当前位置:文档之家› 时钟恢复

时钟恢复

时钟恢复
时钟恢复

北京邮电大学通信原理

硬件实验

学院:电子工程学院

班级: 2015211211 作者:叶倪军

学号: 2015211081

一、实验目的

(1)了解从线路码中提取时钟的原理 (2)了解从RZ-AMI 码中提取时钟的实现方法

(3)请同学自主完成从BIP-RZ 或UNI-RZ 码恢复时钟的实验

二、实验原理

在数字通信系统中,接收端为了从接收信号中恢复出原始的数据信号,必须要有一个与接受到的数字基带信号符号速率相同步的时钟信号。通常,从接收信号中提取时钟这一过程称为符号同步或时钟恢复。

1、双极性归零码的时钟恢复

双极性归零码(BIP-RZ )的信号表达式为:

∑∞

-∞

=-=

n b

n

nT t g a t s )()(

其中}1{±∈a ,)(t g 是矩形归零脉冲

?

??<<=)(0)

0()(t t A t g 其他τ 其中t

双极性归零码的时钟恢复非常简单,取绝对值的操作就是全波整流。

全波整流也可以换成平方运算,因为对于BIP-RZ ,

2)]([)(b n b n nT t g a nT t g a --和只是幅度有差别。对于占空比为50%的双极

性归零码BIP-RZ ,整流或平方后的波形可以看成是数据为全1的单极性归零码,即为时钟信号。

2、单极性归零码的时钟恢复

单极性归零码(UNI-RZ )的信号表达式为

∑∞

-∞

=-=

n b

n

nT t g a t s )()(

其中}1,0{∈a ,)(t g 是矩形归零脉冲

?

??<<=)(0)0()(t t A t g 其他τ 对于独立等概数据,该码的功率谱密度为

∑±±=-++=...

3,1022)()()2(sin 16)(k b k b b s kR f A f A R f c T A f P δδ

如图所示,其功率谱不仅含有离散直流分量及连续谱(主瓣带宽为2R b ),而且还包含离散的时钟分量以及奇次谐波分量,所以可以利用窄带滤波器或者锁相环从单极性归零码中提取出时钟分量。

窄带滤波器的输出)(t v 的功率谱是

)()]()([)(1f R f R f A f P b b v εδδ+++-=

其中)(f ε是连续谱部分形成的干扰。如果滤波器足够窄,则可忽略。此时输出的时域信号是)2cos(2

)(1?π+=t R A t v b

其中, 是固定相移,可通过移相器校正,在通过整形电路得到方波时钟。

3、零均值限带PAM信号的时钟恢复

对于均值为零的限带PAM信号,提取时钟的方法很多。很多情况下,对信号)(t s取绝对值或者平方可以得到时钟的离散分量,这样就可以提取这个离散分量,再通过整形移相得到需要的时钟。

也可以通过超前滞后门同步器或者其他环路方式恢复时钟。

三、从RZ-AMI码恢复时钟

实验连接如图所示:

实验步骤如下:

(1)按图连接各个模块。将移相模块印刷电路板上的拨动开关拨到LO位置。

(2)用示波器观察实验连接图中的各点波形。

(3)调节缓冲放大器的K旋钮,使得放大器输出波形足够大,经移相器移相后,比较输出TTL电平的恢复时钟。

(4)将恢复时钟与发送时钟分别送至双踪示波器,调节移相器的相移,使得恢复时钟与发送端的相位一直。并请学生说明本实验从RZ-AMI码恢复时钟的原理。

(5)将恢复时钟送至线路解码器的时钟输入端,线路码的译码器输出原发送的伪随机序列。

四、实验结果与分析

实验分析:

从以上实验结果可以看出,通过以上各个模块的处理,我们从输入的RZ-AMI码中提取出了时钟信号,并且与原始时钟信号进行了对比,验证了实验原理中的理论的正确性。

五、从BIP-RZ码恢复时钟

将编码器的连接线接到BIP-RZ端口,并对输出的BIP-RZ码进行全波整流,即可得到BIP-RZ码的始终信号。实验结果如下:

六、实验总结

通过本次实验,我们进一步温习了在通信原理上册中的关于提取时钟信号的相关知识,加强了用实验来验证理论正确性的能力和动手操作能力。在实验中,我们遇到了很多的问题,比如各个模块间的时钟问题,以及遇到问题后的解决方法,通过一步步检测各个模块的输

出信号来找到问题的根源并加以解决。

七、思考题

(1)如何从分相码中提取时钟

答:利用01和10的中间跳变提取定时,分频得到时钟。

(2)对于双极性不归零码,如何发送数据“1”出现的概率为90%,请问如何从这样的信号中提取始终?

答:可以利用呈现在频谱中的离散分量提取时钟信号。

(3)从限带基带信号中提取时钟的原理是什么?

答:将限带基带信号平方,然后通过锁相环提取,原理图如下:

数据恢复的常用方法

数据恢复的常用方法 硬盘作为计算机中存储数据的载体,往往会因为硬件、软件,恶意与非恶意破坏等因素而出现存储数据完全或部分丢失的现象,特别是在这个随时可能遭受攻击的网络时代,硬盘数据还面临网络方面的破坏。重要数据文件一旦丢失,损失势必难以估量…… 面对这些潜在的危险,再周密和谨慎的数据备份工作都不可能为我们的数据文件提供实时、完整的保护。因此,如何在硬盘数据被破坏后进行妥善而有效的数据拯救,就成为广大用户普遍关心的一件事情。下面本文就硬盘存储数据丢失的原因、恢复技术及相关保护措施方面进行了一些探讨。 一、数据丢失的原因及产生现象 造成数据丢失的原因大致可以分为三大类:软件、硬件和网络。 1.软件方面的起因比较复杂,通常有病毒感染、误格式化、误分区、误克隆、误作等几种,具体表现为无作系统,读盘错误,文件找不到、打不开、乱码,报告无分区等。 2.硬件方面的起因有磁盘划伤、磁组损坏、芯片及其它原器件烧坏、突然断电等。具体表现为硬盘不认,盘体有异常响声或电机不转、通电后无任何声音等现象。 3.网络方面的起因有共享漏洞被探知并利用此漏洞进行的数据破坏、木马病毒等。 上述三种数据的丢失往往都是瞬间发生的事情,能否正确地第一时间判断出数据丢失的原因对于下一步所讲述的数据恢复是很重要的。 二、硬盘数据恢复的可能性与成功率 什么是数据修复呢,数据修复就是把遭受破坏或误作导致丢失的数据找回来的方法。包括硬盘、软盘、可移动磁盘的数据恢复等。数据恢复可以针对不同作系统(DOS、Windows9X/NT/2000、UNIX、NOVELL 等)的数据进行恢复,对于一些比较特殊的数据丢失原因,数据恢复可能会出现完全不能恢复或只能恢复部分数据,如:数据被覆盖(OVERWRITE)、低级格式化(LOWLEVELFORMAT)、磁盘盘片严重损伤等。 1.恢复数据的几项原则 如果希望在数据恢复时保持最大程度的恢复率,应遵循以下几项原则: 发现问题时:如果可能,应立即停止所有的写作,并进行必要的数据备份,出现明显的硬件故障时,不要尝试修复,应送往专业的数据恢复公司。 恢复数据时:如果可能,则应立即进行必要的数据备份,并优先抢救最关键的数据,在恢复分区时则应优先修复扩展分区,再修复C。 2.数据恢复可能性分析 硬盘数据丢失后,数据还能恢复吗?这是许多电脑用户最关心的问题。根据现有的数据恢复实践和经验表明:大多数情况下,用户找不到的数据往往并没有真正的丢失和被破坏,80%的情况下,数据都是可以复原的。下面是常见的几种数据恢复可能性与成功率分析: ·病毒破坏 破坏硬盘数据信息是电脑病毒主要的设计目的与破坏手段。有些病毒可以篡改、删除用户文件数据,导致文件无法打开,或文件丢失;有些更具破坏力的病毒则修改系统数据,导致计算机无法正常启动和运行。针对病毒导致的硬盘数据丢失,国内各大杀毒软件厂商都掌握了相当成熟的恢复经验,例如江民科技的KV系列杀毒软件就曾将恢复这类数据的过程与方面在软件中设计成了一个模块,即使是初级的用户也只需经过简单的几个步骤就可恢复85~100%的数据。 ·软件破坏 软件破坏通常包括:误删除、误格式化、误分区、误克隆等。目前的硬盘数据恢复技术对于软件破坏而导致的数据丢失恢复成功率相当的高平均90%以上。此类数据恢复技术已经可以对FAT12、FAT16、FAT32、NTFS4.0、NTFS5.0等分区格式,DOS、Windows9X/ME、WindowsNT/2000、WindowsXP、UNIX、Linux 等作系统完全兼容。 ·硬件破坏 硬件原因导致数据丢失,如果是介质设备硬件损坏,电路板有明显的烧毁痕迹或设备(如硬盘)有异响或BIOS不认硬盘参数,这种情况下的数据恢复对于个人用户显得非常困难,所以遇到这种情况,

基于FPGA的高速时钟数据恢复电路的实现_李湘琼

48 技术研发 Technology Research 0 引言 时钟数据恢复电路是高速收发器的核心模块,而高速收发器是通信系统中的关键部分。随着光纤在通信中的应用,信道可以承载的通信速率已经可以达到GHz,从而使得接收端的接收速率成为限制通信速率的主要瓶颈。因此高速时钟数据恢复电路的研究是目前通信领域的研究热点。目前时钟数据恢复电路主要是模拟IC和数字IC,其频率已经可以达到几十GHz。而由于FPGA器件的可编程性、低成本、短的设计周期以及越来越大的容量和速度,在数字领域的应用逐渐有替代数字IC的趋势,已经广泛作为数字系统的控制核心。但利用中低端FPGA还没有可以达到100MHz以上的时钟数据恢复电路。由于上面的原因,许多利用FPGA实现的高速通信系统中必须使用额外的专用时钟数据恢复IC,这样不仅增加了成本,而且裸露在外的高速PCB布线使还会带来串扰、信号完整性等非常严重的问题。如果可以在中低端FPGA上实现高速时钟数据恢复电路,则可降低成本且提高整个电路系统的性能。 目前利用FPGA实现时钟恢复电路的方法,基本都是首先利用FPGA内部的锁相环产生N*f的高频时钟,然后再根据输入信号控制对高速时钟的分频,从而产生与输入信号同步的时钟信号[1~3],其中N决定了恢复时钟信号的相位精度,通常N等于8。因此如果输入信号的频率为100MHz,则系统的工作频率就必须达到800MHz,对于中低端FPGA,如此高的工作频率显然无法承受。虽然高端FPGA可以达到GHz的工作频率,但其高昂的价格不适合用于普通用户。而其它基于中低端FPGA实现高速时钟恢复电路的方法,要么需要外部VCO模块[4],要么只能恢复数据而无法得到同步的时钟信号[5]。针对这种情况,本文提出了一种利用Altera FPGA中的锁相环及Logiclock 等技术,实现高速时钟恢复电路的方法。电路是在Altera 的EP2C5T144C6芯片上实现的,用于数字光端机的接收端 基于FPGA的高速时钟数据恢复电路的实现 李湘琼 黄启俊 常胜 (武汉大学,物理科学与技术学院电子科技系) 摘 要:介绍了一种利用输出时钟在具有不同相位的时钟信号之间进行切换实现高速时钟恢复电路的方法。利用Altera公司Quartus软件提供的修改逻辑单元和逻辑块锁定及插入buffer的方法,消除了时钟切换产生的毛刺,弥补了不同相位时钟由于不同的传输延迟而造成的相位偏移。设计的电路实现了数字光端机要求的204.8MHz的工作频率。同时, 分析了决定该电路工作频率的主要因素,通过仿真验证使用EP3C10E144C7芯片最高工作频率可以达到400MHz。 关键词:时钟恢复; Logiclock; 超前滞后鉴相器; 现场可编程逻辑门阵列 Design of high-speed clock and data recovery circuit Based on FPGA Li Xiangqiong Huang Qijun Chang Sheng (Department of Electronics Science and Technology, College of Physics Science and Technology, Wuhan University)Abstract : The paper presents a method to realize high-speed clock and data recovery circuit, which is based on the idea of utilizing output clock to make switching among the clocks whose phase are different. By using the modified logic elements, locking logic region provided by Altera's Quartus and inserting buffers, the burrs appearing in clock switching is eliminated and the phase offset generated from different transmitting delays of the clocks with different phases is compensated 。The designed circuit achieves the operation frequency, which meet the requirement of our project 。The main factor which affects the operation frequency of the presented circuits is also analyzed in this paper. The result of simulation based on the chip of EP3C10E144C7 shows that a highest operation frequency of 400 MHz can be achieved. Key words : clock recovery; logiclock ; the early-later phase detector; FPGA 从100路2.048MHz压缩视频码流合成的串行码流中正确提取100路视频码流,其工作频率为204.8MHz,通过硬件验证电路可以正确工作。 1 时钟恢复电路原理及环路结构 时钟恢复电路的目的是从输入的数据流中,提取出与其同步的时钟信号。时钟信号不可能凭空产生,因此该电路本身必须有一个时钟信号产生机制,除此之外还必须有一个判断控制机制--能够判断并且调整该时钟信号与输入数据之间的相位关系,使其同步。 传统的基于FPGA的时钟恢复电路的结构如图1所示。如前所述,这种结构的电路用中低端FPGA,工作频率不可能达到100MHz以上。本文采用的方法是利用锁相环产生不同相位的时钟信号,然后再根据控制信号控制输出时钟在这些时钟之间进行切换,从而使时钟与输入数据同步。具体结构如图2所示。下面详细介绍各个模块的工作原理及电路实现。 图1 基于高频时钟分频的时钟恢复电路结构图

