函数与导数综合题型一网打尽汇编(可作教师版的习题材料)
- 格式:doc
- 大小:3.00 MB
- 文档页数:54
函数与导数高考题1.(安徽理3)设f(x)是定义在R 上的奇函数,当x≤0时,f(x)=2x'-x,则f()=(A)-3 (B)- 1 (C)1 (D)3【答案】A【命题意图】本题考查函数的奇偶性,考查函数值的求法 .属容易题.【解析】f()= - f( - 1)= - 42( - 1)²- ( - 1)]= - 3 .故选A.2 . (安徽理10)函数f (x )=ax ”g 1- x )“在区 间〔0,1〕上的图像如图所示,则m ,n 的值可 能 是(A)m=1,n=1(B) m=1,n=2(C) m=2,n=1(D) m=3,n=1【答案】B 【命题意图】本题考查导数在研究 函数单调性中的应用,考查函数图像,考查思维的综合能力.难度大.【 解 析 】 代 入 验 证 , 当m = 1 , n = 2 , f ( x ) = a x g ( 1 - x ) ² = n ( x ³ - 2 x ² + x ) ,则f ' ( x ) = a ( 3 x ² - 4 x + 1 ) , 由 ,结合图像可知函数应在递增,在 递减,即在, 知 a 存 在 . 故 选 B .3.(安徽文5)若点(a,b)在y=lgx 图像上,a≠1,则下列点也在此图像上的是(A)(,b) (B)(10a,1 b) (C)(,b+1) (D)(a2,2b)【答案】D 【命题意图】本题考查对数函数的基本运算,考查对数函数的图像与对应点的关系 .【 解 析 】 由 题 意b = 1 g a , 2 b = 2 1 l g a = 1 g a ² , 即( a ² , 2 b )也 在 函 数 y = l g x 图 像 上 .4 . (安徽文10) 函数f(x )=ax ”g (1 - . x )² 在区间(0,1)上的 图像如图所示,则n 可能是 (A)1 (B) 2取得最大值,由f'(x)=a(3x²-4x+1)=0可知,(C) 3 (D)4【答案】A【命题意图】本题考查导数在研究函数单调性中的应用,考查函数图像,考查思维的综合能力.难度大.【解析】代入验证,当7=1时,f(x)=axg(1-x)²=a(x³-2x²+x),则f(x)=a(3r²-4x+1)由f ( x ) = a ( 3 x ² 4 x + 1 ) = 0 可知,,结合图像可知函数应在递增,在递减,即在取得最大值,由, 知a 存在. 故选A .7 . (福建理5) 等于A.1B.e- 1C. CD.e+1【答案】C8 . (福建理9 )对于函数f ( x ) = a s i n x + b x + c (其中,a , b ∈R , c ∈Z ) ,选取a , b , C 的一组值计算f ( )和f ( - 1 )所得出的正确结果一定不可能是A . 4和6B . 3和1C . 2和4D . 1和2【答案】D9 . ( 福建理1 0 ) 已知函数f ( x ) = e⁴+ x , 对于曲线y = f ( x ) 上横坐标成等差数列的三个点A , B , c , 给出以下判断:①△ABC 一定是钝角三角形②△ABC可能是直角三角形③△ABC可能是等腰三角形④△ABC不可能是等腰三角形其中,正确的判断是A.①③B.①④C.②③D.②④【答案】B10.(福建文6)若关于x的方程x2+mx+1=0有两个不相等的实数根,则实数m的取值范围是A.(- 1,1)B.(-2,2)C.(-o,-2)U(2,+o)D.(-o,- 1)U(1,+c)【答案】C11. (福建文8)已知函数 ,若f(a)+f(1)=0,则实数a的值等于A. 3B. 1C. 1D. 3【答案】A12.(福建文10)若a>0,b>0,且函数f(x)=4x3-ax2-2bx+2在x=1处有极值,则ab的最大值等于A.2B.3C. 6D. 9【答案】D13.(广东理4)设函数f(x)和g(x)分别是R上的偶函数和奇函数,则下列结论恒成立的是A . f(x)+1g(x)是偶函数B . f(x) - 1g(x)是奇函数c.if(x)\+g(x)是偶函数 D . i f ( x ) - g ( x )是奇函数【答案】A【解析】因为g(x)是R 上的奇函数,所以lg(x)是R 上的偶函数,从而f(x)+1g(x)是偶函数,故选A.14 . (广东文4)函 的定义域是 ( )A.(-~,- 1)B.(1,+~) c.(- 1,1)U(1,+oo) D.(-0,+oo)【答案】C16.(湖北理6)已知定义在R 上的奇函数f(x)和偶函数g(x)满足f(x)+g(x)=a¹-a ⁴+2(a>0,且a≠1),若g(2)=a,则f(2)=A.2B.C.D. a² 【答案】B【解析】由条件f(2)+g(2)=a²-a²+2,f(-2)+g(-2)=a²-a²+2, 即-f(2)+g(2)=a²-a²+2, 由此解得g(2)=2,f(2)=a²-a-所 以 a = 2 ,, 所 以 选 B18 . (湖南文7)曲线主点处的切线的斜率为( )A. B. 2 C. D. 【答案】B【解析】19.(湖南文8)已知函数f(x)=e¹-1,g(x)=-x²+4x -3.若有f(a)=g(b),则b 的取值范围为A.[2-√2,2+√2]B.(2-√2.2+√2)c.[1,3] p.(1,3)【答案】B【解析】由题可知f(x)=e ⁴- 1>- 1,g(x)=-x²+4x-3=-(x-2)²+1≤1,若有f(a)=g(b),则g(b) ∈(- 1,1), 即-b²+4b-3>- 1,解得2-√Z<b<2+√2., 所 以,y=020 . (湖南理6)由直线 与曲线y=COSX 所围成的封闭图形的面积为( )A.2B.1C.D.√3 【答案】D【解析】由定积分知识可得, 故 选 D 。
一、 分类讨论:分类讨论复杂影响定义域, 导是否有根,最高次项系数(开口方向) 例1.(大兴19)已知函数f(x) (22 m)X .x m(I)当m 1时,求曲线f (x)在点(1, f (1))处的切线方程; (n)求函数f(x)的单调区间.(2 m)(x 2m) (2 m)x 2x fW--- K (1 )当 m 0时,f(x)-.x因为f '(x)当 f'(x) 0 时,x 0,或x 0.所以函数f (x)的单调减区间为(,0),(0,),无单调增区间(2) 当m 0时,f (x)的定义域为{xxm}.当 f'(x) 0时,x 、、 m 或.m x . m 或x 、. m ,所以函数f (x) 的单调减区间为(,j m ),( —, —),(~m, 单调增区间•(3) 当 m 0时,f'(x) (m 2)(x 2 而2x 扁).(x 2 m)2①当0 m 2时,若 f '(x) 0,则 x. m 或x . m ,(13分)解:(I)当 m 1 时,f(x)x x 2 1.因为f '(x)x 2 1 22-(x 1)所以k 所以函数f (x)在点1 1(訐(2))处的切线方程为12x 25y4(m 2)(x 2m) 2 2(x m)),无f'121 25 .因为f (2若f '(x) 0 ,贝y m x 、、m ,所以函数f(x)的单调减区间为(,,m),C,m,),函数f(X)的单调增区间为(、、m,、、m).②当m 2时,f (x) 0 ,为常数函数,无单调区间•③当m 2时,若f '(x) 0,贝U 、、m x .. m,若f '(x) 0 ,则x 、、m或x m ,所以函数f(x)的单调减区间为(,函数f(x)的单调增区间为(,.m),( . m,).综上所述,当m 0时,函数f (x)的单调减区间为(,0),(0,),无单调增区间;当m 0时,函数f(x)的单调减区间为(,■-m),(、._m,, _m),(、~~m,)无单调增区间;当m 0时,①当0 m 2时,函数f (x)的单调减区间为(,x m),^ m,),函数f (x)的单调增区间为(•、一 m, •、_ m);②当m 2时,f(x) 0 ,为常数函数,无单调区间;③当m 2时,函数f (x)的单调减区间为(、、m,-、m),函数f(x)的单调增区间为(,吊),(、m, ) —13根与定义域,最值处需要比较例2. (2012年北京理科)已知函数f(x) ax2 1(a 0),g(x) x3 bx -(i)若曲线y f (x)与曲线y g(x)在它们的交点(1,c)处具有公共切线,求a, b的值;2(n )当a 4b时,求函数f(x) g(x)的单调区间,并求其在区间(-上的最大值解:(1 )由1, c为公共切点可得:2f (x) ax 1(a 0),贝U f (x) 2 ax, K 2a ,3 2g(x) x bx,贝U f (x)=3x b , k2 3 b,2a 3 b ①又 f(1) a 1 , g(1) 1 b ,a 11 b ,即a b ,代入①式可得:(2) Q a 24b ,设 h(x) f(x)g(x) x 321 2 ax ax41 则 h (x) 3x 22ax 1 2a ,令 h (x)0,解得 a :x 1x ?a —;426Q a 0 ,aa26,原函数在a单调递增,在a-单调递减, 在a 上单调递增22, 66,①若1< a,即a < 2时,最大值为 h(1) a 2a” ,•24②若a 1 a 即2 a 6时, 最大值为 h -12 62③若1> 6时,即a >6时,最大值为h综上所述:当a 0,2时,最大值为h(1)2a ta;当 a 2 ,4时,最大值为h ?1•二、恒成立问题例3( 2014海淀一模)已知函数 f (x) xln x .