当前位置:文档之家› 三极管选型与使用

三极管选型与使用

2011年3月24日星期四三门峡职业技术学院范江波

2

2011年3月24日星期四三门峡职业技术学院范江波

3

u 国内命名方法:3DG1815-Y

u 第一部分用阿拉伯字表示器件的电极数目u 2:表示二极管;3:表示三极管u 第二部分表示器件的材料和极性

u A :PNP 锗;B :NPN 锗;C :PNP 硅;D :NPN 硅;E :化合物材料u 第三部分表示器件的类型

u

G :高频小功率;D :低频大功率;A :高频大功率;K :开关管;X :低频小功率

u 大于等于1W 为大功率管,小于1W 为小功率管,功率不是很大,封装比较大为中功率管

u 第四部分用阿拉伯字表示序号(型号)u 第五部分表示器件的规格(放大档次)

2011年3月24日星期四

u国外命名方法(如日本工业标准(JIS)规定命名):2SC1815-Y

u第一部分用数字表示类型或有效电极数

1:表示二极管;2:表示三极管

u第二部分“S”表示日本电子工业协会(EIAJ)注

册产品

u第三部分用字母表示器件的极性及类型

A:PNP高频;B:PNP低频;C:NPN高频;

D:NPN低频;J:P沟道场效应管;

K:N沟道场效应管

u第四部分用数字表示在日本电子工业协会登记的

顺序号

u第五部分表示器件的规格(放大档次)

三门峡职业技术学院范江波5

2011年3月24日星期四

2011年3月24日星期四

2011年3月24日星期四三门峡职业技术学院范江波7

例如:BF420

例如:2N3904

2011年3月24日星期四

三门峡职业技术学院范江波8

2011年3月24日星期四三门峡职业技术学院范江波

9

片式3脚

SC-89

SOT-490

片式6脚SSOT6

SMT6

SC-74SOT-457片式5脚SMT5SC-74A

片式3脚SMPAK EMT3SC-75A SOT-416

片式6脚UMT6SC-88SOT-363片式5脚UMT5SC-88A SOT-353片式3脚CMPAK

UMT3SC-70SOT-323片式4脚SC-73SOT-223片式4脚SC-61B SOT-143R 片式3脚UPAK MPT3

SC-62SOT-89TO-243

片式3脚MPAK SMT3SC-59SOT-346TO-236片式3脚SST3SOT-23TO-236AB 片式3脚D-PAK

CPT3SC-63

SOT-428TO-252直插式SC-64TO-251直插式SC-46SOT-78

TO-220AB 直插式2-10L1A

TO-220FP

SC-67 SOT-186 TO-220FP 直插式2-10R1A TO-220FN SC-67(接近)SOT-186A TO-220FN 直插式SC-53SOT-128B TO-202AA 直插式SOT-32TO-126直插式SPT

SC-72

TO-92S 直插式TO-92SC-43SOT-54

TO-92备注

其它

TOSHIBA

PHILIPS 标准ROHM 标准日本EIAJ 标准欧美标准国际JEDEC 标准各

种封装形式对照表

2011年3月24日星期四三门峡职业技术学院范江波

10

三门峡职业技术学院范江波11

2011年3月24日星期四

三门峡职业技术学院范江波12

2011年3月24日星期四

三门峡职业技术学院范江波13

2011年3月24日星期四

三门峡职业技术学院范江波14

2011年3月24日星期四

三门峡职业技术学院范江波15

2011年3月24日星期四

三门峡职业技术学院范江波16

2011年3月24日星期四

三门峡职业技术学院范江波17

2011年3月24日星期四

三门峡职业技术学院范江波18

2011年3月24日星期四

三门峡职业技术学院范江波19

2011年3月24日星期四

三门峡职业技术学院范江波20

2011年3月24日星期四

常用三极管型号及参数

常用三极管型号及参数 晶体管型号反压Vbe0 电流Icm 功率Pcm 放大系数特征频率管子类型IRFU020 50V 15A 42W **NMO场效应 IRFPG42 1000V 4A 150W ** NMO场效应 IRFPF40 900V 4.7A 150W ** NMO场效应 IRFP9240 200V 12A 150W ** PMOS场效应 IRFP9140 100V 19A 150W **PMOS场效应 IRFP460 500V 20A 250W ** NMO场效应 IRFP450 500V 14A 180W **NMO场效应IRFP440 500V 8A 150W **NMO场效应IRFP353 350V 14A 180W **NMO场效应IRFP350 400V 16A 180W **NMO场效应IRFP340 400V 10A 150W **NMO场效应IRFP250 200V 33A 180W **NMO场效应IRFP240 200V 19A 150W **NMO场效应IRFP150 100V 40A 180W **NMO场效应晶体管型号反压Vbe0 电流Icm 功率Pcm 放大系数特征频率管子类型IRFP140 100V 30A 150W **NMO场效应IRFP054 60V 65A 180W **NMO场效应IRFI744 400V 4A 32W **NMO场效应IRFI730 400V 4A 32W **NMO场效应IRFD9120 100V 1A 1W **NMO场效应IRFD123 80V 1.1A 1W **NMO场效应IRFD120 100V 1.3A 1W **NMO场效应IRFD113 60V 0.8A 1W **NMO场效应IRFBE30 800V 2.8A 75W **NMO场效应

