成的单链多肽;而Renilla GFP 是分子量为54kD 的同型二聚体。两种GFP 有不同的激发光谱,A equoria GFP 在395nm 具有最高光吸收峰,肩峰为473nm ;Renilla GFP 在498nm 具有强烈的光吸收,肩峰为470nm 。两种GFP 含有相同的

生色团,发射光谱基本相同(λmax =508~509nm )。

GFP 性质极其稳定,易耐受高温处理,甲醛固定和石蜡包埋不影响其荧光性质。其变性需在90℃或pH <4.0或pH >12.0的条件下用6mol L 盐酸胍处理,一旦恢复中性环境,或去除变性剂,虽然变性的蛋白质并不能完全复性,但是复性蛋白质同天然蛋白质对温度、pH 变化的耐受性、抗胰蛋白酶消解的能力是相同的。更重要的是,它们在很大的pH 范围内(pH7~12.2)的吸收、发射光谱也是相同的。Renilla GFP 的稳定性就更为显著。它在上述一系列的变性条件下都很稳定,不易变性。根据Sheen

生物医学工程研究

J ournal of Biomedical Engineering Res earch

2009,28(1):83~86

等[2]的研究,GFP在受体内表达时,其稳定性并不亚于CAT蛋白,因而可以得到持续时间较长的荧光。

2.2 GFP的荧光原理

GFP的性质和发射光谱的稳定性是同其生色团结构的稳定性密不可分的。GFP表达后折叠,在氧存在的条件下,使66位氨基酸残基的α、β键间脱氢。由65~67位的氨基酸残基(Ser-Tyr-Gly)环化为稳定的对羟基苯咪唑啉酮(4-p-hydroxybene -5-imidazolinone),形成生色团(基于组成生色团的元件不同,可将已知的GFP及其变种分为7种,每一种都有一组不同的荧光激发和发射波长)[3-5]。GFP无需再加任何底物和辅助因子,在紫外或蓝光激发下就能发荧光,在450~490nm蓝光激发下, GFP荧光至少能保持10min以上,不像其他荧光素,荧光容易淬灭。其中,GFP的一个引人注目的特点,其生色团的形成没有物种的特异性,可以在翻译后2~4h通过自动催化作用来合成。Cubitt等[6]认为生色团自身环化的驱动力来自蛋白质三维结构的形成,由此Kolb等[7]提出一个假说,即环化在新合成的多肽的折叠过程中进行。

2.3 GFP的荧光性质及应用优点[8-9]

GFP的荧光性质比较特殊,具有诸多优点而备受关注。

(1)易于检测,灵敏度高。GFP荧光反应不需要外加底物和辅助因子,只需紫外光或蓝光激发,即可发出绿色荧光,用荧光显微镜甚至肉眼就可以观察到。其次,即便是未经纯化的GFP发射的绿光也是相当强的,在正常室内光线下仍清晰可辨。对于单细胞水平的表达也可识别。

(2)荧光性质稳定。GFP对光漂白(一种荧光衰减现象)有较强的耐受性,能耐受长时间的光照,从而延长了可探测时间;GFP在pH7~12范围内也能正常发光,对高温(70℃)、碱性、除垢剂、盐、有机溶剂和大多数普通酶都有较强抗性。

(3)对细胞无毒害。从目前的研究结果来看, GFP对生活的细胞基本无毒害,与目的基因融合后,对目的基因的结构功能没有影响,转化后细胞仍可连续传代。

(4)构建载体方便。由于编码GFP的基因序列很短,所以很方便地同其它序列一起构建多种质粒,而不至于使质粒过大影响转化频率。

(5)可直接用于活细胞测定。GFP是能在异源细胞内表达后,能自发产生荧光的蛋白,并且GFP 的分子量较小,N-端和C-端都能忍受蛋白的融合,是理想的标记物,可进行活细胞实时定位观察,更能接近自然真实的状态。如在活细胞中直接观察蛋白向细胞核、内质网运动的状态,还可实时观察到外界信号刺激下,目的蛋白的变化过程,借助荧光显微镜观察,使研究更为方便。使用激光共聚焦显微镜,其图像效果更佳,结合现代的计算机软件,可进行三维显示。

(6)不受假阳性干扰。由于其他生物本身不含有GFP,因此不会出现假阳性结果,GFP作为分子探针可以代替荧光染料,避免由于染料扩散造成的定位不准,使结果真实可靠。

(7)广谱性。表现在GFP的表达几乎不受种属范围的限制,在微生物、植物、动物中都获得了成功的表达,其次是GFP没有细胞种类和位置上的限制,在各个部位都可以表达发出荧光。

(8)易于得到突变体。如GFP中氨基酸的替换可产生不同光谱特性的突变体,且增强了荧光强度,适合在不同物种中专性表达。

2.4 GFP的改进

尽管GFP作为报告基因或分子探针有许多无可比拟的优点,但是野生型GFP(wtGFP)具有一定的缺点:如GFP有两个激发峰影响了其特异性,并且长波激发峰强度较小,不易观察;GFP合成及折叠产生荧光的过程慢,蛋白质折叠受温度影响大,表达量较低;而且在某些植物细胞中并不表达。这些都限制了进一步的应用,所以,一些研究人员运用定点突变、DNA-shuffling等技术对GFP进行了改进,获得了荧光光谱、量子产率、溶解性、密码子嗜性、温度敏感性等改变的多种突变体,扩大了GFP的应用范围。

2.5 GFP的改进方法

2.5.1 除去GFP基因中隐蔽型内含子 Haseloff 等[10]利用农杆菌把含花椰菜花叶病毒35S启动子驱动的GFPcDNA转入到拟南芥上,但在转基因拟南芥幼苗上检测不到GFP的荧光。经研究发现这是由于GFP片段中第405~488碱基序列转录的mRNA被植物误识别为内含子,从而被错误加工,导致GFP不能正确表达。因此改变碱基组分,消除隐蔽型内含子,可以避免植物细胞的错误剪接。如突变型m GFP改变了碱基组分后,在转基因拟南芥中检测到荧光,但荧光强度较弱。

2.5.2 消除编码蛋白的积累 Haseloff等[10]认为消除隐蔽型内含子后的突变体mGFP荧光较弱,可能是由于编码蛋白的积聚。增加ER定位信号可部分

84

生物医学工程研究 第28卷

消除编码蛋白的积累,增加荧光强度。

2.5.3 改变碱基组分 Zolotukhin等[11]改变了wt G FP基因编码区中88个密码子中的92个碱基而用人类基因组中常用的密码子代替,使GFP的荧光强度提高22倍。其中S65T突变提高了GFP的荧光强度,Y66H突变使之同时具有部分蓝色荧光蛋白(B FP)的性能,但其蓝色荧光强度很低。这种GFPh 是一种人工全合成的适合在哺乳动物细胞中高效表达GFP的突变体。McCullough等[12]对水母的密码子进行优化修饰,更换为植物偏爱密码子,即增加G 和C的含量,降低A和T含量,改造的GFP基因表达效率可有较大提高。

2.5.4 更换GFP生色团氨基酸 Heim等[4]将wt G FP中的Ser65用Thr替代,得到突变体S65T-GFP,相比wtGFP具有明显的改进。首先,S65T-GFP激发谱中只有一个峰,且红移至490nm,是一种红移荧光蛋白(RSFP)。用蓝光即可激发R SFP,更适于普通荧光显微镜观察。其次,激发后产生的荧光强度是wtGFP的6倍,并且对光漂白具有更强的抵抗性。最后,这种突变体分子的成熟速度比wtGFP 快4倍,从而缩短了从合成到发光的时间。