(I )求 f(x)的单调区间;(n )当k 1时,求证:f (x) kx 1恒成立.(I )定义域为0,---------------------------------- 1分 f '(x) In x 1---------------------------------- 2分1令 f '(x) 0 ,得 x ----------------------------------- 3分f '(x)与f (x)的情况如下:分1 1所以f(X)的单调减区间为(0,—),单调增区间为(―,)--------------------------- 6分e e(n )分离参数,证明1:1设g(x) ln x , x 0 ----------------------------- 7分X八1 1 X 1g(X) 2 2 ------------------------------------------- 8分X X Xg'(x)与g(X)的情况如下:所以g(x) g(1) 1,即1ln x 1在x 0时恒成立, ------------- 10 分x, 1 ,所以,当k 1时,ln x k,x所以xlnx 1 kx,即xlnx kx 1,X|k | B| 1 . c|O |m所以,当k 1时,有f (x) kx 1. -------------------- 13 分证明2:直接作差构造新函数令g(x) f (x) (kx 1) xlnx kx 1 ----------------------------- 7分g'(x) In x 1 k ----------------------------- 8分令g '(x) 0 ,得x e k 1------------------------------ 9 分g'(x)与g(x)的情况如下:2x)x证明:设g (x )f(x)xe ^(xxX( 20),则 g '(x)4x------------------- 10分g(x)的最小值为g(e k1) 1 e k 1--------------- 11分当 k 1 时,e k1 1,所以 1 e k1 0 故 g(x) 0----------------------- 12 分 即当 k 1 时,f(x) kx 1. ------------------------------ 13 分xe 例4.( 2015海淀期末文科20题)已知函数f (x ) .x(I )若曲线y f (x )在点(x 。
第四节导数与函数的综合问题A组基础题组1.若某商品的年利润y(万元)与年产量x(百万件)的函数关系式为y=-x3+27x+123(x>0),则获得最大年利润时的年产量为()A.1百万件B.2百万件C.3百万件D.4百万件2.函数f(x)的定义域为R,f(-1)=2,对任意x∈R,f'(x)>2,则f(x)>2x+4的解集为()A.(-1,1)B.(-1,+∞)C.(-∞,-1)D.(-∞,+∞)3.(2014课标Ⅰ,12,5分)已知函数f(x)=ax3-3x2+1,若f(x)存在唯一的零点x0,且x0>0,则a的取值范围是()A.(2,+∞)B.(1,+∞)C.(-∞,-2)D.(-∞,-1)4.设a>1,函数f(x)=(1+x2)e x-a.(1)求f(x)的单调区间;(2)证明:f(x)在(-∞,+∞)上仅有一个零点.5.已知函数f(x)=xlnx.(1)求f(x)的单调区间;(2)当k≤1时,求证:f(x)≥kx-1恒成立.B组提升题组6.(2015课标全国Ⅰ,21,12分)设函数f(x)=e2x-alnx.(1)讨论f(x)的导函数f'(x)零点的个数;(2)证明:当a>0时,f(x)≥2a+aln.7.(2014课标全国Ⅰ,21,12分)设函数f(x)=alnx+x2-bx(a≠1),曲线y=f(x)在点(1,f(1))处的切线斜率为0.(1)求b;(2)若存在x0≥1,使得f(x0)<,求a的取值范围.8.(2017贵州遵义模拟)已知函数f(x)=,其中k∈R且k≠0.(1)求函数f(x)的单调区间;(2)当k=1时,若存在x>0,使lnf(x)>ax成立,求实数a的取值范围.答案全解全析A组基础题组1.C y'=-3x2+27=-3(x+3)(x-3),当0<x<3时,y'>0;当x>3时,y'<0.故当x=3时,该商品的年利润最大.2.B令g(x)=f(x)-2x-4,则由题意知g'(x)=f'(x)-2>0,因此,g(x)在R上是增函数,又g(-1)=f(-1)+2-4=2+2-4=0,所以原不等式可化为g(x)>g(-1),由g(x)的单调性,可得x>-1.3.C a=0时,不符合题意.a≠0时,f'(x)=3ax2-6x,令f'(x)=0,得x1=0,x2=.若a>0,则由图象知f(x)有负数零点,不符合题意.则a<0,由图象结合f(0)=1>0知,此时必有f>0,即a×-3×+1>0,化简得a2>4,又a<0,所以a<-2,故选C.4.解析(1)函数f(x)的定义域为R.因为f'(x)=2x·e x+(1+x2)e x=(x2+2x+1)e x=(x+1)2e x≥0,所以函数f(x)在R上单调递增,即f(x)的单调递增区间为(-∞,+∞),无单调递减区间.(2)证明:因为a>1,所以f(0)=1-a<0,f(lna)=(1+ln2a)e lna-a=aln2a>0,所以f(0)·f(lna)<0,由零点存在性定理可知f(x)在(0,lna)内存在零点.又由(1)知,f(x)在R上单调递增,故f(x)在(-∞,+∞)上仅有一个零点.5.解析(1)易知f(x)的定义域为(0,+∞),f'(x)=lnx+1,令f'(x)=0,得x=.f'(x)与f(x)的变化情况如下表:所以f(x)的单调减区间为,单调增区间为.(2)证明:设g(x)=lnx+,x>0,则g'(x)=-=,令g'(x)=0,得x=1.g'(x)与g(x)的变化情况如下表:所以g(x)≥g(1)=1,即lnx+≥1在x>0时恒成立,所以,当k≤1时,lnx+≥k,所以xlnx+1≥kx,即xlnx≥kx-1,所以,当k≤1时,有f(x)≥kx-1.B组提升题组6.解析(1)由题意知f(x)的定义域为(0,+∞),f'(x)=2e2x-.当a≤0时,f'(x)>0,f'(x)没有零点;当a>0时,因为y=2e2x单调递增,y=-单调递增,所以f'(x)在(0,+∞)上单调递增.又f'(a)>0,当b满足0<b<且b<时,f'(b)<0,故当a>0时,f'(x)存在唯一零点.(2)证明:由(1),可设f'(x)在(0,+∞)上的唯一零点为x0,当x∈(0,x0)时,f'(x)<0;当x∈(x0,+∞)时,f'(x)>0.故f(x)在(0,x0)上单调递减,在(x0,+∞)上单调递增,所以当x=x0时,f(x)取得最小值,最小值为f(x0).由于2-=0,所以f(x0)=+2ax0+aln≥2a+aln.故当a>0时,f(x)≥2a+aln.7.解析(1)f'(x)=+(1-a)x-b.由题设知f'(1)=0,解得b=1.(2)f(x)的定义域为(0,+∞),由(1)知,f(x)=alnx+x2-x,f'(x)=+(1-a)x-1=(x-1).(i)若a≤,则≤1,故当x∈(1,+∞)时,f'(x)>0,f(x)在(1,+∞)上单调递增.所以,存在x0≥1,使得f(x0)<的充要条件为f(1)<,即-1<,解得--1<a<-1.(ii)若<a<1,则>1,故当x∈时,f'(x)<0;当x∈时,f'(x)>0.f(x)在上单调递减,在上单调递增.所以,存在x0≥1,使得f(x0)<的充要条件为f<.而f=aln++>,所以不合题意.(iii)若a>1,则f(1)=-1=<.综上,a的取值范围是(--1,-1)∪(1,+∞).8.解析(1)函数的定义域为R,f'(x)=,当k<0时,令f'(x)>0,可得x<0或x>2;令f'(x)<0,可得0<x<2,∴函数f(x)的单调增区间为(-∞,0),(2,+∞),单调减区间为(0,2);当k>0时,令f'(x)<0,可得x<0或x>2;令f'(x)>0,可得0<x<2,∴函数f(x)的单调增区间为(0,2),单调减区间为(-∞,0),(2,+∞).(2)当k=1时,f(x)=,存在x>0,使lnf(x)>ax成立等价于a<,设g(x)=(x>0),则g'(x)=,当0<x<e时,g'(x)>0;当x>e时,g'(x)<0,∴g(x)在(0,e)上单调递增,在(e,+∞)上单调递减,∴g(x)max=g(e)=-1,∴a<-1.。
