当前位置:文档之家› 温度控制器

温度控制器

温度控制器
温度控制器

温度控制器的工作原理

温度控制器的工作原理 据了解,很多厂家在使用温度控制器的过程中,往往碰到惯性温度误差的问题,苦于无法解决,依靠手工调压来控制温度。创新,采用了PID模糊控制技术,较好地解决了惯性温度误差的问题。传统的温度控制器,是利用热电偶线在温度化变化的情况下,产生变化的电流作为控制信号,对电器元件作定点的开关控制器。电脑控制温度控制器:采用PID模糊控制技术*用先进的数码技术通过Pvar、Ivar、Dvar(比例、积分、微分)三方面的结合调整形成一个模糊控制来解决惯性温度误差问题。 传统的温度控制器的电热元件一般以电热棒、发热圈为主,两者里面都用发热丝制成。发热丝通过电流加热时,通常达到1000℃以上,所以发热棒、发热圈内部温度都很高。一般进行温度控制的电器机械,其控制温度多在0-400℃之间,所以,传统的温度控制器进行温度控制期间,当被加热器件温度升高至设定温度时,温度控制器会发出信号停止加热。但这时发热棒或发热圈的内部温度会高于400℃,发热棒、发热圈还将会对被加热的器件进行加热,即使温度控制器发出信号停止加热,被加热器件的温度还往往继续上升几度,然后才开始下降。当下降到设定温度的下限时,温度控制器又开始发出加热的信号,开始加热,但发热丝要把温度传递到被加热器件需要一定的时候,这就要视乎发热丝与被加热器件之间的介质情况而定。通常开始重新加热时,温度继续下降几度。所以,传统的定点开关控制温度会有正负误差几度的现象,但这不是温度控制器本身的问题,而是整个热系统的结构性问题,使温度控制器控温产生一种惯性温度误差。 要解决温度控制器这个问题,采用PID模糊控制技术,是明智的选择。PID模糊控制,是针对以上的情况而制定的、新的温度控制方案,用先进的数码技术通过Pvar、Ivar、Dvar三方面的结合调整,形成一个模糊控制,来解决惯性温度误差问题。然而,在很多情况下,由于传统的温度控制器温控方式存在较大的惯性温度误差,往往在要求精确的温控时,很多人会放弃自动控制而采用调压器来代替温度控制器。当然,在电压稳定工作的速度不变、外界气温不变和空气流动速度不变的情况下,这样做是完全可以的,但要清楚地知道,以上的环境因素是不断改变的,同时,用调压器来代替温度控制器时,必须在很大程度上靠人力调节,随着工作环境的变化而用人手调好所需温度的度数,然后靠相对稳定的电压来通电加热,勉强运作,但这决不是自动控温。当需要控温的关键很多时,就会手忙脚乱。这样,调压器就派不上用场,因为靠人手不能同时调节那么多需要温控的关键,只有采用PID模糊控制技术,才能解决这个问题,使操作得心应手,运行畅顺。例如烫金机,其温度要求比较稳定,通常在正负2℃以内才能较好运作。高速烫金机烫制同一种产品图案时,随着速度加快,加热速度也要相应提高。这时,传统的温度控制器方式和采用调压器操作就不能胜任,产品的质量就不能保证,因为烫金之前必须要把烫金机的运转速度调节适当,用速度来迁就温度控制器和调压器的弱点。但是,如果采用PID模糊控制的温度控制器,就能解决以上的问题,因为PID中的P,即Pvar功率变量控制,能随着烫金机工作速度加快而加大功率输出的百分量。 有机械式的和电子式的, 机械式的采用两层热膨胀系数不同金属亚在一起,温度改变时,他的弯曲度会发生改变,当弯曲到某个程度是,接通(或断开)回路,使得制冷(或加热)设备工作。

红外线温度计校准

红外线温度计校准 BB-2A 黑体源, 图1。 本文概述了不同类型的红外线校准源(黑体源)以及如何使用它们校准红外线产品。 红外线校准源主要有两种类型:热板黑体源和空腔型黑体源。热板型包括带或不带同心凹槽的金属板(通常为铝质),其中,板的温度通过廉价的电位器标度盘或高端温度控制器来设定和控制。板的温度使用热电偶或RTD 探头来感应。热板通常喷涂成乌黑色,以提高表面发射率。热板校准源的表面发射率通常为0.95。图1显示了一种很基本的带电位器标度盘的热板黑体源(OMEGA 的型号BB-2A )。图2显示了一种带内置 温度控制器的高端热板黑体源(OMEGA 的型号 BB704)。带内置温度控制器的校准源的精度和稳定性要远远优于电位器标度盘型校准源。 空腔型黑体源包括圆柱体或球体中的一个盲孔,其中,空腔的温度通过温度控制器用热电偶探头来控制。空腔型黑体源的表面发射率高于热板黑体源。空腔型黑体源的发射率通常为0.98或更高。 图3显示了一种带内置温度控制器的空腔型黑体源(OMEGA 的型号BB705)。与热板黑体源相比,空腔型黑体源通常可以达到更高的温度(超过530°C [1000°F])。而且,发射率较高,则会成为精密校准任务的理想之选。 如欲校准红外线温度计,需要使用黑体校准源。在选择黑体校准源时,需要考虑3个因素 1. 黑体的类型(热板或空腔型)可以说明该设备的构造及整体性能。 2. 目标区域可以说明我们能在多大的一块区域上检查我们的红外线温度计。目标区域应该大于温度计的视场;否则红外线温度计将会测量目标区域加上周围部分较冷的区域。通常,红外线温度计对照黑体源以相对较近的距离(大约为0.15 ~ 1 m [0.5 ~ 3'])进行检查,具体距离取决于目标区域的大小 3. 目标发射率越高,校准结果越理想。如果发射率目标较低,红外线温度计的波长带宽就会有影响。当发射率为理想值1.00时,DUT (测试设备)的波长带宽就不会有影响。 U 黑体类型(热板或空腔型) U 目标区域(热板区域或空腔开口处) U 目标发射率 有关其他信息,请访问https://www.doczj.com/doc/516595372.html,

