当前位置:文档之家› 动态规划入门(论文)

动态规划入门(论文)

动态规划入门(论文)
动态规划入门(论文)

动态规划思想入门

作者:陈喻(2008年10月7日)关键字:动态规划,最优子结构,记忆化搜索

引言

动态规划(dynamic programming)是运筹学的一个分支,是求解决策过程(decisionprocess)最优化的数学方法。20世纪50年代初美国数学家R.E.Bellman等人在研究多阶段决策过程(multistep decision process)的优化问题时,提出了著名的最优化原理(principle of optimality),把多阶段过程转化为一系列单阶段问题,逐个求解,创立了解决这类过程优化问题的新方法——动态规划。1957年出版了他的名著Dynamic Programming,这是该领域的第一本著作。

动态规划问世以来,在经济管理、生产调度、工程技术和最优控制等方面得到了广泛的应用。例如最短路线、库存管理、资源分配、设备更新、排序、装载等问题,用动态规划方法比用其它方法求解更为方便。

虽然动态规划主要用于求解以时间划分阶段的动态过程的优化问题,但是一些与时间无关的静态规划(如线性规划、非线性规划),只要人为地引进时间因素,把它视为多阶段决策过程,也可以用动态规划方法方便地求解。

动态规划的基本思想

动态规划是:将待求的问题分解成若干个相互联系的子问题,先求解子问题,然后从这些子问题的解得到原问题的解;对于重复出现的子问题,只在第一次遇到的时候对它直接求解,并把答案保存起来,让以后再次遇到是直接引用答案,不必从新求解,其实质是分治思想和解决冗余。

例1:求A—>B的最短路径

图1

这是一个利用动态规划思想的经典问题,通过直接观察图1我们可以枚举出20多条路径,并可以计算出其中最短的路径长度为16

用动态规划的思想来分析,我们可以把这个问题转换成下面这个模型

图2

阶段:根据问题的特点和需要,将问题按时间或空间特征分解为若干相互联系的阶段。在本例中,我们根据空间特性将问题分成了6个阶段。

状态: 各阶段的开始条件,本例中,A,B,C ……P 这些节点都属于状态,表示从该点到B 的最短路径,在这里我们计做S(i),表示从第i 个节点(状态)到B 的最短路径

决策:某阶段状态确定后,从该状态到下阶段某状态的选择。比如S(A),它可以选择通过C 到达B ,也可以选择通过D 到达B 。

状态转移方程:系统由某阶段的一个状态转变到下一阶段的另一状态称状态转移,体现转移规律的方程称状态转移方程。在本例中,我们不难推出

S(A)=MIN{S(C)+4,S(D)+3},S(C)=MIN{S(E)+5,S(F)+3}…………S(B)=0,由此我们可以得出状态转移方程S(i)=MIN{S(j)+Vij}(j 为与i 相邻接的节点,Vij 表示邻接

节点i,j之间的距离)。

一个动态规划模型应该满足以下几个性质:

1.最优子结构性质

最优子结构可这样阐述:一个最优化策略具有这样的性质,不论过去状态和决策如何,对前面的决策所形成的状态而言,余下的诸决策必须构成最优策略。简而言之,一个最优化策略的子策略总是最优的。例如在图2的模型中,S(A)是A到B的最短路径(最优策略),而它所依赖的S(C)和S(D)作为S(A)的子策略分别是C到B的最短路径和D到B的最短路径,也是最优的。因此根据最优子结构性质我们得出了上面的状态转移方程。

证明:如图2设路线W1={(A,C),(C,F),(F,J)}

W2={(J,M),(M,O),(O,B)}

若路线W1和W2是A到B的最优路径,则根据最优化原理,路线W2必是从J 到B的最优路线。用反证法证明:假设有另一路径W2'是J到B的最优路径,则A到B的路线取W1和W2'比W1和W2更优,矛盾。从而证明W2'必是J 到B的最优路径W2。

最优子结构性质是动态规划的基础,任何问题,如果失去了最优子结构性质的支持,就不可能用动态规划方法计算。根据最优子结构性质导出的动态规划状态转移方程是解决一切动态规划问题的基本方法。

可以看出,图2的模型是满足最优子结构性质的。

2.子问题重叠性质

在我们根据状态转移方程用递归算法自顶向下对问题进行求解时,每次产生的子问题并不总是新的,而且某些子问题会被重复计算多次,比如,在求S(C)时需要递归求出S(F)的值,而在求S(D)时也需要递归求出S(F)的值,因此整个求解过程中S(F)的值会被求解两次,如果我们能把这多余的一次重复计算剔除,将可以最大程度的提高程序执行效率;动态规划正是利用了这种子问题的重叠性质,对每个子问题只计算一次,然后将其结果保存在一个表格中,当再次需要计算已经计算过的子问题时,只是在表格中简单的查询一下结果,从而获得较高的解题效率,这个方法就是我们常说的记忆化搜索。因此,如果我们把第

一次求解出的S(F)的值用一种数据结构保存下来,下次再用到S(F)时,我

们直接去查,这样能使程序的时间和空间效率将会大大提高。。

下面通过对具体实例的分析,帮助大家领会动态规划的这两个性质和动态规划的算法设计思想

例:导弹拦截

某国为了防御敌国的导弹袭击,发展出一种导弹拦截系统.但是这种导弹拦截系

统有一个缺陷:虽然它的第一发炮弹能够到达任意的高度,但是以后每一发炮弹

都不能高于前一发的高度.某天,雷达捕捉到敌国的导弹来袭.由于该系统还在试

用阶段,所以只有一套系统,因此有可能不能拦截所有的导弹.

输入导弹依次飞来的高度(雷达给出的高度数据是不大于30000 的正整数),计

算这套系统最多能拦截多少导弹,并依次输出被拦截的导弹飞来时候的高度.

样例:

INPUT

389 207 155 300 299 170 158 65

OUTPUT

6 (最多能拦截的导弹数)

389 300 299 170 158 65

分析: 因为只有一套导弹拦截系统,并且这套系统除了第一发炮弹能到达任意高

度外,以后的每一发炮弹都不能高于前一发炮弹的高度;所以,被拦截的导弹应该

按飞来的高度组成一个非递增序列.题目要求我们计算这套系统最多能拦截的导

弹数,并依次输出被拦截导弹的高度,实际上就是要求我们在导弹依次飞来的高

度序列中寻找一个最长非递增子序列.