函数导数综合问题(一)【例1】已知函数()()222ln ,.f x x x h x x x a =-=-+(Ⅰ)求函数()x f 的极值; (Ⅱ)设函数()()(),x h x f x k -=若函数()x k 在[]31,上恰有两个不同零点,求实数 a的取值范围.【例2】已知函数()()()1ln 2ln 22f x t x x =+--⎡⎤⎣⎦,且()()4f x f ≥恒成立。
(1)求t 的值; (2)求x 为何值时,()f x 在[]3,7上取最大值;(3)设()()()ln 1F x a x f x =--,若()F x 是单调递增函数,求a 的取值范围。
【例3】 设函数()|1|,()ln .f x x x m g x x =-+= (1)当1m >时,求函数()y f x =在[0,]m 上的最大值;(2)记函数()()()p x f x g x =-,若函数()p x 有零点,求m 的取值范围.函数导数综合问题(一)参考答案:【例1】解: (Ⅰ)xx x f 22)('-= ,令'()0,01f x x x =>∴=所以)(x f 的极小值为1,无极大值. (Ⅱ))(ln 2)()()('=∴-+-=-=x k a x x x h x f x k ,若2,0)('==x x k 则当[)1,2x ∈时,()'0fx <;当(]2,3x ∈时,()'0f x >.故()k x 在[)1,2x ∈上递减,在(]2,3x ∈上递增.(1)0,1,(2)0,22ln 2,22ln 232ln 3.(3)0,32ln 3,k a k a a k a ≥≤⎧⎧⎪⎪∴<∴>-∴-<≤-⎨⎨⎪⎪≥≤-⎩⎩所以实数 a 的取值范围是(]22ln 2,32ln3--. 【例2】解:(I ))4()()],2ln()2ln([21)(f x f x x t x f ≥+-+=且 恒成立, )()4(),,2()(x f f x f 是且的定义域为+∞∴的最小值又.3.0)4(].212[21)(=='∴--+='t f x x t x f 解得 (II )由上问知.44]2123[21)(2--=--+='x x x x x f)4,2()(.0)(,4;0)(,42在时当时当x f x f x x f x ∴>'><'<<∴上是减函数,在(4,+∞)是增函数。
a - a 2-4 2 a + a 2-42导数的综合应用是历年高考必考的热点,试题难度较大,多以压轴题形式出现,命题的热点主要有利用导数研究函数的单调性、极值、最值;利用导数研究不等式;利用导数研究方程的根(或函数的零点);利用导数研究恒成立问题等.体现了分类讨论、数形结合、函数与方程、转化与化归等数学思想的运用.题型一 利用导数研究函数的单调性、极值与最值题型概览:函数单调性和极值、最值综合问题的突破难点是分类讨论.(1) 单调性讨论策略:单调性的讨论是以导数等于零的点为分界点,把函数定义域分段,在各段上讨论导数的符号,在不能确定导数等于零的点的相对位置时,还需要对导数等于零的点的位置关系进行讨论.(2) 极值讨论策略:极值的讨论是以单调性的讨论为基础,根据函数的单调性确定函数的极值点.(3) 最值讨论策略:图象连续的函数在闭区间上最值的讨论,是以函数在该区间上的极值和区间端点的函数值进行比较为标准进行的,在极值和区间端点函数值中最大的为最大值,最小的为最小值.已知函数 f (x )=x 1g (x )=a ln x (a ∈R ).- , x(1) 当 a ≥-2 时,求 F (x )=f (x )-g (x )的单调区间;(2) 设 h (x )=f (x )+g (x ),且 h (x )有两个极值点为 x ,x ,其中 x ∈ 1,求 h (x )-h (x)的最121(0,]1 2 2小值.[审题程序]第一步:在定义域内,依据 F ′(x )=0 根的情况对 F ′(x )的符号讨论; 第二步:整合讨论结果,确定单调区间; 第三步:建立 x 1、x 2 及 a 间的关系及取值范围;第四步:通过代换转化为关于 x 1(或 x 2)的函数,求出最小值.[规范解答] (1)由题意得 F (x )=x 1a ln x ,- - xx 2-ax +1其定义域为(0,+∞),则 F ′(x )= ,x 2令 m (x )=x 2-ax +1,则 Δ=a 2-4.①当-2≤a ≤2 时,Δ≤0,从而 F ′(x )≥0,∴F (x )的单调递增区间为(0,+∞);②当 a >2 时,Δ>0,设 F ′(x )=0 的两根为 x 1= ,x 2= ,x∴F (x )的单调递增区间为( a - a 2-4) (a + a 2-4)0, 2和 ,+∞ , 2F (x )(a - a 2-4 a + a 2-4)的单调递减区间为 ,. 2 2综上,当-2≤a ≤2 时,F (x )的单调递增区间为(0,+∞); 当 a >2 时,F (x )的单调递增区间为(a - a 2-4) (a + a 2-4)0, 2和 ,+∞ , 2F (x )(a - a 2-4 a + a 2-4)的单调递减区间为 ,. 2 2(2)对 h (x )=x 1a ln x ,x ∈(0,+∞)- + x1 a x 2+ax +1求导得,h ′(x )=1+ + = ,x 2 x x 2设 h ′(x )=0 的两根分别为 x 1,x 2,则有 x 1·x 2=1,x 1+x 2=-a , 1 1∴x 2= ,从而有 a =-x 1- .x 1 x 1令 H (x )=h (x )-h(1) 111 11=x -x +(-x -x )ln x -[x -x +(-x -x )·ln x ]1 1 =2[(-x -x )ln x +x -x ],1 2(1-x )(1+x )ln x H ′(x )=2(x 2-1)ln x = x 2. 当 x ∈1 时,H ′(x )<0, (0,] 2 ∴H (x )在 1 上单调递减,(0, ]2 又 H (x 1)=h (x 1)-h1 =h (x 1)-h (x 2),(x 1)∴[h (x 1)-h (x 2)]min =H 1=5ln2-3.(2)[解题反思] 本例(1)中求 F (x )的单调区间,需先求出 F (x )的定义域,同时在解不等式 F ′(x )>0 时需根据方程 x 2-ax +1=0 的根的情况求出不等式的解集,故以判别式“Δ”的取值作为分类讨论的依据.在(2)中求出 h (x 1)-h (x 2)的最小值,需先求出其解析式.由题可知 x 1,x 2 是 h ′(x )=0 的两根,可得到 x 1x 2=1,x 1+x 2=-a ,从而将 h (x 1)-h (x 2)只用一个变量 x 1 导出.从而得到 H (x 1)= h (x )-h 1 ,这样将所求问题转化为研究新函数 H (x )=h (x )-h 1 在 1上的最值问题,体现 1 (x 1) (x) (0, )2转为与化归数学思想.[答题模板] 解决这类问题的答题模板如下:- = .- =[题型专练]1.设函数 f (x )=(1+x )2-2ln(1+x ).(1) 求 f (x )的单调区间;(2) 当 0<a <2 时,求函数 g (x )=f (x )-x 2-ax -1 在区间[0,3]上的最小值.[解] (1)f (x )的定义域为(-1,+∞). ∵f (x )=(1+x )2-2ln(1+x ),x ∈(-1,+∞),∴f ′(x )=2(1+x ) 2 2x (x +2)1+x x +1 由 f ′(x )>0,得 x >0;由 f ′(x )<0,得-1<x <0.∴函数 f (x )的单调递增区间为(0,+∞),单调递减区间为(-1,0). (2)由题意可知 g (x )=(2-a )x -2ln(1+x )(x >-1), 则 g ′(x )=2-a 2 1+x ∵0<a <2,∴2-a >0,(2-a )x -a=. 1+x 令 g ′(x )=0,得 x a,2-a ∴函数 g (x )在(0, a )上为减函数,在( a,+∞)上为增函数.2-a 2-a①当 0< a,即 0<a <3[0,3]上, 2-a 时,在区间 2 g (x )在(0, a )上为减函数,在( a,3)上为增函数,2-a 2-a ∴g (x ) =g ( a )=a -2ln 2mina ②当 ≥3 2-a 32-aa <2 时,g (x )在区间[0,3]上为减函数, 2-a ,即 ≤2∴g (x )min =g (3)=6-3a -2ln4.