2.5.5 插入植物内含子 许多真核启动子能在细菌细胞中表达,所以在转化早期检测荧光表达时,不能确定检测到的荧光是由农杆菌还是由植物发出的。但如果在GFP中插入带有几个终止子的内含子,使突变体在细菌中不能表达,而在植物中能正常表达。并且,Pang等[13]研究发现,在GFP或S65T -GFP基因的398和399位核苷酸之间插入一个植物内含子,如马铃薯基因ST-SL1的第二内含子

(I V2),还可增加GFP的荧光强度。

2.5.6 增加增强子和更换强启动子 由于GFP作为标记物的最大缺陷是不能像酶一样具有信号放大作用,故灵敏度不高。所以,GFP在受体内的表达水平的提高有赖于寻找到更为通用的转录翻译的增强子和更换更强的启动子以驱动GFP基因的大量表达。目前已找到了一系列这种功能较强的质粒载体[14],用这些载体转染的细胞,GFP基因的表达频率大大提高,荧光强度也高的多。

3 GFP的应用

GFP的应用主要集中在利用其荧光性质的基础上作为一种标记物。

3.1 GFP在分子生物学上的应用

3.1.1 GFP作为报告基因 报告基因是一种编码可被检测的蛋白质或酶的DNA,如传统的荧光素酶(LUX)基因和β-葡萄糖苷酶(GUS)基因。GFP作为基因报告可用来检测转基因效率,把GFP基因连接到目的基因的启动子之后,通过测定GFP的荧光强度就可以对该基因的表达水平进行检测。目前,此方法无论在农杆菌介导或基因枪介导的植物遗传转化中还是在活细胞、转基因胚胎和动物中都已得到非常广泛的应用,特别是在活细胞基因表达的时空成像方面[15]。

3.1.2 GFP作为融合标签

GFP最成功的一类应用就是把GFP作为标签融合到主体蛋白中来检测蛋白质分子的定位、迁移、构象变化以及分子间的相互作用,或者靶向标记某些细胞器。在多数情况下,GFP基因在N-或C-末端与异源基因用常规的分子生物学手段就可以接合构成编码融合蛋白的嵌合基因,其表达产物既保持了外源蛋白的生物活性,又表现出与天然GFP相似的荧光特性。GFP的这种特性为蛋白质提供了一种荧光标记,不仅可以检测蛋白质分子的定位、迁移,还可以研究蛋白质分子的相互作用以及蛋白质构象变化,并依靠荧光共振能量转移即FRET来进行检测。

3.2 作为生物传感器

3.2.1 检测pH 野生型GFP和其许多突变体都具有依赖于pH的荧光变化,因而可以被用来检测活细胞内的pH。人们通常称它们为Phluprin。分为两类:比率Phluorin和盈缺Phluorin。当pH降低时,比率Phluorin的最大激发波长从395nm到475nm迁移,利用两个最大波长处的荧光强度的比率可以测量pH;当pH值小于6时,盈缺Phluorin在475nm处没有荧光。当pH回复到中性时,两类Phluorin都会在20ms内复原。Hanson等[16]在2002年就设计了一系列GFP突变体deGFP,作为双波长比率测量的pH探针,用于细胞内检测。

3.2.2 检测卤素离子 YFP(H148Q)变体不但对pH敏感而且对不同离子也同样敏感,故可以用来检测亚细胞结构中卤素离子的浓度和传递[17]。

3.2.3 其他检测应用 另外,GFP可以应用于检测电位、氧化还原水平以及在信号转导中作为Ca2+指示剂[18]。

3.3 GFP在细胞生物学上的应用

GFP具有同宿主蛋白构成融合子的性质,利用这一性质,可以将GFP定位到特定的细胞器和膜系统中,进行细胞生理过程、细胞动力学等的实时观

85

第1期 吴沛桥,等:绿色荧光蛋白GFP的研究进展及应用

测,或直接应用于定量分析。目前,GFP已经被成功地用于靶向标记包括细胞核、线粒体、质体、内质网等在内的细胞器。用GFP进行亚细胞定位,避免了提纯蛋白、标记异硫氰酸荧光素等荧光染料、经显微注射或其他方式导入细胞的复杂方法,从而使研究蛋白在活细胞的准确定位变得简单易行。

3.4 GFP在筛选方面的应用

3.4.1 GFP用于细胞的筛选 基于GFP的荧光特性,并且荧光稳定以及检测方法快速、方便,GFP在细胞筛选上得到应用广泛。Yuk[19]等使用GFP作为标记能快速筛选出在生长抑制环境下,仍能保持重组蛋白大量表达的C HO细胞。

3.4.2 GFP用于药物的筛选 利用GFP对目的物进行标记,追踪GFP,分析目的物在细胞中的变化情况,如酶分子分布状态、生物活性、受体、离子通道等变化,从而筛选出与体内信号分子功能相似的化合物[20]。

4 问题与展望

GFP近几年得到了广泛的应用与发展,成为各研究领域的宠儿,但由于基础理论研究远不及应用研究,因而其存在着一些问题与不足,如检测的灵敏度还有待进一步提高;荧光强度的非线性性质使其定量非常困难;新生GFP通过折叠和加工成为具有活性的形式,过程十分缓慢;紫外激发对某些GFP 有光漂白和光破坏作用;多数生物具有微弱的自发荧光现象,并有着类似的激发和发射波长,干扰某些GFP的检测等。

考虑到上述问题与不足,GFP如要在各领域得到更加完整全面的应用,至少还需要几个条件:基础理论体系的成熟完善、新型优良突变体的诞生以及与各种现代生物技术的融合。与此同时,随着基因工程技术和细胞工程技术的日益成熟,我们有理由相信,GFP一定会给我们带来更多的应用价值,并进一步揭开生命的未解之谜。

参考文献:

[1]Shi momura O,Johnson FH,Saiga Y.Extraction,purification and

properties of Aequoria,a bioluminescent protein from the luminous Hydromedus an,Aequorea[J].J Cell Comp Physiol,1962,59(2):223 -229.

[2]Sheen J,Hwang S,Niwa Y,et al.Green fluorescenet protein as a new

vital marker in pl ant cells[J].The Plant Journal,1995,5(8):777-784.[3]Chal fie M,Tu Y,Eus kirchen G,Ward WW,et al.Green fluores cent

protein as a marker for gene expressi on[J].Science,1994,263(5148): 802-805.

[4]Heim R,Cubitt AB,Tsien R Y.Improved green fluorescence[J].

Nature,1995,373(6516):663-664.

[5]Ts ien RY.The green fluorescent protein[J].Annu Rev Biochem,1998,

67:509-544.

[6]Cubitt AB,Heim R,Adams SR,et al.Understanding,improving and

us ing green fluorescent proteins[J].Trends Biochem SCI,1995,20

(11):448-455.

[7]Kol b VA,Makeyev EV,Ward WW,et al.Synthesis and maturation of

green fluorescent protein in A cell-free translation s ystem[J].

Biotechnol Lett,1996,18(12):1447-1452.

[8]汪恒英,周守标,常志州,等.绿色荧光蛋白(GFP)研究进展[J].生

物技术,2004,14(3):70-73.

[9]吴瑞,张树珍.绿色荧光蛋白及其在植物分子生物学中的应用

[J].分子植物育种,2005,3(2):240-244.

[10]Haseloff J,Siemering KR,Prasher DC,et al.R emoval of a cryptic

intron and s ubcellular localiz ation of green fluorescent protein are required t o mark trans genic Arabidops is plants brightl y[J].Proc Natl Acad SCI USA,1997,94:2122-2127.

[11]Zolotukhin S,Potter M,Haus wirth WW,et al.A“Humanized”green

fluorescent protein cD NA adapted for high-level expression in mammalian cells[J].J ournal of Virology,1996,70(7):4646-4654. [12]M ccullough AJ,Lou H,Schuler MA.Factors affecting authentic s plice

site selection in plant nuclei[J].Mol Cell Biol,1993,13:1323-1331.

