当前位置:文档之家› 关于水泥窑纯低温余热的综合利用与展望

关于水泥窑纯低温余热的综合利用与展望

关于水泥窑纯低温余热的综合利用与展望
关于水泥窑纯低温余热的综合利用与展望

关于水泥窑纯低温余热的综合利用与展望

晨怡热管哈尔滨哈锅锅炉容器工程有限责任公司刘明安大峰2008-4-1418:26:48

一、目前国内水泥行业生产线的规模,按日(d)产量(t)分类,有

1200t/d,2500t/d,5000t/d的窑外分解窑(干法)生产线。这种生产线的热耗由原来的1400kcal/kg(每公斤水泥熟料所耗的热量)降至~800kcal/kg。其水泥生产线排出的废热—窑尾(SP)废气温度一般在330~340℃,窑头(AQC)废气温度一般在340~360℃范围内。

从国内水泥行业的潜力来看,市场前景非常广阔,仅黑龙江省内水泥厂的规模来看,具体情况是小岭水泥厂有1200t/d生产线一条,2500t/d生产线一条,宾州水泥厂有2500t/d生产线一条,牡丹江水泥厂有2500t/d生产线两条,黑河有1200t/d生产线一条,佳木斯有1000t/d生产线一条,浩浪河有2000t/d 生产线两条等。

这些水泥厂与国内外其它水泥企业一样,都在向节能型企业转化升级,在这一过程中必然要对其低温余热采用最佳利用方法—纯低温余热发电方法—建余热电站,使水泥生产的成本进一步降低。

国外先进国家在上世纪80年代其国内的水泥生产装备上发展了余热发电技术,在当时的情况与国内现在的情况及条件类似,利用低参数系列的锅炉、汽轮机及发电机来发电。它们的余热利用水平,按每吨水泥计算约为

32kw~38.4kw。(国内相对的发电水平一般在23kw~28kw之间)。

国外的窑尾(SP)余热锅炉及窑头(AQC)余热锅炉的技术特点是根据尾气的温度低的特点,其参数均为低压(过热蒸汽)锅炉,锅炉的受热面均采用了扩展受热面,即鳍片及翅片结构。锅炉均立式布置,废烟气从锅炉的顶部入口,下侧部排出。它的水循环方式均为自然循环。窑尾的SP锅炉的排烟温度根据水泥工艺需要一般在220~230℃,窑头的排烟温度在90℃以下,充分利用了余热,提高废热的利用率,其部分热水采用闪蒸技术所产生的低压蒸汽补入到汽轮发电机组中,提高了发电量。(汽轮机的汽耗小于国内同类汽轮机组)。

总之,锅炉立式布置,并采用自然循环方式,所以其受热面(蒸发管束)布置方式较特殊,有别于其他锅炉厂。

针对国内的水泥厂(生产线的条件及特点)情况,所配置的锅炉及发电机组来看较国外配置的锅炉及发电机组水平是不一样的。单讲2500t/d机组国内一般配3000kw机组,哈锅同国外的相同,配4200kw机组。

二、市场预测:

在上述报告中提到仅黑龙江省的水泥企业均有这么多水泥生产线,到现在为止,一条生产线也没有配置发电系统。根据国内经济形势的发展,从今年开始陆续要上纯低温利用发电装置,如哈尔滨水泥厂、小岭水泥厂、牡丹江水泥厂等等。

从2002年开始浙江省(含江苏省)内各个水泥企业在政府部门的协调和节约能源办的督促下有70%厂家配置了这种设备。现在已有广东、安徽、河北、河南、山东、北京等省市的水泥企业也都在策划上纯低温余热发电系统(余热电站)。

水泥行业这种技术改造约需要10~15年时间才能完成。根据以往的技术发展及历史经验,水泥厂内带补燃锅炉的余热发电节能装备的研究,在“八五”期间攻关课题完成推广后于2002年结束推广发展,既约经历了15年时间。

三、哈锅余热锅炉研制的现状:

哈锅在上世纪70年代开始已经研制水泥行业的余热锅炉,从低压到中压,蒸发量在5t/h至25t/h的锅炉。

在“八五”期间,同天津水泥设计研究院、鲁南水泥厂、哈尔滨锅炉厂,共同完成了“水泥厂内带补燃锅炉余热发电装备的研究”的科技攻关课题,使水泥厂的余热利用水平有了较大的提高,并获得了国家颁发的重大科技成果奖。在当时哈锅推广的这一系列产品有:

牡丹江水泥厂、湖北葛洲坝水泥厂、河南七里岗水泥厂、浙江钱潮水泥厂、河南渑池水泥厂、福建永定水泥厂、冀东水泥厂、栾县水泥厂、太行水泥

厂等企业。在这一过程中,对用于纯低温余热发电技术系统中的AQC锅炉、SP 锅炉有了研制的技术基础。

哈锅工程公司按哈锅业务划分与委托,承担对水泥的纯低温余热锅炉技术的研制工作,并确定了对纯低温综合利用余热锅炉的选型原则:

新型干法窑外分解水泥生产的废气排放温度一般在250℃~400℃之间,烟气量一般在10×104~30×104Nm3/h之间。

例如,某水泥厂2500t/d水泥生产线的篦冷机所排出的废气量约

Vr=165300Nm3/h,温度约380℃左右,相当于废气中含Q1=Kcal/h的热量,这一热量相当于700t/d中空回转窑的窑尾所排放废气的总热量Q2(废气量约71593 Nm3/h,温度约850℃),先假设该水泥厂另有一水泥生产线存在废气源排放点,其排烟温度为850℃,当热量Q2=Q1时,评价其二者的热能回收价值。

假设二个废气气源点的压力均是常压,且接近于理想气体,取环境温度

To=25℃,计算它们各自所含的火用

E1=Q1(1-LnT1 T2)=Q1(1- 298 653-298Ln653 298)=Q1×0.3037E2=Q2(1-To T1-ToLnT1T2)=Q2(1- 298 123-298Ln1123 298)=Q2×0.64796

可见虽然二者的热量相等,但其火用的含量E2是E1的一半还多,所以热量Q1和热量Q2相比,热量Q1的回收价值和潜力不如热量Q2所以在热量Q2的情况下回收废热(余热),应该采用次中压或中压锅炉产生较高品质的蒸汽,然后用作动力或发电,热量Q1只能用来预热锅炉给水或制成热水锅炉用作采暖或制冷。

上述的分析法是火用平衡的分析法。根据热力学第二定律,确认自然过程具有方向性和不可逆性,亦即实际自然界发生的热过程都是不可逆过程,这就给种种形式的能量之间相互转换规定了限制,因而各种形式的能量转换成有用功(火用)的能力是不同的,也即各种形式能量中的火用含量部分是不同的,火用是能量中能够转换成有效功的那部分能量。针对举例工厂的实际情况及其附属装备(如汽轮发电机组)的实际能力,确定这台余热锅炉(AQC余热锅炉)为次中压锅炉,即生产工作压力为2.45MPa,额定蒸汽温度为350℃±5℃的

上段(蒸发段)和生产部分给锅炉给水加热、部分供闪蒸汽用的下段(热水段)的结构形式。AQC余热锅炉在设计工况下,烟气流量为

165300Nm3/h,烟气温度为380℃,AQC余热锅炉排烟温度约为110℃,其他参数如下:

名称

额定工作压力

额定蒸汽温度

额定蒸发量

锅炉给水温度

锅炉总的进水量符号

Pe

Tn

De tgs

Q 单位

MPa ℃t/h ℃t/h 数值

2.45

350℃

~16

223℃

45.856(含省煤器段)哈锅工程公司早在上世纪九十年代中末期年开始,尤其到2002年,已同天津水泥工业设计研究院,南京水泥工业设计研究院,都进行了技术合作,并取得了一定的成效,在