<3 .综上所述,当 0<a <3 2时, g (x ) =a -2ln ; min2 2-a3当 ≤a <2 时,g (x )min =6-3a -2ln4. 2北京卷(19)(本小题 13 分)已知函数 f (x )=e x cos x −x .(Ⅰ)求曲线 y = f (x )在点(0,f (0))处的切线方程; (Ⅱ)求函数 f (x )在区间[0, π]上的最大值和最小值.2[0, ] [0, ] 0(19)(共 13 分)解:(Ⅰ)因为 f (x ) = e x cos x - x ,所以 f '(x ) = e x (cos x - sin x ) -1, f '(0) = 0 .又因为 f (0) = 1,所以曲线 y = f (x ) 在点(0, f (0)) 处的切线方程为 y = 1.(Ⅱ)设 h (x ) = e x (cos x - sin x ) -1 ,则 h '(x ) = e x (cos x - sin x - sin x - cos x ) = -2e x sin x .当x ∈ π (0, ) 2时, h '(x ) < 0 , 所以 h (x ) 在区间 π 2上单调递减.所以对任意 x ∈ π (0, ] 2有 h (x ) < h (0) = 0 ,即 f '(x ) < 0 . 所以函数 f (x ) 在区间 π 2上单调递减.因此 f (x ) 在区间[0, π] 上的最大值为 f (0) = 1,最小值为 f ( π) = - π.2 2 221.(12 分)已知函数 f (x ) = ax 3 - ax - x ln x , 且 f (x ) ≥ 0 .(1) 求 a ;(2) 证明: f (x ) 存在唯一的极大值点 x 0 ,且e -2 <f (x ) < 2-3.21.解:(1) f ( x ) 的定义域为(0,+∞)设 g (x ) = ax - a - lnx ,则 f (x ) = xg (x ) , f (x ) ≥ 0 等价于 g (x ) ≥ 0xx0 0因为 g (1) =0,g (x ) ≥ 0, 故g' (1) =0, 而g' (x ) = a - 1 , g' (1) =a - 1, 得a = 1若 a =1,则 g' (x ) = 1 - 1.当 0<x <1 时, g' (x ) <0, g (x ) 单调递减;当 x >1 时, g' (x ) >0, g ( x ) 单调递增.所以 x=1 是g (x ) 的极小值点,故g (x ) ≥ g (1)=0综上,a=1(2)由(1)知f (x ) = x 2 - x - x l n x , f ' ( x ) = 2x - 2 - l n x设h (x )= 2x - 2 - l n x , 则 h ' ( x ) = 2 - 1x当x ∈ ⎛ 0, 1 ⎫ 时, h ' (x ) <0 ;当x ∈ ⎛ 1 , +∞⎫ 时, h ' (x ) >0 ,所以h (x ) 在⎛ 0, 1 ⎫ 单调递减,在⎛ 1 , +∞⎫ 单调递增 2 ⎪ 2 ⎪ 2 ⎪ 2 ⎪⎝ ⎭ ⎝ ⎭ ⎝ ⎭ ⎝ ⎭ 又h (e -2)>⎛ 1 ⎫ <0, h (1) = 0 ,所以h (x ) 在⎛ 0, 1 ⎫ 有唯一零点 x 0,在⎡1 , +∞⎫ 有唯一零点 1,且当x ∈ (0, x ) 时, h (x ) >0 ;当x ∈ (x , 1) 时, 0, h 2 ⎪ 2 ⎪ ⎢ 2 ⎪ 0 0 ⎝ ⎭ ⎝ ⎭ ⎣ ⎭h (x ) <0 ,当x ∈ (1, +∞) 时, h (x ) >0 .因为f ' (x ) = h (x ) ,所以 x=x 0 是 f(x)的唯一极大值点由f ' (x 0 ) = 0得l n x 0 = 2( x 0 - 1) , 故f (x 0 ) =x (0 1 - x 0 )由x ∈ (0, 1) 得f ' (x ) < 14因为 x=x 0 是 f(x)在(0,1)的最大值点,由e -1∈ (0, 1) , f ' (e-1)≠ 0 得f (x ) >f (e-1)= e-2所以e -2<f (x ) <2- 2题型二 利用导数研究方程的根、函数的零点或图象交点题型概览:研究方程根、函数零点或图象交点的情况,可以通过导数研究函数的单调性、最大值、最小值、变化趋势等,根据题目要求,画出函数图象的走势规律,标明函数极(最)值的位置,通过数形结合的思想去分析问题,可以使问题的求解有一个清晰、直观的整体展现.已知函数f(x)=(x+a)e x,其中e 是自然对数的底数,a∈R. (1)求函数f(x)的单调区间;(2)当a<1 时,试确定函数g(x)=f(x-a)-x2 的零点个数,并说明理由.[审题程序]第一步:利用导数求函数的单调区间;第二步:简化g(x)=0,构造新函数;第三步:求新函数的单调性及最值;第四步:确定结果.[规范解答] (1)因为f(x)=(x+a)e x,x∈R,所以f′(x)=(x+a+1)e x.令f′(x)=0,得x=-a-1.当x 变化时,f(x)和f′(x)的变化情况如下:x (-∞,-a-1) -a-1 (-a-1,+∞)f′(x) -0 +f(x)故f((2)结论:函数g(x)有且仅有一个零点.理由如下:由g(x)=f(x-a)-x2=0,得方程x e x-a=x2,显然x=0 为此方程的一个实数解,所以x=0 是函数g(x)的一个零点.当x≠0 时,方程可化简为e x-a=x.设函数F(x)=e x-a-x,则F′(x)=e x-a-1,令F′(x)=0,得x=a.当x 变化时,F(x)和F′(x)的变化情况如下:0 xx即 F (x )a ). 所以 F (x )的最小值 F (x )min =F (a )=1-a . 因为 a <1,所以 F (x )min =F (a )=1-a >0, 所以对于任意 x ∈R ,F (x )>0, 因此方程 e x -a =x 无实数解. 所以当 x ≠0 时,函数 g (x )不存在零点. 综上,函数 g (x )有且仅有一个零点.典例 321.(12 分)已知函数 f (x ) = ax 3 - ax - x ln x , 且 f (x ) ≥ 0 .(1) 求 a ;(2) 证明: f (x ) 存在唯一的极大值点 x 0 ,且e -2 <f (x ) < 2-3.21. 解:(1) f ( x ) 的定义域为(0,+∞)设 g (x ) = ax - a - lnx ,则 f (x ) = xg (x ) , f (x ) ≥ 0 等价于 g (x ) ≥ 0因为 g (1) =0,g (x ) ≥ 0, 故g' (1) =0, 而g' (x ) = a - 1 , g' (1) =a - 1, 得a = 1若 a =1,则 g' (x ) = 1 - 1.当 0<x <1 时, g' (x ) <0, g (x ) 单调递减;当 x >1 时, g' (x ) >0, g ( x ) 单调递增.所以 x=1 是g (x ) 的极小值点,故g (x ) ≥ g (1)=0综上,a=1(2)由(1)知f (x ) = x 2 - x - x l n x , f ' ( x ) = 2x - 2 - l n x设h (x )= 2x - 2 - l n x , 则 h ' ( x ) = 2 - 1x当x ∈ ⎛ 0, 1 ⎫ 时, h ' (x ) <0 ;当x ∈ ⎛ 1 , +∞⎫ 时, h ' (x ) >0 ,所以h (x ) 在⎛ 0, 1 ⎫ 单调递减,在⎛ 1 , +∞⎫ 单调递增 2 ⎪ 2 ⎪ 2 ⎪ 2 ⎪⎝ ⎭ ⎝ ⎭ ⎝ ⎭ ⎝ ⎭0 0又h (e -2)>⎛ 1 ⎫ <0, h (1) = 0 ,所以h (x ) 在⎛ 0, 1 ⎫ 有唯一零点 x 0,在⎡1 , +∞⎫有唯一零点 1,且当x ∈ (0, x ) 时, h (x ) >0 ;当x ∈ (x , 1) 时,0, h 2 ⎪ 2 ⎪ ⎢ 2 ⎪ 0 0 ⎝ ⎭ ⎝ ⎭ ⎣ ⎭h (x ) <0 ,当x ∈ (1, +∞) 时, h (x ) >0 .因为f ' (x ) = h (x ) ,所以 x=x 0 是 f(x)的唯一极大值点由f ' (x 0 ) = 0得l n x 0 = 2( x 0 - 1) , 故f (x 0 ) =x (0 1 - x 0 )由x ∈ (0, 1) 得f ' (x ) < 14因为 x=x 0 是 f(x)在(0,1)的最大值点,由e -1 ∈ (0, 1) , f ' (e-1)≠ 0 得f (x ) >f (e-1)= e-2所以e -2<f (x ) <2- 2[解题反思] 在本例(1)中求 f (x )的单调区间的关键是准确求出 f ′(x ),注意到 e x >0 即可.