[13]Pang SZ,Deboer D L,Wan Y,et al.An improved green fluores cent

protein gene as a vital marker in plants[J].Plant Physi ol,1996,112: 893-990.

[14]周盛梅,孟凡国,黄大年,等.绿色荧光蛋白及其应用[J].生物工

程进展,1999,19(2):56-59.

[15]Mark R S,J as on O,Willia m PH,et al.Green fluorescent protein is a

quantitati ve reporter of gene expres sion in individual eukaryotic cells[J].

FASEB J,2005,19:440-442.

[16]Hanson GT,M c Ananey TB,Park ES,et al.Green fluorescent protein

variants as ratio metric dual emiss ion pH sens ors.1.Structural characteriz ation and preliminary application[J].Biochemistry,2002, 41:15477-15488.

[17]Jayaraman S,Haggie P,Wachter R M,et al.Mechanis m and cellular

applications of a green fluorescent protein-bas ed halide sens or[J].J Biol Chem,2000,275:6047-6050.

[18]Yu R,Hinkle PM.Rapid turnover of calcium in the endoplasmic

reticulum during si gnaling:studies with cameleon calcium indicators[J].

J Biol Chem,2000,275:23648-23653.

[19]Yuk IHY,Wildt S,J olicoeur M,et al.A GFP-based screen for

growth-arres ted,rec ombinant protein-producing cells[J].Biotechnol Bioeng,2002,79:74-82.

[20]Gonz al ez JE,Negulescu PA.Intracell ular detection as says for high-

throughput screening[J].Curr Opin in Biotechnol,1998,9(6):624-631.

(收稿日期:2009-01-10)

86

生物医学工程研究 第28卷

绿色荧光蛋白的应用及发展前景汇总

学士学位论文文献综述题目绿色荧光蛋白的应用及发展前景 姓名周紫嫣学 号014010110349 专业生物工程 指导教师周小萍职 称教师 中国·武汉二○一二年四月

目录 摘要······················································································ II 关键词 ···················································································· II Abstract ··················································································· II Key words ················································································ II 1 GPF的发现 (1) 2 GFP的结构及发光原理 (1) 2.1 GFP的结构 (1) 2.2 GFP的发光原理 (2) 3 GFP在生物技术中的应用 (2) 3.1 GFP作为报告基因 (2) 3.2 GFP用于研究病毒与宿主的关系 (3) 3.3 GFP用于药物筛选 (3) 3.4 GFP作为生物传感器 (3) 3.5 GFP用于融合抗体 (4) 3.6 GFP用于计算细胞生长速度 (4) 3.7 GFP用于基因表达调控 (4) 4 GFP存在问题及发展前景 (4) 参考文献 (5) 致谢 (5)

绿色荧光蛋白GFP

绿色荧光蛋白GFP综述 生命科学学院 2010级李积锋 1241410007 【摘要】绿色荧光蛋白(GFP) 是一种最先来源于水母的蛋白质,现已成为在生物化学和细胞生物学中研究和开发应用得最广泛的蛋白质之一。其内源荧光基团在受到紫外光或蓝光激发时小峰可高效发射清晰可见的绿光。它已成为一个监测在完整细胞和组织内基因表达和蛋白质定位的理想标记。在生理指示剂、生物传感器、光化学领域以及生产发光纤维等方面展示了广阔前景。 【关键词】水母绿色荧光蛋白生色团变种 1绿色荧光蛋白简介 绿色荧光蛋白是一类存在于包括水母、水螅和珊瑚等腔肠动物体内的生物发光蛋白,当受到紫外或蓝光激发时,发射绿色荧光。其独特之处在于:它产生荧光无需底物或辅因子,发色团是其蛋白质一级序列固有的来源于水母的氨基酸残基组成。 水母的绿色荧光蛋白很稳定,无种属限制,已在多种动植物细胞中表达成功并产生荧光。GFP的荧光受外界的影响较小,另外GFP的检测十分方便,而对细胞的伤害极小。由于这些优点,GFP已经成为检测体内基因表达及细胞内蛋白质原位定位的极为重要的报告分子。 2绿色荧光蛋白的表达和成熟 GFP的表达水平受多种因素的影响。在植物细胞中表达GFP时,改变一些原GFP 基因的密码子为该植物使用的偏爱密码子,并消除潜在的剪接位点。目前适用于哺乳动物的表达系统不受影响。GFP还可以顺利的在无细胞的体外翻译系统中表达并自发折叠。 用一些小体积的氨基酸残基取代大体积残基可以提高GFP在高温下正确折叠的速度。这些突变位点分布于成熟蛋白质三维结构的各个部位,几乎不能提供如

何帮助GFP折叠和成熟的线索。另外,分子伴侣的存在也有助于GFP的折叠,反过来,这个发现也使GFP成为检测分子伴侣功能的一个好底物,因为GFP可以提供一个连续的、无破坏性的检测蛋白折叠成功的分析方法。 3绿色荧光蛋白的应用 3.1报告基因和细胞标记 GFP作为报告分子和细胞标记最明显的优势是无需底物或辅因子参与;无论在活细胞还是在完整的转基因胚胎和动物中,都能有效地监测基因转移的效率。但在这方面的应用中,最大的缺点就是没有放大作用,它不能象酶一样能通过加工无数的底物分子而将信号放大所以一般都需强启动子以驱动GFP基因在细胞内足量的表达也可用亚细胞分辨率的显微成像系统检测基因产物,靶入的基因被限制于一个细胞器内,GFP的浓度则相对提高了许多倍。 3.2融合标记 应用得最多和最成功的是GFP同宿主蛋白构成融合子来监测宿主蛋白的定位 和最后归宿既有荧光又有宿主蛋白原有的正常功能和定位的融合蛋白效果最佳GFP可融合于宿主蛋白的C端或N端,也可插入其内部迄今为止,GFP已成功地靶入了大部分细胞器中,如质膜、细胞核、内质网、高尔基体、分泌小体、线粒体、液泡和吞噬体等。 3.3 其它 GFP分子生色团的坚固外层保护荧光不被熄灭,但同时也降低了GFP分子的荧光对环境的敏感性通过随机重组和基因定向突变得到了多种对环境敏感的GFP,它们可用作环境指示剂如:对PH敏感GFP的可以测定细胞器内的PH值;通过基因工程,可GFP在中插入磷酸化位点以便用磷酸化控制GFP的荧光。另外,最近报道的利用靶入了水母GFP基因的丝蛋白昆虫病毒,感染蚕的幼虫,用改造的基因取代了蚕的正常基因,当蚕吐丝时这种丝是一种能在黑暗中发绿色荧光的纤维。 4应用特点 GFP这一新型报告基因,在短短几年时间内就得到了众多研究者的青睐,其原因就在于它具有以下优点:

荧光蛋白 (整理)

荧光 一、定义 荧光(fluorescence )又作“萤光”,是指一种光致发光的冷发光现象。当某种常温物质经某种波长的入射光(通常是紫外线或X射线)照射,吸收光能后进入激发态,并且立即退激发并发出比入射光的的波长长的出射光(通常波长在可见光波段);而且一旦停止入射光,发光现象也随之立即消失。具有这种性质的出射光就被称之为荧光。 二、原理 光照射到某些原子时,光的能量使原子核周围的一些电子由原来的轨道跃迁到了能量更高的轨道,即从基态跃迁到第一激发单线态或第二激发单线态等。第一激发单线态或第二激发单线态等是不稳定的,所以会恢复基态,当电子由第一激发单线态恢复到基态时,能量会以光的形式释放,所以产生荧光。 荧光是物质吸收光照或者其他电磁辐射后发出的光。大多数情况下,发光波长比吸收波长较长,能量更低。但是,当吸收强度较大时,可能发生双光子吸收现象,导致辐射波长短于吸收波长的情况发射。当辐射波长与吸收波长相等时,既是共振荧光。 荧光强度:荧光强度与该种物质的荧光量子产率、消光系数以及含量等因素有关。荧光量子产率Q:量子产率表示物质将吸收的光能转化为荧光的本领,是荧光物质发出光子数与吸收光子数的比值。荧光蛋白分子的亮度由其量子产率与消光系数的乘积决定,与成像检测灵敏度密切相关。 三、荧光蛋白