2005年3月17日杭州会议(峰会)——纯低温余热技术研讨会后,研制出具有哈锅特色的余热锅炉产品,为水泥厂的节能降耗做出了主要贡献。

我们在这方面发扬原有的技术长处的同时,积极引进消化国外同行业的先进技术,使锅炉产品的性能质量、运行质量更加完善。

以下是我们按上述余热锅炉的选型原则,所设计制造的窑头及窑尾余热锅炉简图及设计参数:

2500t/d水泥线用余热锅炉SP炉的参数(HG-F6285-SP):

总烟气量:1800~195000Nm3/h

入锅炉烟温:

V′=~350℃

出锅炉烟温:

V″=~220℃

锅炉工作压力:

Pe=1.35MPa

蒸汽温度:

tn=320℃

锅炉蒸发量:

D=20t/h

2500t/d水泥线窑头用余热锅炉AQC炉的参数(HG-F11000-AQC):

总烟气量:800~1000Nm3/h

入锅炉烟温:

V′=250~360℃

出锅炉烟温:

V″=90~100℃

锅炉工作压力:

Pe=1.35MPa

蒸汽温度:

tn=310~320℃

锅炉产汽量:

D=7.5~8t/h

热水段:

进水水温:56℃

出水水温:180℃

通水量:28t/h

5000t/d水泥线窑头用余热锅炉AQC炉的参数(HG-F28000-AQC):总烟气量:2200~2400Nm3/h

入锅炉烟温:

V′=360~380℃

出锅炉烟温:

V″=90~100℃

锅炉工作压力:

Pe=1.27MPa

蒸汽温度:

锅炉产汽量:

D=25t/h

热水段:

进水水温<90℃

出水水温150℃

通水量:54t/h

5000t/d水泥线用余热锅炉SP炉的参数(HG-F9500-SP):总烟气量:

~3400Nm3/h

入锅炉烟温:

V′=~330℃

出锅炉烟温:

V″=~220℃

锅炉工作压力:

Pe=1.27MPa

蒸汽温度:

tn=~300℃

水给温度:

tgs=~150℃

锅炉蒸发量:

四、国外先进国家对水泥上的余热利用技术早在上世纪80年代开始研究开发,并应用于水泥厂上。它的总体余热利用效率及吨熟料发电水平远高于国内水平。我们引进技术的重点:

一是总体(水泥厂)热力分析及热平衡方法;二是余热锅炉的结构、布置方式等;三是高效的闪蒸器;四是汽轮机技术。在这一过程中已同南京水泥院和天津水泥院合作,掌握水泥厂热力分布情况,进而进行合理的热力分析及平衡计算,确定关键设备的技术参数。

五、对水泥厂而言,以2500t/d线为例,按国内水平,余热电站初投资约为2300万元(人民币)包括土建等用,按国外合作后的余热电站的初投资约为2940万元(人民币)。国内水泥厂目前建设电站约用2-3年收回全部初期投资,同国外合作后按其模式建的余热电站约用1.8~2.5年回收初期投资。

我们引进和合作开发的技术要点主要是水泥厂的总体布置。热力分析及热平衡方法,余热锅炉(AQC,SP),闪蒸器,汽轮机等技术。

针对水泥厂纯低温余热综合利用,按照前述火用平衡法的原则,在目前的窑尾及窑头的废气温度的前提下,所设计的余热锅炉的介质为水的时候,完全能够产出低参数的蒸汽来发电。

在不久的将来,水泥行业的生产工艺进一步发展,水泥生产的热耗进一步降低,水泥生产线的窑头及窑尾所排出的废气温度进一步降低至270℃时,所配置的余热锅炉(以水为介质时)只能制成热水锅炉或采暖或制冷,另一方面其后(窑头、窑尾)所配置的余热锅炉的介质采用低沸点的(有机或无机)液体时,配以特殊(介质)的汽轮发电机来发电,使锅炉排出温度低于90℃或更小,使余热利用率进一步提高。这一技术和领域的开发与涉足,符合国家长期科技开发规划,符合建立和谐社会的需要,是再生能源、循环经济、提高能源利用效率,利国利民,提高企业经济效益的主要途径,必须下功夫抓好,并加以推进落实。

低沸点工质的有机朗肯循环纯低温余热发电技术

低沸点工质的有机朗肯循环纯低温余热发电技术 作者:来源:更新日期:2007-3-19 引言 我国水泥厂的余热发电,先后经历高温余热发电、带补燃炉的中低温余热发电和纯低温余热发电3个阶段。纯低温余热发电与带补燃的中低温余热发电相比,具有投资省、生产过程中不增加粉尘、废渣、N0。和S0。等废弃物排放的优点。 本文介绍以色列奥玛特(0RMAT)公司利用低温热源的有机朗肯循环(0rga nic Rankine Cyck,简称()RC)纯低温余热发电技术。该技术有别于常规技术,其特点是:不是用水作为工质,而是使用低沸点的有机物作为工质来吸收废气余热,汽化,进入汽轮机膨胀做功。 1.低沸点的有机物 在一个大气压下,水的沸点足100℃,而一些有机物的沸点却低于水的沸点,见表l。 有机物的沸点与压力之间存在着对应关系,以氯乙烷为例,见表2。水的沸点与压力之间对应关系见表3。

由表2和表3可见,氯乙烷的沸点比水低,蒸气压力很高。根据低沸点有机工质的这种特点,就可以利用低温热源来加热低沸点工质,使它产生具有较高压力的蒸气来推动汽轮机做功。 2ORC纯低温余热发电在地热发电方面的应用 0RC纯低温余热发电技术在我国地热发电方面已得到初步应用,我国目前已经勘测发现的地热田均属热水型热储。热水型资源发电采用的热力系统主要有两种,即扩容(闪蒸)系统和双工质循环系统。西藏羊八井地热电站,热水温度145℃,采用二次扩容热力系统,汽轮机(青岛汽轮机厂设计制造D3一1.7/0.5型地热汽轮机发电机组)单机容量3000W,3000W/m in,一次进汽压力182kPa,温度115℃,二次进汽压力54kPa,温度81℃,额定排汽压力为10kPa。双工质循环系统中,地热水流经热交换器,把地热能传递给另一种低沸点丁质,使之蒸发产生蒸气,组成低沸点工质朗肯循环发电。双工质循环机组,其热效率高,结构紧凑。我国的小型双工质循环系统地热电站——辽宁营口熊岳试验电站的装机容量2×J00KW,利