(2)中由 g (x )=0 得 x e x -a =x 2,解此方程易将 x 约去,从而产生丢解情况.研究 e x -a =x 的解转化为研究函数 F (x )=e x -a -x 的最值,从而确定 F (x )零点,这种通过构造函数、研究函数的最值从而确定函数零点的题型是高考中热点题型,要熟练掌握.[答题模板] 解决这类问题的答题模板如下:[题型专练]2.(2017·浙江金华期中)已知函数f(x)=ax3+bx2+(c-3a-2b)x+d 的图象如图所示.(1)求c,d 的值;(2)若函数f(x)在x=2 处的切线方程为3x+y-11=0,求函数f(x)的解析式;1(3)在(2)的条件下,函数y=f(x)与y=f′(x)+5x+m 的图象有三个不同的交点,求m 的取值范围.3[解] 函数f(x)的导函数为f′(x)=3ax2+2bx+c-3a-2b.(1)由图可知函数f(x)的图象过点(0,3),且f′(1)=0,得E rr o r!解得E rr o r!(2)由(1)得,f(x)=ax3+bx2-(3a+2b)x+3,所以f′(x)=3ax2+2bx-(3a+2b).由函数f(x)在x=2 处的切线方程为3x+y-11=0,得E rr o r!所以E rr o r!解得E rr o r!所以f(x)=x3-6x2+9x+3.(3)由(2)知f(x)=x3-6x2+9x+3,所以f′(x)=3x2-12x+9.1函数y=f(x)与y=f′(x)+5x+m 的图象有三个不同的交点,3等价于x3-6x2+9x+3=(x2-4x+3)+5x+m 有三个不等实根,等价于g(x)=x3-7x2+8x-m 的图象与x 轴有三个交点.因为g′(x)=3x2-14x+8=(3x-2)(x-4),g(2)=68-m,g(4)=-16-m,3 27当且仅当E rr o r!时,g(x)图象与x 轴有三个交点,解得-16<m<68. 所以m 的取值范围为(-16,68).27 2721.(12 分)已知函数(f x)=a e2x+(a﹣2) e x﹣x.(1)讨论f (x) 的单调性;(2)若f (x) 有两个零点,求a 的取值范围.21.解:(1)f (x) 的定义域为(-∞, +∞) ,f '(x) = 2ae2x+ (a - 2)e x-1 = (ae x-1)(2e x+1) ,(十字相乘法)(ⅰ)若a ≤ 0 ,则f '(x) < 0 ,所以f (x) 在(-∞, +∞) 单调递减.(ⅱ)若 a > 0 ,则由 f '(x) = 0 得 x =-ln a .当x ∈(-∞, -ln a) 时,f '(x) < 0 ;当x ∈(-ln a, +∞) 时,f '(x) > 0 ,所以f (x) 在(-∞, -ln a) 单调递减,在(-ln a, +∞) 单调递增.110 0 0 0 3(2)(ⅰ)若 a ≤ 0 ,由(1)知, f (x ) 至多有一个零点.1 (ⅱ)若 a > 0 ,由(1)知,当 x = -ln a 时, f (x ) 取得最小值,最小值为 f (- ln a ) = 1- + ln a .(观察特殊值 1)a①当 a = 1 时,由于 f (-ln a ) = 0 ,故 f (x ) 只有一个零点;②当 a ∈ (1, +∞) 时,由于1-+ ln a > 0 ,即 f (-ln a ) > 0 ,故 f (x ) 没有零点; a③当 a ∈(0,1) 时,1- + ln a < 0 ,即 f (-ln a ) < 0 .a又 f (-2) = a e -4 + (a - 2)e -2 + 2 > -2e -2 + 2 > 0 ,故 f (x ) 在(-∞, -ln a ) 有一个零点.设正整数n 0 满足 n 0 > ln( a3-1) ,则 f (n ) = e n 0 (a e n 0 + a - 2) - n > e n 0 - n > 2n 0 - n > 0 .由于ln( a-1) > -ln a ,因此 f (x ) 在(-ln a , +∞) 有一个零点.综上, a 的取值范围为(0,1) .题型三 利用导数证明不等式题型概览:证明 f (x )<g (x ),x ∈(a ,b ),可以直接构造函数 F (x )=f (x )-g (x ),如果 F ′(x )<0,则 F (x )在(a ,b )上是减函数, 同时若 F (a )≤0,由减函数的定义可知,x ∈(a ,b )时,有 F (x )<0,即证明了 f (x )<g (x ).有时需对不等式等价变形后间接构造.若上述方法通过导数不便于讨论 F ′(x )的符号,可考虑分别研究 f (x )、g (x )的单调性与最值情况,有时需对不等式进行等价转化.(2017·陕西西安三模)已知函数 f (x ) e x .(1) 求曲线 y =f (x )在点 P ( = xe 2)处的切线方程;2, 2- = (x(2)证明:f (x )>2(x -ln x ). [审题程序]第一步:求 f ′(x ),写出在点 P 处的切线方程;第二步:直接构造 g (x )=f (x )-2(x -ln x ),利用导数证明 g (x )min >0. [规范解答] (1)因为 f (x ) e x f ′(x )=e x ·x -e xe x (x -1),f ′(2) e 2 e 2,所以切线方 程为 ye 2 e2 2 4 = ,所以 x -2),即 e 2x -4y =0. = x 2 x 2= 4 ,又切点为(2, 2 )(2) 证明:设函数 g (x )=f (x )-2(x -ln x )e x2x +2ln x ,x ∈(0,+∞),则 g ′(x ) e x (x -1)-2 2= -x (e x -2x )(x -1),x ∈(0,+∞).= + =x 2 x x 2设 h (x )=e x -2x ,x ∈(0,+∞),则 h ′(x )=e x -2,令 h ′(x )=0,则 x =ln2.当 x ∈(0,ln2)时,h ′(x )<0;当 x ∈(ln2,+∞)时,h ′(x )>0.所以 h (x )min =h (ln2)=2-2ln2>0,故 h (x )=e x -2x >0.令 g ′(x ) (e x-2x )(x -1)=0,则 x =1.=x 2当 x ∈(0,1)时,g ′(x )<0;当 x ∈(1,+∞)时,g ′(x )>0.所以 g (x )min =g (1)=e -2>0,故 g (x )=f (x )-2(x -ln x )>0,从而有 f (x )>2(x -ln x ).[解题反思] 本例中(2)的证明方法是最常见的不等式证明方法之一,通过合理地构造新函数 g (x ).求 g (x ) 的最值来完成.在求 g (x )的最值过程中,需要探讨 g ′(x )的正负,而此时 g ′(x )的式子中有一项 e x -2x 的符号不易确定,这时可以单独拿出 e x -2x 这一项,再重新构造新函数 h (x )=e x -2x (x >0),考虑 h (x )的正负问题,此题看似简单,且不含任何参数,但需要两次构造函数求最值,同时在(2)中定义域也是易忽视的一个方向.[答题模板] 解决这类问题的答题模板如下:=[题型专练]3.(2017·福建漳州质检)已知函数 f (x )=a e x -b ln x ,曲线 y =f (x )在点(1,f (1))处的切线方程为 y =(1)x +1.(1)求 a ,b ; (2)证明:f (x )>0.[解] (1)函数 f (x )的定义域为(0,+∞).e-1 f ′(x )=a e x bf (1) 1f ′(1) 1 1,- ,由题意得 = , = - x e e所以E rr o r !解得E rr o r !(2)由(1)知 f (x ) 1 ·e x-ln x . e 2 因为 f ′(x )=e x -2 1(0,+∞)上单调递增,又 f ′(1)<0,f ′(2)>0,- 在x= + 2 20 0 0所以 f ′(x )=0 在(0,+∞)上有唯一实根 x 0,且 x 0∈(1,2). 当 x ∈(0,x 0)时,f ′(x )<0,当 x ∈(x 0,+∞)时,f ′(x )>0, 从而当 x =x 0 时,f (x )取极小值,也是最小值.由 f ′(x )=0,得 e x 0-2 1x -2=-ln x .0 = , 则 0 0 x 0故 f (x )≥f (x )=e x 0-2-ln x 1 x -2>2 1 ·x 0-2=0,所以 f (x )>0. x 0 x 04、【2017 高考三卷】21.(12 分)已知函数 f (x ) =x ﹣1﹣a ln x .