1、绿色荧光蛋白(green fluorescent protein,GFP) 在光谱的绿光区(500nm-525nm)已经发现了多种荧光蛋白,而且来源广泛,包括不同种属的Aequorea 、桡足类动物、文昌鱼以及珊瑚。然而多数有齐聚反应,即使最好的荧光蛋白与EGFP相比,也没有明显的优点。或许目前活细胞成像最好的选择是GFP衍生的Emerald(祖母绿),它与EGFP的特性相似。Emerald包含F64L 和S65T突变,另外还有四个点突变从而改进了折叠、37℃时的突变率以及亮度。虽然Emerald比EGFP更有效,但含有快速光漂白成分,可能在某些环境下其定量成像会受到影响。 下面主要介绍GFP及其衍生型荧光蛋白: (1)来源 绿色荧光蛋白最早由美籍日裔科学家下村修于1962年在水母中发现。这种蛋白质在蓝色波长范围的光照激发下发出绿色荧光,其发光过程需要冷光蛋白质Aequorin的帮助,而且,这个冷光蛋白质可与钙离子(Ca2+)相互作用。在水母中发现的野生型绿色荧光蛋白的分子量较小,仅为27~30kDa,而编码GFP的基因序列也很短,为2.6kb。 (2)性质 GFP由238个氨基酸残基组成。GFP序列中的65-67位残基(Ser65-Tyr66-Gly67)可自发形成荧光发色基团——对羟基苯咪唑啉酮GFP的激发光谱在400nm附近有一个主激发峰,在470nm附近有一个次激发峰。发射光谱在505nm附近有一尖锐的主发射峰,在540nm附近有一肩峰GFP的化学性质相当稳定,无光漂白现象(Photobleaching),用甲醛固定和石蜡包埋亦不影响其荧光性质。在细胞生物学与分子生物学领域中,绿色荧光蛋白基因常被用作报告基因。 (3)野生型 野生型GFP(wild type GFP, wtGFP)从一开始就引起了人们极大的兴趣,而且被用作新型的简单报告基因及体内标记,但GFP在异源生物体中的表达并非那么简单。例如,研究人员很早就发现需要在较高的温度下孵育才能在细胞或生物体中表达GFP,并且wtGFP在37℃的热稳定性差。这些都阻碍了它在转基因中的应用。这些难题促使人们进一步筛选分离wtGFP的变体。现在,人们已经找到了荧光强度更强且更耐热的变体。这些变体多数为经突变的脱辅基蛋白,它们可防止高温导致的错误折叠。近年来出现的新型wtGFP基因突变体的激发和发射谱发生了改变,热稳定性和荧光强度得到了提高,GFP报告基因在小鼠中的应用就是以这些变体作为基础的。 (4)增强型绿色荧光蛋白(EGFP) 现在,应用最为广泛的是红移变体增强型GFP(EGFP)。诸如EGFP这些红移变体的最大激发峰发生红向移动,大约为490nm,这一波长也恰好是多数分光设备、流式细胞仪及共聚焦显微镜的常用波长。EGFP有两个氨基酸突变,当被蓝光激发时,它发出的荧光要比wtGFP亮30-40倍。wtGFP和包括EGFP在内的多数变体半衰期长,所以不适合精确追踪表达的减少或损耗。 (5)不稳定增强型绿色荧光蛋白(dEGFP) 为克服这一问题,人们在1998年构建了不稳定增强型绿色荧光蛋白(dEGFP)。原理就是将EGFP的cDNA融合到小鼠鸟氨酸脱羧酶(Ornithine decarboxylase, ODC)基因的C-末端。ODC含有一个PEST序列,这个序列可促进该蛋白在细胞内

绿色荧光蛋白GFP的研究进展及应用_吴沛桥

■通信作者 E mail :baxiaoge1957@yahoo .com .cn 绿色荧光蛋白GFP 的研究进展及应用 吴沛桥1 ,巴晓革 2■ ,胡海1,赵静 1 (1.南京农业大学生命科学学院,南京210095;2.山东药品食品职业学院,威海264210) 摘要:源于多管水母属等海洋无脊椎动物的绿色荧光蛋白(GFP ),是一种极具应用潜力的标记物,有着 极其广泛的应用前景。我们就GFP 的理化性质、荧光特性、改进和应用研究进行了综述。 关键词:绿色荧光蛋白(GFP );标记物;荧光特性;进展;改进;应用 中图分类号:Q51,503;R318 文献标识码:A 文章编号:1672-6278(2009)01-0083-04 Research Progress and Application of Green Fluorescent Protein WU Peiqiao 1 ,BA Xiaoge 2 ,HU Hai 1 ,ZHAO Jing 1 (1.Nanjing Agricultu ral University ,College of Life Science ,Nanj ing 210095,China ; 2.Shandong Drug and Food V ocatio nal College ,W eihai 264210,China ) A bstract :The green fluorescent protein (GFP )from the jellyfish Aequorea vietoria is a great potential for application of the marker ,has a wide range of applications .The article on the physical and chemical properties ,the fluorescence characteristics ,improvement and application of GFP are reviewed . Key words :Green fluorescent protein ;Marker ;Fluorescence characteristics ;Progress ;Improvement ;Application 1 引 言 发光是海洋无脊椎动物中普遍存在的现象,一些腔肠动物包括水母、水螅和珊瑚等受到机械性干扰时都可发射绿色荧光,而栉水母类发射蓝色荧光。绿色荧光蛋白(Green fluorescent pr otein ,GFP )是一类存在于这些腔肠动物体内的生物发光蛋白。1962年Shimomura 等 [1] 首先从多管水母(Ae quoria victoria ) 中分离出一种分子量为20kD 的称为A equorin 的蛋白。由于水母整体荧光及提取的蛋白质颗粒荧光都呈绿色,因此,人们将这种蛋白命名为绿色荧光蛋白。随后,人们从不同动物体内提取出了各种不同的GFP ,其中研究较为深入的是来自多管水母科(Aequorleidae )和海紫罗兰科(Renillidae )的GFP ,即 Ae quoria GFP 和Renilla GFP 。 2 GFP 的理化性质,荧光特性及其改进 2.1 GFP 的理化性质 从水母体内分离到的GFP 基因,长达2.6kD ,由 3个外显子组成,分别编码69、98和71个氨基酸。GFP 本身是一种酸性,球状,可溶性天然荧光蛋白。A equoria GFP 分子量约27×103 ,一级结构为一个由238个氨基酸残基组成的单链多肽;而Renilla GFP 是分子量为54kD 的同型二聚体。两种GFP 有不同的激发光谱,A equoria GFP 在395nm 具有最高光吸收峰,肩峰为473nm ;Renilla GFP 在498nm 具有强烈的光吸收,肩峰为470nm 。两种GFP 含有相同的 生色团,发射光谱基本相同(λmax =508~509nm )。 GFP 性质极其稳定,易耐受高温处理,甲醛固定和石蜡包埋不影响其荧光性质。其变性需在90℃或pH <4.0或pH >12.0的条件下用6mol L 盐酸胍处理,一旦恢复中性环境,或去除变性剂,虽然变性的蛋白质并不能完全复性,但是复性蛋白质同天然蛋白质对温度、pH 变化的耐受性、抗胰蛋白酶消解的能力是相同的。更重要的是,它们在很大的pH 范围内(pH7~12.2)的吸收、发射光谱也是相同的。Renilla GFP 的稳定性就更为显著。它在上述一系列的变性条件下都很稳定,不易变性。根据Sheen 生物医学工程研究 J ournal of Biomedical Engineering Res earch 2009,28(1):83~86