全系列常用三极管型号参数资料(精)

全系列常用三极管型号参数资料 编者按:这些虽不能涵盖所有的三极管型号,例如3DD系列等,但是都是极其常用的型号,例如901系列,简直是无所不在。在网上查的电子元件手册都是卖书的广告,找到点参数型号确实不易。 名称封装极性功能耐压电流功率频率配对管 D633 28 NPN 音频功放开关100V 7A 40W 达林顿 9013 21 NPN 低频放大50V 0.5A 0.625W 9012 9014 21 NPN 低噪放大50V 0.1A 0.4W 150HMZ 9015 9015 21 PNP 低噪放大50V 0.1A 0.4W 150MHZ 9014 9018 21 NPN 高频放大30V 0.05A 0.4W 1000MHZ 8050 21 NPN 高频放大40V 1.5A 1W 100MHZ 8550 8550 21 PNP 高频放大40V 1.5A 1W 100MHZ 8050 2N2222 21 NPN 通用60V 0.8A 0.5W 25/200NS 2N2369 4A NPN 开关40V 0.5A 0.3W 800MHZ 2N2907 4A NPN 通用60V 0.6A 0.4W 26/70NS 2N3055 12 NPN 功率放大100V 15A 115W MJ2955 2N3440 6 NPN 视放开关450V 1A 1W 15MHZ 2N6609 2N3773 12 NPN 音频功放开关160V 16A 50W 2N3904 21E NPN 通用60V 0.2A 2N2906 21C PNP 通用40V 0.2A 2N2222A 21铁NPN 高频放大75V 0.6A 0.625W 300MHZ 2N6718 21铁NPN 音频功放开关100V 2A 2W 2N5401 21 PNP 视频放大160V 0.6A 0.625W 100MHZ 2N5551 2N5551 21 NPN 视频放大160V 0.6A 0.625W 100MHZ 2N5401 2N5685 12 NPN 音频功放开关60V 50A 300W 2N6277 12 NPN 功放开关180V 50A 250W 9012 21 PNP 低频放大50V 0.5A 0.625W 9013 2N6678 12 NPN 音频功放开关650V 15A 175W 15MHZ 9012 贴片PNP 低频放大50V 0.5A 0.625W 9013

三极管选型表

全系列三极管应用参数 名称封装极性功能耐压电流功率频率配对管D633 28 NPN 音频功放开关100V 7A 40W 达林顿 9013 21 NPN 低频放大50V 0.5A 0.625W 9012 9014 21 NPN 低噪放大50V 0.1A 0.4W 150HMZ 9015 9015 21 PNP 低噪放大50V 0.1A 0.4W 150MHZ 9014 9018 21 NPN 高频放大30V 0.05A 0.4W 1000MHZ 8050 21 NPN 高频放大40V 1.5A 1W 100MHZ 8550 8550 21 PNP 高频放大40V 1.5A 1W 100MHZ 8050 2N2222 21 NPN 通用60V 0.8A 0.5W 25/200NS 2N2369 4A NPN 开关40V 0.5A 0.3W 800MHZ 2N2907 4A NPN 通用60V 0.6A 0.4W 26/70NS 2N3055 12 NPN 功率放大100V 15A 115W MJ2955 2N3440 6 NPN 视放开关450V 1A 1W 15MHZ 2N6609 2N3773 12 NPN 音频功放开关160V 16A 50W 2N3904 21E NPN 通用60V 0.2A 2N2906 21C PNP 通用40V 0.2A 2N2222A 21铁NPN 高频放大75V 0.6A 0.625W 300MHZ 2N6718 21铁NPN 音频功放开关100V 2A 2W 2N5401 21 PNP 视频放大160V 0.6A 0.625W 100MHZ 2N5551 2N5551 21 NPN 视频放大160V 0.6A 0.625W 100MHZ 2N5401 2N5685 12 NPN 音频功放开关60V 50A 300W 2N6277 12 NPN 功放开关180V 50A 250W 9012 21 PNP 低频放大50V 0.5A 0.625W 9013 2N6678 12 NPN 音频功放开关650V 15A 175W 15MHZ 9012 贴片PNP 低频放大50V 0.5A 0.625W 9013 3DA87A 6 NPN 视频放大100V 0.1A 1W 3DG6B 6 NPN 通用20V 0.02A 0.1W 150MHZ 3DG6C 6 NPN 通用25V 0.02A 0.1W 250MHZ 3DG6D 6 NPN 通用30V 0.02A 0.1W 150MHZ MPSA42 21E NPN 电话视频放大300V 0.5A 0.625W MPSA92 MPSA92 21E PNP 电话视频放大300V 0.5A 0.625W MPSA42 MPS2222A 21 NPN 高频放大75V 0.6A 0.625W 300MHZ 9013 贴片NPN 低频放大50V 0.5A 0.625W 9012 3DK2B 7 NPN 开关30V 0.03A 0.2W 3DD15D 12 NPN 电源开关300V 5A 50W 3DD102C 12 NPN 电源开关300V 5A 50W 3522V 5V稳压管 A634 28E PNP 音频功放开关40V 2A 10W A708 6 PNP 音频开关80V 0.7A 0.8W A715C 29 PNP 音频功放开关35V 2.5A 10W 160MHZ A733 21 PNP 通用50V 0.1A 180MHZ A741 4 PNP 开关20V 0.1A 70/120NS A781 39B PNP 开关20V 0.2A 80/160NS