温度控制器课程设计要点

郑州科技学院 《模拟电子技术》课程设计 题目温度控制器 学生姓名 专业班级 学号 院(系)信息工程学院 指导教师 完成时间 2015年12月31日

郑州科技学院 模拟电子技术课程设计任务书 专业 14级通信工程班级 2班学号姓名 一、设计题目温度控制器 二、设计任务与要求 1、当温度低于设定温度时,两个加热丝同时通电加热,指示灯发光; 2、当水温高于设定温度时,两根加热丝都不通电,指示灯熄灭; 3、根据上述要求选定设计方案,画出系统框图,并写出详细的设计过程; 4、利用Multisim软件画出一套完整的设计电路图,并列出所有的元件清单; 5、安装调试并按规定格式写出课程设计报告书. 三、参考文献 [1]吴友宇.模拟电子技术基础[M]. 清华大学出版社,2009.52~55. [2]孙梅生.电子技术基础课程设计[M]. 高等教育出版社,2005.25~28. [3]徐国华.电子技能实训教程[M]. 北京航空航天大学出版社,2006.13 ~15. [4]陈杰,黄鸿.传感器与检测技术[M].北京:高等教育出版社,2008.22~25. [5]翟玉文等.电子设计与实践[M].北京:北京中国电力出版社,2005.11~13. [6]万嘉若,林康运.电子线路基础[M]. 高等教育出版社,2006.27 ~29. 四、设计时间 2015 年12月21 日至2015 年12 月31 日 指导教师签名: 年月日

本设计是一种结构简单、性能稳定、使用方便、价格低廉、使用寿命长、具有一定的实用性等优点的温度控制电路。本文设计了一种温度控制器电路,该系统采用模拟技术进行温度的采集与控制。主要由电源模块,温度采集模块,继电器模块组成。 现代社会科学技术的发展可以说是突飞猛进,很多传统的东西都被成本更低、功能更多、使用更方便的电子产品所替代,本课程设计是一个以温度传感器采用LM35的环境温度简易测控系统,用于替代传统的低精度、不易读数的温度计。但系统预留了足够的扩展空间,并提供了简单的扩展方式供参考,实际使用中可根据需要改成多路转换,既可以增加湿度等测控对象,也能减少外界因素对系统的干扰。 首先温度传感器把温度信号转换为电流信号,通过放大器变成电压信号,然后送入两个反向输入的运算放大器组成的比较器电路,让电位器来改变温度范围的取值,最后信号送入比较器电路,通过比较来判断控制电路是否需要工作。此方案是采用传统的模拟控制方法,选用模拟电路,用电位器设定给定值,反馈的温度值与给定的温度值比较后,决定是否加热。 关键词:温度传感器比较器继电器

温度控制器的工作原理

温度控制器的工作原理 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

温度控制器的工作原理 据了解,很多厂家在使用温度控制器的过程中,往往碰到惯性温度误差的问题,苦于无法解决,依靠手工调压来控制温度。创新,采用了PID模糊控制技术,较好地解决了惯性温度误差的问题。传统的温度控制器,是利用热电偶线在温度化变化的情况下,产生变化的电流作为控制信号,对电器元件作定点的开关控制器。电脑控制温度控制器:采用PID模糊控制技术 *用先进的数码技术通过Pvar、Ivar、Dvar(比例、积分、微分)三方面的结合调整形成一个模糊控制来解决惯性温度误差问题。 传统的温度控制器的电热元件一般以电热棒、发热圈为主,两者里面都用发热丝制成。发热丝通过电流加热时,通常达到1000℃以上,所以发热棒、发热圈内部温度都很高。一般进行温度控制的电器机械,其控制温度多在0-400℃之间,所以,传统的温度控制器进行温度控制期间,当被加热器件温度升高至设定温度时,温度控制器会发出信号停止加热。但这时发热棒或发热圈的内部温度会高于400℃,发热棒、发热圈还将会对被加热的器件进行加热,即使温度控制器发出信号停止加热,被加热器件的温度还往往继续上升几度,然后才开始下降。当下降到设定温度的下限时,温度控制器又开始发出加热的信号,开始加热,但发热丝要把温度传递到被加热器件需要一定的时候,这就要视乎发热丝与被加热器件之间的介质情况而定。通常开始重新加热时,温度继续下降几度。所以,传统的定点开关控制温度会有正负误差几度的现象,但这不是温度控制器本身的问题,而是整个热系统的结构性问题,使温度控制器控温产生一种惯性温度误差。 要解决温度控制器这个问题,采用PID模糊控制技术,是明智的选择。PID模糊控制,是针对以上的情况而制定的、新的温度控制方案,用先进的数码技术通过Pvar、