绿色荧光蛋白

绿色荧光蛋白(GFP)原核表达情况分析 姓名:韩吉梅学号:2013107001 专业:作物栽培学与耕作学 摘要:将含有绿色荧光基因的重组载体导入大肠杆菌中,经IPTG诱导产生大量融合蛋白,用SDS-PAGE来确定目的蛋白的可溶性及其分子量。考马斯亮蓝染色4小时再过夜脱色,观察目的蛋白的分子量大约为31.9kD,与预期值相符。 关键字:绿色荧光蛋白SDS-PAGE 原核表达 1 前言 绿色荧光蛋白(green fluorescent protein GFP) 是源于多管水母属等海洋无脊椎动物的发光蛋白,其在蓝光或紫外光下可发出明亮的绿色荧光,可以作为报告基因检测蛋白的特异性表达或进行细胞定位研究。绿色荧光蛋白还在监测目的基因表达、研究细胞内物质代谢及追踪细胞系的分化等方面有着广泛应用。由于GFP检测具有高灵敏度,操作简单,无需使用同位素等优点,近年来广泛用于基因的表达与调控、蛋白质的定位、转移以及相互作用、信号传递、转染与转化,以及细胞的分离与纯化等研究领域[1-2]。采用GFP作为标记基因,可直接收集转化细胞供实验,缩短了筛选时间、减少对细胞活性的影响并可作为活体标记,为研究发育的基因调控和分子机制提供了一种简洁有

效的手段[3-4]。同时也正因为其荧光反应不是酶反应,所以当细胞本身还存在一些可以受蓝光激发和产生绿色荧光的物质,或者GFP表达频率不高的情况下,GFP的检测可能会产生一些假相,不易对荧光进行定量的测定。我们利用基因工程手段在大肠杆菌中高效的表达了GFP,制备出GFP抗体,利用抗原与抗体之间的特异性,在体外对GFP进行检测,可在一定程度上弥补上述GFP检测中可能出现的问题,可以作为一种重要的辅助手段用以提高GFP检测的灵敏度和准确度[5]。 原核表达是将克隆基因插入合适载体后导入大肠杆菌,用于表达大量蛋白质的方法。选用原核表达系统的原因是易于生长和控制、用于细菌培养的材料不及哺乳动物细胞培养的材料昂贵、有各种各样的大肠杆菌菌株及与之匹配的具各种特性的质粒可供选择。但是在大肠杆菌中表达的蛋白由于缺少修饰和糖基化、磷酸化等翻译后加工,常形成包涵体而影响表达蛋白的生物学活性及构象。包涵体是在某些生长条件下,大肠杆菌能积累某种特殊的生物大分子,它们致密地集聚在细胞内,形成被膜包裹的结构,具有水不溶性的特点。本实验主要是通过SDS-PAGE来检测绿色荧光的原核表达情况。 2 材料与方法 2.1 材料 30%分离胶贮液分离胶缓冲液(Tris-HC l缓冲液pH8.9)浓缩胶贮液浓缩胶缓冲液10%SDS 20%过硫酸铵(AP)染色液脱色液1×SDS上样缓冲液1×Tris-甘氨酸电泳缓冲液四甲基乙二

绿色荧光蛋白

绿色荧光蛋白(GFP)的转化表达及免疫印迹检测 王媛0811142 南开大学生命科学学院生物技术08级 一、摘要: 本实验利用酶切方法检测载体中所含GFP片段后,通过转化的方法把绿色荧光蛋白(GFP)外源基因转入大肠杆菌进行表达,通过免疫印记杂交方法(western blotting)分析GFP在大肠杆菌中的表达,在分离检测的全过程中(转化平板,细胞裂解,电泳,电转移),均可通过紫外灯清晰地检测到颜色亮丽的绿色荧光蛋白。 关键词:绿色荧光蛋白免疫印记杂交 二、引言: 绿色荧光蛋白是一种源于水母(Aequorea Victoria)等海洋无脊椎动物的蛋白,分子量为26.9KD。GFP的开放阅读框架长度约为740bp,编码238个氨基酸残基。GFP表达后折叠环化,在氧存在下,由65~67位的氨基酸残基环化,形成发色基团,无需添加任何酶和底物,在长紫外或蓝光激发下就能发荧光,荧光性质稳定,可保持10分钟。GFP能在不同的细胞内稳定表达,无种属、组织和位置特异性,对细胞无毒性且检测方法简单,将其作为报告基因已广泛应用于细胞生物学和分子生物学领域。 免疫印记又称蛋白质印记,是在凝胶电泳技术和固相免疫测定技术基础上发展起来的一种免疫检测技术。其原理是将膜与胶放在中间,上下加滤纸数层,做成“Sandwich”样的转移单位,并且保证带负电的蛋白质向阳极转移,即膜侧连接阳极或面向阳极,从而将电泳分离的蛋白从凝胶转移至固相载体上。 三、实验材料、仪器及方法: 3.1 实验材料 3.1.1 菌种 E.coli DH5α(pETH)菌株 E.coli DH5α(pETH-GFP)菌株 E.coli BL21菌株 E.coli BL21 (pETH)菌株E.coli BL21 (pETH-GFP))菌株 3.1.2 试剂与材料 LB培养基(自己配置灭菌)Amp(100mg/ml)IPTG(10mg/ml) CaCl2(1M) 50*TAE Acry/Bis 贮存液分离胶缓冲液浓缩胶缓冲液泳动缓冲液(5*)上扬缓冲液(5*)转移缓冲液PBS 1.5% A.P.S 质粒小量提取试剂盒Eco RI限制性内切酶DNA Maker Protein Maker pH试纸 3.1.3 仪器 紫外检测仪、超声波细胞粉碎机、垂直板式电泳系统、半干式蛋白质印迹电转移系统等。3.2 实验方法 1、配置LB培养基,包括液体、固体培养基后灭菌;分别接种pETH-GFP/DH 5α(LA 4ml)一支,pETH/DH 5α(LA 4ml)一支,BL21(LB 4ml)四支 2、按照protocal,利用tiangen质粒提取试剂盒分别提取pETH-GFP/DH 5α、pETH/DH 5α质粒后,按照酶切体系混匀后,至于37℃温箱酶切2h。 3、制备0.8%琼脂糖凝胶,20ml每块,加入适量EB,按照点样顺序点样后,60V恒压电泳,约0.5~1h.后,凝胶自显影拍照(胶图见后面实验结果) 4、取40μlBL21菌液接种于4mlLB,37℃,200rpm,约2.5h,此时OD600=0.3~0.5,利用氯化钙法制备感受态细胞,制备完成至于冰上备用。 5、铺制平板,1块LB,4块LA,冷却凝固后于37℃倒置烘干备用。其中两块LA平板上面涂布IPTG(100μl+100μl水),正置备用。 6、按照阴性对照、空白对照、GFP基因转化表达、GFP基因的转化四组分别进行转化,涂板,37℃倒置过夜培养,紫外灯下观察,呈绿色荧光的单菌落即为转化子。记录各板菌落数

