当前位置:文档之家› 水库洪水复核报告

水库洪水复核报告

水库洪水复核报告
水库洪水复核报告

1 洪水标准

XXX水库位于XX县西北部,属黄土山区稍林区,气候干躁,雨量偏少。58年动工兴建此水库,直接灌溉700多亩土地和给仕望河及西川沿岸7000亩土地灌溉补水。

坝址位于XX,距309国道1.2km,距县城18km,流域面积25km2,主沟长12km,沟道比降24‰,年径流量105万km3,年输沙量 0.36万t 。河底高程93m,设计洪水位118.5m,校核洪水位118.7m,兴利水位118m,死水位103.8m,总库容180万m3,有效库容154万m3,滞洪库容14万m3,死库容12万m3。

XXX水库属多年调节水库,工程等别为四等,大坝为均质土坝,最大坝高22m。原设计防洪标准为:设计标准50年一遇。在安全鉴定中:设计标准50年一遇,校核标准500年一遇。按照现行国标GB50201-94《防洪标准》,该库属于小(1)型水库、IV等工程,主要水工建筑物的级别为4级。相应的设计防洪标准为30-50年一遇,校核标准为300-1000年一遇。综合分析XXX水库的防洪灌溉作用,本次复核拟采用标准为:设计标准50年一遇,校核标准500年一遇。

2 资料条件与分析计算方法

2.1流域概况

XX县地处陕西省北部、延安市东南部,东隔黄河与山西吉县相望;西以进士庙梁与富县、洛川接壤;南与黄龙、韩城相毗邻;北与延长、

宝塔区相接。县境有闻名遐尔的旅游景点-黄河壶口瀑布,XX县是陕西省主要的旅游县之一。全县国土总面积2938.5 km2,人口密度39人/ km2。309国道、201省道贯穿境内。全县辖5镇7乡,1个城区街道办事处,202个村委会,602个村民小组,114593人。宜川属陕北黄土高原丘陵沟壑区,地形地貌复杂,南北东西差异较大。最高海拔1710.5m,最低海拔388.8m,县城海拔839m。县境内区域性气候特征明显,县区经济以农业为主,主要农作物有苹果、花椒、酥梨、烤烟、香紫苏等。

西川河发源于英旺乡进士庙梁,向东流至XX县城北关虎头山下,与仕望河交汇,全长49.4km,流域面积516.5km2,河道平均比降6.51‰。多年年均流量0.2m3/s,多年平均径流量为1704.45万m3。西川河上游属黄土高原稍林区,森林密布,植被较好,植被覆盖率高、清水长流,含沙量较小,河道多为土基河床,县城以下河床下切较深,基岩出露,形成裸露的石峡谷,基岩出露区植被差,水土流失严重。

2.2气象水文

XX县地处暖温带半湿润大陆性季风气候区,冬春寒冷少雨,夏季多暴雨天气,秋季常有连阴雨,据宜川气象站1961~2005年资料统计,多年平均降水量为612.0mm,多年平均气温9.9℃,1月平均气温-5.7℃,7月平均气温23.6℃,极端最高气温39.9℃,极端最低气温-22.4℃,无霜期178天,早霜多出现在10月中旬,晚霜终于4月中旬。最大冻土深0.5m,最大风速18m/s。

XXX水库上游植被情况良好。由于地处大陆腹地,远离水汽源地,故降水年际变化大,且年内分配不均匀,径流的年际变化大,年降水量的70%集中于6~9月,连阴雨多发生在9月,洪水多发生在7月、8月。

2.3基本资料

水库流域内没有水文站和雨量站,属于无资料流域。

2.4设计洪水的计算途径与依据

XXX水库属于无水文观测资料情况。按照《水利水电工程设计洪水计算规范》(SL44-93)的规定,拟采用地理综合法推求XXX水库的设计洪水。可采用《延安地区实用水文手册》(以下简称为《延安手册》)和《陕西省中小流域设计暴雨洪水图集》(以下简称为《省图集》)。设计洪水的具体推求方法有:经验公式法和暴雨产汇流法(推理公式法)。另外,还可以结合《延安手册》中的黄土林区产流计算式,由洪量来反推洪峰。

3 设计洪水推求

3.1设计暴雨推求

1. 设计暴雨历时

XXX水库的控制流域面积为25km2,按照《延安手册》的规定,设计历时采用6h。

2.设计点雨量推求

由《延安手册》中的1/3h、1h、3h、6h点雨量的均值和变差系数C V等值线图,查得到流域中心处各历时的点雨量均值Ht和变差系数Cv,结果见表3-1。

表3-1 XXX 水库流域中心点雨量统计参数

按《延安手册》规定,取Cs/Cv=3.5,由各历时的Cv 值查不同频率P-Ⅲ型曲线的模比系数Kp ,与均值相乘,即可得到相应的设计点暴雨量,计算结果见表3-2。设计点暴雨量计算公式:

t p tp H K H ?= (3-1)

表3-2 XXX 水库设计点雨量计算结果

单位:mm

3. 设计面雨量推求

设计点雨量需要换算求得设计面雨量,才能用来推求设计洪水。中小流域一般采用点面系数法。点面系数t α的公式为:

1

(1)

t bt

t a F α=

+ (3-2) 式中: t α—历时为t 的暴雨点面系数; F — 设计流域面积(km 2 );

t a ,t b —线性拟合参数(可查《延安手册》)。

在求得设计点雨量和点面系数后,采用下式计算流域的平均设计面雨量:

t t t H H α=?面 (3-3) 式中:面t H —设计历时为t 的流域面平均雨量(mm ); t H —设计历时为t 的点雨量(mm ); t α—历时为t 的暴雨点面系数。

通过以上公式可以分别计算出1/3h 、1h 、3h 、6h 的点面系数为0.8883,0.8883,0.9286,0.9575。各频率的1/3h 、1h 、3h 、6h 的面雨量见表3-3:

表3-3 XXX 水库设计面雨量计算结果

单位:mm

4.设计面暴雨量的时程分配

查《延安手册》中的设计暴雨时程分配雨型表,由已计算的设计面暴雨量,可得到不同频率的6h设计暴雨量的时程分配,不同频率的推求结果见表3-4。

表3-4 XXX水库流域面雨量的时程分配

单位:mm

3.2洪峰流量推求

西川河流域大部分为天然次生林区,植被较好。设计河段无实测

洪水资料,在仕望河下游距县城约20km 处设有大村水文站,该站控制流域面积2141 km 2,而水库坝址控制流域面积25 km 2,两者相差太大,亦不能把大村水文站作为参证站。故本设计按照《延安手册》的相关资料计算,流域属于黄土山区稍林区,故计算时采用黄土林区的参数值。洪峰流量可以按以下几种方法进行计算。

1. 综合指数法

综合指数法计算重现期为N 年的年最大流量表达式为:

η

γβαN M H F N C Q 3?ψ???= (3-4)

式中:N H 3—重现期为N 年的3h 面雨量(mm );