IEEE1588精密时钟同步协议测试技术

1引言 以太网技术由于其开放性好、价格低廉和使用方便等特点,已经广泛应用于电信级别的网络中,以太网的数据传输速度也从早期的10M提高到100M,GE,10GE。40GE,100GE正式产品也将于2009年推出。 以太网技术是“即插即用”的,也就是将以太网终端接到IP网络上就可以随时使用其提供的业务。但是,只有“同步的”的IP网络才是一个真正的电信级网络,才能够为IP网络传送各种实时业务与数据业务的多重播放业务提供保障。目前,电信级网络对时间同步要求十分严格,对于一个全国范围的IP网络来说,骨干网络时延一般要求控制在50ms之内,现行的互联网网络时间协议NTP (NetworkTimeProtocol),简单网络时间协议SNTP(SimpleNetwork Time Protocol)等不能达到所要求的同步精度或收敛速度。基于以太网的时分复用通道仿真技术(TDM over Ethernet)作为一种过渡技术,具有一定的以太网时钟同步概念,可以部分解决现有终端设备用于以太网的无缝连接问题。IEEE 1588标准则特别适合于以太网,可以在一个地域分散的IP网络中实现微秒级高精度的时钟同步。本文重点介绍IEEE 1588技术及其测试实现。 2IEEE1588PTP介绍 IEEE1588PTP协议借鉴了NTP技术,具有容易配置、快速收敛以及对网络带宽和资源消耗少等特点。IEEE1588标准的全称是“网络测量和控制系统的精密时钟同步协议标准(IEEE1588Precision Clock Synchronization Protocol)”,简称PTP(Precision Timing Protocol),它的主要原理是通过一个同步信号周期性的对网络中所有节点的时钟进行校正同步,可以使基于以太网的分布式系统达到精确同步,IEEE 1588PTP时钟同步技术也可以应用于任何组播网络中。 IEEE1588将整个网络内的时钟分为两种,即普通时钟(OrdinaryClock,OC)和边界时钟(BoundaryClock,BC),只有一个PTP通信端口的时钟是普通时钟,有一个以上PTP通信端口的时钟是边界时钟,每个PTP端口提供独立的PTP通信。其中,边界时钟通常用在确定性较差的网络设备(如交换机和路由器)上。从通信关系上又可把时钟分为主时钟和从时钟,理论上任何时钟都能实现主时钟和从时钟的功能,但一个PTP通信子网内只能有一个主时钟。整个系统中的最优时钟为最高级时钟GMC(Grandmaster Clock),有着最好的稳定性、精确性、确定性等。根据各节点上时钟的精度和级别以及UTC(通用协调时间)的可追溯性等特性,由最佳主时钟算法(Best Master Clock)来自动选择各子网内的主时钟;在只有一个子网的系统中,主时钟就是最高级时钟GMC。每个系统只有一个GMC,且每个子网内只有一个主时钟,从时钟与主时钟保持同步。图1所示的是一个典型的主时钟、从时钟关系示意。

时钟数据恢复(CDR)

时钟数据恢复(CDR) 2009-11-01 21:40 5887人阅读评论(5) 收藏举报测试图形ui产品工作任务 近年来,芯片功能的增强和数据吞吐量要求推动了芯片产业从低速率数据并行连接转变到高速串行连接。这个概念被称为SERDES(Serializer-Deserializer),包括在高速差分对上串行地传送数据,而不是用低速的并行总线。一个典型例子是用单个PCI-Express通道取代数据速率达2.112Gbps的传统32位66MHz PCI总线,PCI-Express可达到4Gbps的数据速率,但仅使用了工作在2.5GHz的4条线。简而言之,SERDES协议允许用较少的引脚实现较高的数据速率。 图1给出了各种可能的SERDES接口。这个例子展示了一个网络处理器位于系统中心的高性能电路板。SERDES应用用紫色标明,可以用FPGA实现的芯片用黄色标明。 图1:典型的SERDES应用。 SERDES的类型 有两种基本类型的SERDES接口:源同步(SS)协议和时钟数据恢复(CDR)协议。这两种类型的主要差别是如何实现时钟控制。源同步接口拥有一个伴随传送数据的时钟信号;CDR 没有单独的时钟信号,而是把时钟嵌入在数据中。即CDR接收器将相位锁定在数据信号本身以获取时钟。表1概括了这两种接口的基本差别。 表1:源同步和时钟数据恢复SERDES接口的比较。 通常CDR协议运行在较高的数据速率和较长的传送距离,因此带来很大的设计挑战。 时钟数据恢复的基础 顾名思义,CDR接收器必须从数据中恢复嵌入的时钟。更准确地说,是从数据信号的交换中获取时钟。