解决思路:设X={x 1 ,x 2 ,…,x n } 为依次飞来的导弹序列, Y={y 1 ,y

2 ,…,y k } 为问题的最优解(即X 的最长非递增子序列), s 为问题的状态(表

示导弹拦截系统当前发送炮弹能够到达的最大高度,初值为s=∞——第一发

炮弹能够到达任意的高度).如果y 1 =x 1 ,即飞来的第一枚导弹被成功拦截.那么,根据题意"每一发炮弹都不能高于前一发的高度",问题的状态将由s=∞ 变

成s≤x 1 ( x 1 为第一枚导弹的高度);在当前状态下,序列Y 1 ={y 2 ,…,y k } 也应该是序列X 1 ={x 2 ,…,x n } 的最长非递增子序列(用反证法很容易证明).也就是说,在当前状态s≤x 1 下,问题的最优解Y 所包含的子问题(序列

X 1 )的解(序列Y 1 )也是最优的.这就是拦截导弹问题的最优子结构性质.

根据最优子结构性质推出状态转移方程:设 D(i) 为第 i 枚导弹被拦截之后,这套系统最多还能拦截的导弹数(包含被拦截的第 i 枚).我们可以设想,当系统拦截了第 k 枚导弹 x k ,而 x k 又是序列 X={xk ,…,xn } 中的最小值,即第 k 枚导弹之后飞来的导弹高度都比它高,则有 D(k)=1 ;当系统拦截了最后一枚导弹 x n ,那么,系统最多也只能拦截这一枚导弹了,即 D(n)=1 ;其它情况下,也应该有 D(i)≥1 .根据以上分析,可归纳出问题的动态规划递归方程为:

假设系统最多能拦截的导弹数为 dmax (即问题的最优值),则

dmax ( i 为被系统拦截的第一枚导弹的顺序号)

所以,要计算问题的最优值 dmax ,需要分别计算出 D(1) , D(2) ,…… D(n) 的值,然后将它们进行比较,找出其中的最大值.即:dmax=max{D(i)}(1<=i 且i<=n)

分析子问题重叠,解决冗余

根据上面分析出来的递归方程,我们完全可以设计一个递归函数,采用自顶向下的方法计算 D(i) 的值.然后,对 i 从 1 到 n 分别调用这个递归函数,就可以计算出 D(1) , D(2) ,…… D(n) .程序如下:

int D(int i)

{

int j,max=0;

if((i==n)||(min(x,i,n)==x[i]))

//min(x,i,n) 返回数组x 在下标i —n 之间的最小值

return 1;

else

{

D(i)=

1 (i=n 或者xi=min{xi ……Xn})

Max{D(j)+1} (j>i 且j<=n 且xj<=xi)

for(j=i+1;j<=n;j++)

if(x[j]<=x[i])

if(D(j)+1>max)

max=D(j)+1;

return max;

}

}

从这个程序的递归模型中可以看出,会有大量的子问题被重复计算.比如在调用递归函数计算D(1) 的时候,可能需要先计算D(5) 的值;之后在分别调用递归函数计算D(2) , D(3) , D(4) 的时候,都有可能需要先计算D(5) 的值.如此一来,在整个问题的求解过程中, D(5) 可能会被重复计算很多次,从而造成了冗余,降低了程序的效率.

其实,通过以上分析,我们已经知道: D(n)=1 .如果将n 作为阶段对问题进行划分,根据问题的动态规划递归方程,我们可以采用自底向上的方法依次计算出

D(n-1) , D(n-2) ,…… D(1) 的值.这样,每个D(i) 的值只计算一次,并在计算的同时把计算结果保存下来,程序如下:

void D()

{

int i,j;

for( i=1;i<=n;i++)

d(i)=1

for(i=n-1;i>=1;i--)

for(j=i+1;j<=n;j++)

if (x(j)<=x(i) && d(i)=d(j)+1>dmax)

{

dmax=d(i);

xh=i;

}

}

由此我们出了最大拦截数的第一枚导弹的顺序号xh,即d(xh)为问题的解从而避免了有些子问题被重复计算的情况发生,提高了程序的效率.

在实际应用中,许多问题的阶段划分并不明显,这时如果刻意地划分阶段反而麻烦。一般来说,只要该问题可以划分成规模更小的子问题,并且原问题的最优解中包含了子问题的最优解(即满足最优子化原理),则可以考虑用动态规划解决,也就是分治算法的思想。

例2:传球游戏(NOIP2008普及组第三题)

【问题描述】

上体育课的时候,小蛮的老师经常带着同学们一起做游戏。这次,老师带着同学们一起做传球游戏。

游戏规则是这样的:n个同学站成一个圆圈,其中的一个同学手里拿着一个球,当老师吹哨子时开始传球,每个同学可以把球传给自己左右的两个同学中的一个(左右任意),当老师再次吹哨子时,传球停止,此时,拿着球没传出去的那个同学就是败者,要给大家表演一个节目。

聪明的小蛮提出一个有趣的问题:有多少种不同的传球方法可以使得从小蛮手里开始传的球,传了m次以后,又回到小蛮手里。两种传球的方法被视作不同的方法,当且仅当这两种方法中,接到球的同学按接球顺序组成的序列是不同的。比如有3个同学1号、2号、3号,并假设小蛮为1号,球传了3次回到小蛮手里的方式有1->2->3->1和1->3->2->1,共2种。

【输入】

输入文件ball.in共一行,有两个用空格隔开的整数n,m(3<=n<=30,

1<=m<=30)。

【输出】

输出文件ball.out共一行,有一个整数,表示符合题意的方法数。

【输入输出样例】

ball.in

3 3

ball.out

2

【限制】

40%的数据满足:3<=n<=30,1<=m<=20

100%的数据满足:3<=n<=30,1<=m<=30

解决思路:给n个同学从1—n编号,设状态F[p,t]表示传了t次球后,球在p 手中,在剩下的m-t次传球中共有多少种方案到达1,由于在问题的求解中,球是从1号开始传,并最后回到1号,显然我们所求的目标状态就是是F[1,0]。由于球只能传递给左右的两个同学,也只能通过左右的两个同学传递给自己,如下图:

由此,我们分析出F[1,0]的解只与F[1,1]和F[n,1]有关,而F[1,1]和F[n,1]也是最优问题解,因此,该问题符合最优子结构性质。

根据最优性原理我们可以得到以下状态转移方程:

1 (t=m,p=1)

F(p,t)=

0 (t=m,p!=1)

F[R[p],t+1]+F[L[p],t+1] (1<=p<=n,0<=t

L[p]:p左边同学的编号

通过以上分析,根据状态转移方程,运用记忆化搜索策略,采用自顶向下的过程可递归求出F[1,0],程序如下:

#include

#include

#define maxn 31//最大人数,编号从1……n

#define maxm 30//最大传球次数

long f[maxn][maxm];//表示传了T次球以后球在P号手里,包括在剩下的M-T次传球中有多少种方法走到1

long m,n;

void find(long p,long t)

{

if(t==m)//传了M次球了

{

if(p==1)//传到了1

f[p][t]=1;

else//没传到1

f[p][t]=0;

return;