提高水泥纯低温余热发电量的方法与途径

生产技术 Technology 屈松记1 ,齐俊华2 (1.登封嵩基集团水泥公司,登封 452476;2.河南省建材工业协会,郑州 450008) 我国水泥产能的超常发展,导致水泥企业经济效益下滑,吨水泥利润低微、甚至为负数,主业不赚钱;而纯低温余热电站已成为水泥企业新的经济增长点,成为“救命”、致富之宝。一个5 000t/d生产线的余热电站,一年可为企业带来2 000~3 000万元的经济利益。因此,建设好余热电站、管理好余热电站已成为企业的中心工作。 1 余热电站热力系统方案选择 提高水泥纯低温余热发电站的发电能力首先要做好余热电站热力系统的方案选择。余热电站的核心是热力循环系统,当前较为成功、成熟的热力循环方式主要有单压系统、闪蒸系统、双压系统等三种基本模式,以及由此而衍生的复合系统。 1.1 单压系统 单压系统是目前较普遍采用的热力系统。在该系统中,窑头余热锅炉和窑尾余热锅炉生产相同或相近参数的主蒸汽,混合后进入汽轮机,主蒸汽在汽轮机内作功、在冷凝器凝结成水,经窑头锅炉加热后到热力除氧器除氧,由给水泵送入窑头余热锅炉加热,窑头余热锅炉生产的热水再为窑头余热锅炉蒸汽段和窑尾余热锅炉供水,从而形成一个完整的热力循环。单压系统的主要特点是汽轮机只设置一个高压蒸汽进汽口。 1.2 闪蒸补汽系统 闪蒸系统应用热力学上的闪蒸原理,根据废气余热品质的不同而生产一定压力的主蒸汽和热水,主蒸汽进入汽轮机高压进汽口;热水则在闪蒸容器里产生出低压的饱和蒸汽,然后补入补汽式汽轮机专门设计的低压进汽口;主蒸汽及低压饱和蒸汽在汽轮机内一起作功,拖动发电机发电,低压蒸汽发生器内的饱和水进入除氧器与冷凝水一起经除氧后再由给水泵供给锅炉。 1.3 双压补汽系统 双压系统是根据废气余热品位的不同,分别生产较高压力和较低压力的两路蒸汽。余热锅炉生产较高压力的蒸汽后,烟气温度降低,依据低温烟气的品位,再生产低压蒸汽。较高压力的蒸汽作为主蒸汽进入汽轮机主进汽口;较低压力的蒸汽进入汽轮机的低压进汽口,一起推动汽轮机作功、发电;作功后的乏汽在冷凝器凝结成水后、经凝结水泵加压到除氧器除氧,再进入热力循环。 上述三种技术没有本质的区别,共同的特点:都是利用在窑头熟料冷却机中部增设抽废气口或直接利用冷却机尾部废气出口的400℃以下废气及窑尾预热器排出的300℃~350℃的废气余热;最重要的特点是采用0.69MPa~1.27MPa-280℃~340℃低压低温主蒸汽。区别仅在于:窑头熟料冷却机在生产0.69MPa~1.27MPa-280℃~340℃低压低温蒸汽的同时或同时再生产0.1MPa~0.5MPa-饱和~160℃低压低温蒸汽、或同时再生产85℃~200℃的热水;汽轮机采用补汽式或不补汽式汽轮机;复合闪蒸补汽式适用于汽轮机房与冷却机距离较远的情况,而双压补汽式适用于汽轮机房与冷却机距离较近的情况。 上述三个方案各有优缺点。技术上:单压方案简单,运转可靠,但余热开发、利用不完全;闪蒸和双压系统具有能源梯级开发利用优势,比单压系统技术更为先进,较单压系统多发电在8%~10%左右。一个5 000t/d生产线的余热电站,吨熟料如超发电1kWh,全年可为企业带来80~100万元的利润,故双压方案等更为合理,发展较快。 1.4 双压热力系统 这是目前较为常用的方案,该方案充分利用余热资源,设置两台不同参数余热锅炉,采用补汽凝汽式汽轮机,提高汽轮机内效率,提高吨熟料发电量。工艺流程介绍如下。 (1)在窑头设置双压余热锅炉,承担公共加热和生成低压蒸汽,同时生成部分高压蒸汽;采用立式自然循环,膜式受热面,带有两个汽包;烟气管路自上而下通过锅炉,先后经过锅炉内部的高压过热器、高压蒸发器、低压过热器、低压蒸发器和公共加热器;窑头余热锅炉前设置自然沉降除灰装置,锅炉传热管为螺旋翅片管。 (2)在窑尾设置生成高压蒸汽的窑尾余热锅炉,采 中图分类号:TQ172.625.9 文献标识码:B 文章编号:1671-8321(2015)06-0097-04

隧道窑余热锅炉技术

煤矸石制砖隧道窑余热锅炉系统 随着煤矸石烧结砖厂的快速建设,大量的烧结窑炉排放的烟气余热如何利用的问题也逐渐得到了重视。综合利用煤矸石烧结砖厂窑炉烟气余热,进行低温余热利用是贯彻落实科学发展观,推进企业节能减排,发展循环经济的迫切需求和可持续发展的必由之路。 由于国内对隧道窑余热利用技术的研究起步较晚,目前国内煤矸石制砖企业的余热利用,主要是将隧道窑产品冷却产生的热风,通过引风机送到砖坯干燥窑,对砖坯进行干燥,以减少干燥窑一次能源消耗量,使建材企业获得一定的经济效益。由于砖坯的干燥主要是蒸发原料中的水分,利用隧道窑100℃~200℃的余热足够干燥砖坯所需热量,所以,在干燥之前还要通入冷风将干燥风温降到140℃左右;若直接利用隧道窑冷却带余热(产品冷却温度200℃~800℃)用于干燥,则会导致干燥窑热量过剩,不仅影响制砖质量,同时能源损失量大,切大大地降低余热的利用价值。 2 隧道窑余热利用锅炉系统建造内容 在保证煤矸石制砖窑炉烧结砖工艺的前提下,充分开发利用多余的窑炉烟气热量,是煤矸石砖厂余热锅炉开发与应用研究项目的重点。其核心内容就是应用当前先进的低温余热锅炉技术,通过项目前期对现场相关参数的测试,将烧结窑炉排放的烟气余热,进行有效收集通过低温余热锅炉转化为中低压蒸汽,在保证隧道窑正常焙烧制砖的前提下,最大限度的收集转化利用窑炉余热,将蒸汽送往企业生产、生活场所,用于驱动设备做功(发电)及矿区职工洗浴、家属区和办公楼的集中供暖,使煤矸石热量得到充分的 利用。具体建设内容有: 2.1 制砖隧道窑预热带及冷却带烟道的改造施工 主要有隧道窑预热带和冷却带主烟道和分烟道的改造施工、阀门的制作加工、烟道内部的防腐施工 以及仪表的安装等工作。 2.2余热锅炉的研制和安装 通过项目前期对现场相关数据的调研测试,以及周围用热情况综合考虑,本着余热最大利用的原则,结合制砖工艺,对余热锅炉进行设计、制造及现场安装施工。 2.3 水处理设备的安装 通过项目前期对锅炉供水水质的化验分析,合理设计余热锅炉系统的水处理系统,使供水水质达到 国家相关标准要求。 2.4余热锅炉受热面防腐处理 通过项目前期对制砖原料的分析和隧道窑烟气成分的测试分析,对其SO2对锅炉系统的腐蚀情况进行标准评估,并选择相应的防腐材料用于锅炉受热面,延长锅炉使用寿命。 2.5 给水自动控制和检测系统设备安装 通过自动化设备及仪表的安装,提高给水系统自动化水平,避免锅炉缺水干锅事故的发生,通过监测系统自动化水平的提高可对相关参数进行实时监测分析,降低运行人员劳动强度(见图1)。 3 隧道窑余热利用锅炉系统技术要点