温控器的分类【大全】

温控器的分类 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理! 更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 以温控器制造原理来分,温控器分为: 一.突跳式温控器:各种突跳式温控器的型号统称KSD,常见的如KSD301,KSD302等,该温控器是双金属片温控器的新型产品,主要作为各种电热产品具过热保护时,通常与热熔断器串接使用,突跳式温控器作为一级保护。热熔断器则在突跳式温控器失娄或失效导致电热元件超温时,作为二级保护自,有效地防止烧坏电热元件以及由此而引起的火灾事故。 二,液涨式温控器:是当被控制对象的温度发生变化时使温控器感温部内的物质(一般是液体)产生相应的热胀冷缩的物理现象(体积变化),与感温部连通一起的膜盒产生膨胀或收缩。以杠杆原理,带动开关通断动作,达到恒温目的液胀式温控器具有控温准确,稳定可靠,开停温差小,控制温控调节范围大,过载电流大等性能特点。液涨式温控器主要用于家电行业,电热设备,制冷行业等温度控制场合用。 三,压力式温控器,改温控器通过密闭的内充感温工质的温包和毛细管,把被控温度的变化转变为空间压力或容积的变化,达到温度设定值时,通过弹性元件和快速瞬动机构,自动关闭触头,以达到自动控制温度的目的。它由感温部、温度设定主体部、执行开闭的微动开关或自动风门等三部分组成。压力式温控器适用于制冷器具(如电冰箱冰柜等)和制热器等场合。以上几种是常见的机械式温控器。 四,电子式温控器,电子式温度控制器(电阻式)是采用电阻感温的方法来测量的,一般采用白金丝、铜丝、钨丝以及热敏电阻等作为测温电阻,这些电阻各有其优确点。一般家用空调

温度控制器的设计与制作共13页

温度控制器的设计与制作 一、功能要求 设计并制作一个温度控制器,用于自动接通或断开室内的电加热设备,从而使室内温度达到设定温度要求,并能实时显示室内温度。当室内温度大于等于设定温度时,控制器断 ?时,控制器接通电加热设备。 开电加热设备;当室内温度比设定温度小2C 控温范围:0~51C? 控温精度:≤1C? 二、硬件系统设计 1.硬件系统由七部分组成,即单片机及看门狗电路、温度检测电路、控制输出电路、键盘电路、显示电路、设置温度储存电路及电源电路。 (1)单片机及看门狗电路 根据设计所需的单片机的内部资源(程序存储器的容量、数据存储器的容量及I/O口数量),选择AT89C51-24PC较合适。为了防止程序跑飞,导致温度失控,进而引起可怕的后果,本设计加入了硬件看门狗电路IMP813L,如果它的WDI脚不处于浮空状态,在1.6秒内WDI不被触发(即没有检测到上什沿或下降沿),就说明程序已经跑飞,看门狗输出端WDO将输出低电平到手动复位端,使复位输出端RST发出复位信号,使单片机可靠复位,即程序重新开始执行。(注:如果选用AT89S51,由于其内部已具有看门狗电路,就不需外加IMP813L) (2)温度检测电路 温度传感器采用AD590,它实际上是一个与绝对温度成正比的电流源,它的工作电压为4~30V,感测的温度范围为-550C~+1500C,具有良好的线性输出,其输出电流与温度成正比,即1μA/K。因此在00C时的输出电流为273.2μA,在1000C时输出电流为373.2μA。温度传感器将温度的变化转变为电流信号,通过电阻后转变电压信号,经过运算放大器JRC4558运算处理,处理后得到的模拟电压信号传输给A/D转换部分。A/D转换器选用ADC0804,它是用CMOS集成工艺制成的逐次逼近型模数转换芯片,分辨率8位,转换时间100μs,基准电压0~5V,输入模拟电压0~5V。 (3)控制输出电路 控制信号由单片机的P1.4引脚输出,经过光耦TLP521-1隔离后,经三极管C8550直接驱动继电器WJ108-1C-05VDC,如果所接的电加热设备的功率≤2KW,则可利用继电器的常开触点直接控制加热设备,如果加热设备的功率>2KW,可以继电器控制接触器,由接触器直接控制加热设备。 (4)键盘电路 键盘共有四个按键,分别是S1(设置)、S2(+)、S3(-)、S4(储存)。通过键盘来设置室内应达到的温度,键盘采用中断方式控制。 (5)显示电路 显示电路由两位E10501_AR数码管组成,由两片74LS164驱动,实现静态显示,74LS164所需的串行数据和时钟由单片机的P3.0和P3.1提供。对于学过“串行口”知识的班级,实习时,可以采用串行口工作于方式0,即同步移位寄存器的输出方式,通过串行口输出显示数据(实时温度值或设置温度值);对于没学过“串行口”知识的班级,实习时,可以采用模拟串行口的输出方式,实现显示数据的串行输出。 (6)设置温度存储电路 为了防止设定温度在电源断电后丢失,此设计加入了储存电路,储存器选用具有I2C总线功能的AT24C01或FM24C01均可。每次通过键盘设置的室内设定温度都通过储存器储存起来,即使是电源断电,储存器存储的设定温度也不丢失,在电源来电后,单片机自动将设

温度控制器的工作原理

温度控制器的工作原理文件编码(GHTU-UITID-GGBKT-POIU-WUUI-8968)

温度控制器的工作原理 据了解,很多厂家在使用温度控制器的过程中,往往碰到惯性温度误差的问题,苦于无法解决,依靠手工调压来控制温度。创新,采用了PID模糊控制技术,较好地解决了惯性温度误差的问题。传统的温度控制器,是利用热电偶线在温度化变化的情况下,产生变化的电流作为控制信号,对电器元件作定点的开关控制器。电脑控制温度控制器:采用PID 模糊控制技术 *用先进的数码技术通过Pvar、Ivar、Dvar(比例、积分、微分)三方面的结合调整形成一个模糊控制来解决惯性温度误差问题。 传统的温度控制器的电热元件一般以电热棒、发热圈为主,两者里面都用发热丝制成。发热丝通过电流加热时,通常达到1000℃以上,所以发热棒、发热圈内部温度都很高。一般进行温度控制的电器机械,其控制温度多在0-400℃之间,所以,传统的温度控制器进行温度控制期间,当被加热器件温度升高至设定温度时,温度控制器会发出信号停止加热。但这时发热棒或发热圈的内部温度会高于400℃,发热棒、发热圈还将会对被加热的器件进行加热,即使温度控制器发出信号停止加热,被加热器件的温度还往往继续上升几度,然后才开始下降。当下降到设定温度的下限时,温度控制器又开始发出加热的信号,开始加热,但发热丝要把温度传递到被加热器件需要一定的时候,这就要视乎发热丝与被加热器件之间的介质情况而定。通常开始重新加热时,温度继续下降几度。所以,传统的定点开关控制温度会有正负误差几度的现象,但这不是温度控制器本身的问题,而是整个热系统的结构性问题,使温度控制器控温产生一种惯性温度误差。 要解决温度控制器这个问题,采用PID模糊控制技术,是明智的选择。PID模糊控制,是针对以上的情况而制定的、新的温度控制方案,用先进的数码技术通过Pvar、Ivar、Dvar 三方面的结合调整,形成一个模糊控制,来解决惯性温度误差问题。然而,在很多情况下,由于传统的温度控制器温控方式存在较大的惯性温度误差,往往在要求精确的温控