CDR发送器首先串行发送数据,然后将数据转换成8b/10b编码方案。编码处理获得8位数据并将其转换成10位符号。8b/10b编码方式可以在数据线上传送相等数目的0和1,从而减少码间干扰,并提供足够多的数据边沿,以便接收器在收到的数据流上锁定相位。发送器将系统时钟倍频至传送比特率,并以该速率在TX差分对上发送8b/10b数据。 CDR接收器的任务首先是在RX差分位流上锁定相位,然后接收器按照恢复的时钟进行数 据位对齐,接着用接收器的参考时钟进行字对齐。最后,将数据进行8b/10b解码,供系统使用。 在CDR系统中,发送和接收系统通常拥有完全独立的系统时钟。这两个时钟在一个特定的变化范围内非常关键,这个范围大约是数百个PPM。 CDR电路与抖动 CDR接口的主要设计挑战是抖动,即实际数据传送位置相对于所期望位置的偏移。总抖动(TJ)由确定性抖动和随机抖动组成。大多数抖动是确定的,其分量包括码间干扰、串扰、占空失真和周期抖动(例如来自开关电源的干扰)。而通常随机抖动是半导体发热问题的副产品,且很难预测。 传送参考时钟、传送PLL、串化器和高速输出缓冲器都对会传送抖动造成影响。对于给定的比特周期或者数据眼,传送抖动通常用单位间隔的百分比或UI(单位间隔)来说明。例如,.2 UI的传送抖动表示抖动由比特周期的20%组成。对于传送抖动而言,UI数值越低越好,因为它们代表较少的抖动。 同样地,CDR接收器将指定在给定比特率时所能容忍的最大抖动量。典型的比特误码率(BET)标准是1e-12。接收抖动仍然用UI来指定。较大的UI表明接收器可以容忍更多的抖动。典型的接收器规格是.8 UI,这意味着80%的比特周期可以是噪声,此时接收器将仍然 能够可靠地接收数据。 抖动通常用统计钟形分布来量化,该分布在其定点处有理想的边沿位置。 SERDES测试与眼图 由于抖动是SERDES系统中的一个主要挑战,因此它也是测试和测量的关键所在。通过把高性能的示波器连接到SERDES信号来测量抖动,并观察“数据眼图”(或眼图)。对于一个给定的差分对,眼图仅仅是由多个状态转换的波形图叠加而成。采样窗应足够宽,能够包含图中的两个交叉点。最终得到的画面就象一个眼睛,它提供了信号质量和抖动的直观形象。通常眼睛张得越开,信号就越好。

R-Studio通用数据恢复方法

R-Studio万能通用数据恢复方法 网上流转的数据恢复方法有很多,今天小编给大家整理了一个图文教程,下面一起来学习下R-Studio万能通用数据恢复方法吧!学会了这个教程对于R-Studio怎么用也就自然学会啦! 我们将故障硬盘连接到电脑上,在我的电脑中可看到共4个分区,格式为FAT32。 在我的电脑上右键单击--管理--然后进入磁盘管理,可以更加直观的了解现在结构,对后面的数据恢复过程很有帮助。

我们首先要了解故障硬盘当前分区的数据量,即对以前数据的覆盖破坏量。在磁盘管理中,在每个盘符上--单击--右键--属性,这是客户硬盘当前第一个分区H盘的属性。剩余空间不多,但客户声明本区为操作系统分区,数据不在这里。因此我们大致了解一下即可。

客户硬盘第3、4个分区K盘和L盘已用空间都基本为空,这些位置的数据恢复效果将会很好。

后并安装运行。 客户需要的是重新分区格式化安装系统以前的数据,并且要求尽可能全部恢复,因为他不记得原来数据放在什么位置,因此需要点击选择扫描恢复整个硬盘而不是分区。选择要恢复的硬盘或分区,点击R-Studio的开始扫描图标。你可以根据硬盘型号、卷标、文件系统、开始位置、分区大小来正确确认。

点击开始扫描后,R-Studio弹出扫描设置窗口,一般采用默认选项即可,也可以去掉我们不需要的文件系统,可加快分析速度。我们要扫描的是整个硬盘,所以从0位置开始,长度149.1G 。 也可以精简R-Studio要分析的文件系统,Windows操作系统只可能是FAT和NTFS格式。

硬盘大约要1小时。 R-Studio扫描完成,OK。

串行数据系统中的时钟恢复

串行数据系统中的时钟恢复 Ransom Stephens, Ph.D. 摘要: 比特周期,或者说单位时间间隔的定义远没有字面意义上那么简单。如果它仅仅指数据传输速率,那么我们将陷入比现在更糟的境地。在延迟抖动360这方面,经调查研究我们得出了时间间隔的真正含义,以及串行数据系统如何用恢复时钟算法代替独立基准时钟。该研究将揭示时钟恢复算法影响比特误差率、即带宽与峰值(包含振频谱所关联的大部分区域)的关键特征。 如图1所示,将接收器看作一个用时钟定位样本的时间坐标的装置,以便比较器判断该时刻信号电压大于或小于指定临界值。若大于,接收器将赋值1,小于,赋值0。设定电压临界决策非常简单——对于不同的系统临界值几乎全为0,而样本点的时间定位则非常微妙。这就是时钟恢复的便利之处。 图1:串行数据接收器简化图 假设有一带绝对外置基准时钟的单体系统,如图2a所示。如果我们将时钟相关相位调整与输入数据转换相同位,那么将得到接收样本的时钟下降沿,样本点将位于每比特中心位置,如图2b。此系统的

单位间隔即与标称数据速率互等。这是平常我们提起时间位时脑中所映射的概念。这种想法很容易理解,但却有些瑕疵。 第一个问题就是,均为发射器和接收器提供绝对外置时钟需要一根额外的数据线以及一个昂贵的低振频时钟。额。。。我说了“昂贵”这个词吗??但最大的问题是,这样完美的外置时钟却加大了比特误码率! 图2:(a) 带外置时钟的系统(b) 为样本点设置时间定位如果我们将样本点设定在逻辑转换实际发生点之后的半比特,而非他们转换前时刻之后的半比特,我们将得到神马呢?这样的话振动