水泥余热发电

一、水泥窑纯低温余热发电背景 随着水泥熟料煅烧技术的发展,发达国家水泥工业节能技术水平发展很快,低温余热在水泥生产过程中被回收利用,水泥熟料热能利用率已有较大的提高。但我国由于节能技术、装备水平的限制和节能意识影响,在窑炉工业企业中仍有大量的中、低温废气余热资源未被充分利用,能源浪费现象仍然十分突出。新型干法水泥熟料生产企业中由窑头熟料冷却机和窑尾预热器排出的350℃左右废气,其热能大约为水泥熟料烧成系统热耗量的35%,低温余热发电技术的应用,可将排放到大气中占熟料烧成系统热耗35%的废气余热进行回收,使水泥企业能源利用率提高到95%以上。项目的经济效益十分可观。 我国是世界水泥生产和消费的大国,近年来新型干法水泥生产发展迅速,技术、设备、管理等方面日渐成熟。目前国内已建成运行了大量2000t/d以上熟料生产线,新型干法生产线与其他窑型相比在热耗方面有显著的降低,但新型干法水泥生产对电能的消耗和依赖依然强劲,因此,新型干法水泥总量的增长对水泥工业用电总量的增长起到了推动作用,一定程度上加剧了电能的供应紧张局面。而目前国内运行的新型干法水泥熟料生产线采用余热发电技术来节能降耗的企业极少,再者,国内由于经济潜力增长加剧了电力短缺的矛盾,刺激了煤电项目的增长,一方面煤电的发展会加速煤炭这种有限资源的开采、消耗,另一方面煤电生产产生大量的CO2等温室气体,加剧了对大气的环境污染。因此在水泥业发展余热发电项目是行业及国家经济发展的必然。此外,为了提高企业的市场竞争力,扩大产品的盈利空间,国内的许多水泥生产企业在建设熟料生产线的同时,也纷纷规划实施余热发电项目。 随着世界经济快速发展、新型节能技术的推广应用,充分利用有限的资源和发展水泥窑余热发电项目已经成为水泥业发展的一种趋势,也完全符合国家产业政策。 截至2009年,全国新型干法熟料生产线为934条,熟料产能7.6亿吨, 预计到2010年全国新型干法熟料生产线为1080条左右,熟料生产能力为8.6亿吨左右。虽然在水泥行业余热发电推广和普及迅速,除已建和在建外,到2010年全国还有50%的全国新型干法熟料生产线可以配置余热发电装置,如果以上新型干法熟料线全部配套余热发电,每年可实现节电270亿度,相当于节约煤炭消耗1000万吨(标煤),可减排CO2约24400万吨。 根据国家现行产业政策和“八部委”文件要求,截止2010 年国内新型干法水泥生产线配套建设纯低温余热电站的比例将达到40%,即到2010 年底以前还将有约400多座纯低温余热电站建成并投入运行。 二、新型干法水泥窑纯低温余热发电的兴起 1998年3月,日本政府赠送的中国首套水泥纯低温余热发电机组在海螺建成投运,十年来,该项目取得了良好的社会和经济效益,起到了很好的示范作用。海螺集团公司集成创新,在原有的基础上,针对水泥工艺特性改进设计,自行研发DCS系统,个性化设计,国产化装备。所开发的纯低温水泥窑余热发电技术余热回收效率高、发电过程中无需补充燃料,不产生任何污染,已处于国际领先地位。该技术是符合国家产业政策的绿色发电技术,是一种环保的、节能减排的、符合可持续发展要求的循环经济技术,经济效益也非常显著。

辊道窑设计要点

一、简述隧道窑产生上下温差的原因及克服方法。答:产生原因:首先,热烟气的密度较小,在几何压头的作用下会向上运动造成上下温差,尤其在预热带,因为该带处于负压下操作,从窑的不严密处,如窑门,窑车接头处,沙封板不密处等漏入大量冷风,冷风密度大,使大部分热气体向上流动,因而大大促进了该带的几何压头的作用,使气体分层严重,上下温差最大可达300-400℃。还有一个原因,窑车衬砖吸收了大量的热,使预热带下部温度降低很多,进一步扩大了上下温差。另外,上部拱顶,窑墙上部空隙大,气体阻力小,几何压头大,上下温差大。克服方法:从窑的结构上1. 预热带采用平顶或降低窑顶(相对于烧成带来说)2. 预热带窑墙上部向内倾斜3. 适当缩短窑长,减少窑的阻力,减少预热带负压,减少冷风漏入量4. 适当降低窑的高度,减少几何压头的影响5. 烟气排除口开在下部近车台面处,迫使烟气多次向下流动6. 设立封闭气幕,减少窑门漏入冷风7. 设立搅动气幕,使上部热气向下流动8. 设立循环气幕流装臵,使上下温度均匀9. 采取提高窑内气体流速的措施,增加动压的作用,削弱几何压头的作用。现多采用高速烧嘴直接造成紊流。从窑车结构上1. 减轻窑车重量,采用高强度高温轻质隔热材料,减少窑车吸热;2. 车上砌气体通道,使一部分热气体从这些通道流过,提高隧道下部温度;3. 严密窑车接头,沙封板和窑墙曲折封闭,减少漏风量。从码坯方法上,料垛码得上密下稀,增加上部阻力,减少下部阻力,使热气体多向下流;1.适当稀码料垛,减少窑内阻力,减少预热带负压,减少冷风漏入量。2.所以稀码可以快速烧窑。3.在预热带长度上很多温度点设高速调温烧嘴,这种烧嘴能调节二次空气使燃烧产物达到适于该点的温度,自车台面高速喷入窑内,大大提高下部温度。 二、隧道窑的膨胀缝如何设臵。答:在窑墙,窑顶每隔2-4m的距离留一热胀缝,该缝的宽度为20-30mm,胀缝应错开留设,以增加窑体的稳定性。 三、论述坯体码装对烧成的影响。答:1.如果料垛内部码得太密,容易造成周边过烧而

高耗能行业中低温余热发电技术

高耗能行业中低温余热发电技术 朱亚东,徐 建,吕 进,于立军? (上海交通大学,上海 200240) 摘要:诸如钢铁、石油、化工、机械等高能耗行业存在着巨大的中低温余热资源,目前这部分余热资源的利用相当少,因此充分利用这部分余热资源是高耗能行业节能减排的重要内容和主要手段之一。基于有机朗肯循环的发电系统以热为输入,输出为电能,将低品位热能逆向转化成高品位电能。针对中低温有机朗肯循环的特点,对若干工质的干湿性、热效率及适用条件进行了研究,对于中低温余热有机朗肯循环发电系统的四种结构(基本型、回热型、抽气回热型、再热型)进行了优化研究。 关键词:有机朗肯循环;高耗能行业;余热 Power Generation Technology Using Mid-Low Temperature Waste Heat for High Energy Consumption Industry ZHU YaDong,XU Jian,Lv Jin,YU LiJun (Shanghai JiaoTong University,Shanghai 200240,China) Abstract: There is a great deal of mid-low temperature waste heat in high energy consumption industry such as steel, petroleum, chemical, mechanical and so on. Currently, this part of waste heat is hardly used, so taking full use of this part of waste heat is an important part and one of the primary means of energy saving for high energy consumption industry. Generation system based on ORC(Organic Rankine Cycle) with heat input and power output, reverses low-grade heat into high-grade electricity. For the characteristics of mid-low temperature ORC, a number of working fluids' wet and dry performance are researched. Four structures of the mid-low temperature waste heat ORC power generation system (basic ORC, regenerative ORC, exhaust regenerative ORC and reheat ORC)are researched. Keywords:organic rankine cycle(ORC);high energy consumption industry;waste heat 作者简介:于立军:男,1969年8月生,教授,博士生导师。主要从事多相流流动和余热利用方向研究工作。作为项目负责人,已经完成2项国家自然科学基金项目;作为项目负责人完成上海拜耳、上海庄臣、海螺水泥、上海安靠等30多个工业企业的节能评估工作,积累了丰富的现场经验;作为主要科研人员,顺利完成上海市科委、日本中央电力研究以及松下公司所等多项科研任务,主要负责余热发电系统开发、发电系统数学建模、仿真等工作。近年来,在余热利用及两相流动等研究领域发表学术论文30篇。其中,有15篇论文被SCI收录,SCI 论文他引超过85次,有14篇论文被EI收录,获中国国家发明专利16项。E-mail:ljyu@https://www.doczj.com/doc/512745134.html,