F —设计流域的面积(km 2 ); Ψ—流域形状系数Ψ= F / L 2; L —河道长度(km )。

查《延安手册》分区参数指数表,按照黄土林区参数值计算,结果详见下表3-5。

表3-5 黄土林区参数表

结合3.1节中算出的不同频率的3h 面雨量,根据式(3-4),可以计算出设计洪峰流量,结果见表3-6。

表3-6 综合指数法设计洪峰流量

2. 汇水面积相关法

洪峰流量汇水面积相关法计算重现期为N 年的年最大流量表达式为:

n N M F K Q ?= (3-5) 式中:F —设计流域面积(km 2);

N K 、n —重现期为N 年的经验参数。

此公式仅适用于流域面积在1000 km 2之内,超限慎用。

查《延安手册》洪峰面积相关公式参数表,可以得到不同重现期的N K 、n 值。代入式(3-5)进行计算,最终结果见下表3-7:

表3-7 汇水面积相关法设计洪峰流量

3. 推理公式法

(1)产流计算

本区的产流方式较复杂,现按《省图集》和《延安手册》的规定,采用产流期平均损失率法和入渗率-土壤含水量关系曲线法进行产流计算。

平均损失率法:按照XXX水库流域的下垫面条件和流域面积,参考《渭铜手册》表6-7,得到产流期的平均损失率u=9mm/h。由设计面雨量过程扣除平均损失,即可求出净雨过程,详见表3-8—表3-13。

入渗率-土壤含水量关系曲线法:查《省图集》和《延安手册》,该流域最大蓄水量I m取为100mm,设计情况下的前期影响雨量Pa=33mm。由于没有黄土林区的入渗率-土壤含水量关系曲线,因此需要借用其它区域的公式。按《省图集》的产流分区,XX县属于陕北分区(I),故入渗率(f)-土壤含水量(S)关系可以采用陕北分区(I)的公式,但该公式比较概化,而相对来说《延安手册》的产流分区,XX县不论在下垫面特征还是地理位臵上与黄土塬区和残塬区比较接近,因此采用该区的公式会更合适。其综合结果为:

S﹤100mm 565.0

.0

374

*

f-

= (mm/min)

.1i

62

S

S≥100mm 5.3

f(mm/h)(3-6)

=

由设计暴雨的时程分配,取设计Pa(33mm)作为初始S值,逐时段扣除下渗量,即可得到净雨过程。除设计和校核标准外,为便于比较,对其它频率也进行了计算,不同频率的产流计算过程和结果分别见表3-8—表3-13。

表3-8 XXX水库50年一遇净雨过程计算

表3-9 XXX水库500年一遇净雨过程计算

表3-10 XXX水库200年一遇净雨过程计算

表3-11 XXX水库100年一遇净雨过程计算

表3-12 XXX水库20年一遇净雨过程计算

表3-13 XXX水库10年一遇净雨过程计算

(2)设计洪峰流量的推求

由于该库控制流域面积小于50 km 2,潜流不予扣除,本区基流又忽略不计,因此推理公式法所得的地面径流洪峰流量就是设计洪峰流量。

1)地面径流洪峰流量的推求

地面径流洪峰流量由推理公式法确定,推理公式法的基本公式为: F t

h Q t

t 278.0= (3-7) 3

/13/1278.0m

Q mJ L

=

τ (3-8) 式中:h t —t 时段的最大净雨(mm); t —时段(h );

L —沿主河槽从坝址断面至分水岭的最长距离(km ); J —沿流程L 的平均比降(以小数计);

m —经验性汇流参数,可表示为:

541

.0587.034.1-=R

h m θ (3-9)

3

1)

(FJ L =

θ (3-10)

由于《延安手册》中汇流参数m 的综合公式只有黄土丘陵沟壑区和破碎塬区、塬区两个区域的,而这两个区域的公式不适用于植被较好的黄土林区,因此结合《省图集》,本次选用的是陕西省关中地区渭河北土石山区汇流参数m 的综合公式,因综合比较,该区域的下垫面特

征与本次计算的区域最接近,且地理位臵上也比较接近。式(3-7)、(3-8)的求解采用曲线交会法,流域特征值如前所述。表3-8—表3-13中两种方法计算的净雨总量接近,但f-S曲线法的净雨过程更为合理,因此,求解时采用该方法的结果。

50年一遇洪峰流量的具体求解见表3-14,结果见图3-1。限于篇幅,其它重现期的计算表格不再一一罗列。

表3-14 推理公式法推求地表径流洪峰流量(50年一遇)

图3-1 推理公式法推求地表径流洪峰流量(50年一遇)

2) 潜流的回加

根据往返一致的原理,潜流不予回加。所以计算出的地面径流洪峰流量即为设计洪峰流量。结果汇总于表3-15。

表3-15 推理公式法地面径流洪峰流量(设计洪峰流量)计算结果

4. 本区的一种特殊方法(洪量反推洪峰)

根据《延安手册》黄土林区产流计算方法,可以得到不同频率的净雨深,与流域面积相乘可以计算出洪量。然后再根据黄土林区洪量与洪峰流量的关系式 1.270.18p p

W Q =?来反推出洪峰流量。 黄土林区产流计算式为:

45

.224)105

(

a h P P P += (3-11)

式中:P24—24小时的面雨量(mm);

Pa—前期影响雨量,使用时取55 mm;

P h—净雨深(mm)。

查《延安手册》陕西省年最大24小时点雨量均值等值线图(延安地区部分)以及陕西省年最大24小时点雨量变差系数等值线图(延安地区部分),依据3.1节设计暴雨推求所述方法,即可以求出不同频率的24小时面雨量,再根据上述公式,进而求出净雨深,洪量和洪峰。计算结果见表3-16。

表3-16 由洪量反推洪峰计算表

5. 洪峰流量的计算结果比较

为便于比较,将以上各种方法推求的洪峰流量及原设计以及安全查定时的洪峰流量数值归纳为表3-17:

表3-17 XXX水库洪峰流量计算结果汇总

单位:m3/s

由表3-17可见:经验公式法中,综合指数法和汇水面积相关法计算结果相当接近,这是合理的,因为该流域面积很小,适用于经验公式,计算结果可信度较高,与实际比较接近。推理公式法的结果与经验公式相比,结果明显偏大,这是因为在产流计算中,入渗率(f)-土壤含水量(S)关系采用延安黄土塬区和残塬区的关系式,而这只是个近似采用,与实际之间存在着误差,再者《延安手册》和《省图集》中都没有黄土林区的推理公式汇流参数综合关系式,推理公式法主要采用渭北土石山区汇流参数的结果,但由于XXX水库流域有大面积林区分布,所以计算值会明显增大。因此推理公式法的结果仅供参考,不能采用。洪量反推洪峰的方法所得结果与经验公式的结果也十分接近,再次证明了经验公式所得结果的合理性。

综合以上分析,经验公式法的计算结果较合理,建议采用综合指数法和汇水面积相关法计算结果的均值作为不同重现期XXX水库的洪

峰流量,结果见表3-17,与原设计值相比较,本次复核的建议采用值有所增大。

3.3设计洪量与设计洪水过程线推求

由经验公式可推算出相应的洪水总量,结果见表3-18。此外,得出洪水过程线后,还可以计算出洪水过程线下的面积,即洪量。这两种方法得到的洪量应大体协调。

查《延安手册》,黄土林区洪量的计算公式为:

1.270.18p p

W Q =? (3-12)

表3-18 由公式推算洪量

由于推理公式法的洪峰流量偏大较多,无法采用这种方法的洪水过程线。因此,采用经验公式法中的五点概化过程线来推求设计洪水过程线。按照《延安手册》中的方法,洪峰流量确定后,洪水过程线的总历时可相应确定。计算结果表明,不同重现期的洪水历时大体在25-35小时之间。

根据XXX 水库流域的下垫面条件,参照《延安手册》中黄土林区(五点概化洪水过程线)特征值,利用表3-17中洪峰流量建议采用值,得到的洪水过程线见表3-19。将表3-19所列的洪水过程线内插成时段为0.1h 的过程线后,可用于调洪演算。

表3-19 XXX水库洪水过程线

4 水库调洪演算与防洪安全复核

4.1库容曲线及泄流曲线

1. 库容曲线

在1982年10月《陕西省水利工程立案资料》中给出了XXX水库的水位、库容数据,本次调洪仍用这个库容曲线,现将给出的库容曲线数据拟合成数学公式,以便调洪使用。拟合情况及误差分析见表4-1。拟合精度很高,相关系数达0.9995,拟合公式为:

.0

492

h (4-1)

6255

.1v

式中:h—相对水深(相对于库底高程98m),m;

v—库容,万m3。

表4-1 XXX水库水位库容曲线

图4-1 木头沟水位库容曲线

2. 泄流曲线

溃坝洪水计算

FCD13030 FCD 水利水电工程初步设计阶段溃坝洪水计算大纲范本 水利水电勘测设计标准化信息网 1997年8月 1

水电站技术设计阶段溃坝洪水计算大纲范本 主编单位: 主编单位总工程师: 参编单位: 主要编写人员: 软件开发单位: 软件编写人员: 勘测设计研究院 年月 2

目次 1.流域及工程概况 (4) 2.设计依据 (4) 3.基本资料 (5) 4.计算原则 (7) 5.溃坝计算方法及内容 (8) 6.溃坝洪水计算成果及分析 (10) 7.应提供的设计成果 (11) 3

1 流域及工程概况 2 设计依据 2.1 有关本工程的文件 (1) 设计任务书; (2) 可行性研究报告; (3) 可行性研究报告审查文件。 2.2 主要规范 (1) SL 44-93 水利水电工程设计洪水计算规范; (2) DL/T5015-1996 水利水电工程水利动能设计规范; (3) SD 138-85 水文情报预报规范; (4) DL/T5064-1996 水电工程水库淹没处理规划设计; (5) DL 5021-93 水利水电工程初步设计报告编制规程。 2.3 主要参考资料 (1) 谢任之,溃坝水利学,山东科学技术出版社; (2) 唐友一,溃坝水流状态计算方法的探讨,水利水电技术,1962年第4期; (3) 美国天气局,溃坝洪水预报程序DAMBRK及用户指南,水电部南京水文水资源研究所,1987年11月; (4) 山西省水利勘测设计院,水利动能设计手册,水库溃坝计算,1983年; (5) 水电部十一局研究院,土坝溃坝流量计算方法的研究,1977年6月; (6) 天津勘测设计院,孙国洁等,溃坝洪水计算国内外概况; (7) 水电部四川勘测设计院,大中型水电站水能设计第十五章,溃坝流态计算,1977 4

洪水调节课程设计计算书详细(三大)

洪水调节课程设计

《洪水调节课程设计》任务书 一、设计目的 1、洪水调节目的:定量地找出入库洪水、下泄洪水、拦蓄洪水的库容、水库 水位的变化、泄洪建筑物型式和尺寸间的关系,为确定水库的有关参数和泄洪建筑型式选择、尺寸确定提供依据; 2、掌握列表试算法和半图解法的基本原理、方法、步骤及各自的特点; 3、了解工程设计所需洪水调节计算要解决的课题; 4、培养学生分析问题、解决问题的能力。 二、设计基本资料 某水利枢纽工程以发电为主,兼有防洪、供水、养殖等综合效益,电站装机为5000KW,年发电量1372×104 kw·h,水库库容0.55亿m3。挡水建筑物为混凝土面板坝,最大坝高84.80m。溢洪道堰顶高程519.00m,采用2孔8m×6m(宽×高)的弧形门控制。水库正常蓄水位525.00m。电站发电引用流量为10m3/s。 本工程采用2孔溢洪道泄洪。在洪水期间洪水来临时,先用闸门控制下泄流量q并使其等于洪水来水量Q,使水库水位保持在防洪限制水位不变;当洪水来水量Q继续增大时,闸门逐渐打开;当闸门达到全开后,就不再用闸门控制,下泄流量q随水库水位z的升高而增大,流态为自由流态,情况与无闸门控制一样。 上游防洪限制水位Xm(注:X=524.5+学号最后1位/10,即524.5m-525.4m),下游无防汛要求。 三、设计任务及步骤 分别对设计洪水标准、校核洪水标准,按照上述拟定的泄洪建筑物的类型、尺寸和水库运用方式,分别采用列表试算法和半图解法推求水库下泄流量过程,以及相应的库容、水位变化过程。具体步骤: 1、根据工程规模和建筑物的等级,确定相应的洪水标准; 2、用列表试算法进行调洪演算: a)根据已知水库水位容积关系曲线V~Z和泄洪建筑物方案,用水力学公 式求出下泄流量与库容关系曲线q~Z,并将V~Z,q~Z绘制在图上; b)决定开始计算时刻和此时的q1、V1,然后列表试算,试算过程中,对每 一时段的q2、V2进行试算; c)将计算结果绘成曲线:Q~t、q~t在一张图上,Z~t曲线绘制在下方。 3、用半图解法进行调洪计算: a)绘制三条曲线:V/△t-q/2=f1(z)、V/△t+q/2=f2(z)、q=f(z); b)进行图解计算,将结果列成表格。

工程初步设计阶段溃坝洪水计算大纲

工程初步设计阶段 溃坝洪水计算大纲 1 流域及工程概况 2 设计依据 2.1 有关本工程的文件 (1) 设计任务书; (2) 可行性研究报告; (3) 可行性研究报告审查文件。 2.2 主要规范 (1) SL 44-93 水利水电工程设计洪水计算规范; (2) DL/T5015-1996 水利水电工程水利动能设计规范; (3) SD 138-85 水文情报预报规范; (4) DL/T5064-1996 水电工程水库淹没处理规划设计; (5) DL 5021-93 水利水电工程初步设计报告编制规程。 2.3 主要参考资料 (1) 谢任之,溃坝水利学,山东科学技术出版社;

(2) 唐友一,溃坝水流状态计算方法的探讨,水利水电技术,1962年第4期; (3) 美国天气局,溃坝洪水预报程序DAMBRK及用户指南,水电部南京水文水资源研究所,1987年11月; (4) 山西省水利勘测设计院,水利动能设计手册,水库溃坝计算,1983年; (5) 水电部十一局研究院,土坝溃坝流量计算方法的研究,1977年6月; (6) 天津勘测设计院,孙国洁等,溃坝洪水计算国内外概况; (7) 水电部四川勘测设计院,大中型水电站水能设计第十五章,溃坝流态计算,1977年1月; (8) 黄委会科研所,溃坝水流计算方法初步探讨,水利科技情报,1976年9月; (9) 彭登模,溃坝最大流量及溃坝流量过程计算的体会及建议,人民长江,1965年第5期。 3 基本资料 3.1 地形资料 (1) 水库及下游河道地形图; (2) 坝址横断面图; (3) 下游河道纵横断面资料。 3.2 水库库容曲线 收集水库原始库容及运行若干年后的剩余库容曲线。 水库库容曲线 表 1