延迟将没有一点差错!在这种理想状态下,我们可以触发逻辑转换,和样本的半比特周期延迟。样本点应该与数据保持同等振动频率,而信号波动则决不能超过样本点。唯一需要付出的代价,只是一个更复杂的单位间隔定义而已。 当我们以数据自身恢复时钟时,我们可以达到这样的理想境地。一个无限带宽时钟恢复系统会触发数据转换的时钟信号,并且样本点计时和数据振频相同。如果数据与时钟拥有同等振动频率,那么他们的波动将会一致,因此位元的识别虽非理想状态但也处于最佳点——时钟振动与数据振动保持一致,比特误码率也不会受振动影响。在现实情况中,当无限带宽时钟恢复循环时,低频率振动是随数据变化的。只有当振动频率高于时钟恢复带宽时才会出错。不仅时钟重建减少了比特误码率,还允许时钟应用有许多振动叠加,此外它不需要以追踪器或者电缆将时钟信号从转换器传到接收器。 时钟恢复 时钟恢复有两种基本类型,一种是自然模拟,比如锁相环,另一种是则更为数字化。数字化指的是时钟由多重不连续样本重组而成,而非那些连续类比数据信号。尽管涉及许多专利技术但相位内插器是个人尽皆知的好例子。操作上锁相环和内插器最大的不同在于成本,而理论上最大的差异是减弱参数化和模型。相比锁相环,内插器通常有更快的击发间隔,并消耗更少的能量,对表面积的需求低,这意味着更设计上更低的支出。与任何循环单元一样,一个设计优异的内插

同步时钟技术建议书讲解学习

南水北调东线一期工程山东段调度运行 管理系统 同步时钟子系统 技术建议书 上海泰坦通信工程有限公司 2012 年3月

本次投标我方严格按照技术规范书的要求,提出以下适合技术规范书要求的详细的方案建议书: 本次工程拟定在干线公司和穿黄现地管理处(备调中心)各配置一套同步时 钟设备,作为区域基准钟LPR作为全网主备用基准钟LPR。每套配置为双GPS 接收系统+BITS设备。设备选型为美国Brilliant公司的GPS接收机ST2000、美国Symmetricom公司的TPIU和TimeProvider1100。干线公司和穿黄现地管理处(备调中心)的传输设备从时钟同步设备上引接同步时钟信号。其他节点的传输设备从线路侧提取同步时钟信号。 单个站点设备连接示意图如下: 一、本次投标方案的几大特点 1.为干线公司和穿黄现地管理处配置的GPS具有BesTime专利技术,可以有效地削弱SA的干扰,相比其它GPS产品,这种性能确保了同步网的安全与稳定, 避免在特殊环境下美国对GPS的干扰; 2.为干线公司和穿黄现地管理处配置的GPS具有SSM功能,这对避免全网“定时环”具有非常重要的意义; 3.本次投标的BITS设备特别方便运行维护,设备开通后,无论需要更换卡板, 还是需要插入卡板,都不需要专业工程师到场,新卡板自动从设备获取运行参数;4.本次投标的BITS设备特别方便运行维护,用户可将每一个端口的使用情况储 存在卡板中,不需要固定的维护终端; 二、本次投标售后服务的特别承诺 本次投标采用的主设备全部为进口设备。尽管Symmetricom公司是全球最有实力

的、也是唯一一家专业的同步厂商,但考虑到设备维修需要返回工厂,前后周期 较长,本次投标特别承诺,我公司已有备品备件,在遇到故障报告后,我公司免 费提供备品备件,并确保48小时内恢复设备正常运行。待故障板卡经工厂维修返 回后换回借给的备品备件。 三、设备详细配置 干线公司和穿黄现地管理处各配置如下设备: GPS1---ST2000,内置高性能晶体钟,独立设备,有SSM GPS2---TPIU --- 内置高性能晶体钟,独立设备,有SSM BITS---TimeProvider1100,双加强型铷钟,四路输入,32路冗余输出,有SSM ST2000 TPIU TimeProvider1100外观 TimeProvider1100

移动硬盘数据恢复方法(入门教程)

移动硬盘数据恢复方法(入门教程) 一个完整硬盘的数据应该包括五部分:MBR,DBR,FAT,DIR区和DATA区。其中只有主引导扇区是唯一的,其它的随你的分区数的增加而增加。 1、主引导扇区 主引导扇区位于整个硬盘的0磁道0柱面1扇区,包括硬盘主引导记录MBR(Main Boot Record)和分区表DPT(Disk Partition Table)。 其中主引导记录的作用就是检查分区表是否正确以及确定哪个分区为引导分区,并在程序结束时把该分区的启动程序(也就是操作系统引导扇区)调入内存加以执行。 至于分区表,很多人都知道,以80H或00H为开始标志,以55AAH为结束标志,共64字节,位于本扇区的最末端。 值得一提的是,MBR是由分区程序(例如DOS 的Fdisk.exe)产生的,不同的操作系统可能这个扇区是不尽相同。 如果你有这个意向也可以自己去编写一个,只要它能完成前述的任务即可,这也是为什么能实现多系统启动的原因(说句题外话:正因为这个主引导记录容易编写,所以才出现了很多的引导区病毒)。 2、操作系统引导扇区 OBR(OS Boot Record)即操作系统引导扇区,通常位于硬盘的0磁道1柱面1扇区(这是对于DOS来说的,对于那些以多重引导方式启动的系统则位于相应的主分区/扩展分区的第一个扇区),是操作系统可直接访问的第一个扇区,它也包括一个引导程序和一个被称为BPB(BIOS Parameter Block)的本分区参数记录表。 其实每个逻辑分区都有一个OBR,其参数视分区的大小、操作系统的类别而有所不同。 引导程序的主要任务是判断本分区根目录前两个文件是否为操作系统的引导文件。于是,就把第一个文件读入内存,并把控制权交予该文件。 BPB参数块记录着本分区的起始扇区、结束扇区、文件存储格式、硬盘介质描述符、根目录大小、FAT个数、分配单元(Allocation Unit,以前也称之为簇)的大小等重要参数。OBR由高级格式化程序产生(例如DOS 的https://www.doczj.com/doc/514519588.html,)。 3、文件分配表 FAT(File Allocation Table)即文件分配表,是系统的文件寻址系统,为了数据安全起见,FAT一般做两个,第二FAT为第一FAT的备份, FAT区紧接在OBR之后,其大小由本分区的大小及