智能温度控制器

DS18B20智能温度控制器 DALLAS最新单线数字温度传感器DS18B20简介新的“一线器件”体积更小、适用电压更宽、更经济Dallas 半导体公司的数字化温度传感器DS1820是世界上第一片支持“一线总线”接口的温度传感器。一线总线独特而且经济的特点,使用户可轻松地组建传感器网络,为测量系统的构建引入全新概念。DS18B20、DS1822 “一线总线”数字化温度传感器同DS1820一样,DS18B20也支持“一线总线”接口,测量温度范围为-55°C~+125°C,在-10~+85°C范围内,精度为±0.5°C。DS1822的精度较差为±2°C 。现场温度直接以“一线总线”的数字方式传输,大大提高了系统的抗干扰性。适合于恶劣环境的现场温度测量,如:环境控制、设备或过程控制、测温类消费电子产品等。与前一代产品不同,新的产品支持3V~5.5V的电压范围,使系统设计更灵活、方便。而且新一代产品更便宜,体积更小。DS18B20、DS1822 的特性DS18B20可以程序设定9~12位的分辨率,精度为±0.5°C。可选更小的封装方式,更宽的电压适用范围。分辨率设定,及用户设定的报警温度存储在EEPROM中,掉电后依然保存。DS18B20的性能是新一代产品中最好的!性能价格比也非常出色!DS1822与DS18B20软件兼容,是DS18B20的简化版本。省略了存储用户定义报警温度、分辨率参数的EEPROM,精度降低为±2°C,适用于对性能要求不高,成本控制严格的应用,是经济型产品。继“一线总线”的早期产品后,DS1820开辟了温度传感器技术的新概念。DS18B20和DS1822使电压、特性及封装有更多的选择,让我们可以构建适合自己的经济的测温系统。 DS18B20的内部结构 DS18B20内部结构主要由四部分组成:64位光刻ROM、温度传感器、非挥发的温度报警触发器TH和TL、配置寄存器。DS18B20的管脚排列如下: DQ为数字信号输入/输出端;GND为电源地;VDD为外接供电电源输入端(在寄生电源接线方式时接地)。 光刻ROM中的64位序列号是出厂前被光刻好的,它可以看作是该DS18B20的地址序列码。64位光刻ROM的排列是:开始8位(28H)是产品类型标号,接着的48位是该DS18B20自身的序列号,最后8位是前面56位的循环冗余校验码(CRC=X8+X5+X4+1)。光刻ROM 的作用是使每一个DS18B20都各不相同,这样就可以实现一根总线上挂接多个DS18B20的目的。 DS18B20中的温度传感器可完成对温度的测量,以12位转化为例:用16位符号扩展的二进制补码读数形式提供,以0.0625℃/LSB形式表达,其中S为符号位。 这是12位转化后得到的12位数据,存储在18B20的两个8比特的RAM中,二进制中的前面5位是符号位,如果测得的温度大于0,这5位为0,只要将测到的数值乘于0.0625即可得到实际温度;如果温度小于0,这5位为1,测到的数值需要取反加1再乘于0.0625即可得到实际温度。