山东省小型水库洪水核算办法

山东省小型水库洪水核算办法(试行)

附件: 山东省小型水库洪水核算办法(试行) 前言 《山东省小型水库洪水核算办法》(试行)是为适应新形势下小型水库除险加固需要而制定的。本办法依据水利部《水利水电工程等级划分及洪水标准》SL252-2000、《水利水电工程设计洪水计算规范》(SL44-2006)、《碾压式土石坝设计规范》(SL274-2001)和《山东省水文图集》的有关分析成果,在原山东省水利局暴雨洪水组1979年6月编印的《山东省小型水库洪水核算方法》基础上修订完成的。在山丘区小型水库防洪安全复核、控制运用、加固设计等工作中应以本办法为主,其它各法可作验证参考。 本办法提供了洪峰流量、洪水总量以及调洪演算方法,适用我省流域面积在1到30平方千米的小型水库保安全洪水核算使用。对有闸控制或流域面积大于30平方千米的小型水库,应使用《山东省大、中型水库防洪安全复核洪水计算办法》进行核算,设计洪水流量过程应采用瞬时单位线法,其中流域面积小于50平方千米的水库时段长建议取0.5小时,瞬时单位线参数M1与0.5小时单位线关系表可参考《山东省水文图集》。流域面积小于1平方千米的小(2)型水库,应按本办法计算的洪峰、洪量分别加大10%后,再进行调洪。 请各单位在使用过程中注意结合实际, 及时总结经验,如有问题请函告省水利厅。

1小型水库设计洪水标准 小型水库设计洪水标准,按照水利部《水利水电工程等级划分及洪水标准》(SL252-2000)选取。小型水库永久性水工建筑物的洪水标准,应按山区、丘陵区或平原、滨海区分别确定。山区、丘陵区永久性水工建筑物洪水标准[重现期(年)]按表1选用。平原、滨海区永久性水工建筑物洪水标准[重现期(年)]按表2选用。 当山区、丘陵区的小型水库坝高低于15m,上下游最大水头差小于10m时,且失事后对下游防洪影响不大时,其洪水标准宜按平原、滨海区标准确定;当平原、滨海区的小型水库坝高高于15m,且上下游最大水头差大于10m时,其洪水标准宜按山区、丘陵区标准确定。 小(1)型、小(2)型水库的消能防冲建筑物洪水重现期分别取20年、10年。 表1 山区、丘陵区小型水库设计洪水标准表 表2 平原、滨海区小型水库设计洪水标准表 注:特别重要小型水库系指可能危及下游城镇、工矿区,铁路干线或其它重要政治经济意义设施或梯级水库。一般是否特别重要应由上一级主管部门确定。

基于对溃坝洪水计算的分析

基于对溃坝洪水计算的分析 [摘要]兴修水库,对防洪、灌溉、发电、航运、养殖都起着很大的作用,一般情况下,必须而且可以确保大坝的安全。但是,由于某些特殊原因,例如战争、地震、超标洪水、大坝的施工质量不佳,地基不良及水库调度管理不当等,都会使坝体突然遭到破坏,而形成灾难性的溃坝洪水,给下游带来极其严重的危害。因此,研究和预估溃坝洪水,对于合理确定水库的防洪标准和下游安全措施是非常必要的。 【关键词】洪水;计算;分析 1.前言 溃坝可分为瞬时全溃、部分溃和逐渐全溃。不过,由于导致溃坝的因素甚为复杂,难于事先全面考虑,从最不利的结果着想,可以认为溃坝是瞬时完成的。因此,以下仅对瞬时全溃或部分溃的情况进行讨论,所谓全溃是指坝体全部被冲毁;部分溃则指坝体未全冲毁,或溃口宽度未及整个坝长,或深度未达坝底,或二者兼有的情况。 实验表明溃坝水流的物理过程,如图1所示,溃坝初期,库内蓄水在水压和重力作用下,奔腾而出,在坝前形成负波,逆着水流方向向上游传播,称为落水逆波;在坝下形成正波,顺着水流方向向下游传播,称为涨水顺波。由于波速随水深而增加a,所以落水逆波前边的波速总大于后面的波速,使其波形逐渐展平;坝下游涨水顺波的变化正相反,因为后面的波速总大于前面的波速,于是形成了后波赶前波的现象,使波额变陡,成为来势凶猛的立波。例如,1928年美国圣弗兰西斯科坝失事,下游2.2km处观测得波额高达37m,万吨大的混凝土巨块都被冲走,不过,经过一段河槽调蓄及河床阻力作用之后,立波逐渐坦化,最终消失。图2示意地表示出一次溃坝洪水在坝址及下游各断面的流量过程线,从图上可以看出,坝址处峰形极为尖瘦,溃坝后瞬息之间即达最大值,然后随时间的推移而急速下降,呈乙字形的退水线。随着溃坝洪水向下游的演进,过程线逐渐变缓。 1.坝址断面(第I断面); 2.坝下游第II断面; 3.坝下游第III断面; 4.坝下游第IV断面。 根据对溃坝水流物理过程的试验研究,曾提出许多关于溃坝流量过程计算方法及其向下游传播的演算方法,其中有些在理论上是比较严密的。但这些方法计算工作量大,资料条件要求高,限于溃坝的边界条件难以定准,其计算成果的精度并不一定高。因此,对于中小水库,多采用具有一定精度、且较为简便的半理论半经验公式或经验公式,计算坝址处溃坝最大流量及其向下游的传播。 2.坝址处溃坝最大流量的计算 调查溃坝的情况表明,中小水库的土坝、堆石坝短时间局部溃的较多,刚性坝(如拱坝)和山谷中的土坝容易瞬间溃毁,为安全计,对于设计情况可考虑按瞬间溃坝处理,以瞬间全溃及局部溃的最大水流理论为指导,在总结国内外各种计算方法的基础上,对所做600多次试验资料综合归纳,得到了适合于瞬间全溃或局部溃的坝址处溃坝最大流量计算公式。经使用200多组溃坝试验记录和实际的溃坝资料,对该公式和国内外的其他公式进行检验,表明该公式适用条件广、计算精度高,误差均不超过20%。 Qm=0.27√g(L/B)1/10(B/b)1/3b(H-K’h)3/2 (1)