绿色荧光蛋白GFP研究进展

万方数据

2004年6月绿色荧光蛋白(GFP)研究进展71 随着生命科学和医学研究的不断深入,研究者们迫切需要一种能够在活体中表达且易于检测的报告基因,现有的报告基因主要有:分泌型胎盘磷酸酯酶(s秘P)、B一半乳糖苷酶(互丑cz)、8一葡糖苷酸酶(GUS)、萤火虫荧光素酶(LUc)等,但这些基因的检测方法并不理想,它们都需要底物和辅助因子,因而在活体中的应用受到限制。最近,一种全新的非酶性报告基因——绿色荧光蛋白(GFP)引起了人们的关注,该蛋白能够自身催化形成发色结构并在蓝光激发下发出绿色荧光。作为报告基因,GFP是目前唯一能在活细胞中表达的发光蛋白;作为荧光标记分子,GFP既具有敏感的标记检测率,又没有放射性的危害。最近又发现G即还是一个良好的细胞间信号传递的动态标记分子,可以跟踪观测第二信使。近来关于GFP方面的研究和综述越来越多,但多是针对某一方面的特点或应用,作者将cFP基础理论和应用研究进展作一简要综述。 lGFP基础理论研究进展 1.1发展历史 1962年蹦n舢u飓等…首先从多管水母属(枷ria、ricto. ria)中分离出了cFP;1992年Prasller等u3克隆了GFP基因的cDNA,并分析了GFP的一级结构;1994年ch址e等b3首次在大肠杆菌细胞和线虫中表达了GFP,开创了GFP应用研究的先河,之后很快发现GFP能在多种异源细胞中表达,GFP在细胞学、分子生物学和医学、病毒学等领域中迅速掀起了一股热潮;199r7年10月18—22日在美国New—J嘲y专门召开了一次关于GFP的国际会议。 1.2GFP结构、生化特性、发光机制、光谱特性 1.2.1结构 由正常野生型cFP(wtG即)的cDNA序列推出的蛋白质一级结构,由238个氨基酸残基组成,sD卜PAGE凝胶电泳测定 其分子量为27—30l【D。晶体学证据H’表明,GFP中央是一个B罐(p一锄)结构。GFP的生色团位于“一69的六肽内。生色团在翻译后2—4h内自动催化形成,并且GFP在合成后需经过一定的折叠过程形成正确的构象后才有功能。GFP生色团的形成需要Q,使66位氨基酸残基的a、8键间脱氢,这就意味着GfP在严格厌氧条件下不能形成荧光。 1.2.2生化特性 GFP在450—490姗蓝光下最稳定,在340—390衄或395一‰的范围内,会发生光漂白现象;强还原剂如5n蝴N啦s04或2n蹦f韬q能使GFP转变为非荧光形式,但一旦重新暴露在空气或氧气中,GFP荧光便会立即恢复;弱还原剂和中度氧化剂(如生物材料的固定脱水剂戊二酸或甲醛等)对cFP荧光影响不大,但GFP对某些封片指甲油特别敏感;在离体状态下,G即对高温(70℃)、碱性、除垢剂、盐、有机溶剂和大多数普通酶(链霉蛋白酶hDI塘∞除外)有较强抗性,GFP荧光在pm.O一12.O时稳定,在pIl5.5—7.0时开始受到影响,在高温(>70℃)、极端pH或胍基氯化物条件下,GFP会变性,荧光消失,一旦外界条件恢复正常,荧光将部分恢复【5】。 1.2.3发光机制 目前对GFP的荧光发光机制还不清楚,M(Hi∞等人曾提出一个能量传递模式图来解释水母的发光机制,但并未获得认同。cII砒嘶等怕。对GFP进行了光谱分析,结合前人工作提出,GFP有两个明显的吸收带,对应于GFP的两种不同构象的基态A和B。基态A对应于395姗的吸收峰,基态B对应于475姗的吸收峰,基态A占优势,基态B的分子数量约是基态A的1,6,两种基态间能缓慢地转换,但激发态(*)之间的转换很快且发生了质子转移,A。快速高效地衰变至另一激发态,应该存在一个中间过度态I,质子转移使A。转变成I。,I’回迁到基态I时产生发射峰504姗的荧光,构象改变使I’转变成B。,由B。到B发射荧光而不发生质子转移。目前,对于GFP的作用机理较为认同的仅仅是:GFP是生物发光过程中的能量受体,并且是最终的发光体,不同的生物发光机制各不相同,不同的突变体发光机制也有很大差异。 收稿日期:2003—09—25:修回日期:2003一12二15 基金项目:生活垃圾及农业废气物处理技术与示范工程项目(2002从601012—02) 作者简介:汪恒英(1979一),女,硕士生,专业方向为环境工程,ErIl8il:wh∞舀rIg@yah∞.Ⅻ;。通讯联系人(AutIl∞h∞Te叩‘xIdeIlce)。 1.2.4光谱特性 w蚓FP的光谱是所有GFP中最复杂的,其荧光激发主峰在395nm,在475砌处有一个峰高仅为主峰1,3的小峰。溶液 中,395咖激发的荧光发射峰在508锄。475砌激发的在503姗,这类GFP的生色团至少由两种不同的化学组分组成,即中性酚和阴离子酚。475姗峰随GFP分子生色团的去质子化或阴离子生色团的增加而增加,395砌则随着GFP分子生色团的质子化或中性生色团的增加而增加。野生型GFP在室温或低于室温下表达时,G即几乎都能正确而快速地折叠,但高于室温时,折叠速度却剧烈下降,这种温度的敏感性无碍于水母。因为在它们的生活环境中是不可能遇到温水的,但GFP折叠受温度影响却限制了GFP的应用;另外,栅具有两个激 发峰的光谱,在应用中也是弊大于利。因此,为拓宽GFP的应用,有必要根据不同的用途,对wtGFP进行适当的改造。 1.3G卯的改进 目前主要通过以下几个途径得到突变体GFP【引:更换GFP生色团氨基酸;改变碱基组成;除去GFP基因中隐蔽剪接位点;插入植物内含子;更换强启动子等。突变体GFP增加了荧光强度和热稳定性,促进了生色团的折叠,其荧光特性也得到了改善,甚至出现红色、黄绿色、蓝色等多种颜色的荧光蛋白,大大拓宽了GFP研究的领域。以下是GFP突变体的部分典型代表。(1)增强型c即:Gl】ohon等将Ser65用m替代,PI蒯用IJeu替代,使cFP的荧光强度提高了35倍,而且激发后16—24h后仍可稳定地测定荧光;(2)人工GFP:刻咖kllin等哺1改变了栅基因编码区中88个密码子中的92个碱基而用人类 基因组中常用的密码子代替,将GFP的荧光强度提高22倍,适合在哺乳动物细胞中高效表达;(3)红移荧光蛋白(RSFP):HeiIIl等旧1将wtGFP中的ser65用7nlr替代,得到突变体.S65T—GFP,激发谱中只有一个峰,且红移至490姗,用蓝光即可激发RSFP,使之更适于普通荧光显微镜(订rc)观察;(4)蓝色荧光蛋白(BFP):双突变体Y66H,Y145一划能在381呦光的激发下产生445砌的蓝光,这种蓝光还能进一步激发GFP产生绿光,即发生荧光共振能量转移(耶回)现象,为不同蛋白质之间及细胞器之间的相互作用研究开辟了更为广阔的视野。 除以上类型的GFP突变体以外,人们还通过定点突变得到了一些可用作指示剂的GFP突变型如:pH敏感GFP,可被用来测量细胞器或更小颗粒的pH值,并记录其变化,最近又有报道利用靶人了水母GFP基因的丝蛋白昆虫病毒,感染蚕的幼虫,用改造的基因取代了蚕的正常基因,当蚕吐丝时,这种 丝是一种能在黑暗中发绿色荧光的纤维。 2卿应用研究进展 2.1应用特点 GFP这一新型报告基因,在短短几年时间内就得到了众多研究者的青睐,其原因就在于它具有以下优点: (1)检测方便:因为GFP荧光反应不需要外加底物和辅助因子,也就不存在这些物质可能难于进入细胞的问题,只需紫外光或蓝光激发,即可发出绿色荧光,用荧光显微镜甚至肉眼就可以观察到,且灵敏度高,对于单细胞水平的表达也可识别。 (2)荧光稳定:GFP对光漂白有较强的耐受性,能耐受长时间的光照;GFP在pm一12范围内也能正常发光;对高温(70℃)、碱性、除垢剂、盐、有机溶剂和大多数普通酶(链霉蛋白酶Pb驯雠除外)都有较强抗性。 (3)无毒害:从目前的研究结果来看,GfP对生活的细胞基本无毒害,对目的基因的功能也没有影响,转化后细胞仍可连续传代。 (4)共用性和通用性:首先表现在GFP的表达几乎不受种属范围的限制,在微生物、植物、动物中都获得了成功的表达;其次是cFP没有细胞种类和位置上的限制,在各个部位都可以表达发出荧光。 (5)易于构建载体:由于GFP分子量较小,仅为27—30如,编码GFP的基因序列也很短,为2.6l【b,所以很方便地同其它序列一起构建多种质粒,而不至于使质粒过大影响转化频率。 (6)可进行活细胞定时定位观察:对活细胞中蛋白的功能研究,更能接近自然真实的状态。通过GFP可实时观察到外界信号刺激下,目的蛋白的变化过程,借助于近来广泛使用的 万方数据