常用高清行管和大功率三极管主要参数表

常用高清行管和大功率三极管主要参数表 2010-03-02 10:33:54 阅读78 评论0 字号:大中小 高清彩电行管损坏的原因及代换 现在,大屏幕彩色电视大都是数字高清,原来50Hz的场扫描频率接近人眼感知频闪的临界点,所以高清电视都是提高扫描频率来提高图像的清晰度,即将场扫描提高到100Hz或是60Hz逐行,这样就会使行扫描的频率提高一倍,自然行输出管的开关速度和功耗都会随之增加,普通的行输出管已经不能胜任,要采用性能更好的大功率三极管。目前采用的行管有:C5144、C5244、J6920、C5858、C5905等,这些行输出管的耐压都在1500V以上,电流多大于20A,但是由于其功耗比较大,损坏率还是比较高。归纳起来,其损坏的原因一般有以下六种。 1. 行激励不足 如果行激励不足,行管不能迅速截止与饱和,导致行管内阻变大,将造成行输出电路的功耗增加,引起行输出管发烫,一旦超过行管功耗的极限值,便会使行管烧坏。 在海信高清电视中,行振荡方波信号是由数字变频解码板输出,经过一对三极管2SC1815、2SA1015放大后,送到行激励管的基极。这两个三极管工作在大电流开关状态,故障率相对较高,损坏后就会造成行激励不足,损坏行输出管,对比可以用示波器测量行管基极的波形来确定。另外,行管基极的限流电阻阻值一般为Ω,与行管的发射极串联,再与行激励变压器并联,若是阻值增大有可能用普通万用表测不出来。我们曾经修过多例次电阻增值到2Ω以上而导致开机几分钟后行管损坏的故障,且损坏行管的比例较大。 2. 行逆程电压过高 在行逆程期间,偏转线圈会对逆程电容充电,逆程电容容量大小决定充电的时间。容量越小,充电时间越短,充电电压越高,因而会产生很高的反峰脉冲电压。所以,当行一旦超过行管的耐压值,就会出现屡烧行管的结果。我们在测量逆程电容时,一般是测量电容的直流参数,而一些ESR等交流参数无法测量,所以最好是代换较可靠。 3. 行偏转线圈或行输出变压器局部短路造成行负责过重 常见场输出集成电路击穿导致行偏转线圈或行输出变压器绝缘性能下降,产生局部短路、行输出逆程电容漏电等。如果保护电路性能不完善,则会引起行管过流损坏。海信高清电视由于电源保护措施比较完善,所以这种情况不多见,表现出来的现象是行一开机就停。 4. 电源电压升高 电源电压升高会导致行逆程电压升高。现在的高清电视电源一般都是模块化的,电源设计比较合理,保护功能全,不像以前的老式电源电路,电源电压升高造成击穿行管的故障相对比较少。 5. 行管的型号和参数不对 这种情况在专业的厂家售后一般不会出现,但是作为个体维修或是业余维修就可能遇到。高清电视行管的功率大、频率高,最好用同型号行管代换。有的行管发射结没有并联电阻,如果采用普通行管,发射结并联电阻的阻值比较小,会造成基极驱动电流小,激励不足,行电流过大(正常高清行电流在500mA~600mA)而再次损坏。更换行管后测量行电流,如果原行推动变压器次级并联有缓冲电阻的,可将电阻阻值增大,甚至拿掉;如果行管发射极串联有负反馈电阻或是基极有限流电阻的,可减小该电阻阻值,再次测量行电流,如果行电流减小就适当改变这两个电阻的阻值。 6. 其他 像阻尼二极管开路、高压打火、显像管内部跳火、行信号反馈电路有故障、更换后的行管

三极管型号及参数选用大全

NPN与PNP三极管的区别 电子知识2008-08-29 16:06 阅读25 评论0 字号:大中小小 NPN和PNP主要就是电流方向和电压正负不同,说得“专业”一点,就是“极性”问题。 NPN 是用B→E 的电流(IB)控制C→E 的电流(IC),E极电位最低,且正常放大时通常C极电位最高,即VC > VB > VE PNP 是用E→B 的电流(IB)控制E→C 的电流(IC),E极电位最高,且正常放大时通常C极电位最低,即VC < VB < VE 总之VB 一般都是在中间,VC 和VE 在两边,这跟通常的BJT 符号中的位置是一致的,你可以利用这个帮助你的形象思维和记忆。而且BJT的各极之间虽然不是纯电阻,但电压方向和电流方向同样是一致的,不会出现电流从低电位流向高电位的情况。 如今流行的电路图画法,通常习惯“男上女下”,哦不对,“阳上阴下”,也就是“正电源在上负电源在下”。那NPN电路中,E 最终都是接到地板(直接或间接),C 最终都是接到天花板(直接或间接)。PNP电路则相反,C 最终都是接到地板(直接或间接),E 最终都是接到天花板(直接或间接)。这也是为了满足上面的VC 和VE的关系。一般的电路中,有了NPN的,你就可以按“上下对称交换”的方法得到PNP 的版本。无论何时,只要满足上面的6个“极性”关系(4个电流方向和2个电压不等式),BJT电路就可能正常工作。当然,要保证正常工作,还必须保证这些电压、电流满足一些进一步的定量条件,即所谓“工作点”条件。 对于NPN电路: 对于共射组态,可以粗略理解为把VE当作“固定”参考点,通过控制VB来控制VBE(VBE=VB-VE),从而控制IB,并进一步控制IC(从电位更高的地方流进C极,你也可以把C极看作朝上的进水的漏斗)。 对于共基组态,可以理解为把VB当作固定参考点,通过控制VE来控制VBE(VBE=VB-VE),从而控制IB,并进一步控制IC。