煤矸石隧道窑的余热发电技术分析示范文本

煤矸石隧道窑的余热发电技术分析示范文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

煤矸石隧道窑的余热发电技术分析示范 文本 使用指引:此解决方案资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 煤矸石页岩砖在隧道窑煅烧过程中,产生大量热量。 隧道窑建材企业的余热利用除砖坯干燥(利用隧道窑 100℃~200℃的余热足够干燥蒸发原料中的水分所需热 量;若直接利用隧道窑高品位余热——排烟温度450℃~ 800℃和产品冷却温度450℃~1050℃用于干燥,会导致 干燥窑热量过剩,降低余热的利用价值,使隧道窑的能源 浪费转移到干燥窑,干燥窑能源损失量大)以外,其他方 式的余热利用量很小,利用价值很低(如加热浴室用热水 等),传统的节能利用是将冷却带的热风引到烘干区对湿 砖坯进行烘干,这样利用了一部分富余的热量,对企业的 节能减排起到一定的作用。

但是在传统的节能利用方式中,大部分高品质的热能未能有效利用,特别是隧道窑中高品质的辐射能未能利用,随着国家节能政策越来越完善,社会对节能要求越来越高的情况下,传统的余热利用已经不能充分满足要求,迫切需要更全面的余热利用方案。这样,在不影响隧道窑煅烧,不影响烘干的情况下,对隧道窑的富余热量进行利用发电,不但解决了窑炉的能源浪费,还能产生电能,为企业进行增效,这将是隧道窑节能的最佳选择:截止到20xx年底,我国煤炭系统共有煤矸石砖厂近12000家。除现已投产的煤矸石生产线以外,各地还将陆续新建一批煤矸石空心砖生产线,新建的制砖厂规模比较大,年产在6000万块—16000万块之间,普遍采用了隧道窑生产技术一最近十多年,政府加大了淘汰落后产能的力度,在钢铁、电力、冶金、化工、化肥、水泥等行业大规模的推广先进工'艺和技术,淘汰中小规模的生产企业,

砖窑余热回收

隧道窑废气物烧砖余热回收发电综合利用技术 废弃物制砖隧道窑烧砖,余热回收发电综合利用,是砖瓦企业在生产过程中利用煤矸石、煤炭灰渣、粉煤灰、菌渣、植物杆、污泥、垃圾等有发热量的废弃物和页岩生成砖坯,进入干燥室利用隧道窑内20%的余热,通过送风机送入干燥室烘砖,还有80%的余热在冷却段损失浪费,现在我们通过在冷却段800℃--300℃处安装余热锅炉回收余热,产生蒸汽用于发电、供暖、还可以用于生产加气砖,和需要蒸汽的产品,既符合国家产业政策,也符合国家墙材“十二五”发展规划,又达到了节能、环保,为企业增收的目的。 一、废弃物综合利用发电,增加企业收入,提高效益,不仅使 废弃物变废为宝,又满足了企业制砖的电力需求,多余的电力 还可以通过企业内部电网送到网上,降低企业生产成本,废弃 物烧砖余热回收发电,是典型的节能环保增收的好项目。 二、投资风险小,设备运行费用低,收效快,投资回收期在两 年至三年左右收回,废弃物综合利用,余热回收发电,对砖瓦 企业提高效益有明显的效果,由于各企业的生产情况不同,若 使用余热全部发电的方案,可满足企业80%--100%的用电量, 对于电力紧张的企业而言,余热回收发电则能彻底解决企业因 停电影响生产的问题。 三、废弃物综合利用余热回收发电技术在全球制砖行业是比较 超前的,这一技术的应用必然会带动全球制砖行业的节能减

排,对全球的环境改变做出很大贡献。 隧道窑废弃物烧砖,余热回收发电利国利民随着全球资源的日益紧缺,尤其是煤、石油、天然气等资源的不可再生性,国家不断鼓励发展以节能降耗为目的的新工艺、新技术,并从政策、资金等各方面加以扶持,使得废气物制砖,余热回收发电技术近年来取得很好的发展。在钢铁、化工、水泥等生产领域,余热发电技术已很成熟,但建材砖瓦行业中,隧道窑余热发电技术应用相对滞后,隧道窑一般是一条长的直线型隧道,其两侧及顶部有固定的墙壁及拱顶或吊顶,窑车在底部铺设的轨道上运行,燃烧段设在隧道窑的中部,构成了固定的预热带—高温带—烧成带—冷却带,燃烧产生的高温烟气在隧道窑前端烟道或引风机的作用下,沿着隧道向窑头方向流动,同时逐步地预热进入窑内的制品,这一段构成了隧道窑的预热带,在隧道窑的窑尾进入冷风,冷却隧道窑内后一段的烧结砖,这一段构成了隧道窑的冷却带,进入的冷风经冷却带和高温带而被加热后,再抽出送入干燥室作为干燥生砖坯的热源。据中国砖瓦协会统计,目前国内有制砖生产企业近七万户,已建成3000多条隧道窑制砖生产线,其中年产量在6000万标砖/年及以上的隧道窑制砖生产线千多条。隧道窑烧结制砖工艺以产量大、能耗低、自动化程度高、产品质量稳定、窑炉烧成参数可控等特点,已成为当今国际上最先进的制砖工艺之一。 2010年,政府又把砖瓦行业淘汰落后产能工作提上了日程,将淘汰中小型轮窑等能耗高、自动化程度低的烧结砖生产企业,在全国范围内推广废弃物制砖余热回收发电综合利用技术,以大中型隧道窑

第一节 辊道窑基础知识

第一节辊道窑基础知识 一、辊道窑的分类 1、辊道窑一般可按照综合燃料与加热方式进行分类。 A、明焰辊道窑:火焰进入辊道上、下空间与制品接触并直接加热制品,又 分为气烧明焰辊道窑、燃轻柴油明焰辊道窑。 B、隔焰辊道究:火焰只进入与窑道陨离的马弗道中,通过隔焰板将热量辐 射给制品,并对其进行加热,又分为煤烧隔辊道窑、油烧隔焰辊道窑。 C、电热辊道窑:利用电热元件作热源,对制品辐射加热。 2、辊道窑又可按照其工作通道多少来划分:单层辊道窑、双层干燥窑、三层干 燥窑等。 二、辊道窑的分带及工作系统 1、总体来说,从产品在窑内进行预热、烧成、冷却三个过程可将辊道窑分为预 热带、烧成带及冷却带。 预热带:窑头至850℃~900℃ 从制品温度变化上分烧成带:850℃~900℃至成品成瓷温度(包保温) 冷却带:保温段后至出窑 隔焰窑将没有燃烧系统部位 烧成带明焰窑多以辊上、下均没有烧嘴部位 从烧嘴的设计部位上分烧成带以前部位称预热带 烧成带以后部位称冷却带 2、辊道窑的工作系统 是指气体在窑内的运动线路:分为送风系统、燃料供应系统及排烟系统。 三、辊道窑主要尺寸及其尺寸确定 1、窑内宽:指窑道内两侧墙之间的距离,窑越宽产量越大,但窑宽受到许多方 面的影响,砖坯离窑墙距离应有100~200mm间隙。 A、瓷棒长度的影响。 B、喷枪好坏的制约。 C、各断面横向温差的制约。 2、窑内高:等于辊上高和辊下高之和。应考虑制品尺寸及气体的流动情况。 3、窑长:窑长越长,产量越高,但受到传动系统的精密度及辊棒平整度等方面 的制约。运行中产品易发生跑偏现象。 窑容量(m3/每窑) 其中窑长= 装窑密度(m2/每米窑长)