对绿色荧光蛋白(GFP)的了解及应用

对绿色荧光蛋白的了解及应用 学院:生命科学学院 姓名:马宗英 年级:2011 学号:2011012923

前言 绿色荧光蛋白(green fluorescent protein),简称GFP,是一种具有奇妙特性的“光学蛋白质”。这种蛋白质从成分和结构上来说,没有丝毫的特殊性,它的组成单元是20种常见的氨基酸,二级结构也是普通的α螺旋和β片层。但是,这种蛋白质却具有一个非常特别的性质——发出绿色荧光。 【关键词】绿色荧光蛋白生命科学应用 一、绿色荧光蛋白 绿色荧光蛋白最早是由下村修等人于1962年在一种学名Aequorea victoria的水母中发现的。其基因所产生的蛋白质,在蓝色波长范围的光线激发下,吸收蓝光的部分能量,发出绿色荧光。 野生型水母GFP的一级序列已由其cDNA序列推导出来[1],它至少存在4种同源GFP,但这些突变并不影响GFP的基本功能,只是使突变的GFP具有了新的性质。 生色团是GFP发出荧光的物质基础,也是GFP结构中的一个重要组成部分。GFP的生色团位于氨基酸序列64~69位的六肽内,65~67位的丝氨酸、脱氢酪氨酸、甘氨酸通过共价键形成的对羟基苯甲基咪唑环酮是一个独特的、相当稳定的环状三肽结构,构成了GFP生色团的核心[2],见图1。图2为生色团的形成机制。 图1 多管水母中GFP生色团的化学结构和附近序列 图2生色团的形成机制 目前人们对GFP的荧光发光机制并不十分清楚,大家只是认为,GFP是生物发光过程中的能量受体,并且是最终的发光体,不同的生物发光机制各不相同,不同的突变体发光机

制也有很大差异。 二、GFP在生命科学中的应用 1、作为蛋白质标签(protein tagging) 利用绿色荧光蛋白独特的发光机制,可将GFP作为蛋白质标签(protein tagging),即利用DNA重组技术,将目的基因与GFP基因构成融合基因,转染到合适的细胞中进行表达,然后借助荧光显微镜便可对标记的蛋白质进行细胞内的活体观察。由于GFP只有238个氨基酸,相对较小,所以将其与其它蛋白质融合后并不影响自身的发光功能。利用GFP来检测目标蛋白的定位已为我们提供了一种对细胞内的一些基本的生理过程进行更为详尽的观察的新方法。如细胞分裂、染色体复制和分裂、发育和信号转导等过程的研究均是借助绿色荧光蛋白进行标记。 GFP作为蛋白质标签除用于特定蛋白质的标记定位外,还大量用于各种细胞成分的标记如细胞骨架、质膜、细胞核等等。曾经有人将GFP融合到大肠杆菌细胞膜表面用作标记蛋白,这将有助于提高多肽库的筛选效率、疫苗的研制、构建细胞生物传感器用作环境监测以及探测信号转导过程等等,以上都可以为传统生物学研究提供新思路和新方法。 2、药物筛选 利用细胞表面标记,通过流体细胞分光光度计或荧光活化细胞筛选仪,可以分离与纯化特殊类型的细胞;同时还可利用不同颜色GFP衍生物标记相关蛋白质,来观察在单细胞内相互作用的靶细胞,再借助于荧光激活细胞分离器、等聚焦显微镜分离出目的细胞,从而可方便地用于大规模筛选新的药物。 另一方面,利用GFP来进行药物筛选由于必须与迁移的信号分子相偶联的限制,其筛选容量相对较低,但是由于GFP在细胞内的穿透性强及独特的发光机制,因而在药物筛选中具有相当大的应用潜力。 3、用于免疫学 可采用基因工程的方法生产GFP标记抗体,以取代传统的免疫学标记方法,建立一种简便、快速的免疫诊断新技术。相比于一般的标记物,GFP对光稳定、对抗体的标记率可达100%,而且因为GFP是直接与抗体结合,所以无需添加任何底物,可以避免非抗原抗体结合的背景干扰等。 线粒体中表达的GFP是研究比较成功的一种小分子抗体,因为它可以在宿主细胞内大量表达,易于基因工程操作,尤其易于构架抗体融合蛋白。因融合抗体具有与抗原结合及发射荧光两种特性,故这一人工分子可用做免疫染色的检测试剂,直接应用于流式细胞仪和免疫荧光的标记及肿瘤的检测等等。 在制备抗体时,为便于表达蛋白的分离纯化,一般在单链抗体的N端或C端插入一6×His 序列,便于用Ni-NTA亲和层析柱纯化目标蛋白。但这一技术也存在一些问题,由于抗体分子内存在二硫键,而在原核表达系统内由于抗体不能正确折叠,容易形成包涵体,表达出来的目标蛋白无活性,需要在氧化还原体系中进行复性。但近来也有报道在动物细胞细胞质中成功表达出具有抗原结合活性的单链抗体,若能成功解决融合抗体的表达问题,则在免疫染色及肿瘤检测这一领域融合抗体将扮演极为重要的角色。 除了以上应用之外,绿色荧光蛋白还普遍应用于跟踪观察微生物、发育机理研究、细胞筛选以及生物传感器等许多生命科学研究中。 三、GFP的突变及其应用 GFP作为一种新型标记物,正受到科学界的广泛关注,而且野生型的GFP也不断地在被改造,著名的生物学家钱永健所完成的单点突变(S65T) 显著提高了GFP的光谱性质,其荧