}

if(f[p][t]!=-1) return;//如果这个状态搜到过了,没必要再搜

f[p][t]=0;//标记该状态被搜过了

find(p%n+1,t+1);//搜把球传给P右边的同学的状态

f[p][t]+=f[p%n+1][t+1];

int p1=p-1;

if(p1==0)p1=n;

find(p1,t+1);//搜把球传给P左边的同学的状态

f[p][t]+=f[p1][t+1];

}

main()

{

int i,j;

//一开始所有状态都没到过

for(i=0;i

for(j=0;j

f[i][j]=-1;

scanf("%d%d",&n,&m);

find(1,0);

printf("%ld",f[1][0]);

}

代入数据测算

例:input:3 3

数据模型如下:

:可以从记忆数组中直接获取;

:需搜索记忆的状态;

由于采用了记忆化搜索,处于不同位置的相同状态不会被多次搜索,因此可以在O(m×n)的时间复杂度内完成任务,同样避免了子问题被重复计算的情况。

由此可知,动态规划法与分治法和贪心法类似,它们都是将问题实例归纳为更小的、相似的子问题,并通过求解子问题产生一个全局最优解。

贪心法:当前选择可能要依赖已经作出的所有选择,但不依赖于有待于做出的选择和子问题。因此贪心法自顶向下,一步一步地作出贪心选择;

分治法:各个子问题是独立的(即不包含公共的子子问题),因此一旦递归地求出各子问题的解后,便可自下而上地将子问题的解合并成问题的解。但不足的是,如果各子问题是不独立的,则分治法要做许多不必要的工作,重复地解公共的子问题。

动态规划:利用分治思想把问题划分成规模更小的子问题,并且原问题的最优解中包含了子问题的最优解;动态规划允许这些子问题不独立,(亦即各子问题可包含公共的子子问题)也允许其通过自身子问题的解作出选择,该方法对每一个子问题只解一次,并将结果保存起来,避免每次碰到时都要重复计算,从而解决解决冗余

因此,动态规划法所针对的问题有一个显著的特征,即它所对应的子问题树中的子问题呈现大量的重复。动态规划法的关键就在于,对于重复出现的子问题,只在第一次遇到时加以求解,并把答案保存起来,让以后再遇到时直接引用,不必重新求解。

总结:

任何思想方法都有一定的局限性,超出了特定条件,它就失去了作用。同样,动态规划也并不是万能的。适用动态规划的问题必须满足最优化子结构性质。

特点:

1.以长远利益为目标的一些列决策,一般用来求解最优的问题解

2.符合最优化原理,可归结为一个递推式

3.也成为多阶段规划,特点体现在多阶段性

动态规划算法实验

一、实验目的 (2) 二、实验内容 (2) 三、实验步骤 (3) 四.程序调试及运行结果分析 (5) 附录:程序清单(程序过长,可附主要部分) (7)

实验四动态规划算法的应用 一、实验目的 1.掌握动态规划算法的基本思想,包括最优子结构性质和基于表格的最优值计算方法。 2.熟练掌握分阶段的和递推的最优子结构分析方法。 3.学会利用动态规划算法解决实际问题。 二、实验内容 1.问题描述: 题目一:数塔问题 给定一个数塔,其存储形式为如下所示的下三角矩阵。在此数塔中,从顶部出发,在每一节点可以选择向下走还是向右走,一直走到底层。请找出一条路径,使路径上的数值和最大。 输入样例(数塔): 9 12 15 10 6 8 2 18 9 5 19 7 10 4 16 输出样例(最大路径和): 59 题目二:最长单调递增子序列问题(课本184页例28) 设有由n个不相同的整数组成的数列,记为:a(1)、a(2)、……、a(n)且a(i)<>a(j) (i<>j) 若存在i1

题目三 0-1背包问题 给定n种物品和一个背包。物品i的重量是wi,其价值为vi,背包的容量为c,。问应如何选择装入背包中的物品,使得装入背包中物品的总价值最大? 在选择装入背包的物品时,对每种物品只有两个选择:装入或不装入,且不能重复装入。输入数据的第一行分别为:背包的容量c,,物品的个数n。接下来的n 行表示n个物品的重量和价值。输出为最大的总价值。 输入样例: 20 3 11 9 9 10 7 5 输出样例 19 2.数据输入:个人设定,由键盘输入。 3.要求: 1)上述题目任选一做。上机前,完成程序代码的编写 2)独立完成实验及实验报告 三、实验步骤 1.理解算法思想和问题要求; 2.编程实现题目要求; 3.上机输入和调试自己所编的程序; 4.验证分析实验结果; 5.整理出实验报告。

动态规划

动态规划 一、背包问题 1、0/1背包[问题背景及描述] Bessie 正在减肥,所以她规定每天不能吃超过C (10 <= C <= 35,000)卡路里的食物。农民John 在戏弄她,在她面前放了B (1 <= B <= 21) 捅食物。每桶内都有某个单位卡路里(范围:1..35,000)的食物(不一定相同)。Bessie 没有自控能力,一旦她开始吃一个桶中的食物,她就一定把这桶食物全部吃完。Bessie 对于组合数学不大在行。请确定一个最优组合,使得可以得到最多的卡路里,并且总量不超过C。例如,总量上限是40卡路里,6 桶食物分别含有7, 13, 17, 19, 29, 和31卡路里的食物。Bessie可以吃7 + 31 = 38卡路里,但是可以获取得更多:7 + 13 + 19 = 39卡路里。没有更好的组合了。 [输入] 共两行。 第一行,两个用空格分开的整数:C 和 B 第二行,B个用空格分开的整数,分别表示每桶中食物所含的卡路里。 [输出] 共一行,一个整数,表示Bessie能获得的最大卡路里,使她不违反减肥的规则。 [输入样例] 40 6 7 13 17 19 29 31 [样例输出] 39 2、固定次数的0/1背包 有N种物品和一个容量为V的背包。第i种物品最多有n[i]件可用,每件体积是c[i],价值是w[i]。求解将哪些物品装入背包可使这些物品的体积总和不超过背包容量,且价值总和最大。V〈30000,n〈100,n[i]〈50。 输入输出格式: 第1行,两个用空格分开的整数:v 和n 第2—n+1行,每件体积是c[i],价值是w[i],最多有n[i]件可用 [输入样例] 40 2 10 20 5 20 30 6 [样例输出] 80 3、重复背包货币系统money 母牛们不但创建了他们自己的政府而且选择了建立了自己的货币系统。[In their own