如何选用合适的三极管

当你制作一个小电路时如何选用合适的三极管呢?当你在修理中需要一只三极管,而又找不到同型号的管子时,如何用其它型号的管子代替呢?本文可以替你当一个参谋。 一、三极管的类型及材料 初学者首先必须清楚三极管的类型及材料。常用三极管的类型有NPN型与PNP型两种。由于这两类三极管工作时对电压的极性要求不同,所以它们是不能相互代换的。 三极管的材料有锗材料和硅材料。它们之间最大的差异就是起始电压不一样。锗管PN 结的导通电压为0.2V左右,而硅管PN结的导通电压为0.6~0.7V。在放大电路中如果用同类型的锗管代换同类型的硅管,或用同类型的硅管代换同类型的锗管一般是可以的,但都要在基极偏置电压上进行必要的调整,因为它们的起始电压不一样。但在脉冲电路和开关电路中不同材料的三极管是否能互换必须具体分析,不能盲目代换。 二、三极管的主要参数 选用三极管需要了解三极管的主要参数。若手中有一本晶体管特性手册最好。三极管的参数很多,根据实践经验,我认为主要了解三极管的四个极限参数:ICM、BVCEO、PCM及fT 即可满足95%以上的使用需要。 1. ICM是集电极最大允许电流。三极管工作时当它的集电极电流超过一定数值时,它的电流放大系数β将下降。为此规定三极管的电流放大系数β变化不超过允许值时的集电极最大电流称为ICM。所以在使用中当集电极电流IC超过ICM时不至于损坏三极管,但会使β值减小,影响电路的工作性能。 2. BVCEO是三极管基极开路时,集电极-发射极反向击穿电压。如果在使用中加在集电极与发射极之间的电压超过这个数值时,将可能使三极管产生很大的集电极电流,这种现象叫击穿。三极管击穿后会造成永久性损坏或性能下降。 3. PCM是集电极最大允许耗散功率。三极管在工作时,集电极电流在集电结上会产生热量而使三极管发热。若耗散功率过大,三极管将烧坏。在使用中如果三极管在大于PCM下长时间工作,将会损坏三极管。需要注意的是大功率三极管给出的最大允许耗散功率都是在加有一定规格散热器情况下的参数。使用中一定要注意这一点。 4. 特征频率fT。随着工作频率的升高,三极管的放大能力将会下降,对应于β=1时的频率fT叫作三极管的特征频率。 三、一般小功率三极管的选用 小功率三极管在电子电路中的应用最多。主要用作小信号的放大、控制或振荡器。选用三极管时首先要搞清楚电子电路的工作频率大概是多少。如中波收音机振荡器的最高频率是2MHz左右;而调频收音机的最高振荡频率为120MHz左右;电视机中VHF频段的最高振荡频率为250MHz左右;UHF频段的最高振荡频率接近1000MHz左右。工程设计中一般要求三极管的fT大于3倍的实际工作频率。所以可按照此要求来选择三极管的特征频率fT。由于硅材料高频三极管的fT一般不低于50MHz,所以在音频电子电路中使用这类管子可不考虑fT这个参数。 小功率三极管BVCEO的选择可以根据电路的电源电压来决定,一般情况下只要三极管的BVCEO大于电路中电源的最高电压即可。当三极管的负载是感性负载时,如变压器、线圈等时BVCEO数值的选择要慎重,感性负载上的感应电压可能达到电源电压的2~8倍(如节能灯中的升压三极管)。一般小功率三极管的BVCEO都不低于15V,所以在无电感元件的低电压电路中也不用考虑这个参数。 一般小功率三极管的ICM在30~50mA之间,对于小信号电路一般可以不予考虑。但对