绿色荧光蛋白的研究现状与应用

绿色荧光蛋白的研究现状与应用 【摘要】绿色荧光蛋白(GFP)最早发现于水母体中,是一种十分重要的蛋白质。由于其众多的优点,现已在分子生物和细胞生物的研究中应用十分广泛。随着技术的进步和研究的进一步深入,GFP基因也在许多其他方面将发挥着越来越重要的作用。 【关键词】绿色荧光蛋白;生色团;报告基因 2008年10月8日,瑞典皇家科学院诺贝尔奖委员会授予三位科学家:日裔美国科学家下村修(Osamu Shimomura)、美国科学家马丁?查尔非(Martin Chalfie)和美国华裔科学家钱永健(Roger Y.Tsien)诺贝尔化学奖,以表彰他们在绿色荧光蛋白(GFP)研究方面做出的突出贡献。 1 绿色荧光蛋白的理论研究 1.1绿色荧光蛋白的发现 绿色荧光蛋白最早于1962年在维多利亚多管发光水母体内被发现,同时它也存在于水螅和珊瑚等腔肠动物体内。它的内源基团可以在蓝光或紫外光激发下发射绿光,属于生物发光蛋白。绿色荧光蛋白在水母体内之所以能发光,主要依靠水母素的辅助。水母素和GFP之间能发生了能量转移,在钙的刺激下,其能量可转移到GFP,刺激GFP发光。 1.2绿色荧光蛋白的结构和发光原理 1992年Prasher等克隆了GFP基因的cDNA并分析了其一级结构。野生型GFP基因组全长2600bp,由3个外显子和2个内含子组成,编码238个氨基酸,分子量约28kDa。GFP的三维立体结构是由11个β折叠围在四周形成一个中空的圆柱体,1条α折叠贯穿在圆柱体的中间,其中有一段位于65-67位的3个氨基酸残基(Ser-Tyr-Gly)形成的杂环咪唑啉结构组成生色团,位于圆筒中央并附着在α螺旋上。绿色荧光蛋白的发光原理是位于氨基酸第65位的Ser的羧基和67位的Gly的酰基经过亲核反应生成咪唑基,66位的Tyr通过脱氢使芳香团与咪唑基结合,形成对羟基苯甲酸咪唑环酮生色团发出荧光。GFP的最大和次大的激发波长分别是395nm和475nm。溶液中,395nm激发的荧光发射峰在508nm,375nm激发的荧光发射峰在503nm。 1.3绿色荧光蛋白的优点 绿色荧光蛋白的独特之处即它的优点很多,主要有:荧光反应不需要底物和任何其他辅助因子,只需要在蓝光和紫外光下照射,利用荧光显微镜甚至是直接用肉眼就可以观察,易于检测且灵敏度高;荧光性质稳定,对光漂白有较强的耐受性;无毒害,转化后细胞仍可连续传代;通用性好,无种属特异性;分子量小,易于构建载体;不受假阳性干扰,结果真实可靠;可进行活细胞定时定位观察;易于得到突变体。 2 绿色荧光蛋白的应用 1994年Chalfie等首次在大肠杆菌细胞和线虫中表达了GFP,开创了GFP 应用研究的先河。也正是由于绿色荧光蛋白的许多优点,使得其应用十分广泛。 2.1作为报告基因 GFP通常用作报告基因,可用来检测转基因效率,把GFP基因连接到目的基因的启动子之后,通过测定GFP的荧光强度就可以对该基因的表达水平进行检测。GFP最显著的优势是荧光反应不需要底物和其他辅助因子。有利必有弊,

绿色荧光蛋白及其应用

DOI:CNKI:50-1068/S.20120208.1744.051 网络出版时间:2012-02-08 17:44 网络出版地址:https://www.doczj.com/doc/541738071.html,/kcms/detail/50.1068.S.20120208.1744.051.html 绿色荧光蛋白及其应用 四川攀枝花学院生物与化学工程学院韩洪波 摘要:作为一种报告基因,由于其自身独特的发光机制,GFP在分子生物学的研 究中得到越来越广泛深入的应用,如用于特定蛋白的标记定位,活体内的肿瘤检 测、药物筛选等等。GFP的运用,为传统生物学研究提供了新思路和新方法。 关键词:绿色荧光蛋白;性质;应用 1962年,Shimomura 等从维多利亚多管水母(Aequorea victoria)中分离纯化生物发光蛋白质——水母蛋白(aequorin),并观察到一个在紫外光下发出非常 明亮,浅绿色荧光的副产物。[1]1974年,Shimomura等纯化得到了这种自发荧光 的蛋白。1985年Prasher 等构建维多利亚多管水母的cDNA文库,用于克隆水 母蛋白的编码基因,并得到含有GFP片段的蛋白。[2]1992年Prasher 等克隆到 编码全长GFP 的cDNA但直到此时人们对GFP的应用前景还不甚了解。1994 年,Chalfie 等首次在原核的大肠杆菌和真核的秀丽隐杆线虫(Caenorhabditis elegans)中表达了具有荧光性GFP,证明GFP 的荧光产生不需要水母中特异组 分的参与,钱永健及其同事提出GFP中Ser65-Tyr66-Gly67 氨基酸残基形成4- 对羟基苯甲基-5-咪唑啉酮生色团发光的机制,并表明生色团的形成不需要任何 酶或辅助因子的参与,而只需分子氧的存在此后对GFP的研究进入了高潮,并 在1996 年解析了其晶体结构基于已有知识和晶体结构,人们通过突变的方法得 到许多不同荧光性质的GFP同时,受GFP启发,人们开始在其它生物中寻找类 似的荧光蛋白,并相继在珊瑚、海葵、水螅甲壳类动物甚至低等脊索动物中发现 了GFP样蛋白荧光谱覆盖蓝色到远红光,使得荧光蛋白的使用范围不断扩大, 极大地促进了生命科学和医药科学的发展。2008年,诺贝尔化学奖授予Osamu Shimomura,MartinChalfie 和Roger Tsien以表彰他们因发现和发展了绿色荧光 蛋白所做的巨大贡献。[3] 一、GFP的分子结构和发光机制

绿色荧光蛋白

知识介绍 绿色荧光蛋白 马金石 (中国科学院化学研究所 北京 100190) 摘 要 绿色荧光蛋白是46多年前从多管水母体内发现的,它可以在蓝光或紫外光激发下发射绿光。 由于它稳定的结构和光物理性质,又易于在细胞内表达,近些年作为标记物已经被广泛地应用于生命科学领 域。本文简要介绍了水母发光蛋白与绿色荧光蛋白的关系、绿色荧光蛋白的结构、发色团的形成、发光机制、变异体以及它的特点和应用。 关键词 绿色荧光蛋白 基因表达 结构 发色团 生物发光 Green Fluorescent Protein Ma Jinshi (Insti tute of Chemistry,Chinese Academy of Sciences,Beijing100190) Abstract Green fluorescent protein(GFP)was discovered46years ago from A equorea V ictoria,it can emit green light under exci tation of blue or UV irradiation.GFP as a marker for gene expression and localization of gene products has been widely used in life sciences for the past years because of its stable structure and photophysical property and easy expression in cells.A brief introduction on the relationship of aequorin and GFP,GFP structure,chromophore formation,and the mechanism of bioluminescence,also the variants,characteri stic and application are presented in this paper. Keywords Green fluorescent protein,Gene expression,Structure,Chromophore,Bioluminescence 由于对绿色荧光蛋白(Green Fluorescent Protein,GFP)的发现、机理研究以及利用做出的特殊贡献,瑞典皇家科学院诺贝尔奖委员会将2008年度诺贝尔化学奖授予美国科学家下村修(Osamu Shimomura)、马丁 沙尔菲(Martin Chalfie)和美籍华裔化学家钱永健(Roger Y Tsien)。 化学奖评选委员会主席贡纳尔 冯 海伊内和评委莫恩斯 艾伦贝里对绿色荧光蛋白的评价指出,这是当代生物学的重要工具,借助这一 指路标 ,科学家们已经研究出监控脑神经细胞生长过程的方法,这在以前是不可能实现的。他们说,下村修1962年在北美西海岸的水母中首次发现了一种在紫外线下发出绿色荧光的蛋白质,即GFP。随后,马丁 沙尔菲在利用GFP做生物示踪分子方面做出了贡献;钱永健让科学界更全面地理解GFP的发光机理,对GFP作了改造,通过改变其氨基酸排序合成出了能吸收、发射不同颜色(蓝色、蓝绿色和黄色)光的荧光蛋白,为同时追踪多种生物细胞变化的研究奠定了基础。 我国在生命科学领域已经广泛应用GFP,对它的介绍和应用的文章也有很多[1~6]。国外的综述可阅读钱永健和Zimmer的文章,最新的是Shaner等的文章[7~9]。化学界对它的了解可能较少,在此做个简单介绍。 1 生物发光与水母 先从生物发光说起,生物体的发光现象称为生物发光。植物界有细菌植物门的发光细菌和真菌植物门的发光蘑菇,动物界从原生动物到脊椎动物都有,脊椎动物中主要是鱼类。从发光生物的分布来 2008 10 25收稿,2008 11 04接受

相关主题
文本预览
相关文档 最新文档