动态规划算法原理与的应用

动态规划算法原理及其应用研究 系别:x x x 姓名:x x x 指导教员: x x x 2012年5月20日

摘要:动态规划是解决最优化问题的基本方法,本文介绍了动态规划的基本思想和基本步骤,并通过几个实例的分析,研究了利用动态规划设计算法的具体途径。关键词:动态规划多阶段决策 1.引言 规划问题的最终目的就是确定各决策变量的取值,以使目标函数达到极大或极小。在线性规划和非线性规划中,决策变量都是以集合的形式被一次性处理的;然而,有时我们也会面对决策变量需分期、分批处理的多阶段决策问题。所谓多阶段决策问题是指这样一类活动过程:它可以分解为若干个互相联系的阶段,在每一阶段分别对应着一组可供选取的决策集合;即构成过程的每个阶段都需要进行一次决策的决策问题。将各个阶段的决策综合起来构成一个决策序列,称为一个策略。显然,由于各个阶段选取的决策不同,对应整个过程可以有一系列不同的策略。当过程采取某个具体策略时,相应可以得到一个确定的效果,采取不同的策略,就会得到不同的效果。多阶段的决策问题,就是要在所有可能采取的策略中选取一个最优的策略,以便得到最佳的效果。动态规划是一种求解多阶段决策问题的系统技术,可以说它横跨整个规划领域(线性规划和非线性规划)。在多阶段决策问题中,有些问题对阶段的划分具有明显的时序性,动态规划的“动态”二字也由此而得名。动态规划的主要创始人是美国数学家贝尔曼(Bellman)。20世纪40年代末50年代初,当时在兰德公司(Rand Corporation)从事研究工作的贝尔曼首先提出了动态规划的概念。1957年贝尔曼发表了数篇研究论文,并出版了他的第一部著作《动态规划》。该著作成为了当时唯一的进一步研究和应用动态规划的理论源泉。在贝尔曼及其助手们致力于发展和推广这一技术的同时,其他一些学者也对动态规划的发展做出了重大的贡献,其中最值得一提的是爱尔思(Aris)和梅特顿(Mitten)。爱尔思先后于1961年和1964年出版了两部关于动态规划的著作,并于1964年同尼母霍思尔(Nemhauser)、威尔德(Wild)一道创建了处理分枝、循环性多阶段决策系统的一般性理论。梅特顿提出了许多对动态规划后来发展有着重要意义的基础性观点,并且对明晰动态规划路径的数

动态规划讲解大全(含例题及答案)

动态规划讲解大全 动态规划(dynamic programming)是运筹学的一个分支,是求解决策过程(decision process)最优化的数学方法。20世纪50年代初美国数学家R.E.Bellman等人在研究多阶段决策过程(multistep decision process)的优化问题时,提出了著名的最优化原理(principle of optimality),把多阶段过程转化为一系列单阶段问题,逐个求解,创立了解决这类过程优化问题的新方法——动态规划。1957年出版了他的名著Dynamic Programming,这是该领域的第一本著作。 动态规划问世以来,在经济管理、生产调度、工程技术和最优控制等方面得到了广泛的应用。例如最短路线、库存管理、资源分配、设备更新、排序、装载等问题,用动态规划方法比用其它方法求解更为方便。 虽然动态规划主要用于求解以时间划分阶段的动态过程的优化问题,但是一些与时间无关的静态规划(如线性规划、非线性规划),只要人为地引进时间因素,把它视为多阶段决策过程,也可以用动态规划方法方便地求解。 动态规划程序设计是对解最优化问题的一种途径、一种方法,而不是一种特殊算法。不象前面所述的那些搜索或数值计算那样,具有一个标准的数学表达式和明确清晰的解题方法。动态规划程序设计往往是针对一种最优化问题,由于各种问题的性质不同,确定最优解的条件也互不相同,因而动态规划的设计方法对不同的问题,有各具特色的解题方法,而不存在一种万能的动态规划算法,可以解决各类最优化问题。因此读者在学习时,除了要对基本概念和方法正确理解外,必须具体问题具体分析处理,以丰富的想象力去建立模型,用创造性的技巧去求解。我们也可以通过对若干有代表性的问题的动态规划算法进行分析、讨论,逐渐学会并掌握这一设计方法。 基本模型 多阶段决策过程的最优化问题。 在现实生活中,有一类活动的过程,由于它的特殊性,可将过程分成若干个互相联系的阶段,在它的每一阶段都需要作出决策,从而使整个过程达到最好的活动效果。当然,各个阶段决策的选取不是任意确定的,它依赖于当前面临的状态,又影响以后的发展,当各个阶段决策确定后,就组成一个决策序列,因而也就确定了整个过程的一条活动路线,如图所示:(看词条图) 这种把一个问题看作是一个前后关联具有链状结构的多阶段过程就称为多阶段决策过程,这种问题就称为多阶段决策问题。 记忆化搜索 给你一个数字三角形, 形式如下: 1 2 3 4 5 6 7 8 9 10 找出从第一层到最后一层的一条路,使得所经过的权值之和最小或者最大. 无论对与新手还是老手,这都是再熟悉不过的题了,很容易地,我们写出状态转移方程:f(i, j)=a[i, j] + min{f(i+1, j),f(i+1, j + 1)} 对于动态规划算法解决这个问题,我们根据状态转移方程和状态转移方向,比较容易地写出动态规划的循环表示方法。但是,当状态和转移非常复杂的时候,也许写出循环式的动态规划就不是那么

算法分析与设计实验二:动态规划法

题目:用动态规划法实现求两序列的最长公共子序列。 程序代码 #include #include //memset需要用到这个库 #include using namespace std; int const MaxLen = 50; class LCS { public: LCS(int nx, int ny, char *x, char *y) //对数据成员m、n、a、b、c、s初始化{ m = nx; //对m和n赋值 n = ny; a = new char[m + 2]; //考虑下标为0的元素和字符串结束标记 b = new char[n + 2]; memset(a, 0, sizeof(a)); memset(b, 0, sizeof(b)); for(int i = 0; i < nx + 2; i++) //将x和y中的字符写入一维数组a和b中a[i + 1] = x[i]; for(int i = 0; i < ny + 2; i++) b[i + 1] = y[i]; c = new int[MaxLen][MaxLen]; //MaxLen为某个常量值 s = new int[MaxLen][MaxLen]; memset(c, 0, sizeof(c)); //对二维数组c和s中元素进行初始化 memset(s, 0, sizeof(s)); } int LCSLength(); //求最优解值(最长公共子序列长度) void CLCS() //构造最优解(最长公共子序列) { CLCS(m, n); //调用私有成员函数CLCS(int,int) } private: void CLCS(int i, int j); int (*c)[MaxLen], (*s)[MaxLen]; int m, n;

南京邮电大学算法设计实验报告——动态规划法

实验报告 (2009/2010学年第一学期) 课程名称算法分析与设计A 实验名称动态规划法 实验时间2009 年11 月20 日指导单位计算机学院软件工程系 指导教师张怡婷 学生姓名丁力琪班级学号B07030907 学院(系) 计算机学院专业软件工程