三极管型号及参数

这些虽不能涵盖所有的三极管型号,例如3DD系列等,但是都是极其常用的型号,例如901系列,简直是无所不在。在网上查的电子元件手册都是卖书的广告,找到点参数型号确实不易。 S9013是NPN型三极管,放大倍数分为六级,在三极管上有标识: D级:64-91 E级:78-112 F级:96-135 G级:112-166 H级:144-220 I级:190-300 名称封装极性功能耐压电流功率频率配对管 D63328NPN音频功放开关100V7A40W达林顿 9013 21 NPN 低频放大50V0. 5A0. 625W 9012 9014 21 NPN 低噪放大50V0. 1A0. 4W 150HM Z9015 9015 21 PNP 低噪放大50V0. 1A0. 4W 150MHZ 9014 901821NPN高频放大30V0.05A0.4W1000MHZ 805021NPN高频放大40V1.5A1W100MHZ8550 855021PNP高频放大40V1.5A1W100MHZ8050 2N222221NPN通用60V0.8A0.5W25/200NS 2N23694ANPN开关40V0.5A0.3W800MHZ 2N29074ANPN通用60V0.6A0.4W26/70NS 2N305512NPN功率放大100V15A115WMJ2955 2N34406NPN视放开关450V1A1W15MHZ2N6609 2N377312NPN音频功放开关160V16A50W 2N390421ENPN通用60V0.2A 2N290621CPNP通用40V0.2A 2N2222A21铁NPN高频放大75V0.6A0.625W300MHZ 2N671821铁NPN音频功放开关100V2A2W 2N540121PNP视频放大160V0.8050三极管引脚图6A0.625W100MHZ2N5551 2N555121NPN视频放大160V0.6A0.625W100MHZ2N5401 2N568512NPN音频功放开关60V50A300W 2N627712NPN功放开关180V50A250W 901221PNP低频放大50V0.5A0.625W9013 2N667812NPN音频功放开关650V15A175W15MHZ 9012贴片PNP低频放大50V0.5A0.625W9013 3DA87A6NPN视频放大100V0.1A1W 3DG6B6NPN通用20V0.02A0.1W150MHZ 3DG6C6NPN通用25V0.02A0.1W250MHZ 3DG6D6NPN通用30V0.02A0.1W150MHZ MPSA4221ENPN电话视频放大300V0.5A0.625WMPSA92 MPSA9221EPNP电话视频放大300V0.5A0.625WMPSA42 MPS2222A21NPN高频放大75V0.6A0.625W300MHZ

三极管系列型号、极性、管脚、功能及参数

三极管系列型号、极性、管脚、功能及参数 品名极性管脚功能参数 MPSA42 NPN 21E 电话视频放大300V0.5A0.625W MPSA92 PNP 21E 电话视频放大300V0.5A0.625W MPS2222A NPN 21 高频放大75V0.6A0.625W300MHZ 9011 NPN EBC 高频放大50V30mA0.4W150MHz 9012 PNP 贴片低频放大50V0.5A0.625W 9013 NPN EBC 低频放大50V0.5A0.625W 9013 NPN 贴片低频放大50V0.5A0.625W 9014 NPN EBC 低噪放大 50V0.1A0.4W150MHZ 9015 PNP EBC 低噪放大 50V0.1A0.4W150MHZ 9018 NPN EBC 高频放大30V50MA0.4W1GHZ 8050 NPN EBC 高频放大40V1.5A1W100MHZ 8550 PNP EBC 高频放大40V1.5A1W100MHZ 2N2222 NPN 4A 高频放大60V0.8A0.5W25/200NSβ=45 2N2222A NPN 小铁高频放大75V0.6A0.625W300MHZ 2N2369 NPN 4A 开关 40V0.5A0.3W800MHZ 2N2907 NPN 4A 通用 60V0.6A0.4W26/70NSβ=200 2N3055 NPN 12 功率放大 100V15A115W 2N3440 NPN 6 视放开关 450V1A1W15MHZ 2N3773 NPN 12 音频功放开关160V16A150W COP 2N6609 2N3904 NPN 21E 通用 60V0.2Aβ=100-400 2N3906 PNP 21E 通用 40V0.2Aβ=100-400 2N5401 PNP 21E 视频放大160V0.6A0.625W100MHZ 2N5551 NPN 21E 视频放大160V0.6A0.625W100MHZ 2N5685 NPN 12 音频功放开关60V50A300W 2N6277 NPN 12 功放开关 180V50A250W 2N6609 PNP 12 音频功放开关160V15A150W COP 2N3773 2N6678 NPN 12 音频功放开关650V15A175W15MHZ 2N6718 NPN 小铁音频功放开关100V2A2W50MHZ 3DA87A NPN 6 视频放大100V0.1A1W 3DG6A NPN 6 通用 15V20mA0.1W100MHz 3DG6B NPN 6 通用 20V20mA0.1W150MHz 3DG6C NPN 6 通用 20V20mA0.1W250MHz 3DG6D NPN 6 通用 30V20mA0.1W150MHz 3DG12C NPN 7 通用 45V0.3A0.7W200MHz 3DK2B NPN 7 开关 30V30mA0.2W 3DK4B NPN 7 开关 40V0.8A0.7W 3DK7C NPN 7 开关 25V50mA0.3W 3DD15D NPN 12 电源开关300V5A50W 3DD102C NPN 12 电源开关300V5A50W 3522V 5.2V稳压管录像机用 A634 PNP 28E 音频功放开关40V2A10W A708 PNP 6 NF/S 80V0.7A0.8W A715C PNP 29 音频功放开关35V2.5A10W160MHZ A733 PNP 21 通用 50V0.1A180MHZ A741 PNP 4 S 20V0.1A <70/120nS