浅谈隧道窑余热利用

浅谈隧道窑余热利用 生产陶瓷的一个重要过程是烧成,烧成是在窑炉中进行的。陶瓷生产的窑炉有连续式的(隧道窑)也有间隙式的(倒焰窑),不管是隧道窑还是倒焰窑,其热效率都比较低。效率低的原因除了燃烧损失、散热损失等原因外,重要的一点是排烟损失。隧道窑废气带走的热量损失约占总热量的20%~40%,而倒焰窑废气带走的热量约占30%~50%。因此回收窑尾废气的热量加以利用是提高窑炉效率的关键。国内隧道窑排烟温度一般在200~300℃,也有高达400℃,个别倒焰窑的排烟温度可高达560℃。一方面窑炉排烟带走大量余热,另一方面为了干燥坯件,一些工厂又另外建造窑炉或锅炉产生热风和蒸汽以满足烘干坯件的要求。近年来,随着节能技术的不断开发和推广,热管技术已在陶瓷烟气余热回收中得到应用。采用北京荣星时代机电科技发展有限公司热管换热器来回收烟气中的余热加热空气作为烘干坯件的热源,可以取得较好的节能效果。下面只是浅谈下隧道窑余热的利用。 为了充分利用隧道窑的余热,下面从冷却带余热利用和高温烟气的再利用等方面来略谈其余热的利用。 .冷却带的余热利用情况 在新型隧道窑的冷却带,其余热的利用共分为二大部分,基本沿用传统的余热利用方法。其一是急冷区的热气,将其抽出后送至烧嘴用于助燃,另一部分是缓冷区的热气,将其抽出后直接送成型工段,用于该工段的坯体干操。 高温烟气的再利用情况 a.高温喷嘴直接用烟气 在引进的隧道窑中,有很多是在预热带设置多对烧嘴以提高预热带温度。我们在研制新型隧道窑时注意吸收消化引进隧道窑先进的一面,不用烧煤气升温,而是把其中一对排烟口的高温,烟气引出后直接通过喷嘴喷入窑内,起到了引进隧道窑在该段设置低温烧嘴的同样的作用。 b.预热带搅拌风

5米天然气辊道窑安全操作规程

50米天燃气辊道窑安全操作规程 一. 操作人员进入现场,必须穿戴好劳保和防护用品。 二. 窑炉应配备专职巡窑工,在窑炉运行期间巡视、检查、维护和调整窑炉各部件,保持设备正常 运行。 三. 送电前,检查控制柜各部分紧固件,窑炉使用之前,应将控制柜壳体良好接地,避免出现意外 四. 五. 六. 七. 八. 九. 十. 参照说明书定时定期对窑炉各部设备、部件做维护保养。注意回车线上输送用链条不要注油, 需润滑时只用毛刷占取少量机油轻刷不与匣钵接触的一面即可。 50米天燃气辊道窑技术操作规程 1.窑炉启动运行前检查: 1)检查各风机轴承润滑情况,检查引风机进风口主控阀门开度(一般启动前开度小于1/3)并紧

固好,生产时据需要调整开度大小;检查鼓风机进口过滤器,如不清洁则必须拆下并用压缩空气(压力小于600Kpa)由内向外进行清理,清理完毕重新固定后方可启动。 2)检查传动系统,齿轮啮合是否正常,如不正常需进行调整对正并紧固;润滑油位是否够高,必 要时需添加,添加量以齿轮刚刚接触油面为宜,防止加油过多造成溢油。 3)检查陶瓷辊棒是否完好,有无断辊并及时更换。 2. 1)(排 2) 3) 4) 5) 6) 光电开关属敏感元件,其位置和角度谨防变动,非专门维护人员切勿碰触。 3.更换棍棒: 1)更换辊棒时时建议两人配合工作以保证辊棒正确插入卡套并且务必保证卡弹片入槽,由于辊棒 带有高温,故必须戴专用隔热防护手套护手,以免烧伤皮肤。抽出及插入辊棒时应注意身后回车线上相应位置是否有盒钵经过,避免将盒钵推下回车线。

2)更换新辊棒应从相邻低温处(约300-400度处)抽出相同规格的辊棒换至需更换处,而将备好 的新辊棒换至低温处(即相当于预热后使用)。注意如有辊棒不易插入卡套,可能是辊棒直径稍大,此时应用角磨机稍稍均匀打磨辊棒头圆周,然后重新插入卡套。 3)新辊棒使用前要两端塞保温散棉,散棉塞入辊棒端200mm处为宜,塞入散棉量约长 100-150mm。 4) 4. (调5. 6. 7.

陶瓷窑炉余热回收利用

陶瓷窑炉余热回收利用 摘要 生产陶瓷的一个重要过程是烧成,烧成是在窑炉中进行的。陶瓷生产的窑炉有连续式的(隧道窑)也有间隙式的(倒焰窑),不管是隧道窑还是倒焰窑,其热效率都比较低。效率低的原因除了燃烧损失、散热损失等原因外,重要的一点是排烟损失。烧成隧道窑废气带走的热量损失约占总热量的20%~40%,而倒焰窑废气带走的热量约占燃料消耗量的 30%~50%。因之回收窑尾废气的 热量加以利用是提高窑炉效率的关 键。国内隧道窑排烟温度一般在 200~300℃,也有高达400℃,个 别倒焰窑的排烟温度可高达560℃。 一方面窑炉排烟带走大量余热,另 一方面为了干燥坯件,一些工厂又 另外建造窑炉或锅炉产生热风和蒸 汽以满足烘干坯件的要求。采用热管换热器来回收烟气中的余热加热空气作为烘干坯件的热源,可以取得较好的节能效果。 一、隧道窑烟道余热利用 隧道窑余热回收主要用以加热空气作为烘干坯件的热源,也可作为助燃空气以提高窑炉本身的热效率,两者的选择可依据各工厂具体情况而定。其回收流程如图所示。 下表中列出了四个工业应用实例,其中三个例子为用窑尾烟气余热加热空气作为烘房干燥热源以代替原来的锅炉蒸汽加热。第四个例子为用余热加热热水供生活用,其运行参数如表所示。

与原来用蒸汽加热空气相比,不仅省去了一台蒸汽锅炉,而且因为热风量有多余,干燥后含湿的热风可及时排出,因而可以提高干燥速度并改善产品质量。从运行情况看,例Ⅰ、例Ⅱ的烟气出口温度偏低,一般希望燃烧重油的热管换热器烟气出口温度不低于150℃为宜。 二、电瓷厂隧道窑冷却带余热利用 将电瓷厂隧道窑冷却带400℃~450℃的废气抽出通过热管换热器换热,烟气温度降至300℃,再返回窑炉中烧成带作为气氛膜风使用。被加热的新鲜空气送入烘房,干燥电瓷坯件。热管换热器的流程如图所示。热管空气预热品的参数见下表。

日产5000吨水泥生产线纯低温余热发电项目设计方案-

5000t/d水泥生产线纯低温余热发电项目 基本设计方案 ××××年×月×日

目录 一、项目概况 (1) 二、余热条件 (1) 三、发电系统主参数的确定 (1) 四、余热发电工艺流程简述 (2) 五、余热锅炉与水泥生产工艺系统的衔接 (3) 六、工程条件 (4) 七、主要技术指标 (6) 八、项目定员 (7) 九、工程进度计划 (7)