实验报告 实验名称动态规划法指导教师张怡婷实验类型验证实验学时2×2实验时间2009-11-20一、实验目的和任务 目的:加深对动态规划法的算法原理及实现过程的理解,学习用动态规划法解决实际应用中的最长公共子序列问题。 任务:用动态规划法实现求两序列的最长公共子序列,其比较结果可用于基因比较、文章比较等多个领域。 要求:掌握动态规划法的思想,及动态规划法在实际中的应用;分析最长公共子序列的问题特征,选择算法策略并设计具体算法,编程实现两输入序列的比较,并输出它们的最长公共子序列。 二、实验环境(实验设备) 硬件:计算机 软件:Visual C++

三、实验原理及内容(包括操作过程、结果分析等) 1、最长公共子序列(LCS)问题是:给定两个字符序列X={x1,x2,……,x m}和Y={y1,y2,……,y n},要求找出X和Y的一个最长公共子序列。 例如:X={a,b,c,b,d,a,b},Y={b,d,c,a,b,a}。它们的最长公共子序列LSC={b,c,d,a}。 通过“穷举法”列出所有X的所有子序列,检查其是否为Y的子序列并记录最长公共子序列并记录最长公共子序列的长度这种方法,求解时间为指数级别的,因此不可取。 2、分析LCS问题特征可知,如果Z={z1,z2,……,z k}为它们的最长公共子序列,则它们一定具有以下性质: (1)若x m=y n,则z k=x m=y n,且Z k-1是X m-1和Y n-1的最长公共子序列; (2)若x m≠y n且x m≠z k,则Z是X m-1和Y的最长公共子序列; (3)若x m≠y n且z k≠y n,则Z是X和Y的最长公共子序列。 这样就将求X和Y的最长公共子序列问题,分解为求解较小规模的问题: 若x m=y m,则进一步分解为求解两个(前缀)子字符序列X m-1和Y n-1的最长公共子序列问题; 如果x m≠y n,则原问题转化为求解两个子问题,即找出X m-1和Y的最长公共子序列与找出X 和Y n-1的最长公共子序列,取两者中较长者作为X和Y的最长公共子序列。 由此可见,两个序列的最长公共子序列包含了这两个序列的前缀的最长公共子序列,具有最优子结构性质。 3、令c[i][j]保存字符序列X i={x1,x2,……,x i}和Y j={y1,y2,……,y j}的最长公共子序列的长度,由上述分析可得如下递推式: 0 i=0或j=0 c[i][j]= c[i-1][j-1]+1 i,j>0且x i=y j max{c[i][j-1],c[i-1][j]} i,j>0且x i≠y j 由此可见,最长公共子序列的求解具有重叠子问题性质,如果采用递归算法实现,会得到一个指数时间算法,因此需要采用动态规划法自底向上求解,并保存子问题的解,这样可以避免重复计算子问题,在多项式时间内完成计算。 4、为了能由最优解值进一步得到最优解(即最长公共子序列),还需要一个二维数组s[][],数组中的元素s[i][j]记录c[i][j]的值是由三个子问题c[i-1][j-1]+1,c[i][j-1]和c[i-1][j]中的哪一个计算得到,从而可以得到最优解的当前解分量(即最长公共子序列中的当前字符),最终构造出最长公共子序列自身。

01背包问题动态规划详解及C++代码

0/1背包问题动态规划详解及C++代码 1. 问题描述 给定一个载重量为C的背包 有n个物品 其重量为wi 价值为vi 1<=i<=n 要求:把物品装入背包 并使包内物品价值最大2. 问题分析 在0/1背包问题中 物体或者被装入背包 或者不被装入背包 只有两种选择。循环变量i j意义 前i个物品能够装入载重量为j的背包中 数组c意义 c[i][j]表示前i个物品能装入载重量为j的背包中物品的最大价值 若w[i]>j 第i个物品不装入背包 否则 若w[i]<=j且第i个物品装入背包后的价值>c[i-1][j] 则记录当前最大价值 替换为第i个物品装入背包后的价值 其c++代码如下 #include using namespace std; void KANPSACK_DP(int c[50][50], int w[50], int v[50], int n, int C) { for(int i = 0; i <= C; i ++) { c[0][i] = 0; } for(int i = 1; i <= n; i ++) { c[i][0] = 0; for(int j = 1; j <= C; j ++) { if(w[i] <= j) { if(v[i] + c[i - 1][j - w[i]] > c[i - 1][j]) c[i][j] = v[i] + c[i - 1][j - w[i]]; else c[i][j] = c[i - 1][j]; } else c[i][j] = c[i - 1][j]; } } } void OUTPUT_SACK(int c[50][50], int x[50], int w[50], int n, int C) { for(int k = n; k >= 2; k --) { if(c[k][C] == c[k-1][C]) x[k] = 0; else { x[k] = 1; C = C - w[k];

动态规划法学习心得

研究生专业课程考试答题册 得分: 阅卷人签字: 学号2017021076 姓名周爱琴 考试课程高级运筹学 考试日期2017.01.06 西安工程大学研究生部

动态规划法学习心得 通过薛老师关于动态规划法的讲解和课后的研读,我了解到动态规划法是系统分析中一种常用的方法,是用来解决多阶段决策过程问题的一种最优化方法。例如在水资源规划中,往往涉及到地表水库调度、水资源量的合理分配、优化调度等问题,而这些问题又可概化为多阶段决策过程问题。动态规划法就是解决此类问题的有效方法。所谓多阶段决策过程,就是把研究问题分成若干个相互联系的阶段,由每个阶段都作出决策,从而使整个过程达到最优化。许多实际问题利用动态规划法处理,常比线性规划法更为有效,特别是对于那些离散型问题。实际上,动态规划法就是分多阶段进行决策,其基本思路是:按时空特点将复杂问题划分为相互联系的若干个阶段,在选定系统行进方向之后,逆着这个行进方向,从终点向始点计算,逐次对每个阶段寻找某种决策,使整个过程达到最优,故又称为逆序决策过程。下面是我经过动态规划的学习和了解总结的几个比较常见的关于动态规划问题的点: 第一、动态规划的基本思想 一般我们把具有明显的阶段划分和状态转移方程的动态规划称为标准动态规划,这种标准动态规划是在研究多阶段决策问题时推导出来的,适合用于理论上的分析。在实际应用中,许多问题的阶段划分并不明显,这时如果刻意地划分阶段反而麻烦。一般来说,只要该问题可以划分成规模更小的子问题,并且原问题的最优解中包含了子问题的最优解(即满足最优子化原理),则可以考虑用动态规划解决。 动态规划的实质是分治思想和解决冗余,因此,动态规划是一种将问题实例分解为更小的、相似的子问题,并存储子问题的解而避免计算重复的子问题,以解决最优化问题的算法策略。通过学习我发现,动态规划法与分治法和贪心法类似,它们都是将问题实例归纳为更小的、相似的子问题,并通过求解子问题产生一个全局最优解。其中贪心法的当前选择可能要依赖已经作出的所有选择,但不依赖于有待于做出的选择和子问题。因此贪心法自顶向下,一步一步地作出贪心选择;而分治法中的各个子问题是独立的(即不包含公共的子子问题),因此一旦递归地求出各子问题的解后,便可自下而上地将子问题的解合并成问题的解。但不足的是,如果当前选择可能要依赖子问题的解时,则难以通过局部的贪心策略达到