常用贴片三极管与直插三极管型号对应

1.直插贴片型号对应 直插封装的型号贴片的型号9011 1t 9012 2t 9013 j3 9014 j6 9015 m6 9016 y6 9018 j8 s8050 j3y s8550 2ty 8050 y1 8550 y2 2sa1015 ba 2sc1815 hf 2sc945 cr mmbt3904 1am mmbt3906 2a mmbt2222 1p mmbt5401 2l mmbt5551 g1 mmbta42 1d mmbta92 2d bc807-16 5a bc807-25 5b bc807-40 5c bc817-16 6a bc817-25 6b bc817-40 6c bc846a 1a bc846b 1b bc847a 1e bc847b 1f bc847c 1g bc848a 1j bc848b 1k bc848c 1l bc856a 3a bc856b 3b bc857a 3e bc857b 3f bc858a 3j

bc858b 3k bc858c 3l 2sa733 cs un2111 v1 un2112 v2 un2113 v3 un2211 v4 un2212 v5 un2213 v6 2sc3356 r23 2sc3838 ad 2n7002 702 2.直插贴片及极性、频率 直插封装的型号贴片的型号极性Ft VCEO Ic hfe 配对型号9011 1T NPN 150MHz 18V 100mA 28~132 9012 2T PNP 150MHz 25V 500mA 64~144 9013 9013 J3 NPN 9014 J6 NPN 150MHz 18V 100mA 60~400 9015 9015 M6 PNP 9016 Y6 NPN 500MHz 20V 25mA 28~97 9018 J8 NPN 700MHZ 12V 100mA 28~72 S8050 J3Y NPN 100MHz 25V 1.5A 45~300 S8550 S8550 2TY PNP 8050 Y1 NPN 100MHz 25V 1A 85~300 8550 8550 Y2 PNP 2SA1015 BA PNP 2SC1815 HF NPN 80MHz 50V 150mA 70~700 1015 2SC945 CR NPN 250MHz 50V 100mA 200~600 2SA733 CS MMBT3904 1AM NPN 300MHz 60V 100mA 300@10mA 3906 MMBT3906 2A PNP MMBT2222 1P NPN 250MHz 60V 600mA 100@150mA MMBT5401 2L PNP 100MHz 150V 500mA 40~200 5551 MMBT5551 G1 NPN MMBTA42 1D NPN 50MHz 300V 100mA 40@10mA MMBTA92 2D PNP BC807-16 5A PNP BC807-25 5B PNP 80MHz 45V 500mA 250@100mA BC817-25 BC807-40 5C PNP 80MHz 45V 500mA 250@100mA BC817-40 BC817-16 6A NPN BC817-25 6B NPN

三极管参数表

|常用三极管参数表 下表是常用三极管的一些参数以及替换型号器件型号电压电流代换型号 3DG9011 50V 2N4124 CS9011 JE9011 9011 50V LM9011 SS9011 9012 40V LM9012 9012(HH) 40V SS9012 9012LT1 40V A1298 3DG9013 40V CS9013 JE9013 & 9013 40V LM9013 9013(HH) 40V SS9013 9013LT1 40V C3265 3DG9014 50V CS9014 JE9014 9014 50V LM9014 SS9014 9014LT1 50V C1623 9015 50V LM9015 SS9015 TEC9015 50V BC557 2N3906 TEC9015A 50V BC557 2N3906 TEC9015B 50V BC557 2N3906 [

TEC9015C 50V BC557 2N3906 3DG9016 30V JE9016 9016 30V SS9016 TEC9016 40V BF240 BF254 BF594 8050 40V SS8050 8050LT1 40V KA3265 ED8050 50V BC337 SDT85501 60V 10A 3DK104C SDT85502 80V 10A 3DK104C SDT85503 100V 10A 3DK104D ~ SDT85504 140V 10A 3DK104E SDT85505 170V 10A 3DK104F SDT85506 60V 10A 3DK104C SDT85507 80V 10A 3DK104C SDT85508 100V 10A 3DK104D SDT85509 140V 10A 3DK104E ED8550 50V BC337 8550 40V LM8550 SS8550 8550LT1 40V KA3265 2SA1015 50V BC177 BC204 BC212 BC213 BC251 BC257 BC307 BC512 BC557 CG1015 CG673 ¥

如何判断三极管的类型和极性

①用数字式万用表判断基极 b 和三极管的类型:将万用表欧姆 挡置"R ×200" 或"R×2k" 处,先假设三极管的某极为"基极",并把红表笔接在假设的基极上,将黑表笔先后接在其余两个极上,如果两次测得的电阻值都很小(或约为几百欧至几千欧),则假设的基极是正确的,且被测三极管为NPN 型管;同上,如果两次测得的电阻值都很大( 约为几千欧至几十千欧), 则假设的基极是正确的,且被测三极管为PNP 型管。如果两次测得的电阻值是一大一小,则原来假设的基极是错误的,这时必须重新假设另一电极为"基极",再重复上述测试。 ②判断集电极c和发射极e:仍将万用表欧姆挡置"R ×200" 或"R ×2k" 处,以NPN管为例,把红表笔接在假设的集电极c 上, 黑表笔接到假设的发射极e上,并用手捏住b和c极( 不能使b、c直接接触), 通过人体, 相当 b 、C 之间接入偏置电阻, 读出表头所示的阻值, 然后将两表笔反接重测。若第一次测得的阻值比第二次小, 说明原假设成立, 因为 c 、e 问电阻值小说明通过万用表的电流大, 偏置正常。万 用表都有测三极管放大倍数(Hfe)的接口。可以估测一下三极管的放大倍数。