一、项目概况 ××公司现有一条5000t/d新型干法水泥熟料生产线,为充分回收利用水泥生产线窑头、窑尾的余热资源,缓解日益紧张的电力供求矛盾,本工程拟对水泥熟料生产线建设一套装机容量均为10MW的纯低温余热发电系统,力求做到充分利用工艺生产余热,达到节约能源,降低能耗,提高企业经济效益的目的。 二、余热条件 依据以往的工程经验,对生产线的烟气参数进行了整理。 单条5000t/d水泥熟料生产线余热条件如下: 1)窑尾余热锅炉 窑尾预热器出口废气量:330,000Nm3/h 进锅炉废气温度:340℃ 余热锅炉出口温度:220℃(进原料磨烘干原料) 含尘浓度(进口):80g/Nm3 2)窑头余热锅炉 熟料冷却机抽气口废气量:220,000Nm3/h 进锅炉废气温度:380℃ 余热锅炉出口温度:85℃ 含尘浓度(进口):≤8g/Nm3(设置预除尘装置) 三、发电系统主参数的确定 根据目前纯低温余热发电技术及装备现状,结合水泥窑生产线余热资源情况,本工程装机采用纯低温余热发电双进汽技术。采用双进汽系统的主要目的是为了提高系统循环效率。使低品位的热源充分利用,获得最大限度的发电功率,降低窑头(AQC)双蒸汽余热锅炉的排气温度;其次,双进汽系统的二级蒸汽经过过热,保证汽轮机内的蒸汽最大湿度控制在14%的以下,使汽轮机末级叶片工作在安全范围内,提高机组的效率;再次,双进汽系统的低压蒸汽可用于供热、洗浴等方面,在烟气余热变化较大时,可不进行补汽,提高了系统运行灵活性。 5000t/d生产线10MW余热发电系统: SP炉:主蒸汽压力1.7MPa,主蒸汽温度320±10℃,产汽量为23.9t/h;

纯低温余热发电系统

第十一章纯低温余热发电系统 11.1 发电规模 发电规模按5000t/d熟料生产线配套设计。 水泥生产线的窑头、窑尾会排放大量的废气,通常仅利用废气的余热来烘干原料,利用率很低,其余大量废气的余热不仅没有得到利用,而且还要对废气进行喷水降温,浪费水和电能。因此,利用余热发电技术回收这部分废气的热能,可以使水泥生产企业提高能源利用效率,降低成本,提高产品市场竞争力,降低污染物排放量。 综合考虑水泥熟料生产线的工艺流程、场地布置、供配电结构、供水设施等因素,利用生产线窑头、窑尾余热资源,可建设一条装机容量为9000KW的纯低温余热电站。 11.2 设计原则 1)余热电站在正常运行时应不影响原水泥生产线的正常生产; 2)充分利用窑头、窑尾排放的废气余热; 3)采用工艺成熟、技术先进的余热发电技术和装备; 4)余热电站尽可能与水泥生产线共用水、电、机修等公用设施; 5)贯彻执行有关国家和拟建厂当地的环境保护、劳动安全、消防设计的规范。 11.3 设计条件 1)余热条件 从更合理的利用窑头余热考虑,窑头篦冷机需要进行改造,在篦冷机的中部增加一个废气出口,改造后的窑头废气参数为:240000Nm3/h,360℃。此部分废气余热全部用于发电。 窑尾经五级预热器出口的废气参数为:312500Nm3/h,320℃。此部分废气经利用后的温度应保持在220℃左右,用于生料粉磨烘干。 2)建设场地 本工程包括:窑头AQC锅炉、窑尾SP锅炉、汽机房、化学水处理车间、冷却塔及循环水泵房等车间。 各车间布置遵循以下原则:窑头AQC锅炉和沉降室布置在窑头

厂房旁边的空地上,窑尾SP锅炉布置在窑尾高温风机的上方,汽机房的布置靠近锅炉,化学水处理车间、冷却塔及循环水泵房尽量靠近汽机房。在布置有困难时可以适当调整,不能影响水泥生产线的布置。 AQC锅炉占地面积:14.2m×6.35m SP锅炉占地面积:22m×12m 汽机房占地面积:31m×20.4m 3)水源、给水排水 电站的用水有:软化水处理、锅炉给水、循环冷却水及其它生产系统消耗,消防用水,部分用水可循环使用。 11.4 电站工艺系统 1)余热电站流程 本方案拟采用纯低温余热发电技术,该技术不使用燃料来补燃,因此不对环境产生附加污染;是典型的资源综合利用工程。主蒸汽的压力和温度较低,运行的可靠性和安全性高,运行成本低,日常管理简单。 综合考虑目前水泥生产线窑头、窑尾的余热资源分布情况和水泥窑的运行状况,确定热力系统及装机方案如下: 系统主机包括两台余热锅炉、一套补汽式汽轮发电机组。 a.AQC余热锅炉:利用冷却机中部抽取的废气(中温端,~360℃),在生产线窑头设置AQC余热锅炉,余热锅炉分为高压蒸汽段、低压蒸汽段和热水段运行;高压蒸汽段生产 1.6MPa-350℃的过热蒸汽,进入蒸汽母管后通入汽轮发电机组,低压蒸汽段生产0.15MPa-140℃的过热蒸汽,热水段生产的140℃热水后,作为AQC 余热锅炉蒸汽段及SP余热锅炉的给水,出AQC锅炉废气温度降至110℃。 b.SP余热锅炉:在窑尾设置SP余热锅炉,仅设置蒸汽段,生产 1.6MPa-305℃的过热蒸汽,进入蒸汽母管后通入汽轮发电机组,出SP余热锅炉废气温度降到220℃,供生料粉磨烘干使用。 c.汽轮发电机组:上述余热锅炉生产的蒸汽共可发电7.9MW,因此配置9MW补汽式汽轮机组一套。

2020年窑炉烧成工序安全操作规程

( 操作规程 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 2020年窑炉烧成工序安全操作 规程 Safety operating procedures refer to documents describing all aspects of work steps and operating procedures that comply with production safety laws and regulations.

2020年窑炉烧成工序安全操作规程 1目的 确保烧成工艺的合理性及稳定性,从而保证产品质量稳定。 2职责 2.1工艺部负责下达烧成工艺卡。 2.2窑炉主管、班长负责窑炉烧成曲线、压力制度和气氛制度的设定和调节。 2.3司炉工负责烧成工序的操作和当班产品质量改善。 2.4保养工负责窑炉的保养。 3主要生产设备及工具 辊道窑窑体、进出砖平台、燃料供应和燃料系统、传动系统、排烟系统和冷却系统、自动控制系统;压力计、铁杆、铁钩、水平尺(管)、柴油小桶、直尺、肥皂水等。

4操作规范 4.1窑炉常规检查内容 4.1.1做好上班前的准备工作,开好班前会,进行5分钟6S检查。 4.1.2交接班时,要检查上一班工作记录、质检报表、温度记录表,了解上一班砖坯质量情况,如:砖 坯的尺码、砖形、平整度、针孔状况、色号、是否对板、主要烧成缺陷等。 4.1.3监视煤气压力、供电电压、传动变频和各风机变频频率(责任人;炉工) 4.1.4进砖时要注意干燥与窑炉速度一致,进砖保持整齐,产品无碰撞现象(责任人:保养) 4.1.5严格控制好各区温度,特别是烧成带温度,将其稳定在烧成曲线要求的±2度范围内(责任人: 炉工)。随时观察表温,如果发现温度无论是超过设定温度并持续上升,还是低于设定温度并持续下降,