无线通信-数字通信系统中的符号时钟恢复技术

数字通信系统中的符号时钟恢复技术 宋雪桦1 潘波2 (1江苏大学计算机与通信工程学院;2江苏大学理学院,江苏 镇江212013) 摘要:在数字通信系统中,由于有高斯噪声和多径的影响,接收信号产生损失,从而导致时钟信号的提取更加困难,而时钟信号的不准确性会降低整个系统的性能。本文我们给出一种改进的时钟恢复算法原理,算法主要包含简单有效的插值滤波模块,改进的Gardener 算法和快速收敛的PLL。该算法可以适用于宽带无线通信系统中的数字接收机中,采用该算法的数字接收系统已经用FPGA验证通过。 关键词:时钟恢复,改进Gardener算法,环路滤波,插值滤波,正交幅度调制 中国分类号:TN914 文献标识码:A Timing Recovery In Digital Communication Systems Song xuehua1, Pan bo2 (1.College of Computer Science and Communication Engineering, Jiangsu University, 2. Faculty of Science, Jiangsu University, Zhenjiang 212013,CHINA) Abstract: In digital communication systems, since the signal of the receiver is disturbed by the Gauss noise and multipath interference, it is difficult to detect the timing of the transmitted data symbol. The inaccurate timing will decrease the system performance. A new asynchronous symbol timing recovery scheme is proposed for a 64QAM receiver in this paper. The scheme includes a simplified and efficient interpolation filter, an improved Gardener method and a fast converging PLL. The scheme can be applied to wideband wireless communication and a system including timing recovery has been verified by an FPGA-based prototype with real data. Key words: Timing Recovery, Improver Gardener Interpolation Filter, PLL, QAM 1引言 在数字通信系统中,时钟同步技术非常重要。接收机中的符号速率必须和发射机中的符号速率一致,才能实现正确的解调。时钟恢复算法就是从接收到的数字信号中提取时钟信息来调整接收机的符号时钟频率,实现收、发符号时钟匹配。传统的模拟同步是通过调整A/D转换器的采样时钟来实现接收机和发射机时钟同步,这种方法也称同步时钟恢复算法。本文我们提出的方法属于异步时钟恢复算法。接收机的A/D采样时钟频率固定,当信号经过时钟恢复模块后,信号不仅被插值到理想的采样点,而且对应的时钟频率也调整到和发射端匹配。和传统的时钟恢复算法相比,这种异步时算法具有很多优越性。首先异步时钟恢复算法比同步的跟踪和同步时间短,因为传统同步算法从信号输入到反馈调整采样频率需要经过多个功能模块,如数字下变频器,匹配滤波器等,而异步时钟恢复算法只是在时钟恢复模块内调整时钟频率,反应快,跟踪和同步时间短。其次异步时钟恢复算法能够根据计算出来时钟频率和相位的偏差,自动调整时钟信号,调整范围大而且硬件实现简单。此外随着超大规模集成电路和高速信号处理技术的迅速发展,也使得这种全数字的异步时钟恢复算法实现的成本和硬件代价进一步降低。现在采用异步时钟恢复算法的解调器也越来越多。 本文提出了适用于QAM解调系统的改进异步时钟恢复算法包括改进的Gardener时钟误差检测算法[1],环路滤波和插值滤波。时钟恢复算法处理速率是符号速率的偶数倍,本文采用符号速率的两倍,用synopsys公司CCSS仿真平台进行了仿真,同时通过了FPGA验证。 2、改进的异步时钟恢复算法 图2是数字接收系统的方框图。虚线部分为异步时钟恢复模块,它是一种反馈结构,接收机中的输入信号是中频模拟信号,用A/D转换器使之变成数字信号,经过下变频器后生成I、Q两路基带信号。然后通过匹配滤波器,输入到时钟恢复模块,其信号频率为符号频

数据恢复的概念及注意事项以及恢复方法.

数据恢复的概念及注意事项以及恢复方法 数据恢复:单纯从字面上的解释也就是恢复数据。 一、什么是数据? 名词解释:进行各种统计、计算、科学研究或技术设计等所依据的数值。 数据的应用领域非常广泛,但在这里我们仅针对计算机领域中部分应用来了解。在计算机科学中,数据是指所有能输入到计算机并被计算机程序处理的符号的介质的总称,是用于输入电子计算机进行处理,具有一定意义的数字、字母、符号和模拟量等的通称。 电子计算机加工处理的对象 早期的计算机主要用于科学计算,故加工的对象主要是表示数值的数字。现代计算机的应用越来越广,能加工处理的对象包括数字、文字、字母、符号、文件、图像等。 二、什么是数据恢复? 当存储介质出现损伤或由于人员误操作、操作系统本身故障所造成的数据看不见、无法读取、丢失。工程师通过特殊的手段读取在正常状态下不可见、不可读、无法读的数据。 数据恢复是指通过技术手段,将保存在台式机硬盘、笔记本硬盘、服务器硬盘、存储磁带库、移动硬盘、U盘、数码存储卡、Mp3等等设备上丢失的电子数据进行抢救和恢复的技术。 三、从哪恢复? 数据记录设备:数据以某种格式记录在计算机内部或外部存储介质上。 存储介质是指存储数据的载体。比如软盘、光盘、DVD、硬盘、闪存、U盘、CF 卡、SD卡、MMC卡、SM卡、记忆棒(Memory Stick)、xD卡等。目前最流行的存储介质是基于闪存(Nand flash)的,比如U盘、CF卡、SD卡、SDHC卡、MMC 卡、SM卡、记忆棒、xD卡等。