设计洪水计算

项目二:设计洪水计算 由流量资料推求设计洪水 一、填空题 1.洪水的三要素是指、、。 2.防洪设计标准分为两类,一类是、另一类是。 3.目前计算设计洪水的基本途径有三种,它们分别是、 、。 4.在设计洪水计算中,洪峰及各时段洪量采用不同倍比,使放大后的典型洪水过程线的洪峰及各历时的洪量分别等于设计洪峰和设计洪量值,此种放大方法称为。 5.在洪水峰、量频率计算中,洪峰流量的选样采用、时段洪量的选样采用。 6.连序样本是指。不连序样本是指 。 7.对于同一流域,一般情况下洪峰及洪量系列的C V值都比暴雨系列的C V值,这主要是洪水受_和影响的结果。 二、问答题 1.什么是特大洪水?特大洪水在频率计算中的意义是什么? 2.对特大洪水进行处理时,洪水经验频率计算的方法有哪两种?分别是如何进行计算的? 3.洪水频率计算的合理性分析应从几个方面进行考虑? 4.采用典型洪水过程线放大的方法推求设计洪水过程线,典型洪水过程线的选择原则是什么? 5.采用典型洪水过程线放大的方法推求设计洪水过程线的两种放大方法是什么?分别是如何计算的? 6.在洪水峰、量频率计算工作中,为了提高资料系列的可靠性、一致性和代表性,一般要进行下列各项工作,试在下表的相应栏中用“+”表明该项措施起作用,用“-”表明该项措施不起作用。

三、计算题 1.某水库坝址断面处有1958年至1995年的年最大洪峰流量资料,其中最大的三年洪峰流量分别为 7500 m3/s、 4900 m3/s和 3800 m3/s。由洪水调查知道,自1835年到1957年间,发生过一次特大洪水,洪峰流量为 9700 m3/s ,并且可以肯定,调查期内没有漏掉 6000 m3/s 以上的洪水,试计算各次洪水的经验频率,并说明理由。 2.某水文站根据实测洪水和历史调查洪水资料,已经绘制出洪峰流量经验频率曲线,现从经验频率曲线上读取三点(2080,5%)、(760,50%)、(296,95%),试按三点法计算这一洪水系列的统计参数。 3.已知设计标准P=1%洪水过程的洪峰、1天、3天洪量和典型洪水的相应特征值及其过程线(见表1和表2),试用同频率放大法推求P=1%的设计洪水过程线(保留三位有效数字,不需修匀)。 表1 设计洪水和典型洪水峰、量特征值 表2 典型洪水过程

设计洪水分析计算

设计洪水分析计算 1、洪水标准 依据《水利水电工程等级划分及洪水标准》(SL44-2006),确定该工程等级为五等,按20年一遇洪水标准设计,200年一遇洪水校核。 本水库上游流域面积为1.6平方千米,属于小于30平方千米范围,按《山东省小型水库洪水核算办法》(试行)进行洪水计算。 2、设计洪水推求成果 1、基本资料 流域面积F=1.6平方公里,干流长度L=2.1千米,干流平均比降j=0.02。 根据山东省小型水库洪水核算办法,查《山东省多年平均二十四小时暴雨等值线图》,该流域中心多年平均二十四小时暴雨H24=85毫米。 该水库水位、库容关系表如下:

设计溢洪道底高程177.84米,相应库容23.29万立米。 2、最大入库流量Q m计算 (1)、流域综合特征系数K 按下式计算K=L/j1/3F2/5 (2)、设计暴雨量计算 查《山东省最大二十四小时暴雨变差系数C v等值线图》,该流域中心C v=0.6,采用C s=3.5C v应用皮尔逊3型曲线K p值表得,20年一遇K p=2.20,200年一遇K p=3.62,则20年一遇最大24小时降雨量H24=2.2*85=187毫米,200年一遇最大24小时降雨量H24=3.62*85=307.7毫米。 (3)单位面积最大洪峰流量计算 经实地勘测,该工程地点以上流域属丘陵区,查泰沂山北丘陵区q m- H24-K关系曲线,得20年一遇单位面积最大洪峰流量及200年一遇单位面积最大洪峰流量q m。 (4)洪水总量及洪水过程线推求 已算得20年一遇最大24小时降雨量H24=187毫米及200年一遇最大24小时降雨量H24=307.7毫米,取其75%为P 。设计前期影响雨量P a取40毫米,计算P+P a,查P+P a与设计净雨h R关系曲线,得20年一遇及 00年一遇h R。 洪水总量按下式计算W=0.1*F*h R,由此可计算得20年一遇及200年一遇洪水总量W。

溃坝计算

水电工程溃坝洪水计算 赵太平 (国家电力公司水电水利规划设计总院) 摘要:某电站为一待建电站,位于高山峡谷区,河道比降较大。其下游为某城市,一旦大坝溃决,将对人民的生命财产安全造成极大的威胁。为此,进行溃坝洪水计算,可预测溃坝后,洪水的淹没范围和程度,以便提早采取相应的措施,减少损失。 关键词:溃坝; 洪水; 预测; 不恒定流 1 前言 水电是洁净能源,是西部地区重要的能源资源,开发西部水电,实现“西电东送”是实施“ 西部大开发”战略的重要举措,也是西部地区脱贫致富的重要途径之一。但水电站往往处于深山峡谷,甚至高地震区中,水电站的溃决将造成巨大的损失,为了预估溃坝洪水带来的影响,并提早采取相应的措施,将洪水灾害造成的影响减少到最小程度,有必要进行溃坝洪水计算。 本次计算电站地处青藏高原东南缘,区域内地势较高,平均海拔在4 000m左右。且电站坝址区覆盖层深厚,构造裂隙较发育,是我国西部著名的强地震带。电站下游主要的城镇为某城市,该城为我国西部少数民族集居区,经济以农牧业为主。 2 数学模型 2.1 模型结构 本次计算采用美国国家气象局编制的溃坝洪水预报模型DAMBRK模型[1]。该模型由三部分组成:1)大坝溃口形态描述。用于确定大坝溃口形态随时间的变化,包括溃口底宽、溃口顶宽、溃口边坡及溃决历时。2)水库下泄流量的计算。3)溃口下泄流量向下游的演进。 2.1.1 溃口形态确定 溃口是大坝失事时形成的缺口。溃口的形态主要与坝型和筑坝材料有关。目前,对于实际溃坝机理仍不是很清楚,因此,溃口形态主要通过近似假定来确定。考虑到模型的直观性、通用性和适应性,一般假定溃口底宽从一点开始,在溃决历时内,按线性比率扩大,直至形成最终底宽。若溃决历时小于10分钟,则溃口底部不是从一点开始,而是由冲蚀直接形成最终底宽。溃口形态描述主要由四个参数确定:溃决历时(τ),溃口底部高程(h bm),溃口边坡(z)。由第一个参数可以确定大坝