浅谈提高隧道窑热效率的几种途径

浅谈提高隧道窑热效率的几种途径(作者:余琴仙)提高隧道窑热效率的方法很多,包括选用合适的燃料,改进窑炉结构,严格组织燃烧管理,窑具和匣钵轻量化以及采用合适的燃烧装置以提高窑内温度的均匀性,实现低温快速烧成,窑炉温度、压力、气氛等实现自动控制,加强窑炉隔热保温,因地制宜实现余热利用等,但具体采用和实施这些方案时必须考虑各方面的因素。 一、采用合适的燃料 窑炉采用何种燃料烧成,不但关系到操作产品质量和环境保护,还与节约能源和降低成本有直接关系,因此对于燃料的选择必须十分慎重,燃料的热经济分析表明,烧煤各项技术经济指标都不如烧气体燃料。拿窑炉的热效率来说,烧炼焦煤气的最高,其次是重油,再其次是发生炉煤气,最低的是烧煤。人工直接烧煤时,燃料的利用系数最小,窑的热量消耗与燃料消耗最多。故从燃料的热经济性看,人工直接烧煤的热经济性最差,因此在我国目前的情况下,对于大型陶瓷厂例如年产1000万件以上的日用陶瓷厂来说,由烧煤改烧发生炉煤气,无论在经济上或生产技术管理上都是可取的。但对于中小型厂来说,还要考虑一次投资以及煤气的使用费用方面的问题。应综合考虑经济上是否有利。对于靠近煤产地的小型厂来说,以煤直接烧窑是可取的,当然若能在陶瓷厂比较集中的地方兴建公用的煤气站要比直接烧煤好得多。 二、尽量减小空气过剩系数 严格组织燃烧管理,减少空气过剩系数是提高窑炉热效率的一个重要途径。由热平衡测算可知,目前陶瓷工业窑炉中烟气离窑带走热量占总燃耗的1/3左右,间歇式窑炉在还原期有的出口处都红火,其排烟热损失比隧道窑更甚,而同外例如日本,排烟热损失已控制在燃耗的8一12%左右。 烟气带走显热大的一个原因是燃烧时空气过剩系数。过大,烟气带走的热量Q烟=f(o〃L 烟),即当用同一种燃料时,Q烟只决定于。和排出烟气温度。当排出烟气温度相同时,o 越大燃料的利用系数和窑的热效率就越低,增大了燃料消耗。我国目前的陶瓷窑炉操作均是凭经验控制,存在着烧还原焰时偏重,烧氧化焰时过氧的“稳妥”操作倾向。当烧还原焰寸偏重即还原气氛过浓,这势必导致烟气中CO过高,每增加10%C0,需多消耗1%的燃料。当燃氧化焰时,空气过剩系数过大,则烟气中的02:t曾加,理论计算结果指出,烟气中0:量每增1%,燃料消耗就要多增加2.6%,所以,严格控制燃烧时的空气过剩系数,对提高窑炉热效率有重要意义。 因此,应尽量采取各种措施使燃料与空气充分混合,减少空气用量;同时在每个工厂的窑炉操作中应研究制定出适合该厂陶瓷产品烧成工艺需要保证各阶段燃料充分烧烧所需的最佳。值。然后通过二氧化锆氧量分析器,红外气体分析器,全自动气体分析器等仪器加强对烟气成份的监测,并对燃料/空气比进行自动调节,使烧成中空气过剩系数在满足工艺要求下尽可能接近1。

低温余热发电系统设计方案

低温余热发电系统设计方案 1. 需考虑的问题 低温余热发电系统的窑尾余热锅炉(SP炉)和篦冷机余热锅炉(AQC炉)串联于熟料生产线上,两锅炉阻力均小于1000Pa。设计时,必须考虑下列问题: (1)窑尾主排风机和窑头、窑尾电除尘器及其风机的能力是否适应增设窑尾余热锅炉和篦冷机余热锅炉的条件; (2) 原料磨的热风系统能否满足工艺要求; (3) 该两台锅炉系统的安装是否不破坏原生产厂房。 经对窑系统设计资料认真复核,确认增设两台锅炉系统后所涉及的上述设备能力可以满足要求,不须作任何改造;两台锅炉系统的布置可以不破坏原生产厂房;出窑尾锅炉废气被送至生料原系统作为烘干热源,经核算,只要控制出窑尾锅炉废气温度≥240℃~℃260就可满足入磨原料综合水份≤5%的烘干要求。 双压纯低温余热发电技术介绍 双压余热发电技术就是按照能量梯级利用的原理,在同一台余热锅炉中设置2个不同压力等级的汽水系统,分别进行汽水循环,产生高压和低压两种过热蒸汽;高压过热蒸汽作为主蒸汽、低压过热蒸汽作为补汽分别进入补汽凝汽式汽轮机,推动汽轮机做功发电,双压余热发电系统使能量得到合理利用,热回收效率高。 余热资源参数不同,余热锅炉的低压受热面与高压受热面有不同的布置方式。根据辽源金刚水泥厂窑头(AQC)和窑尾(SP)的余热特点和工艺要求,经过余热利用后,要使AQC余热锅炉排烟温度降到100℃左右。使窑尾SP余热锅炉排烟温度降低到220℃左右后进入原料磨烘干原料,其设置的双压余热发电系统简图如 图1。

双压余热发电系统与常规余热发电系统不同之处在于其窑头(AQC)余热锅炉增设了低压汽水系统,其汽轮机组在第四压力级之后增加了补汽口,并适当增大补汽口以后汽轮机通流部分面积。 采用双压系统的主要目的是为了提高系统循环效率。使低品位的热源充分利用,获得最大限度的发电功率,降低窑头(AQC)双压余热锅炉的排气温度;其次是双压系统的低压蒸汽是过热的,进入汽轮机后能保证汽轮机内的蒸汽最大湿度控制在14%以下,使汽轮机叶片工作在安全范围内,并提高机组的效率;同时低压蒸汽还可用于供热等其它需要热源的地方,提高运行灵活性。 双压余热发电系统简单灵活、成本低、热利用率高。由于在余热锅炉上增设了低压省煤器、低压蒸发器,并且增设了低压过热器,能够把更多的低温余热吸收利用,比单压系统多发电10%左右,并且必要时能够解列,维持单压系统正常运行。而对于能够增加发电量的闪蒸系统来说,需要增加闪蒸器、汽水分离器等设备;闪蒸器产生的是饱和蒸汽,在进入汽轮机做功后,易使汽轮机排汽干度不能满足汽轮机的要求。 1995年8月17日国家计委、原国家建材局与日本新能源产业技术综合开发机构(NEDO)签订了基本协议书,由中国安徽海螺集团宁国水泥厂与日本川崎重工株式会社实施。该项目1996年10月18日动工,199 5年2月8日并网发电一次成功。 水泥厂余热资源的特点是流量大、品位低。在宁国水泥厂4000t/d生产线上,预热器(PH)和冷却机(AQC)出口废气流量和温度分别为258550Nm3/h、340℃和306600Nm3/h、238℃,其中部分预热器废气用来烘干燃煤和原料。针对上述特点,热力系统采用减速式两点混气式汽轮机,利用参数较低的主蒸汽和闪蒸汽的饱和蒸汽发电;根据余热资源的工艺状况设置两台余热锅炉,保证能够充分利用余热资源;应用热水闪蒸技术,设置一台高压闪蒸器和一台低压闪蒸器,闪蒸出的饱和蒸汽混入汽轮机做功;对现有AQC 进行废气二次循环改造。由于PH出口废气还要用于烘干原料,因此未设省煤器,只设蒸发器和过热器。加强系统密封。系统采用先进的DCS集散控制系统进行操作控制,具有功能齐全、自动控制、操作简便等特点。 工艺流程图(见图) 此主题相关图片如下:

相关主题
文本预览
相关文档 最新文档