己知三极管类型及电极,指针式万用表判别晶体管好坏的方法 如下: ①测 NPN 三极管:将万用表欧姆挡置 "R × 200" 或 "R × 2k" 处,把红表笔接在基极上,将黑表笔先后接在其余两个极上,如果两次测得的电阻值都较小,再将黑表笔接在基极上,将红表笔先后接在其余两个极上,如果两次测得的电阻值都很大,则说明三极管是 好 的 。 ②测 PNP 三极管:将万用表欧姆挡置 "R × 200" 或 "R ×2k" 处,把黑表笔接在基极上,将红表笔先后接在其余两个极上,如果两次测得的电阻值都较小,再将红表笔接在基极上,将黑表笔先后接在其余两个极上,如果两次测得的电阻值都很大,则说明三极管是好的。 c 、e 的判别电路示意图(一)

常用三极管参数

常用三极管参数 三极管系列品名极性管脚功能参数 MPSA42 NPN21E 电话视频放大300V0.5A0.625W MPSA92 PNP21E 电话视频放大300V0.5A0.625W MPS2222A NPN21 高频放大75V0.6A0.625W300MHZ 9011 NPN EBC 高频放大50V30mA0.4W150MHz 9012 PNP贴片低频放大50V0.5A0.625W 9013 NPN EBC 低频放大50V0.5A0.625W 9013 NPN贴片低频放大50V0.5A0.625W 9014 NPN EBC 低噪放大50V0.1A0.4W150MHZ 9015 PNP EBC 低噪放大50V0.1A0.4W150MHZ 9018 NPN EBC 高频放大30V50MA0.4W1GHZ 8050 NPN EBC 高频放大40V1.5A1W100MHZ 8550 PNP EBC 高频放大40V1.5A1W100MHZ 2N2222 NPN 4A 高频放大60V0.8A0.5W25/200NSβ=45 2N2222A NPN小铁高频放大75V0.6A0.625W300MHZ 2N2369 NPN 4A 开关40V0.5A0.3W800MHZ 2N2907 NPN 4A 通用60V0.6A0.4W26/70NSβ=200 2N3055 NPN 12 功率放大100V15A115W 2N3440 NPN 6 视放开关450V1A1W15MHZ 2N3773 NPN 12 音频功放开关160V16A150W COP 2N6609 2N3904 NPN 21E 通用60V0.2Aβ=100-400 2N3906 PNP 21E 通用40V0.2Aβ=100-400 2N5401 PNP 21E 视频放大160V0.6A0.625W100MHZ 2N5551 NPN 21E 视频放大160V0.6A0.625W100MHZ 2N5685 NPN 12 音频功放开关60V50A300W 2N6277 NPN 12 功放开关180V50A250W 2N6609 PNP 12 音频功放开关160V15A150W COP 2N3773 2N6678 NPN 12 音频功放开关650V15A175W15MHZ 2N6718 NPN小铁音频功放开关100V2A2W50MHZ 3DA87A NPN 6 视频放大100V0.1A1W 3DG6A NPN 6 通用15V20mA0.1W100MHz 3DG6B NPN 6 通用20V20mA0.1W150MHz 3DG6C NPN 6 通用20V20mA0.1W250MHz 3DG6D NPN 6 通用30V20mA0.1W150MHz 3DG12C NPN 7 通用45V0.3A0.7W200MHz 3DK2B NPN 7 开关30V30mA0.2W 3DK4B NPN 7 开关40V0.8A0.7W 3DK7C NPN 7 开关25V50mA0.3W 3DD15D NPN 12 电源开关300V5A50W 3DD102C NPN 12 电源开关300V5A50W 3522V 5.2V稳压管录像机用 A634 PNP 28E 音频功放开关40V2A10W A708 PNP 6 NF/S 80V0.7A0.8W

MPSA06三极管

JIANGSU CHANGJIANG ELECTRONICS TECHNOLOGY CO., LTD TO-92 Plastic-Encapsulate Transistors MPSA06 TRANSISTOR (NPN) Power amplifier Value ELECTRICAL CHARACTERISTICS (T a =25℃ unless otherwise specified) Parameter Symbol Test conditions M in M ax U nit Collector-base breakdown voltage V (BR)CBO I C =100μA, I E =0 80 V Collector-emitter breakdown voltage V (BR)CEO I C = 1mA , I B = 0 80 V Emitter-base breakdown voltage V (BR)EBO I E =100μA, I C = 0 4 V Collector cut-off current I CBO V CB =80V, I E =0 0.1 μA Collector cut-off current I CEO V CE =60V, I B =0 0.1 μA Emitter cut-off current I EBO V EB =3V, I C =0 0.1 μA h FE1 V CE =1V, I C = 100mA 100 400 DC current gain h FE2 V CE =1V, I C = 10mA 100 Collector-emitter saturation voltage V CE(sat) I C =100mA, I B = 10mA 0.25 V Base-emitter saturation voltage V BE(sat) I C = 100mA, I B =10mA 1.2 V Transition frequency f T V CE =2V, I C = 10mA f = 100MHz 100 MHz TO-92 1. EMILTTER 2. BASE 3. COLLECTOR C,Jan,2012 https://www.doczj.com/doc/512746190.html, 【南京南山半导体有限公司 — 长电三极管选型资料】

3CG751三极管(TO-92MOD)