(1)若 f (x ) ≥ 0 ,求 a 的值;(2)设 m 为整数,且对于任意正整数 n ,(1+ 1) ( 1+ 1) (1+ 2221) ﹤m ,求 m 的最小值. 2n 21.解:(1) f ( x ) 的定义域为(0,+∞) .f ⎛ 1 ⎫1①若a ≤ 0 ,因为 ⎪ =- +a ln 2<0,所以不满足题意;⎝ ⎭ ②若a >0,由 f ' ( x ) = 1- a = x - a知,当x ∈(0,a ) 时, f ' ( x )<0 ;当 x ∈(a ,+∞) 时, f ' ( x )>0 ,所以 f ( x ) 在(0,a ) 单调递减,x x在(a ,+∞) 单调递增,故 x=a 是 f ( x ) 在 x ∈(0,+∞) 的唯一最小值点. 由于 f (1) = 0 ,所以当且仅当 a =1 时, f ( x ) ≥ 0.故 a =1(2)由(1)知当 x ∈(1,+∞) 时, x -1- ln x >0令 x =1+ 1 得ln ⎛1+ 1 ⎫< 1,从而 2n 2n ⎪ 2n ⎝⎭ln ⎛1+ 1 ⎫+ln ⎛1+ 1 ⎫+⋅⋅⋅+ln ⎛1+ 1 ⎫<1 + 1 +⋅⋅⋅+ 1 =1-1<12 ⎪ 22 ⎪ 2n ⎪ 2 22 2n 2n ⎝ ⎭ ⎝ ⎭ ⎝ ⎭故⎛1+ 1 ⎫⎛1+ 1 ⎫ ⋅⋅⋅⎛1+ 1 ⎫<e2 ⎪ 22 ⎪ 2n⎪ ⎝ ⎭⎝ ⎭ ⎝ ⎭而⎛1+ 1 ⎫⎛1+ 1 ⎫⎛1+ 1 ⎫>2 ,所以 m 的最小值为 3. 2 ⎪ 22 ⎪ 23 ⎪ ⎝⎭⎝ ⎭⎝ ⎭21.(12 分)已知函数f (x) =ln x+ax2+(2a+1)x.(1)讨论f (x) 的单调性;(2)当 a﹤0 时,证明 f (x) ≤-34a- 2 .【答案】(1)当a ≥ 0 时, f (x) 在(0,+∞) 单调递增;当 a < 0 时,则 f (x) 在(0,-1) 单调递增,在(-2a1,+∞) 单调递减;(2)详见解析2a题型四利用导数研究恒成立问题题型概览:已知不等式恒成立求参数取值范围,构造函数,直接把问题转化为函数的最值问题;若参数不便于分离,或分离以后不便于求解,则考虑直接构造函数法,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围.,对∀ = 0<x < ;由E rr o r !得 x > .,则 ln x1 2 1 2已知函数 f (x ) 1ln x -mx ,g (x )=x a(a >0).= - 2 x(1) 求函数 f (x )的单调区间; (2) 若 m =1x ,x ∈[2,2e 2]都有 g (x )≥f (x )成立,求实数 a 的取值范围. 2e 2[审题程序]第一步:利用导数判断 f (x )的单调性,对 m 分类讨论;第二步:对不等式进行等价转化,将 g (x 1)≥f (x 2)转化为 g (x )min ≥f (x )max ; 第三步:求函数的导数并判断其单调性进而求极值(最值); 第四步:确定结果.[规范解答] (1)f (x ) 1ln x -mx ,x >0,所以f ′(x ) 1m ,= = - 2 2x当 m ≤0 时,f ′(x )>0,f (x )在(0,+∞)上单调递增.当 m >0 时,由 f ′(0)=0 得 x 1 ;由E rr o r !得 1 12m 2m 2m 综上所述,当 m ≤0 时,f ′(x )的单调递增区间为(0,+∞);当 m >0 时,f (x )的单调递增区间为(0,1),单调递减区间为( 1,+∞).2m 2m(2)若 m =1f (x )=1 - 1x . 2e 2 2 2e 2对∀x 1,x 2∈[2,2e 2]都有 g (x 1)≥f (x 2)成立, 等价于对∀x ∈[2,2e 2]都有 g (x )min ≥f (x )max ,由(1)知在[2,2e 2]上 f (x )的最大值为 f (e 2) 1= , 2+g ′(x )=1 a >0(a >0),x ∈[2,2e 2],函数 g (x )在[2,2e 2]上是增函数,g (x ) =g (2)=2 a2 a 1 a ≤3,min - , 由 - ≥ , 得 x2 又 a >0,所以 a ∈(0,3],所以实数 a 的取值范围为(0,3].2 2 2[解题反思] 本例(1)的解答中要注意 f (x )的定义域,(2)中问题的关键在于准确转化为两个函数 f (x )、g (x )的最值问题.本题中,∀x 1,x 2 有 g (x 1)≥f (x 2)⇔g (x )min ≥f (x )max .若改为:∃x 1,∀x 2 都有 g (x 1)≥f (x 2),则有 g (x )max ≥f (x )max .若改为:∀x 1,∃x 2 都有 g (x 1)≥g (x 2),则有 g (x )min ≥f (x )min 要仔细体会,转化准确.[答题模板] 解决这类问题的答题模板如下:[题型专练]4.已知 f (x )=x ln x ,g (x )=-x 2+ax -3.(1) 对一切 x ∈(0,+∞),2f (x )≥g (x )恒成立,求实数 a 的取值范围;(2)证明:对一切 x ∈(0,+∞),ln x > 1 e x 2- 恒成立.e x[解] (1)由题意知 2x ln x ≥-x 2+ax -3 对一切 x ∈(0,+∞)恒成立, 则 a ≤2ln x +x 3,x 设 h (x )=2ln x +x +3,(x >0) x+e= - (x则 h ′(x ) (x +3)(x -1),=x 2①当 x ∈(0,1)时,h ′(x )<0,h (x )单调递减,②当 x ∈(1,+∞)时,h ′(x )>0,h (x )单调递增,所以 h (x )min =h (1)=4,对一切 x ∈(0,+∞),2f (x )≥g (x )恒成立, 所以 a ≤h (x )min =4.即实数 a 的取值范围是(-∞,4].(2) 证明:问题等价于证明 x ln x > x -2∈(0,+∞)).e x e 又f (x )=x ln x ,f ′(x )=ln x +1,当 x ∈(0,1)时,f ′(x )<0,f (x )单调递减;当 x ∈(1 )时,f ′(x )>0,f (x )单调递增,所以 f (x ) =f (1)1.,+∞emin =- e e设 m (x ) x 2∈(0,+∞)),e x则 m ′(x ) e1-x ,=易知 m (x ) e x=m (1) 1max =- ,e从而对一切 x ∈(0,+∞),ln x > 1 e x 2- 恒成立.e x②当 x ∈(1,+∞)时,h ′(x )>0,h (x )单调递增,所以 h (x )min =h (1)=4,对一切 x ∈(0,+∞),2f (x )≥g (x )恒成立, 所以 a ≤h (x )min =4.即实数 a 的取值范围是(-∞,4].题型五:二阶导主要用于求函数的取值范围23.(12 分)已知函数 f (x )=(x+1)lnx ﹣a (x ﹣1).(x(I)当a=4 时,求曲线 y=f(x)在(1,f(1))处的切线方程;(II)若当x∈(1,+∞)时,f(x)>0,求a 的取值范围.【解答】解:(I)当a=4 时,f(x)=(x+1)lnx﹣4(x﹣1). f(1)=0,即点为(1,0),函数的导数f′(x)=lnx+(x+1)•﹣4,则f′(1)=ln1+2﹣4=2﹣4=﹣2,即函数的切线斜率 k=f′(1)=﹣2,则曲线 y=f(x)在(1,0)处的切线方程为 y=﹣2(x﹣1)=﹣2x+2;(II)∵f(x)=(x+1)lnx﹣a(x﹣1),∴f′(x)=1++lnx﹣a,∴f″(x)=,∵x>1,∴f″(x)>0,∴f′(x)在(1,+∞)上单调递增,∴f′(x)>f′(1)=2﹣a.①a≤2,f′(x)>f′(1)≥0,∴f(x)在(1,+∞)上单调递增,∴f(x)>f(1)=0,满足题意;②a>2,存在 x0∈(1,+∞),f′(x0)=0,函数 f(x)在(1,x0)上单调递减,在(x0,+∞)上单调递增,由 f(1)=0,可得存在 x0∈(1,+∞),f(x0)<0,不合题意.综上所述,a≤2.23.(12 分)已知函数f(x)=(x+1)lnx﹣a(x﹣1).(I)当a=4 时,求曲线y=f(x)在(1,f(1))处的切线方程;(II)若当x∈(1,+∞)时,f(x)>0,求a 的取值范围.【解答】解:(I)当a=4 时,f(x)=(x+1)lnx﹣4(x﹣1).f(1)=0,即点为(1,0),函数的导数f′(x)=lnx+(x+1)•﹣4,则f′(1)=ln1+2﹣4=2﹣4=﹣2,即函数的切线斜率k=f′(1)=﹣2,则曲线y=f(x)在(1,0)处的切线方程为y=﹣2(x﹣1)=﹣2x+2;(II)∵f(x)=(x+1)lnx﹣a(x﹣1),∴f′(x)=1++lnx﹣a,∴f″(x)= ,∵x>1,∴f″(x)>0,∴f′(x)在(1,+∞)上单调递增,∴f′(x)>f′(1)=2﹣a.①a≤2,f′(x)>f′(1)≥0,∴f(x)在(1,+∞)上单调递增,∴f(x)>f(1)=0,满足题意;②a>2,存在x0∈(1,+∞),f′(x0)=0,函数f(x)在(1,x0)上单调递减,在(x0,+∞)上单调递增,由f(1)=0,可得存在x0∈(1,+∞),f(x0)<0,不合题意.综上所述,a≤2.题型六:求含参数求知范围此类问题一般分为两类:一、也可分离变量,构造函数,直接把问题转化为函数的最值问题.此法适用于方便分离参数并可求出函数最大值与最小值的情况,若题中涉及多个未知参量需分离出具有明确定义域的参量函数求出取值范围并进行消参,由多参数降为单参在求出参数取值范围。