洪水调节设计模板-带试算c语言程序

《洪水调节课程设计》任务书 一、设计目的 1.洪水调节目的:定量地找出入库洪水、下泄洪水、拦蓄洪水的库容、水库 水位的变化、泄洪建筑物型式和尺寸间的关系,为确定水库的有关参数和 泄洪建筑型式选择、尺寸确定提供依据; 2.掌握列表试算法和半图解法的基本原理、方法、步骤及各自的特点; 3.了解工程设计所需洪水调节计算要解决的课题;培养学生分析问题、解决 问题的能力。 二、设计基本资料 1.某水利枢纽工程以发电为主,兼有防洪、供水、养殖等综合效益,电站 装机为5000KW,年发电量1372×104kw·h,水库库容亿m3。挡水建筑物 为混凝土面板坝,最大坝高。溢洪道堰顶高程,采用2孔8m×6m(宽× 高)的弧形门控制。水库正常蓄水位。电站发电引用流量为10 m3/s。 2.本工程采用2孔溢洪道泄洪。在洪水期间洪水来临时,先用闸门控制下 泄流量q并使其等于洪水来水量Q,使水库水位保持在防洪限制水位不变; 当洪水来水量Q继续增大时,闸门逐渐打开;当闸门达到全开后,就不 再用闸门控制,下泄流量q随水库水位z的升高而增大,流态为自由流 态,情况与无闸门控制一样。 3.上游防洪限制水位(注:X=+学号最后1位/10,即),下游无防汛要求。 三、设计任务及步骤 分别对设计洪水标准、校核洪水标准,按照上述拟定的泄洪建筑物的类型、尺寸和水库运用方式,分别采用列表试算法和半图解法推求水库下泄流量过程,以及相应的库容、水位变化过程。具体步骤: 1.根据工程规模和建筑物的等级,确定相应的洪水标准; 2.用列表试算法进行调洪演算: ①根据已知水库水位容积关系曲线V~Z和泄洪建筑物方案,用水力学 公式求出下泄流量与库容关系曲线q~Z,并将V~Z,q~Z绘制在图 上; ②决定开始计算时刻和此时的q 1、V 1 ,然后列表试算,试算过程中,对 每一时段的q 2、V 2 进行试算; ③将计算结果绘成曲线:Q~t、q~t在一张图上,Z~t曲线绘制在下 方。

溃坝洪水计算

217141 1.0H B KW 2 14141 1.0H B KW b 3.2 大坝溃决分析 3.2.1可能导致大坝溃决的主要因素 **水库可能出现大坝溃决的主要因素、形式见3.1.1条。 3.2.2可能发生的水库溃坝形式 水库溃坝的主要形式有漫坝溃决、管涌溃决。**水库可能发生的水库溃坝形式是发生了超标准洪水超过泄洪能力造成洪水漫坝溃坝。 3.2.3 溃坝洪水计算 **水库坝型为钢筋混凝土面板堆石坝,坝高*** m ,坝顶高程*** m ,防浪墙顶高程***m ,最大库容10460万m 3,坝顶长度***m 。**水库采用洪水漫坝造成水库逐渐溃决进行洪水计算。 (1)溃坝决口宽度估算 ①根据铁道科学研究院推荐的经验公式估算。计算公式为: b= 式中:b 溃坝决口宽度(m),W 水库总库容(万m3),B 坝顶长度(m),H 最大坝高(m),K 经验系数,对于该水库属土石混合坝K 值为 1.19。 b=26.18m ②根据黄河水利委员会经验公式估算 式中:b 为溃口宽度(m),W 为水库总库容(万m 3),B 为主坝长度(m),H 为坝高(m),K 为经验系数(粘土类取0.65,壤土取1.30)。 b=26.84m ③参考中国水利水电科学研究院陆吉康经验公式计算。 b = 0.180×3×kW 0.32 H 0.19 H 为溃决水深(水库溃决时刻水位- 坝址断面平均底高程)(m),W 为水库有效下泻库容(m 3),b 为最终溃口的平均宽度(m),K 为修正系数,对于漫顶造成的溃决K = 1 。

b=25.32m 以上三种方法计算决口宽度均在经验误差范围内,取情况最恶劣计算坝址溃坝最大流量,即溃坝决口宽度26.84m。 (2) 溃口坝址最大流量估算 溃口坝址最大流量根据肖克列奇经验公式估算: 式中:Q max溃口坝址最大流量(m3/s),B坝顶长度(m),b溃坝决口宽度(m),H0溃坝前上游水深(m)。 Q max = 38768.09 m3/s **水库坝址处溃坝最大流量:38768.09 m3/s。 表2:**水库溃坝计算成果表 3.2.4溃坝洪水对下游防洪工程、重要保护目标等造成的破坏程度和影响范围 根据有关资料分析,水库溃坝时洪水可能导致水库下游的**、**两个集镇镇(街)的企业、学校、村庄、农田和鱼塘受淹浸,摧毁房屋及其他公共设施,冲毁水陂、渠道,国道**段中断,损失严重。 3.2.5溃坝对上游可能引发滑坡崩塌的地点、范围和危害程度 根据有关分析,导致**水库对上游可能引发滑坡崩塌的部位主要集中在***,其危害程度可能造成滑坡。

暴雨洪水计算分析

《灌溉与排水工程设计规范》 表3.1.2灌溉设计保证率 表3.3.3灌排建筑物、灌溉渠道设计防洪标准 3.3.3灌区内必须修建的排洪沟(撇洪沟),其防洪标准可根据排洪流量的大小,按5~10a 确定。 附录C 排涝模数计算 C.0.1经验公式法。平原区设计排涝模数经验公式: Q=KR m A n (C.0.1) 式中:q ——设计排涝模数(m 3/s ·km 2) R ——设计暴雨产生的径流深(mm ) K ——综合系数(反应降雨历时、流域形状、排水沟网密度、沟底比降等因素) m ——峰量指数(反应洪峰与洪量关系) N ——递减指数(反应排涝模数与面积关系) K 、m 、n 应根据具体情况,经实地测验确定。(规范条文说明中有参考取值范围) C.0.2平均排除法 1平原区旱地设计排涝模数计算公式: )12.0.(4.86-= C T R q d 式中 q d ——旱地设计排涝模数(m 3/s ·km 2) R ——设计暴雨产生的径流深(mm ) T ——排涝历时(d )。

说明:一般集水面积多大于50km 2。 参考湖北取值,K=0.017,m=1,n=-0.238,d=3 2.平原区水田设计排涝模数计算公式: ) 22.0.(4.86'1----= C T F ET h P q w 式中q w ——水田设计排涝模数(m 3/s ·km 2) P ——历时为T 的设计暴雨量(mm ) h 1——水田滞蓄水深(mm ) ET`——历时为T 的水田蒸发量(mm ),一般可取3~5mm/d 。 F ——历时为T 的水田渗漏量(mm ),一般可取2~8mm/d 。 说明:一般集水面积多小于10km 2。 h 1=h m -h 0计算。h m 、h 0分别表示水稻耐淹水深和适宜水深。 《土地整理工程设计》培训教材 第四章农田水利工程设计 第二节:(五)渠道设计流量简化算法 1.续灌渠道流量推算 (1)水稻区可按下式计算 η αt Ae 3600667.0Q = 式中:α——主要作物种植比例(占控制灌溉面积的比例)。 A ——该渠道控制的灌溉面积。 e ——典型年主要作物用水高峰期的日耗水量(mm ),根据调查确定,一般粘壤土地区水稻最大日耗水量8~11mm ,最大13mm 。 t ——每天灌水时间(小说),一般自流灌区24小时,提水灌区20~22小时。 η——渠系水利用系数。 (2)旱作区可按下式计算 η αTt mA 3600Q =