JIANGSU CHANGJIANG ELECTRONICS TECHNOLOGY CO., LTD TO-92MOD Plastic-Encapsulate Transistors 3CG751 TRANSISTOR (PNP) FEATURE y High power amplifier y Low V CE(sat) Unit ELECTRICAL CHARACTERISTICS (T a =25℃ unless otherwise specified ) Parameter Symbol Test conditions M in T yp Max U nit Collector-base breakdown voltage V (BR)CBO I C = -100μA, I E =0 -30 V Collector-emitter breakdown voltage V (BR)CEO I C = -1 mA , I B =0 -30 V Emitter-base breakdown voltage V (BR)EBO I E = -100μA , I C =0 -5 V Collector cut-off current I CBO V CB = -30 V, I E =0 -0.1 μA Emitter cut-off current I EBO V EB = -5V, I C =0 -0.1 μA DC current gain h FE V CE =-2 V, I C = -500mA 100 400 Collector-emitter saturation voltage V CE(sat) I C = -1.5 A, I B = -30mA -2 V Transition frequency f T V CE = -5V, I C = -100mA 50 MHz Collector output capacitance C ob V CB =-10V,I E =0,f=1MHz 80 pF CLASSIFICATION OF h FE Rank O Y Range 100-240 150-400 TO-92MOD 1.EMITTER 2.COLLECTOR 3.BASE A,Jun,2011

三极管型号判断

一、晶体三极管的命名方法及型号字母意义 晶体三极管的命名方法见图5-18,型号字母意义见表5-6 二、晶体三极管的种类 晶体三极管主要有NPN 型和PNP型两大类,一般我们可以从晶体管上标出的型号来识别。详见表5-6。晶体三极管的种类划分如下。 ①按设计结构分为 : 点接触型、面接触型。 ②按工作频率分为 : 高频管、低频管、开关管。 ③按功率大小分为 : 大功率、中功率、小功率。 ④从封装形式分为 : 金属封装、塑料封装。 三、三极管的主要参数 一般情况晶体管的参数可分为直流参数、交流参数、极限参数三大类。 ①直流参数 : 集电极 -基极反向电流 I CBO。此值越小说明晶体管温度稳定性越好。一般小功率管约10μA左右,硅晶体管更小。 集电极-发射极反向电流I CEO, 也称穿透电流。此值越小说明晶体管稳定性越好。过大说明这个晶体管不宜使用。 ②极限参数:晶体管的极限参数有: 集电极最大允许电流I CM;集电极最大允许耗散功率I CM;集电极-发射极反向击穿电压V(BR)CEO。 ③晶体管的电流放大系数:晶体管的直流放大系数和交流放大系数近似相等,在实际使用时一般不再区分,都用β表示,也可用h FE表示。 为了能直观地表明三极管的放大倍数 , 常在三极管的外壳上标注不同的色标。锗、硅开关管 , 高、低频小功率管 , 硅低频大功率管所用的色标标志如表 2-9-6 所示。 表5-7 部分三极管β值色标表示 ④特性频率f T:晶体三极管的β值随工作频率的升高而下降,三极管的特性频率f

是当β下降到 1 时的频率值。也就是说 , 在这个频率下的三极管,己失去放大能力,因为晶体管的工作频率必须小于晶体管特性频率的一半以下。 四、常用晶体三极管的外形识别 ①小功率晶体三极管外形电极识别:对于小功率晶体三极管来说,有金属外壳和塑料外壳封装两种,如图5-25 所示。 图5-25小功率晶体三极管电极识别 ②大功率晶体三极管外形电极识别:对于大功率晶体三极管,外形一般分为F型,G 型两种,如图5-26(a) 所示。F型管从外形上只能看到两个电极。将管脚底面朝上,两个电极管脚置于左侧,上面为e极,下为b极,底座为C极。G型管的三个电极的分布如图5-26(b) 所示。

电子元器件选型规范-实用经典

电子元器件选型规范-实用经典

————————————————————————————————作者:————————————————————————————————日期:

编号:**/**-**-***-**受控状态: 电子元器件选型规范 编制:日期: 审核:日期: 批准:日期: CHBCHBCHB有限责任公司 修订记录 日期修订状态修改内容修改人审核人批准人

1目录 2总则 (3) 2.1目的 (3) 2.2适用范围 (3) 2.3电子元器件选型基本原则 (3) 2.4其他具体选型原则: (4) 3各类电子元器件选型原则 (5) 3.1电阻选型 (5) 3.2电容选型 (6) 3.2.1.............................................................................................. 铝电解电容 6 3.2.2.............................................................................................. 钽电解电容 7 3.2.3................................................................................. 片状多层陶瓷电容 8 3.3电感选型 (8) 3.4二极管选型 (8) 3.4.1.......................................................................................... 发光二极管: 9 3.4.2..................................................................................... 快恢复二极管: 9 3.4.3.......................................................................................... 整流二极管: 9 3.4.4..................................................................................... 肖特基二极管: 9 3.4.5.......................................................................................... 稳压二极管: 9 3.4.6................................................................................. 瞬态抑制二极管: 10 3.5三极管选型 (10) 3.6晶体和晶振选型 (10) 3.7继电器选型 (11) 3.8电源选型 (12) 3.8.1..............................................................................AC/DC电源选型规则 12 3.8.2.................................................................... 隔离DC/DC电源选型规则 12 3.9运放选型 (12) 3.10............................................................................................. A/D和D/A芯片选型 12 3.11.............................................................................................................. 处理器选型 14

相关主题
文本预览
相关文档 最新文档