ln x 1.导数应用之函数单调性题组 1:1.求函数f ( x) =x3 - 3x2 - 9x +12 的单调区间.2.求函数f ( x) =x2 - 3x + ln x 的单调区间.3.求函数f ( x) =x2 + 3x - ln x 的单调区间.4.求函数f ( x) =1x ln x的单调区间.5.求函数f (x) =- ln x + ln(x +1) 的单调区间.1+x题组 2:1.讨论函数f (x) =1x4+1ax3-a2x2+a4 (a > 0) 的单调区间.4 32.讨论函数f ( x) =x3+ 3ax2- 9x -12 的单调区间.3.求函数f ( x) =1mx3 - (2 +m)x2 + 4x + 1 (m > 0) 的单调递增区间.3 24.讨论函数f (x) = (a +1) ln x +ax 2+1的单调性.5.讨论函数f (x) = ln x -ax +1-a-1 的单调性. x题组 3:1.设函数f (x) =x3+ax2+x +1.(1)讨论函数f (x) 的单调区间;2 1(2)设函数f (x) 在区间(- ,-)内是减函数,求a 的取值范围.3 32.(1)已知函数f (x) =ax2+x + ln x 在区间(1, 3) 上单调递增,求实数a 的取值范围.(a>=-2/9)(2)已知函数f (x) =ax2+x + ln x 在区间(1, 3) 上单调递减,求实数a 的取值范围.(a<=-1)3.已知函数f (x) = (x3+ 3x2+ax +b)e-x.(1)若a =b =-3 ,求f (x) 的单调区间;(2)若f (x) 在(-∞,),(2,) 单调递增,在(, 2),(, +∞) 单调递减,证明: -< 6 .4.设函数f (x) =x3+ax2-a2x +1 , g(x) =ax2- 2x +1 ,(1)若a > 0 ,求函数f (x) 的单调区间;(2)若f (x) 与g(x) 在区间(a, a + 2) 内均为增函数,求a 的取值范围.2.导数应用之极值与最值1.设函数f (x) =x2e x-1+ax3+bx2,且x =-2 和x =1 均为f (x) 的极值点.(1)求a ,b 的值,并讨论f (x) 的单调性;(2)设g(x) =2x3-x2,试比较f (x) 与g(x) 的大小.32.设函数f (x) =x2 (x -a) .(1)若f '(1) = 3 ,求曲线y = f (x) 在点(1, f (1)) 处的切线方程;(2)求函数y = f (x) 在区间[0,2]上的最大值.3.设函数f (x) =ax3- 3x 2.(1)若x = 2 是函数y = f (x) 的极值点,求a 的值;(2)若函数g(x)=f(x)+f'(x),x∈[0,2],在x=0处取得最大值,求a 的取值范围.4.已知函数f (x) =1x3+x2- 2 . 3(1)设S 是正项数列{a }的前n 项和, a = 3,且点(a , a2-2a ) 在函数y = f '(x) 的图象上,求证:点n(n, Sn ) 也在y =n 1f '(x) 的图象上;n n+1 n+1(2)求函数f (x) 在区间(a -1, a) 内的极值.5.设函数f (x) =ax3+bx2- 3a2x +1在x =x ,x =x 处取得极值,且x -x = 2 .1 2 1 2(1)若a =1 ,求b 的值,及函数f (x) 的单调区间;(2)若a > 0 ,求实数b 的取值范围.6.设函数f (x) =1ax3-bx2+ (2 -b)x +1 在x 处取得极大值,在x 处取得极小值,且0 <x <1 <x < 2 .3 1 2 1 2证明: a > 0 ,并求a + 2b 的取值范围.7.已知x =1 是函数f (x) =1ax3-3x2+ (a +1)x + 5 的一个极值点, 3 2(1)求函数f (x) 的解析式;(2)若y =f (x) 的图像与直线y = 2x +m 有三个不同的交点,求实数m 的取值范围.8.已知x = 3 是函数f (x) =a ln(1+x) +x2-10x 的一个极值点.(1)求f (x) 的解析式及其单调区间;(2)若直线y =b 与曲线y = f (x) 有三个交点,求b 的取值范围.9.设函数f (x) =x4+ax3+ 2x2+b(x ∈R) .(1)若函数f (x) 仅在x = 0 处有极值,求a 的取值范围;(2)若对于任意的a∈[-2,2],不等式f (x) ≤1在[-1,1]上恒成立,求b的取值范围.10.设x = 3 是函数f (x) = (x2+ax +b)e3-x的一个极值点.(1)求a 与b 的关系式(用a 表示b ),并求函数f (x) 的单调区间;(2)设a > 0 ,g(x) = (a2+25)e x.若存在x , x ∈[0, 4],使f (x ) -g(x ) < 1总成立,求a 的取值范围.4 1 2 1 211.已知函数f (x) = kx +1x2+c(c > 0 且c ≠ 1)恰有一个极大值点和一个极小值点,其中一个是x =-c .(1)求函数f (x) 的另一个极值点;(2)求函数f (x) 的极大值M 和极小值m ,并求M -m ≥1 时k 的取值范围.12.设函数f (x) =ax3+bx2+cx +d 的图像∏上有两个极值点P, Q ,其中P 为坐标原点,(1)当点Q 的坐标为(1, 2) 时,求f (x) 的解析式;(2)当点Q 在线段x +y - 5 = 0 (1 ≤x ≤ 3) 上时,求曲线∏的切线斜率的最大值.13.导数应用之函数的零点题组 1:1. 函数 f (x ) = 3x - x 2 在区间[-1, 0] 内有没有零点?为什么?2. 函数 f (x ) = 2x + 3x 的零点所在的一个区间是【】.A. (-2, -1)B. (-1, 0)C. (0,1)D. (1, 2)3. 函数 f (x ) 的零点与 g (x ) = 4x + 2x - 2 的零点之差的绝对值不超过0.25 ,则 f (x ) 可以是【】.A. f (x ) = e x -1C. f (x ) = (x -1)2B. f (x ) = 4x -1D. f (x ) = ln(x - )24. 若2 < a < 3 < b < 4 ,且函数 f (x ) = log a x + x - b 的零点 x 0 ∈(n , n +1) (n ∈ Z ) ,则 n = 【】.A.1B. 2C. 3D. 4题组2:5. 设函数 y =f (x ) 的图像在[a , b ] 上连续,若满足,则方程 f (x ) = 0 在[a , b ] 上有实根.6. 已知 x 是函数 f (x ) = 2x +1的一个零点.若 x ∈(1, x ) , x ∈(x , +∞) ,则【 】.1- x1 02 0A. f (x 1) < 0 , f (x 2 ) < 0C. f (x 1) > 0 , f (x 2 ) < 01B. f (x 1) < 0 , f (x 2 ) > 0D. f (x 1) > 0 , f (x 2 ) > 0 7. 函数 f ( x ) = x +的零点个数为.x8.求证:函数 f (x ) = x 2 - 2 -题组 3:3x -1在区间(0, 2) 内没有零点.9. 函数 f ( x ) = x + log 2 x 在区间(0,1) 内是否有零点?为什么?10. 求证:函数 f (x ) = x 4 - 2x -1在区间[-1, 2] 内至少有两个零点.11. 求证:函数 f (x ) = (x - 3)(x - 8) -1有且只有两个零点.12. 求证:函数 f (x ) = ln x - x 2 + x +1有且只有两个零点.13. 设函数 f (x ) = ax 2+ bx + c ,若 f (1) > 0 , f (2) < 0 ,则 f (x ) 在区间(1,2) 上的零点个数为【 】.n1 A.至多有一个 B.有且只有一个 C.有一个或两个 D.一个也没有14.