四、如何恢复? 针对不同故障的不同问题具体分析、判断。 数据恢复的故障类型 大体上可分为硬故障和软故障两类。 硬故障是指存储介子的物理硬件发生故障、损坏。 如:硬盘物理故障(数据储存装置--主要是磁盘) 大量坏道(启动困难、经常死机、格式化失败、读写困难); 电路板故障:电路板损坏、芯片烧坏、断针断线。(通电后无任何声音、电路板有明显的烧痕等); 盘体故障:磁头损坏、磁头老化、磁头烧坏(常有一种“咔嚓咔嚓”的磁头撞击声);电机损坏(电机不转,通电后无任何声音); 固件信息丢失、固件损坏等。(CMOS不认盘、“磁盘管理”中无法找到该硬盘);盘片划伤。 软故障是相对于硬故障而言的,即存储介子物理硬件没有损坏,通过软件即可解决的故障。包括误删除、误格式化、误分区、误GHOST等。 删除 删除操作却简单的很,当我们需要删除一个文件时,系统只是在文件分配表内在该文件前面写一个删除标志,表示该文件已被删除,他所占用的空间已被"释放", 其他文件可以使用他占用的空间。所以,当我们删除文件又想找回他(数据恢复)时,只需用工具将删除标志去掉,数据被恢复回来了。当然,前提是没有新的文件写入,该文件所占用的空间没有被新内容覆盖。 格式化 格式化操作和删除相似,都只操作文件分配表,不过格式化是将所有文件都加上删除标志,或干脆将文件分配表清空,系统将认为硬盘分区上不存在任何内容。格式化操作并没有对数据区做任何操作,目录空了,内容还在,借助数据恢复知识和相应工具,数据仍然能够被恢复回来。 注意:格式化并不是100%能恢复,有的情况磁盘打不开,需要格式化才能打开。如果数据重要,千万别尝试格式化后再恢复,因为格式化本身就是对磁盘写入的过程,只会破坏残留的信息。 低级格式化 就是将空白的磁盘划分出柱面和磁道,再将磁道划分为若干个扇区,每个扇区又划分出标识部分ID、间隔区GAP和数据区DATA等。可见,低级格式化是高级格式化之前的一件工作,它不仅能在DOS环境来完成,也能在xp甚至vista系统下完成。而且低级格式化只能针对一块硬盘而不能支持单独的某一个分区。每块硬盘在出厂时,已由硬盘生产商进行低级格式化,因此通常使用者无需再进行低级格式化操作。 分区 硬盘存放数据的基本单位为扇区,我们可以理解为一本书的一页。当我们装机或买来一个移动硬盘,第一步便是为了方便管理--分区。无论用何种分区工具,都

传输系统中的时钟同步技术

传输系统中的时钟同步技术同步模块是每个系统的心脏,它为系统中的其他每个模块馈送正确的时钟信号。因此需要对同步模块的设计和实现给予特别关注。本文对影响系统设计的时钟特性进行了考察,并对信号恶化的原因进行了评估。本文还分析了同步恶化的影响,并对标准化组织为确保传输质量和各种传输设备的互操作性而制定的标准要求进行了探讨。摘要:网络同步和时钟产生是高速传输系统设计的重要方面。为了通过降低发射和接收错误来提高网络效率,必须使系统的各个阶段都要使用的时钟的质量保持特定的等级。网络标准定义同步网络的体系结构及其在标准接口上的预期性能,以保证传输质量和传输设备的无缝集成。有大量的同步问题,系统设计人员在建立系统体系结构时必须十分清楚。本文论述了时钟恶化的各种来源,如抖动和漂移。本文还讨论了传输系统中时钟恶化的原因和影响,并分析了标准要求,提出了各种实现技巧。基本概念:抖动和漂移抖动的一般定义可以是“一个事件对其理想出现的短暂偏离”。在数字传输系统中,抖动被定义为数字信号的重要时刻在时间上偏离其理想位置的短暂变动。重要时刻可以是一个周期为 T1 的位流的最佳采样时刻。虽然希望各个位在 T 的整数倍位置出现,但实际上会有所不同。这种脉冲位置调制被认为是一种抖动。这也被称为数字信号的相位噪声。在下图中,实际信号边沿在理想信号边沿附近作周期性移动,演示了周期性抖动的概念。图 1.抖动示意抖动,不同于相位噪声,它以单位间隔 (UI) 为单位来表示。一个单位间隔相当于一个信号周期 (T),等于 360 度。假设事件为 E,第 n 次出现表示为 tE[n] 。则瞬时抖动可以表示为:一组包括 N 个抖动测量的峰到峰抖动值使用最小和最大瞬时抖动测量计算如下:漂移是低频抖动。两者之间的典型划分点为 10 Hz。抖动和漂移所导致的影响会显现在传输系统的不同但特定的区域。抖动类型根据产生原因,抖动可分成两种主要类型:随机抖动和确定性抖动。随机抖动,正如其名,是不可预测的,由随机的噪声影响如热噪声等引起。随机抖动通常发生在数字信号的边沿转换期间,造成随机的区间交叉。毫无疑问,随机抖动具有高斯概率密度函数 (PDF),由其均值 (μ) 和均方根值 (rms) (σ) 决定。由于高斯函数的尾在均值的两侧无限延伸,瞬时抖动和峰到峰抖动可以是无限值。因此随机抖动通常采用其均方根值来表示和测量。图 2.以高斯概率密度函数表示的随机抖动对抖动余量来讲,峰到峰抖动比均方根抖动更为有用,因此需要把随机抖动的均方根值转换成峰到峰值。为将均方根抖动转换成峰到峰抖动,定义了随机抖动高斯函数的任意极限 (arbitrary limit)。误码率 (BER) 是这种转换中的一个有用参数,其假设高斯函数中的瞬时抖动一旦落在其强制极限之外即出现误码。通过下面两个公式,就可以得到均方根抖动到峰到峰抖动的换算。 3[!--empirenews.page--] 由公式可得到下表,表中峰到峰抖动对应不同的 BER 值。确定性抖动是有界的,因此可以预测,且具有确定的幅度极限。考虑集成电路 (IC) 系统,有大量的工艺、器件和系统级因素将会影响确定性抖动。占空比失真 (DCD) 和脉冲宽度失真(PWD) 会造成数字信号的失真,使过零区间偏离理想位置,向上或向下移动。这些失真通常是由信号的上升沿和下降沿之间时序不同而造成。如果非平衡系统中存在地电位漂移、差分输入之间存在电压偏移、信号的上升和下降时间出现变化等,也可能造成这种失真。图 3,总抖动的双模表示数据相关抖动 (DDJ) 和符号间干扰 (ISI) 致使信号具有不同的过零区间电平,导致每种唯一的位型出现不同的信号转换。这也称为模式相关抖动 (PDJ)。信号路径的低频截止点和高频带宽将影响 DDJ。当信号路径的带宽可与信号的带宽进行比较时,位就会延伸到相邻位时间内,造成符号间干扰 (ISI)。低频截止点会使低频器件的信号出现失真,而系统的高频带宽限制将使高频器件性能下降。7 正弦抖动以正弦模式调制信号边沿。这可能是由于供给整个系统的电源或者甚至系统中的其他振荡造成。接地反弹和其他电源变动也可能造成正弦抖动。正弦抖动广泛用于抖动环境的测试和仿真。不相关抖动可能由电源噪声或串扰和其他电磁干扰造成。考虑抖动对数字信号的影响时,需要将整个确定性抖动和随机抖动考虑在内。确定性抖动和随机抖动的总计结果将产生另外一种概率分布