算法实验 动态规划上机

实验3动态规划上机 [实验目的] 1.掌握动态规划的基本思想和效率分析方法; 2.掌握使用动态规划算法的基本步骤; 3.学会利用动态规划解决实际问题。 [实验要求] 按以下实验内容完成题目,并把编译、运行过程中出现的问题以及解决方法填入实验报告中,按时上交。 [实验学时] 2学时。 [实验内容] 一、实验内容 利用动态规划算法编程求解多段图问题,要求读入多段图,考虑多段图的排序方式,求源点到汇点的最小成本路径。并请对自己的程序进行复杂性分析。 二、算法描述 先输入点的个数和路径数以及每段路径的起点、长度、终点,再计算所有路径的值大小,比较输出后最小值。 三、源程序 #define N 2147483647 #include #include void main() { int i,pointnum,j; cout<<"输入图中点的个数:"<>pointnum; int **array; //array数组描述多段图 int *array2; //array2记录距离起点的最小路径 int *array3; //array3记录上一点编号 array=new int*[pointnum]; array2=new int[pointnum+1]; array3=new int[pointnum+1]; for(i=0;i

} array2[pointnum]=N; array3[pointnum]=N; for(i=0;i>pathnum; int a,k; cout<<"依次输入图中每段路径"<>i; cin>>a; cin>>j; array[i][j]=a; if(array2[j]>(a+array2[i])) { array3[j]=i; array2[j]=a+array2[i]; } // cout<

0-1背包问题动态规划详解及代码

0/1背包问题动态规划详解及C代码 动态规划是用空间换时间的一种方法的抽象。其关键是发现子问题和记录其结果。然后利用这些结果减轻运算量。 比如01背包问题。 /*一个旅行者有一个最多能用M公斤的背包,现在有N件物品, 它们的重量分别是W1,W2,...,Wn, 它们的价值分别为P1,P2,...,Pn. 若每种物品只有一件求旅行者能获得最大总价值。 输入格式: M,N W1,P1 W2,P2 ...... 输出格式: X*/ 因为背包最大容量M未知。所以,我们的程序要从1到M一个的试。比如,开始任选N件物品的一个。看对应M的背包,能不能放进去,如果能放进去,并且还有多的空间,则,多出来的空间里能放N-1物品中的最大价值。怎么能保证总选择是最大价值呢?看下表。 测试数据: 10,3 3,4

4,5 5,6 c[i][j]数组保存了1,2,3号物品依次选择后的最大价值. 这个最大价值是怎么得来的呢?从背包容量为0开始,1号物品先试,0,1,2,的容量都不能放.所以置0,背包容量为3则里面放 4."这样,这一排背包容量为4,5,6,....10的时候,最佳方案都是放 4."假如1号物品放入背包.则再看2号物品.当背包容量为3的时候,最佳方案还是上一排的最价方案c为 4."而背包容量为5的时候,则最佳方案为自己的重量 5."背包容量为7的时候,很显然是5加上一个值了。加谁??很显然是7-4=3的时候.上一排c3的最佳方案是 4."所以。总的最佳方案是5+4为 9."这样.一排推下去。最右下放的数据就是最大的价值了。(注意第3排的背包容量为7的时候,最佳方案不是本身的 6."而是上一排的 9."说明这时候3号物品没有被选.选的是1,2号物品.所以得 9.") 从以上最大价值的构造过程中可以看出。 f(n,m)=max{f(n-1,m), f(n-1,m-w[n])+P(n,m)}这就是书本上写的动态规划方程.这回清楚了吗? 下面是实际程序(在VC 6."0环境下通过): #include

动态规划法回溯法分支限界法求解TSP问题实验报告

TSP问题算法实验报告 指导教师:季晓慧 姓名:辛瑞乾 学号: 提交日期: 2015年11月 目录 总述...................................................................... 动态规划法................................................................ 算法问题分析............................................................ 算法设计................................................................ 实现代码................................................................ 输入输出截图............................................................ OJ提交截图.............................................................. 算法优化分析............................................................ 回溯法.................................................................... 算法问题分析............................................................ 算法设计................................................................ 实现代码................................................................ 输入输出截图............................................................ OJ提交截图.............................................................. 算法优化分析............................................................ 分支限界法................................................................ 算法问题分析............................................................