控制器三种类型简介

因此平均时间是不同的。在大部分比例控制器中,循环时间和/或比例带是可调的,以便控制器可以更好地与特定过程匹配。除机电和固态继电器输出之外,比例控制器也可用于比例模拟输出,例如4 ~ 20 mA 或0 ~ 5 Vdc 。通过这些输出,实际输出级别是不同的,而不仅仅是打开和关闭时间,如同使用继电器输出控制器。比例控制的一大优点是操作简便。它可能会需要操作员进 行少量调整(手动复位)以便在初始启动时设置设定值温 度,或在过程条件发生显著变化时进行调整。易发生大范围温度循环的系统也需要使用比例控制器。要根据所需的过程和精度来确定需要简单的比例控制,还是 需要具有PID 的比例控制。滞后时间长且最大上升率大的过程(例如热交换器)需要大范围的比例带才能消除振荡。大范围的比例带可能会导致随负载的变化产生大的偏移。要消除这些偏移,可使用自动复位(积分)。微分(速率)操作可用于长时间延迟 的过程中,加快过程干扰后的恢复速度。PID 控制器 第三种控制器(PID 控制器)可为比例控制器提供积分和微 分控制。该控制器将比例控制与其他两项调整结合在一起,可帮助设备自动补偿系统中的变化。这些调整(积分和微分)以基于时间的单位表示;也可以通过其倒数(分别为 RESET 和RA TE )表示。比例、积分和微分条件必须使用尝试误差法对特定系统单独进行调整或“整定”。三种类型的控制器中,PID 控制器 可提供最准确、最稳定的控制,并且最适合用于具有相对较小质量的系统,这些系统可对添加到过程中的能量变化做出快速反应。在负载经常变化并期望控制器能因设定值、提供的能量或要控制的质量的频繁变化而自动进行补偿的系统中,建议使用PID 控制器。选择控制器时还要考虑其他特性。这些特性包括:自动整定或自整定,在这种情况下仪器将自动计算适合于精密控制的比例带、比率值和复位值;串行通信,在这种情况下控制器可与主机“对话”,以进行数据存储、分析和整定; 警报,警报可以是闭锁式(手动复位)或非闭锁式(自动复位),可设置警报以在流程温度偏高或偏低时触发,也 可在察觉到与设定值发生偏离时触发;定时器/事件指示 器,可用于标记经过的时间或事件的结束/开始。此外,继电器或可控硅触发输出控制器可与外部开关(例如SSR 固态继电器或磁性接触器)配合使用,以切换高达75 A 的大负载。有三种基本类型的控制器:开关控制器、比例控制器和PID 控制器。根据要控制的系统,操作员将能够使用一种类型或其他类型的控制器来控制过程。开关控制器 开关控制器是最简单的一种温度控制设备。该设备的输出只有“开”和“关”两种状态,没有任何中间状态。仅当温度超过设定值时,开关控制器才会切换输出。对于加热控制,当温度低于设定值时输出为“开”,高于设定值时输出为“关”。由于温度超过设定值才会更改输出状态,因此过程温度将会不断循环,从低于设定值变为高于设定值,然后再回到设定 值以下。如果这种循环快速发生,则为防止损坏接触器和 阀,在控制器操作过程中添加了开关差分或“滞后”。这种差分需要温度超过设定值一定的度数后才会再次关闭或打 开。如果在设定值上下非常快地循环,则开关差分可防止输出“反复不断”地切换或快速切换。开关控制通常在不需要精确控制的情况下使用,在无法处理频繁打开和关闭能源的系统中使用,以及在系统非常大,温度变化极其缓慢的情况下使用,或者用于进行温度警报。 开关控制用于警报的一个特殊类型是限制控制器。该控制器使用必须手动复位的闭锁继电器,并且用于在达到特定温度后结束某个过程。 比例控制器 比例控制专用于消除与开关控制关联的循环。比例控制器可在温度接近设定值时减少对加热器的平均电量供应。这能够减慢加热器加热,以便温度不会超过设定值,但会接近设定值并维持在一个稳定的温度。这种比例控制操作可通过在短时间间隔内打开和关闭输出来实现。这种“时间比例控 制”通过“打开”时间和“关闭”时间的比率变化来控制温度。比例控制操作在设定值温度附近的“比例带” 范围内发生。超出这个比例带,该控制器用作开关控制器,输出状态为全开(比例带以下)或全关(比例带以上)。但是,在这个比例带范围内时,根据离设定值的测量差的比率确定输出状态是打开还是关闭。在设定值处(比例带的中点),输出的开:关比率为1:1;也就是说,打开时间和关闭时间是相等的。如果温度离设定值较远,则打开时间和关闭时间会因温度差比例的不同而有所不同。如果温度低于设定值,则打开的时间更长;如果温度太高,则关闭的时间更长。比例带通常表示为全比例的百分比或度数。也可以被称为增益,增益是比例带的倒数。请注意,在时间比例控制过程中,加热器要应用全功率,但在打开和关闭之间循环,

温度控制器的工作原理

温度控制器的工作原理 控制温度控制器原理 据了解,很多厂家在使用温度控制器的过程中,往往碰到惯性温度误差的问题,苦于无法解决,依靠手工调压来控制温度。创新,采用了PID 模糊控制技术,较好地解决了惯性温度误差的问题。传统的温度控制器,是利用热电偶线在温度化变化的情况下,产生变化的电流作为控制信号,对电器元件作定点的开关控制器。电脑控制温度控制器:采用PID 模糊控制技术 *用先进的数码技术通过Pvar、Ivar、Dvar(比例、积分、微分)三方面的结合调整形成一个模糊控制来解决惯性温度误差问题。传统的温度控制器的电热元件一般以电热棒、发热圈为主,两者里面都用发热丝制成。发热丝通过电流加热时,通常达到1000℃以上,所以发热棒、发热圈内部温度都很高。一般进行温度控制的电器机械,其控制温度多在0-400℃之间,所以,传统的温度控制器进行温度控制期间,当被加热器件温度升高至设定温度时,温度控制器会发出信号停止加热。但这时发热棒或发热圈的内部温度会高于400℃,发热棒、发热圈还将会对被加热的器件进行加热,即使温度控制器发出信号停止加热,被加热器件的温度还往往继续上升几度,然后才开始下降。当下降到设定温度的下限时,温度控制器又开始发出加热的信号,开始加热,但发热丝要把温度传递到被加热器件需要一定的时候,这就要视乎发热丝与被加热器件之间的介质情况而定。通常开始重新加热时,温度继续下降几度。所以,传统的定点开关控制温度会有正负误差几度的现象,但这