数据恢复精华(图解)

winhex教程 winhex 数据恢复分类:硬恢复和软恢复。所谓硬恢复就是硬盘出现物理性损伤,比如有盘体坏道、电路板芯片烧毁、盘体异响,等故障,由此所导致的普通用户不容易取出里面数据,那么我们将它修好,同时又保留里面的数据或后来恢复里面的数据,这些都叫数据恢复,只不过这些故障有容易的和困难的之分;所谓软恢复,就是硬盘本身没有物理损伤,而是由于人为或者病毒破坏所造成的数据丢失(比如误格式化,误分区),那么这样的数据恢复就叫软恢复。 这里呢,我们主要介绍软恢复,因为硬恢复还需要购买一些工具设备(比如 pc3000,电烙铁,各种芯片、电路板),而且还需要懂一点点电路基础,我们这里所讲到的所有的知识,涉及面广,层次深,既有数据结构原理,为我们手工准确恢复数据提供依据,又有各种数据恢复软件的使用方法及技巧,为我们快速恢复数据提供便利,而且所有软件均为网上下载,不需要我们投资一分钱。 数据恢复的前提:数据不能被二次破坏、覆盖! 关于数码与码制: 关于二进制、十六进制、八进制它们之间的转换我不想多说,因为他对我们数据恢复来说帮助不大,而且很容易把我们绕晕。如果你感兴趣想多了解一些,可以到百度里面去搜一下,这方面资料已经很多了,就不需要我再多说了。 数据恢复我们主要用十六进制编辑器:Winhex (数据恢复首选软件) 我们先了解一下数据结构: 下面是一个分了三个区的整个硬盘的数据结构 MBR C盘EBR D盘EBR E盘 MBR,即主引导纪录,位于整个硬盘的0柱面0磁道1扇区,共占用了63个扇区,但实际只使用了1个扇区(512字节)。在总共512字节的主引导记录中,MBR 又可分为三部分:第一部分:引导代码,占用了446个字节;第二部分:分区表,占用了64字节;第三部分:55AA,结束标志,占用了两个字节。后面我们要说的用winhex软件来恢复误分区,主要就是恢复第二部分:分区表。 引导代码的作用:就是让硬盘具备可以引导的功能。如果引导代码丢失,分区表还在,那么这个硬盘作为从盘所有分区数据都还在,只是这个硬盘自己不能够用来启动进系统了。如果要恢复引导代码,可以用DOS下的命令:FDISK /MBR;这

Keysight 电和光时钟恢复解决方案技术资料

高达 64 GBd 的电和光时钟恢复解决方案:–支持 NRZ 和 PAM4 信号–集成 O/E 和时钟恢复设计 –光分路器:集成或外置 — 用户提供–超低残余随机抖动 < 100 fs RMS –抖动频谱分析(JSA )功能 –支持一致性操作的黄金锁相环(PLL ) 高达 32 GBd 的 N1076A 电时钟恢复仪器 高达 32 GBd 的 N1077A 光/电时钟恢复仪器 高达 64 GBd 的 N1076B 电时钟恢复仪器 高达 64 GBd 的 N1078A 光/电时钟恢复仪器 技术资料 是德科技 电和光时钟 数据恢复解决方案

目录 电和光时钟恢复解决方案 (3) 时钟恢复能做什么? (4) 为何使用时钟恢复? (4) 电时钟恢复 (5) 光/电时钟恢复 (6) 表征下一代接收机和发射机 (8) 应用示例 (11) N1076A 技术指标 (12) N1076B DCA-M 技术指标 (13) N1077A 技术指标 (15) N1078A DCA-M 技术指标 (17) 订货信息 (21) 附件 (23)

电和光时钟恢复解决方案 是德科技的时钟恢复解决方案提供广泛的数据速率范围,非常适合用于计算机、数据通信和通信标准的多种发射机和接收机测试设置。 是德科技的电时钟恢复解决方案为电非归零(NRZ )和脉冲幅度调制 4 电平(PAM4)信号提供时钟恢复功能。 是德科技的光/电时钟恢复仪器集成了电时钟恢复仪器和放大的光电(O/E )转换器, 使其能够同时适用于光和电应用。提供可选的集成光分路器,可以简化设置、提高易用性。 各种机型均包含可调环路带宽和可选峰值,并提供高灵敏度和低固有抖动性能,确保出色的测量精度。可选的抖动频谱分析(JSA )功能可以深入观察低频抖动的幅度和分布情况,有助于诊断过多抖动的根本原因。 从关闭的眼图恢复时钟:N1076B 电时钟恢复仪器包含两个电气输入端上的集成可变均 衡器,可以打开关闭的眼图。 PLL 和抖动频谱分析 使用是德科技的 86100DU-400 PLL 分析软件支持快速、精确且可重复的锁相环(PLL )带宽/抖动传输测量。N107x 可配置为抖动接收机,与精密抖动源相结合,例如是德科技的 M8000 系列 BER 测试解决方案,共同创建一个 PLL 激励响应测试系统。PCI Express ? 认可的 PLL 带宽一致性测试采用预配置,具有自动报告生成功能。 图 1. 当使用 86100DU-400 PLL 分析软件表征锁相环(PLL )设计时,N107x 时钟恢复仪器可配置为抖动接收机。 抖动传递函数 1050 –5–10–15–20–25–30–35–40 频率(Hz ) 100E+3 1E+6 10E+6 100E+6 幅度(d B )

相关主题
文本预览
相关文档 最新文档