动态规划习题讲解

第七章动态规划 规划问题的最终目的就是确定各决策变量的取值,以使目标函数达到极大或极小。在线性规划和非线性规划中,决策变量都是以集合的形式被一次性处理的;然而,有时我们也会面对决策变量需分期、分批处理的多阶段决策问题。所谓多阶段决策问题是指这样一类活动过程:它可以分解为若干个互相联系的阶段,在每一阶段分别对应着一组可供选取的决策集合;即构成过程的每个阶段都需要进行一次决策的决策问题。将各个阶段的决策综合起来构成一个决策序列,称为一个策略。显然,由于各个阶段选取的决策不同,对应整个过程可以有一系列不同的策略。当过程采取某个具体策略时,相应可以得到一个确定的效果,采取不同的策略,就会得到不同的效果。多阶段的决策问题,就是要在所有可能采取的策略中选取一个最优的策略,以便得到最佳的效果。动态规划(dynamic programming)同前面介绍过的各种优化方法不同,它不是一种算法,而是考察问题的一种途径。动态规划是一种求解多阶段决策问题的系统技术,可以说它横跨整个规划领域(线性规划和非线性规划)。当然,由于动态规划不是一种特定的算法,因而它不象线性规划那样有一个标准的数学表达式和明确定义的一组规则,动态规划必须对具体问题进行具体的分析处理。在多阶段决策问题中,有些问题对阶段的划分具有明显的时序性,动态规划的“动态”二字也由此而得名。动态规划的主要创始人是美国数学家贝尔曼(Bellman)。20世纪40年代末50年代初,当时在兰德公司(Rand Corporation)从事研究工作的贝尔曼首先提出了动态规划的概念。1957年贝尔曼发表了数篇研究论文,并出版了他的第一部著作《动态规划》。该著作成为了当时唯一的进一步研究和应用动态规划的理论源泉。1961年贝尔曼出版了他的第二部著作,并于1962年同杜瑞佛思(Dreyfus)合作出版了第三部著作。在贝尔曼及其助手们致力于发展和推广这一技术的同时,其他一些学者也对动态规划的发展做出了重大的贡献,其中最值得一提的是爱尔思(Aris)和梅特顿(Mitten)。爱尔思先后于1961年和1964年出版了两部关于动态规划的著作,并于1964年同尼母霍思尔(Nemhauser)、威尔德(Wild)一道创建了处理分枝、循环性多阶段决策系统的一般性理论。梅特顿提出了许多对动态规划后来发展有着重要意义的基础性观点,并且对明晰动态规划路径的数学性质做出了巨大的贡献。 动态规划在工程技术、经济管理等社会各个领域都有着广泛的应用,并且获得了显著的效果。在经济管理方面,动态规划可以用来解决最优路径问题、资源分配问题、生产调度问题、库存管理问题、排序问题、设备更新问题以及生产过程最优控制问题等,是经济管理中一种重要的决策技术。许多规划问题用动态规划的方法来处理,常比线性规划或非线性规划更有效。特别是对于离散的问题,由于解析数学无法发挥作用,动态规划便成为了一种非常有用的工具。 动态规划可以按照决策过程的演变是否确定分为确定性动态规划和随机性动态规划;也可以按照决策变量的取值是否连续分为连续性动态规划和离散性动态规划。本教材主要介绍动态规划的基本概念、理论和方法,并通过典型的案例说明这些理论和方法的应用。 §7.1 动态规划的基本理论 1.1多阶段决策过程的数学描述 有这样一类活动过程,其整个过程可分为若干相互联系的阶段,每一阶段都要作出相应的决策,以使整个过程达到最佳的活动效果。任何一个阶段(stage,即决策点)都是由输入(input)、决策(decision)、状态转移律(transformation function)和输出(output)构成的,如图7-1(a)所示。其中输入和输出也称为状态(state),输入称为输入状态,输出称为输出状态。

动态规划算法实验报告

动态规划算法实验报告

————————————————————————————————作者: ————————————————————————————————日期:

实验标题 1、矩阵连乘 2、最长公共子序列3、最大子段和 4、凸多边形最优三角剖分 5、流水作业调度 6、0-1背包问题 7、最优二叉搜索树 实验目的掌握动态规划法的基本思想和算法设计的基本步骤。 实验内容与源码1、矩阵连乘 #include #include using namespace std; const int size=4; //ra,ca和rb,cb分别表示矩阵A和B的行数和列数 void matriMultiply(int a[][4],int b[][4],int c[][4],int ra,intca,int rb,int cb) { if(ca!=rb) cerr<<"矩阵不可乘"; for(int i=0;i<ra;i++) for(int j=0;j<cb;j++) { int sum=a[i][0]*b[0][j]; for(int k=1;k

动态规划入门(论文)

动态规划思想入门 作者:陈喻(2008年10月7日)关键字:动态规划,最优子结构,记忆化搜索 引言 动态规划(dynamic programming)是运筹学的一个分支,是求解决策过程(decisionprocess)最优化的数学方法。20世纪50年代初美国数学家R.E.Bellman等人在研究多阶段决策过程(multistep decision process)的优化问题时,提出了著名的最优化原理(principle of optimality),把多阶段过程转化为一系列单阶段问题,逐个求解,创立了解决这类过程优化问题的新方法——动态规划。1957年出版了他的名著Dynamic Programming,这是该领域的第一本著作。 动态规划问世以来,在经济管理、生产调度、工程技术和最优控制等方面得到了广泛的应用。例如最短路线、库存管理、资源分配、设备更新、排序、装载等问题,用动态规划方法比用其它方法求解更为方便。 虽然动态规划主要用于求解以时间划分阶段的动态过程的优化问题,但是一些与时间无关的静态规划(如线性规划、非线性规划),只要人为地引进时间因素,把它视为多阶段决策过程,也可以用动态规划方法方便地求解。 动态规划的基本思想 动态规划是:将待求的问题分解成若干个相互联系的子问题,先求解子问题,然后从这些子问题的解得到原问题的解;对于重复出现的子问题,只在第一次遇到的时候对它直接求解,并把答案保存起来,让以后再次遇到是直接引用答案,不必从新求解,其实质是分治思想和解决冗余。

例1:求A—>B的最短路径 图1 这是一个利用动态规划思想的经典问题,通过直接观察图1我们可以枚举出20多条路径,并可以计算出其中最短的路径长度为16

合工大程序设计艺术与方法 实验四 动态规划

《程序设计艺术与方法》课程实验报告

LCSLength(str1, str2,i,j); cout << "最长子序列为:" << endl; Print(str1, i, j, m, n); cout << endl; cout << "最长子序列长度为:" << Long[m][n] << endl;; system("pause"); } int _tmain(int argc, _TCHAR* argv[]) { LCS(); return 0; } 2.字符串的变换: 使用动态规划的思想: 定义两个数组,Distance表示距离,handle表示操作,其中handle存储的数1为删除,2为插入,3为替换,4为相同跳到下一个字符,5为结束状态。 先初始化,令handle开始的第一行第一列为5,如果str1[i] != str2[0],handle为3,列同理;其中Distance为对应的行号或者列号。 两重for循环遍历所有组合的点,如果str1[i] == str2[j],则Distance[i][j] = Distance[i - 1][j - 1],handle[i][j] = 4;否则handle[i][j] = minval(Distance[i - 1][j] + 1, Distance[i][j - 1] + 1, Distance[i - 1][j - 1] + 1, Distance[i][j]); minval函数的作用是比较最大值,并返回最大值对应的操作,1为删除,2为插入,3为替换,当循环结束时,在Distance[m-1][n-1](m,n 分别为两字符串的长度)中存储着最少操作次数 输出步骤: 最后先递归,后操作,修改str1字符串,表示操作的步骤。 #include "stdafx.h" #include #include #include #include using namespace std; #define MAX 1000 int Distance[MAX][MAX];