不是温度控制器本身的问题,而是整个热系统的结构性问题,使温度控制器控温产生一种惯性温度误差。 要解决温度控制器这个问题,采用PID模糊控制技术,是明智的选择。PID模糊控制,是针对以上的情况而制定的、新的温度控制方案,用先进的数码技术通过Pvar、Ivar、Dvar三方面的结合调整,形成一个模糊控制,来解决惯性温度误差问题。然而,在很多情况下,由于传统的温度控制器温控方式存在较大的惯性温度误差,往往在要求精确的温控时,很多人会放弃自动控制而采用调压器来代替温度控制器。当然,在电压稳定工作的速度不变、外界气温不变和空气流动速度不变的情况下,这样做是完全可以的,但要清楚地知道,以上的环境因素是不断改变的,同时,用调压器来代替温度控制器时,必须在很大程度上靠人力调节,随着工作环境的变化而用人手调好所需温度的度数,然后靠相对稳定的电压来通电加热,勉强运作,但这决不是自动控温。当需要控温的关键很多时,就会手忙脚乱。这样,调压器就派不上用场,因为靠人手不能同时调节那么多需要温控的关键,只有采用PID模糊控制技术,才能解决这个问题,使操作得心应手,运行畅顺。例如烫金机,其温度要求比较稳定,通常在正负2℃以内才能较好运作。高速烫金机烫制同一种产品图案时,随着速度加快,加热速度也要相应提高。这时,传统的温度控制器方式和采用调压器操作就不能胜任,产品的质量就不能保证,因为烫金之前必须要把烫金机的运转速度调节适当,用速度来迁就温度控制器和调压器的弱点。但是,如果采用PID模糊控制的温度控

智能温度控制器方案

智能温湿度控制器硬件总体方案 注:(参考大部分电器生产厂家温湿度控制器与干式变压器温度控制器比较,发现两者使用的范围和环境完全不同,一般的温湿度控制器温度测量及控制范围都0oC -50oC之间,而干变式温度控制器温度的测量范围0oC -200oC,而控制温度在100oC以上,控制器的长期工作温度在85oC以上,而在这总情况下一般的湿度传感器已经超出正常工作温度范围,所以在干式变压器中并不适用。这里湿度部分主要是为以后温湿度控制器设计而准备,可以设计电路部分,但保留为以后做准备,这里设计方案主要用于干式变压器温度控制器)。 1、智能温湿度控制器硬件组成 智能温湿度控制器需要采集温度和湿度两个部分,这里我们以各3路来说明,即3路温度采集,3路湿度采集,通过内部分析计算,来显示各路的温度、湿度数值,另外还需要配置一定的输出接口。如RS485、开关量输出(主要用于输出报警、跳闸、风机、故障)等。以组成温湿度监测系统。 1.1硬件组成原理 根据温湿度控制器功能,选择“A/D转换芯片+微处理器(带捕捉功能)”来实现(注:对于现在大多数AD采样功能都是内置的,捕捉功能是在湿度传感器中使用的,一般的湿度传感器都是电容式的,通过555振荡电路将其转换为频率信号,再通过CCP功能检测频率)。如图1-1所示为系统硬件原理图。 图1-1 智能温湿度控制器硬件组成原理图 1.2 硬件模块划分 根据硬件原理图,把硬件划分成模拟采样微处理部分、操作显示、模拟采样、开关量输出、电源、通信等几个部分。为了便于硬件的模块化开发,把各个模块设计为独立的硬件模块,而通过组装各个模块,来组成所需要的硬件系统。 控制器设计成3个印制板来制作,将电源、通信和开关两输出设计在同一块板子上,模拟采样和微处理部分设计在同一块板子上,在有就是将操作和显示部

速腾自动双温控空调操作 - 图文

速腾自动双温控空调操作- 图文 关于速腾空调的问题让你知根知底! 0手动控制风量大小1快速前挡风和侧挡风除霜2前挡风和侧挡风除霜,中控间接出风 3横向八个出风口出风(含扶手和手套箱出风口)4向下十个出风口出风5内循环6后挡风除霜 7自动模式开关(开启时自动控温,自动控制风量大小)8制冷开关(相当于ECON 的反向) (开启时制冷,关闭时风机空转,降低油耗)9空调开关(开启或关闭空调总成)10双区控制开关11-12温度调整开关 说明:汽车空调的确是分为制冷和制热两种功能,但是压缩机就只能制冷,而制热时靠发动机发热,依靠水箱循环,由风机将热风吹入车 内。压缩机工作的时候能发热,但不会制热。就算是家用的空调,制热也是靠电热丝发热,不是靠压缩机。试想,如果要压缩机制热,那过热的压缩机不是变成一个定时炸弹了,压缩机并没有像发动机那样有冷却系统,只是靠行驶中风吹冷却。一、你了解汽车自动空调吗? 汽车空调主要功能包括4部分: 制冷制热通风除湿。 制冷系统原理: 汽车空调的制冷原理与家用空调原理基本相同,汽车空调的压缩机依靠汽车发动机的动力提供,汽车在怠速状态下打开空调制冷怠速会明显增大,油耗也会增加0.3-0.8升/H,油耗增加的大小与环境温度有最直接的关系,环境温度高制冷剂膨胀的压力大,发动机驱动空调的消耗也相应加大,环境温度低油耗相应减少.汽车空调压缩机基本都采用定频式,没有功率调节,就是只要打开空调耗油量是固定的,与你调节空调温度没有关系,温度调节高出风温度相应提高,是因为空调系统里面的热水部分风阀打开,在制冷的同时送热风进来,中和冷气以得到所需要的舒适温度.