水库水文计算全过程

2水文 2.1流域概况 ××水库位于××西南方向,坝址高程1760m,径流面积0.78km2,主河长1.6km,平均坡降为88‰,流域平均高程1880m,径流量条形状。 ××水库属珠江水系西洋江流域源头支流,地处珠江流域与红河流域的分水岭上。河流自北向南,在坝址下游500m向西转,进入溶洞,流入其龙得河,又通过地下暗河进入头河,汇入西洋江,流域水系分布详见《××水库水系图》。 ××水库流域地处中低山区,森林种类较多,主要分布有灌木、杂草、杉木等植物,目前,森林林植被完好,覆盖率在80%以上,径流内有少量的泉点出露,来水主要靠地表径流。 2.2气象特性 西洋江流域属中亚热带高原季风气候区。夏季受东南太平洋和孟加拉湾暖湿气流影响,5~10间湿热多雨,水量充沛,其降水量占年降水量的85%左右,此期间又多集中在6—8月,占全年降水量的50%左右。冬季,受周围山脉作屏障作用,阻滞北方冷空气的入侵,使本流域干燥,凉爽少雨(11—4月),据××县象站资料统计,多年平均降水量为1046.00mm,蒸发量(d=20m)为1637.6mm,多年平均气温为16.7℃,极高最高气温为36.7℃,最低为-5.5℃。多年无霜期为306天,雨季相对湿率82%,绝对浊率19.9hp a,旱季相对湿度76%,绝 页脚内容22

对湿度10.8hp a。以上结果表明,流域具有气候温和,降水量年际变化小,年内分配均匀,集中程度高,干湿分明的特点。该气候特点决定了径流由降水补给,径流与降水规律一致。 2.3年径流分析 拟建的××水库坝址附近属无测水文气象资料地区,水库设计年径流量根据其地理位置及气候成固相似性的特点,采用查径流深等直线图和移用西洋街(二)站径流模数两种方法分析,再作综合论证后取值。 2.3.1移西洋街(二)站径流模数法 西洋街(二)站属国家基本水文站,观测内客有水位、流量、降水、蒸发,观制面积2473km2。该站有1964—2001年的流量统计系列,且该系列已具有一定的代表性,统计年限满足规范要求,用适线法将该径流系列进行频率计算,矩法初估参数,取倍比系数C5=2.5C V,计算结果如表2-1 页脚内容22

洪水调节

《水资源规划及利用》课程设计 计算说明书 网选班级:2班 指导老师: 姓名: 学号: 专业:水利水电工程 2017年 1 月9日 洪水调节课程设计 一、设计目的 1、洪水调节目的:定量地找出入库洪水、下泄洪水、拦蓄洪水的库容、水库水位的变化、泄洪 建筑物型式和尺寸间的关系,为确定水库的有关参数和泄洪建筑型式选择、尺寸确定提供依据; 2、掌握列表试算法的基本原理、方法、步骤及各自的特点; 3、了解工程设计所需洪水调节计算要解决的课题; 4、培养学生分析问题、解决问题的能力。 二、设计基本资料 大峡水电站枢纽位于湖北省竹溪县境内,泉河流域规划中梯级电站的第三级,工程距天宝乡3km,

距竹溪县城83km。拦截堵河西支泗河上游的一级支流泉河。河流全长82.2km,流域面积894.6km2,大峡电站坝址以上流域面积482.70km2,占全流域的53.96%,河长43.7km,河床比降14.3‰。多年平均径流量为11.2m3/s,多年平均径流总量为3.53亿m3,多年平均径流深为733.9mm。大峡电站水库正常蓄水位选为565m,汛限水位563.5m,死水位552m,其相应的死库容为407万m3,调节库容1333万m3,库容系数3.8%。依据《防洪标准》(GB50201—94)和《水利水电工程等级划分及洪水标准》(SL252—2000),本工程项目为中型水库。电站总装机容量20MW,保证出力1.9MW,年发电量0.603亿kW·h。 水库挡水建筑物为混凝土重力坝,最大坝高88m。溢洪形式表孔泄流,溢洪道堰顶高程555m,采用2孔12×10.5(宽×高)的弧形门控制。 大峡水库调洪规则如下: (1)起调水位取Xm(注:X=563.5+学号最后1位/10,即563.5m-564.5m),每年进入汛期前,将库水位控制在起调水位以下。 (2)洪水初临时当来量较小时,启用并控制闸门开启度,使泄量等于来量,水库水位维持起调水位不变。 (3)当库水位继续上涨,预报还有大降雨发生,由国电竹溪水电开发有限公司根据水雨情提出启用非常溢洪道的泄洪方案报市、县防汛抗旱指挥部,启用非常溢洪道敞泄库水位上升,直至达到最高洪水位。 (4)当入库洪峰已过且出现了最高库水位时,在不影响上下游防洪安全、满足设计规定的库水位下降速度的前提下,尽快腾库,以备下次洪水到来前使库水位回降至汛期限制水位。 三、设计任务及步骤 分别对设计洪水标准、校核洪水标准,按照上述拟定的泄洪建筑物的类型、尺寸和水库运用方式,分别采用列表试算法和半图解法推求水库下泄流量过程,以及相应的库容、水位变化过程。具体步骤: 1、根据工程规模和建筑物的等级,确定相应的洪水标准; 2、用列表试算法进行调洪演算: a)根据已知水库水位容积关系曲线V~Z和泄洪建筑物方案,用水力学公式求出下泄流量与库容 关系曲线q~Z,并将V~Z,q~Z绘制在图上; b)决定开始计算时刻和此时的q1、V1,然后列表试算,试算过程中,对每一时段的q2、V2进行 试算; c)将计算结果绘成曲线:Q~t、q~t在一张图上,Z~t曲线绘制在下方。 3、将计算结果填写在调洪成果表中。 4、采用半图解法(单辅助线法)进行调洪演算,与列表试算法结果进行比较。 四、设计过程 1洪水标准的确定 由设计对象的基本资料可知,该水利枢纽工程以发电为主,并兼有其他综合效益,电站装机为20MkW。若仅由装机容量20MkW为指标,根据下表所示的“水利水电工程分等指标”,可将工程等别定为Ⅴ。由于该水利工程的挡水建筑物为混凝土重力坝,所以可将其工程等别定为Ⅲ。综合两种指标,取等级最高的Ⅲ等为工程最终等别。 根据下表《水工建筑物洪水标准》,可查得,该工程设计洪水标准为100—50年,校核标准为1000—500年,不妨取设计标准为100年,校核洪水标准为500年。 山区、丘陵区水利水电工程永久性水工建筑物洪水标准【重现期(年)】

洪水频率计算规范方法

洪水频率计算规范方法 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

附录A 洪水频率计算 A1 洪水频率曲线统计参数的估计和确定 参数估计法 A1.1.1 矩法。对于n 年连序系列,可采用下列公式计算各统计参数: 均值 ∑== n i i X n X 1 1 (A1) 均方差 ∑=--=n i i X X n S 1 2)(11 或 ?? ????--=∑∑==n i n i i i X n X n S 1212)(111 (A2) 变差系数 X S C v = (A3) 偏态系数 33 13 )2)(1()(v n i i s C X n n X X n C ---= ∑= 或 33 1 3 1 1 21 32)2)(1()(23v n i n i i n i i n i i i s C X n n n X X X n X n C --+?-= ∑∑∑∑==== (A4) 式中 X i ——系列变量(i=1,…,n ); n ——系列项数。 对于不连序系列,其统计参数的计算与连序系列的计算公式有所不同。如果在迄今的N 年中已查明有a 个特大洪水(其中有l 个发生在n