动态规划算法原理与的应用

动态规划算法原理 及其应用研究 2012年5月20日摘要:动态规划是解决最优化问题的基本方法,本文介绍了

动态规划的基本思想和基本步骤,并通过几个实例的分析,研究了利用动态规划设计算法的具体途径。关键词:动态规划多阶段决策 1.引言 规划问题的最终目的就是确定各决策变量的取值,以使目标函数达到极大或极小。在线性规划和非线性规划中,决策变量都是以集合的形式被一次性处理的;然而,有时我们也会面对决策变量需分期、分批处理的多阶段决策问题。所谓多阶段决策问题是指这样一类活动过程:它可以分解为若干个互相联系的阶段,在每一阶段分别对应着一组可供选取的决策集合;即构成过程的每个阶段都需要进行一次决策的决策问题。将各个阶段的决策综合起来构成一个决策序列,称为一■ 个策略。显然,由于各个阶段选取的决策不同,对应整个过程可以有一系列不同的策略。当过程采取某个具体策略时,相应可以得到一个确定的效果,采取不同的策略,就会得到不同的效果。多阶段的决策问题,就是要在所有可能采取的策略中选取一个最优的策略,以便得到最佳的效果。动态规划是一种求解多阶段决策问题的系统技术,可以说它横跨整个规划领域(线性规划和非线性规划)。在多阶段决策问题中,有些问题对阶段的划分具有明显的时序性,动态规划的“动态”二字也由此而得名。动态规划的主要创始人是美国数学家贝尔曼(Bellman)。20世纪40年代末50年代初,当时在兰德公司(Rand Corporation)从事研究工作的贝尔曼首先提出了动态规划的概念。1957年贝尔曼发表了数篇研究论文,并出版了他的第一部著作《动态规划》。该著作成为了当时唯一的进一步研究和应用动态规划的理论源泉。在贝尔曼及其助手们致力于发展和推广这一技术的同时,其他一些学者也对动态规划的发展做出了重大的贡献,其中最值得一提的是爱尔思(Aris)和梅特顿(Mitten )。爱尔思先后于1961年和1964年出版了两部 关于动态规划的著作,并于1964年同尼母霍思尔(Nemhause)、威尔德(Wild)一道创建了处理分枝、循环性多阶段决策系统的一般性理论。梅特顿提出了许多对动态规划后来发展有着重要意义的基础性观点,并且对明晰动态规划路径的数学性质做出了巨大的贡献。 动态规划问世以来,在工程技术、经济管理等社会各个领域都有着广泛的应用,并且获得了显著的效果。在经济管理方面,动态规划可以用来解决最优路径

动规-背包九讲完整版

背包问题九讲 v1.0 目录 第一讲 01背包问题 第二讲完全背包问题 第三讲多重背包问题 第四讲混合三种背包问题 第五讲二维费用的背包问题 第六讲分组的背包问题 第七讲有依赖的背包问题 第八讲泛化物品 第九讲背包问题问法的变化 附:USACO中的背包问题 前言 本篇文章是我(dd_engi)正在进行中的一个雄心勃勃的写作计划的一部分,这个计划的内容是写作一份较为完善的NOIP难度的动态规划总结,名为《解动态规划题的基本思考方式》。现在你看到的是这个写作计划最先发布的一部分。 背包问题是一个经典的动态规划模型。它既简单形象容易理解,又在某种程度上能够揭示动态规划的本质,故不少教材都把它作为动态规划部分的第一道例题,我也将它放在我的写作计划的第一部分。 读本文最重要的是思考。因为我的语言和写作方式向来不以易于理解为长,思路也偶有跳跃的地方,后面更有需要大量思考才能理解的比较抽象的内容。更重要的是:不大量思考,绝对不可能学好动态规划这一信息学奥赛中最精致的部分。 你现在看到的是本文的1.0正式版。我会长期维护这份文本,把大家的意见和建议融入其中,也会不断加入我在OI学习以及将来可能的ACM-ICPC的征程中得到的新的心得。但目前本文还没有一个固定的发布页面,想了解本文是否有更新版本发布,可以在OIBH论坛中以“背包问题九讲”为关键字搜索贴子,每次比较重大的版本更新都会在这里发贴公布。 目录 第一讲 01背包问题 这是最基本的背包问题,每个物品最多只能放一次。 第二讲完全背包问题 第二个基本的背包问题模型,每种物品可以放无限多次。

第三讲多重背包问题 每种物品有一个固定的次数上限。 第四讲混合三种背包问题 将前面三种简单的问题叠加成较复杂的问题。 第五讲二维费用的背包问题 一个简单的常见扩展。 第六讲分组的背包问题 一种题目类型,也是一个有用的模型。后两节的基础。 第七讲有依赖的背包问题 另一种给物品的选取加上限制的方法。 第八讲泛化物品 我自己关于背包问题的思考成果,有一点抽象。 第九讲背包问题问法的变化 试图触类旁通、举一反三。 附:USACO中的背包问题 给出 USACO Training 上可供练习的背包问题列表,及简单的解答。 联系方式 如果有任何意见和建议,特别是文章的错误和不足,或者希望为文章添加新的材料,可以通过https://www.doczj.com/doc/516308337.html,/user/tianyi/这个网页联系我。 致谢 感谢以下名单: ?阿坦 ?jason911 ?donglixp

数学模型动态规划

动态规划 动态规划(dynamic programming)是运筹学的一个重要分支,它是解决多阶段决策问题的一种有效的数量化方法.动态规划是由美国学者贝尔曼(R.Bellman)等人所创立的.1951年贝尔曼首先提出了动态规划中解决多阶段决策问题的最优化原理,并给出了许多实际问题的解法.1957年贝尔曼发表了《动态规划》一书,标志着运筹学这一重要分支的诞生. §1动态规划的概念与原理 一、动态规划的基本概念 引例:最短路线问题 美国黑金石油公司(The Black Gold Petroleum Company)最近在阿拉斯加(Alaska)的北斯洛波(North Slope)发现了大的石油储量。为了大规模开发这一油田,首先必须建立相应的输运网络,使北斯洛波生产的原油能运至美国的3个装运港之一。在油田的集输站(结点C)与装运港(结点P1、P 、P3)之间需要若干个中间站,中间站之间的联通情况如图1所示,图中线2 段上的数字代表两站之间的距离(单位:10千米)。试确定一最佳的输运线路,使原油的输送距离最短。 解:最短路线有一个重要性质,即如果由起点A经过B点和C点到达终点D是一条最短路线,则由B点经C点到达终点D一定是B到D的最短路(贝尔曼最优化原理)。此性质用反证法很容易证明,因为如果不是这样,则从B 点到D点有另一条距离更短的路线存在,不妨假设为B—P—D;从而可知路线A—B—P—D比原路线A—B—C—D距离短,这与原路线A—B—C—D是最短路线相矛盾,性质得证。 根据最短路线的这一性质,寻找最短路线的方法就是从最后阶段开始,由后向前逐步递推求出各点到终点的最短路线,最后求得由始点到终点的最短路;即动态规划的方法是从终点逐段向始点方向寻找最短路线的一种方法。按照动态规划的方法,将此过程划分为4个阶段,即阶段变量4,3,2,1 k;取 x,按逆序算法求解。 过程在各阶段所处的位置为状态变量 k

相关主题
文本预览
相关文档 最新文档