制热系统原理:汽车空调制热与压缩机没有丝毫关系,制热的热源不是空调本身获取的,是由汽车的散热水箱提供,早晨在热车前空调吹出来的是冷风,待热车后空调热风源源不断的送出来,制热本身基本没有能量消耗,是利用汽车的余热完成的. 通风: 通风分为内循环和外循环, 使用内循环时车内空气基本不与外界交流,使用外循环时位于引擎盖下的新风口会将外界的空气源源不断的送进来,以保持车内空气的清新. 除湿:空调制冷的过程就是除湿的过程,从制冷时产生的大量冷凝水就可以看出来了,在湿度较大的阴雨天气或是温差太大的时候车内的玻璃上容易起雾,打开空调驱雾就是一个除湿的过程. 二、如何正确的使用汽车空调? 1、在制冷的状态下应该将温度调制最低,风量开到2或2挡挡以上,如果感觉冷,将温度相应调高一点,不应该将风速降到最低,因为温度调最低风速调最低长时间驾驶容易造成蒸发器冷量散发不了蒸发器内结冰块和风速低温差大而在风口处结露水,容易滋生细菌和异味。 2、在制热的状态下根据自己的舒适度调整空调温度,在空调打开的情况下应该让AC 键处于关闭状态,(ECON键开启时空调压缩机强制关闭,如果不关闭此键压缩机会一直工作,造成不必要的能源与动力消耗) 3、通风:空调系统的通风正常在制冷或制热的状态下使用,但外循环即新风功能要长期使用,在行车的过程中车内不循环会造成缺氧容易犯困并不利于健康,特别新车内含有的杂质对身体健康不利,在遇到灰尘的时候很多人习惯马上关闭外循环,其实少量灰尘并不影响车内空气,车辆成厂保养的时候前面有个空调滤清,起功能就是过滤掉吹如车内空气中的杂质。 4、除湿:在遇到车窗起雾的时候打开空调挑至吹玻璃状态,雾气很快散去。 强调:空调处于关闭状态的时候风口总是出热风出来,其原因是虽然空调关闭,但温度如果不是调整在最低状态,此刻热风阀处开启状 态,当车辆行驶过程中因为自然吹进来的新风部分通过暖风道造成出热风,在关闭空调前将温度调整到最低再关闭,就不会吹出热风了,可以继续使用外循环功能,冷天行车可以根据自身需要调整高温度再关闭空调,这样就可以享用自然的热风了。 三、只开空调开关,关闭其他所有控制时,中间两出风口控制应用当只打开空调开关,温度设定高于室外温度时,前风挡下出风口风量大,但正面两个出风口风量特别小;逐渐调整温度低于室外温度时,空调自动关闭前风挡出风口,横向出风口风量增加。四、

温度控制器的工作原理

精心整理温度控制器的工作原理 据了解,很多厂家在使用温度控制器的过程中,往往碰到惯性温度误差的问题,苦于无法解决,依靠手工调压来控制温度。创新,采用了PID模糊控制技术,较好地解决了惯性温度误差的问题。传统的温度控制器,是利用热电偶线在温度化变化的情况下,产生变化的电流作为控制信号,对电器元件作定点的开关控制器。电脑控制温度控制器:采用PID模糊控制技术*用先进的数码技术通过Pvar、Ivar、Dvar (比例、积分、微分)三方面的结合调整形成一个模糊控制来解决惯性温度误差问题。 传统的温度控制器的电热元件一般以电热棒、发热圈为主,两者里面都用发热丝制成。发热丝通过电流加热时,通常达到1000℃以上,所以发热棒、发热圈内部温度都很高。一般进行温度控制的电器机械,其控制温度多在0-400℃之间,所以,传统的温度控制器进行温度控制期间,当被加热器件温度升高至设定温度时,温度控制器会发出信号停止加热。但这时发热棒或发热圈的内部温度会高于400℃,发热棒、发热圈还将会对被加热的器件进行加热,即使温度控制器发出信号停止加热,被加热器件的温度还往往继续上升几度,然后才开始下降。当下降到设定温度的下限时,温度控制器又开始发出加热的信号,开始加热,但发热丝要把温度传递到被加热器件需要一定的时候,这就要视乎发热丝与被加热器件之间的介质情况而定。通常开始重新加热时,温度继续下降几度。所以,传统的定点开关控制温度会有正负误差几度的现象,但这不是温度控制器本身的问题,而是整个热系统的结构性问题,使温度控制器控温产生一种惯性温度误差。

要解决温度控制器这个问题,采用PID模糊控制技术,是明智的选择。PID模糊控制,是针对以上的情况而制定的、新的温度控制方案,用先进的数码技术通过Pvar、Ivar、Dvar三方面的结合调整,形成一个模糊控制,来解决惯性温度误差问题。然而,在很多情况下,由于传统的温度控制器温控方式存在较大的惯性温度误差,往往在要求精确的温控时,很多人会放弃自动控制而采用调压器来代替温度控制器。当然,在电压稳定工作的速度不变、外界气温不变和空气流动速度不变的情况下,这样做是完全可以的,但要清楚地知道,以上的环境因素是不断改变的,同时,用调压器来代替温度控制器时,必须在很大程度上靠人力调节,随着工作环境的变化而用人手调好所需温度的度数,然后靠相对稳定的电压来通电加热,勉强运作,但这决不是自动控温。当需要控温的关键很多时,就会手忙脚乱。这样,调压器就派不上用场,因为靠人手不能同时调节那么多需要温控的关键,只有采用PID模糊控制技术,才能解决这个问题,使操作得心应手,运行畅顺。例如烫金机,其温度要求比较稳定,通常在正负2℃以内才能较好运作。高速烫金机烫制同一种产品图案时,随着速度加快,加热速度也要相应提高。这时,传统的温度控制器方式和采用调压器操作就不能胜任,产品的质量就不能保证,因为烫金之前必须要把烫金机的运转速度调节适当,用速度来迁就温度控制器和调压器的弱点。但是,如果采用PID模糊控制的温度控制器,就能解决以上的问题,因为PID中的P,即Pvar功率变量控制,能随着烫金机工作速度加快而加大功率输出的百分量。 有机械式的和电子式的, 机械式的采用两层热膨胀系数不同金属亚在一起,温度改变时,他的弯曲度会发生改变,当弯曲到某个程度是,接通(或断开)回路,使得制冷(或加热)设备工作。电子式的通过热电偶、铂电阻等温度传感装置,把温度信号变换成电信号,通过单片机、PLC等电路控制继电器使得加热(或制冷)设备工作(或停止)