年实测或插补系列中),假定(n-l )年系列的均值和均方差与除去特大洪水后的(N-a )年系列的相等,即l n a n l n a N S S X X ----==,,可推导出统计参数的计算公式如下: )(11 1∑ ∑+==--+=n l i i a j j X l n a N X N X (A5) ?? ????---+--= ∑∑++==n l i i a j j v X X l n a N X X N X C 1 2 12)()(111 (A6) 3 31313)2)(1()()(v n l i i a j j s C X N N X X l n a N X X N C --??????---+-=∑∑+== (A7) 式中 X j ——特大洪水变量(j=1,…,a ); X i ——实测洪水变量(i=l +1,…,n )。 A1.1.2 概率权重矩法。概率权重矩定义为 ?=1 0)(dF x xF M j j j=0,1,2,… (A8) 皮尔逊Ⅲ型频率曲线的三个统计参数不能用概率权重矩的显式表达。但经推导有: o M X = (A9) )2 1 ( 01-=M M H C v (A10) 2 /3/0102M M M M R --= (A11)

水电工程溃坝洪水计算

水电工程溃坝洪水计算 发表日期:2006-03-06 浏览人数:1570 作者:赵太平来源:网络收集评论0条 1 前言 水电是洁净能源,是西部地区重要的能源资源,开发西部水电,实现“西电东送”是实施“ 西部大开发”战略的重要举措,也是西部地区脱贫致富的重要途径之一。但水电站往往处于深山峡谷,甚至高地震区中,水电站的溃决将造成巨大的损失,为了预估溃坝洪水带来的影响,并提早采取相应的措施,将洪水灾害造成的影响减少到最小程度,有必要进行溃坝洪水计算。 本次计算电站地处青藏高原东南缘,区域内地势较高,平均海拔在4 000m左右。且电站坝址区覆盖层深厚,构造裂隙较发育,是我国西部著名的强地震带。电站下游主要的城镇为某城市,该城为我国西部少数民族集居区,经济以农牧业为主。 2 数学模型 2.1 模型结构 本次计算采用美国国家气象局编制的溃坝洪水预报模型DAMBRK模型[1]。该模型由三部分组成:1)大坝溃口形态描述。用于确定大坝溃口形态随时间的变化,包括溃口底宽、溃口顶宽、溃口边坡及溃决历时。2)水库下泄流量的计算。3)溃口下泄流量向下游的演进。 2.1.1溃口形态确定 溃口是大坝失事时形成的缺口。溃口的形态主要与坝型和筑坝材料有关。目前,对于实际溃坝机理仍不是很清楚,因此,溃口形态主要通过近似假定来确定。考虑到模型的直观性、通用性和适应性,一般假定溃口底宽从一点开始,在溃决历时内,按线性比率扩大,直至形成最终底宽。若溃决历时小于10分钟,则溃口底部不是从一点开始,而是由冲蚀直接形成最终底宽。溃口形态描述主要由四个参数确定:溃决历时(τ),溃口底部高程(h bm),溃口边坡(z)。由第一个参数可以确定大坝溃决是瞬溃还是渐溃。由后面三个参数可以确定溃口断面形态为矩形、三角形或梯形及局部溃或全溃。

洪水频率计算(规范方法)

A1洪水频率曲线统计参数的估计和确定 A1.1 参数估计法 A1.1.1矩法。对于n 年连序系列,可采用下列公式计算各统计参数 n 系列项数。 对于不连序系列,其统计参数的计算与连序系列的计算公式有所不同。 如果 在迄今的N 年中已查明有a 个特大洪水(其中有I 个发生在n 年实测或插补系列 中),假定(n-l )年系列的均值和均方差与除去特大洪水后的(N-a )年系列的 相等,即X N 』= X n4,S n 』=S n 4,可推导出统计参数的计算公式如下: — 1 a N — a n X 二丄C X j X i ) (A5) N J j n — I 4 附录A 洪水频率计算 均值 均万差 或 变差系数 偏态系数 或 式中 lUi-X)2 n-1 二 X i 2 -n ([X i )2 n7 (X i - X)3 i £ (n —1)( n —2)X 3C ; n n n n n 2 v X ; _3 n^ X i X 2 2(^ X J 3 i # i£ i 住 i 仝 : X i --------- 系列变量(i=1,…,n ); (A1) (A2) (A3) (A4)

式中 X j --------- 特大洪水变量(j=1,…,a ); X i ――实测洪水变量(i=l +1,…,n )o A1.1.2概率权重矩法。概率权重矩定义为 皮尔逊川型频率曲线的三个统计参数不能用概率权重矩的显式表达。但经 推导有: Cs = N_1 一)2 N JX j —X)3 活二X i -对 (A6) (A7) (N -1)( N _2)X Cv 1 . M . = o xF J (x)dF j=0,1,2,… (A8)

洪水调节计算书

目录 第一章调洪演算 .................................................- 4 - 1.1 洪水调节计算............................................................................................................... - 4 - 1.1.1 洪水调节计算方法............................................................................................................. - 4 - 1.1.2 洪水调节具体计算............................................................................................................. - 4 - 1.1.3 计算结果统计..................................................................................................................... - 8 - 1.2 防浪墙顶高确定........................................................................................................... - 8 - 1.2.1 正常蓄水位和设计设计洪水位状况................................................................................. - 9 - 1.2.2 校核状况........................................................................................................................... - 10 -第二章 L型挡墙计算.............................................- 11 -2.1 L型挡墙荷载计算...................................................................................................... - 11 -2.2 最危险工况判定......................................................................................................... - 14 -2.3 L型挡墙的抗滑稳定计算.......................................................................................... - 14 -2.4 L型挡墙的基底应力计算.......................................................................................... - 15 -2.5L型挡墙抗倾覆稳定计算............................................................................................ - 16 -2.6L型挡墙配筋计算........................................................................................................ - 17 -第三章复合土工膜强度及厚度校核 .................................- 21 -3.1 0.4mm厚土工膜........................................................................................................ - 21 -3.2 0.6mm厚土工膜........................................................................................................ - 22 -第四章坝坡稳定计算 .............................................- 23 -4.1 第一组滑动面........................................................................................................... - 23 -4.2 第二组滑动面........................................................................................................... - 24 -4.3 第三组滑动面........................................................................................................... - 25 -4.4 第四组滑动面........................................................................................................... - 26 -4.6 第六组滑动面........................................................................................................... - 28 -第五章坝坡面复合土工膜稳定计算 .................................- 29 -5.1混凝土护坡与复合土工膜间抗滑稳定计算.............................................................. - 29 -5.2复合土工膜与下垫层间的抗滑稳定计算.................................................................. - 29 - 第六章副坝设计 .................................................- 31 - 6.1 副坝及主坝的连接及副坝型式选择................................................................................... - 31 - 6.2 副坝的地基处理防渗设计................................................................................................... - 34 -

相关主题
文本预览
相关文档 最新文档