自动水温水温度控制器

自动水温水温度控制器,数字显示可为小区提供洗浴用热水系统,保持恒定的温度供水,自动调节,不要人工操控。 一、自动水温水温度控制器,数字显示概述 智能型水温水位控制仪是本公司技术人员根据用户的实际需要,开发的一种新型控制装置,它是由恒温智能控制仪和液位智能控制仪两者组合而成,兼备了两者的优点,使水温及水位得到显示与控制,节水、节能,进一步增加了系统的安全性,在热媒不需回收的热水制备系统中,采用旋转式消声加热器为核心设备,配以水温水位控制仪,不失为一种较为合理的选择。 二、小区洗浴用水温水温度控制器型号编制 三、自动水温水位度控制器结构及工作原理 1、自动水温水温度控制器结构: 水温水位控制仪由温控器部分与水位控制部分组成,与其配套的还有电动阀前的减压装置,及用于加热的旋转式消声加热器。 2自动水温水温度控制器、原理: 容器内的水位传感器,将感受到的水位信号传送到控制器,控制器内的计算机将实测的水位信号与设定信号进行比较,得出偏差,然后根据偏差的性质,向给水电动阀发出“开”“关”的指令,保证容器达到设定水位。进水程序完成后,温控部份的计算机向供给热媒的电动阀发出“开”的指令,于是系统开始对容器内的水进行加热。到设定温度时。控制器才发出关阀的命令、切断热源,系统进入保温状态。程序编制过程中,确保系统在没有达到安全水位的情况下,控制热源的电动调节阀不开阀,从而避免了热量的损失与事故的发生。 3、自动水温水温度控制器特点: 1、节水、节能,使制备热水的成本大为降低。 2、编制较为科学的控制程序,保证了系统的安全。 3、数字显示直观明了,操作简单方便。 四、自动水温水温度控制器使用范例 (一)用于生活热水的制备

自动温度控制器工作原理

风机控制的工作原理一、总原理图 CBB Y 1 2 2 . 1 1 8 4 M C2 22 C1 22 S M L A 1 2 3 W D D S18b20 V CC V CC 1 2 3 4 5 6 7 8 9 R P A102*8 V CC B G 31*51 R6 330 G ND R 5 1 k V CC C3 10u/16V EA/VP 31 X1 19 X2 18 R ST 9 P37(RD) 17 P36(W R) 16 P32(IN T0) 12 P33(IN T1) 13 P34(T0) 14 P35(T1) 15 P10 1 P11 2 P12 3 P13 4 P14 5 P15 6 P16 7 P17 8 P00 39 P01 38 P02 37 P03 36 P04 35 P05 34 P06 33 P07 32 P20 21 P21 22 P22 23 P23 24 P24 25 P25 26 P26 27 P27 28 PS EN 29 A LE/P 30 P31(TX D) 11 P30(RX D) 10 G ND 20 V CC 40 IC2 89S52 V CC C4 104/400V R9 10k R10 5 1 1 2 46 3 5 IC1 3022 1 2 3 4 PO W E R 1 2 3Q4 B TA10 K2FA N K1O N/O FF K3U P K4D OW N V CC C5 100u/16V V CC In 1 O u t 3 2 IC3 78L05 C6 220u/16V C8 104 C7 104 D3 4007 D2 4007 R4 5k1 R3 5 k 1 G ND R2 5 k 1 2 1 3 Q1 8050 D4 4007 D1 4007 G ND V CC D5 4007 a b f c g d e 1 1 7 4 2 1 1 5 a b c d e f g 3 d p d p 1 2 9 8 6 S 4 S 3 S 2 S 1 X S a b c d e f f g g h h a a b b c c d d e R 8 5 . 1 K R 1 1 k R7 330

太阳能热水器自动温度控制器设计原理

太阳能热水器自动温度控制器设计原理 引言目前,市场上销售的太阳能热水器大多没有自动控制功能,使用起来 不灵活方便,为此,为太阳能热水器加装自动控制功能,具有广泛的市场。1 自动控制系统技术要求(1)设定温度的范围为25℃至65℃。(2)输入信号 为水温传感器产生的温度信号;水位传感器产生的水量信号。(3)输出信号 为控制水温电信号(控制加热电热管)和控制水流量调节阀信号(控制加水 电磁阀)。(4)配有输入功能键盘:完成自动/手动、手动加水键、手动加热键、 温度设定键、水位档选择键。(5)具有两位LED 数码显示电路,显示温度设 定值、实际温度测量值,六个发光二极管指示六档水位 (10%、30%、50%、70%、90%、100%)。2 系统硬件设计及原理太阳能热 水器加装自动控制功能,主要是加装一个数据采集系统和一个电脑控制板。根 据太阳能热水器的技术要求及经济方面的考虑,我们选用89C51 单片机为核心 控制器,组成热水器温度控制系统。系统由89C51 单片机、数据采集系统、水 位选择电路、温度显示系统、水位指示系统、加水电磁阀控制电路、加热电热 管控制电路、报警讯响电路、复位电路、晶振电路、键盘电路组成。硬件系统 组成粗略框架如图1 所示。数据采集系统是非常重要的一部分,它通过水温传 感器和水位传感器分别采集水位、水温连续变化的模拟量信号,通过TLC0832 模数转换器,把模拟信号转换成数字信号,送到CPU89C51 中进行处理。温度 显示系统及水位指示系统如图2 ,显示电路用两个数码管显示温度,采用动态 显示方案,两个数码管为共阳型,两个三极管为PNP 型,7 个I/O 端口输出段 码,小数点不用,2 个I/O 端口输出位控制信号低电平有效,显示温度设定值、 实际温度测量值。用六个发光二极管作为六档水位指示 (10%、30%、50%、70%、90%、100%),由89C51 直接驱动。水位选择电路、

相关主题
文本预览
相关文档 最新文档