设 m ∈(1, +∞) ,求证:函数 f (x ) = x - ln(x + m ) 有且只有两个零点.15.判断函数 f (x ) = x 2 - lg x 在区间(0,10) 内的零点个数,并说明理由.题组 4:16.设函数 f (x ) = x n + x -1 (n ∈ N *, n ≥ 2) . 1(1)证明: f n (x ) 在区间( 2 ,1) 内存在唯一的零点;1(2) 设 x n 是 f n (x ) 在( 2,1) 内的零点,判断数列 x 2 , x 3 , , x n 的增减性.17. 设函数 f (x ) = x 2 - (a - 2)x - a ln x .(2) 若函数有两个零点,求满足条件的最小正整数a 的值; (3) 若方程 f (x ) = c 有两个不等实根 x 1 , x 2 ,求证: f '(x 1 + x 2 ) > 0 .218. 设函数 f (x ) = 2 l n x + mx - x 2有两个零点 x , x ,求证: f '( x 1 + x 2 ) < 0 .219. 设函数 f (x ) = ln x - ax 有两个零点 x , x ,求证: x x> e 2 .121 220. 记函数 f 2 n (x ) = +x + x + + x(n ∈ N ) ,求证:当 为偶数时,方程 f (x ) = 0 没有实数根;n11! 2!n ! +nn当 n 为奇数时,方程 f n (x ) = 0 有唯一实数根 x n ,且 x n +2 < x n .xx 2 x 3 x n21.设函数 f n ( x ) = -1 + 12 + 22 + 32 + + n2 ( x ∈ R , n ∈ N + ) ,2(1) 证明:对每个n ∈ N + ,存在唯一的 x n ∈[ 3,1] ,满足 f n ( x n ) = 0 ;1 (2) 证明:对任意 p ∈ N + ,由(1)中 x n 构成的数列{x n }满足0 < x n - x n + p <n.24.导数应用之图像的切线题组 1:1.求平行于直线9x -y +1= 0 ,且与曲线y =x3+ 3x2-1相切的直线方程.2.求垂直于直线x - 3y + 2 = 0 ,且与曲线y =x3+ 3x2-1相切的直线方程.3.求与直线3x -y + 2 = 0 夹角为45︒,且与抛物线y = 2x2相切的直线方程.4.设函数f(x)=sin x图像上动点P处切线的倾斜角为,求的取值范围.题组 2:5.求函数f ( x) = 2x3的图像C 在点P(1, 2) 处的切线l 方程,以及曲线C 与切线l 的所有交点坐标.6.求函数f ( x) = 2x3的图像经过点P(1, 2) 的切线方程.7.求函数f ( x) = 2x3的图像经过点P(1,10) 的切线方程.8.求经过坐标原点,且与函数f (x) = x +9x +5的图像相切的直线方程.9.设函数f (x) =ax -bx,曲线C : y = f (x) 在点(2,f (2)) 处的切线为7x - 4 y -12 = 0 .(1)求函数f (x) 的解析式;(2)求证:曲线C 上任意一点处的切线与直线y =x ,以及y 轴所围成三角形的面积为定值.10.已知直线2x +y - 3 + ln 2 = 0 是函数f (x) = ln x +(1)求f (x) 的解析式;m的图像C 的一条切线. x(2)若P(s, t) 是曲线C 上的动点,求曲线C 在点P 处的切线纵截距的最小值.题组 3:11.已知直线y =x 是函数f ( x) =x3 - 3x2 +ax -1图像的一条切线,求实数a 的值.12.已知a > 0 ,且过点P(a, b) 可作函数f (x) =x3-x 图像的三条切线,证明: -a <b < f (a) .13.设函数f (x) =1x3-1ax2+bx +c (a > 0) 的图像C 在点P(0, f (0)) 处的切线为y =1.3 2(1)确定b, c 的值;(2)设曲线C 在A( x1, f ( x1 )), B( x2 , f ( x2 )) 处的切线都过Q(0, 2) ,证明:若x1 ≠x2 ,则f '(x1 ) ≠f '(x2 ) ;(3)若过点Q(0, 2) 可作曲线C 的三条不同切线,求a 的取值范围.14.已知函数f (x) =1x3+1ax2+bx 在区间[-1,1),(1,3]内各有一个极值点.3 2(1)求a2- 4b 的最大值;(2)当a2-4b =8 时,设曲线C :y = f (x) 在点A(1,f (1)) 处的切线l 穿过曲线C (穿过是指:动点在点A 附近沿曲线C 运动,当经过点A 时,从l 的一侧进入另一侧),求f (x) 的表达式.15.由坐标原点O(0,0) 向曲线y =x3- 3x 2+x 引切线,切于不同于点O 的点P ( x , y ) ,再由P 引切1 1 1 1线切于不同于P1的点P2( x2, y2) ,如此继续下去……,得到点Pn( xn, yn) ,求xn+1与xn的关系,及xn的表达式.巩固练习:1.求函数f ( x) = 2x3的图像经过点P(1, -8) 的切线方程.2.求函数f (x) = x +3x2+31的图像经过点P(3, ) 的切线方程.23. 如图,从点 P (0, 0) 作 x 轴的垂线交于曲线 y = e x于点Q (0, 1) ,11曲线在Q 1 点处的切线与 x 轴交与点 P 2 ;再从 P 2 作 x 轴的垂线交曲线于点Q 2 ,依次重复上述过程得到一系列的点: P 1 , Q 1 , P 2 , Q 2 ,…, P n , Q n ,记点 P k 的坐标为 P k ( x k , 0) (k = 1, 2,3, , n ) . (1)求 x k +1 与 x k 之间的等量关系;(2) 求 P 1Q 1 + P 2Q 2 + P 3Q 3 +... + P n Q n .5.导数应用之存在与任意a 1.已知函数 f (x ) = x + +b (x ≠ 0) ,其中 a , b ∈ R .x(1) 若曲线 f (x ) 在点 P (2, f (2)) 处的切线方程为 y = 3x +1,求函数 f (x ) 的解析式;1 1(2) 若对于任意的 a ∈[ , 2] ,不等式 f (x ) ≤ 10 在 x ∈[ ,1] 恒成立,求b 的取值范围.2 42.已知函数 f (x ) = (1+ x )2 - 2ln(1+ x ).(1)求 f (x ) 的单调区间;(2)若 f (x ) < m 对 x ∈[e -1 -1,e -1]恒成立,求m 的取值范围;3. 设函数 f (x ) =1 .x ln x1(1)求 f (x ) 的单调区间;(2)若 2 x> x a 对 x ∈(0,1) 恒成立,求 a 的取值范围.4. 已知函数 f (x ) = ln 2(x +1) -x 2. x +1(1)求 f (x ) 的单调区间;(2)若(1+ 1)n +α ≤ e 对n ∈ N n+都成立,求α 的最大值.5. 设函数 f (x ) = x (e x -1) - ax 2 .1(1)若 a =,求 f (x ) 的单调区间; (2)若当 x ≥ 0 时, f (x ) ≥ 0 ,求 a 的取值范围.26. 设函数 f (x ) = e x - ax 2 - x .(1)若 a = 0 ,求 f (x ) 的最小值;(2)若当 x ≥ 0 时, f (x ) ≥ 1恒成立,求 a 的取值范围.7. 设函数 f ( x ) = e x - ax 的图象与 y 轴交于点 A ,曲线 y = f ( x ) 在点 A 处的切线斜率为-1.(1) 求 f ( x ) 的极值;(2) 证明:当 x > 0 时, x 2 < e x ;(3) 证明:对任意给定的正数c ,总存在 x ,使得当 x ∈(x ,+∞) ,恒有 x 2 < ce x . 8.设函数 f ( x ) = ax + cos x ,(1) 讨论函数 f (x ) 在区间[0,] 内的单调性;(2) 若 f (x ) ≤ 1+ sin x 对 x ∈[0,]恒成立,求实数 a 的取值范围.9. 设函数 f (x ) = x cos x - sin x , x ∈[0, ].2(1)求证: f (x ) ≤ 0 ;sin x(2)若 a < < b 对 x ∈(0, ) 恒成立,求 a 的最大值与b 的最小值.x 210. 已知函数 f (x ) = (a + 1) ln x + ax 2+ 1,(1)讨论函数 f (x ) 的单调性;(2)设 a < -1,且对任意的 x 1 , x 2 ∈ (0,+∞) ,都有| f (x 1 ) - f (x 2 ) ≥ 4 | x 1 - x 2 | ,求 a 的取值范围.11. 已知 x = 3 是函数 f (x ) = (x 2 + ax + b )e 3-x 的一个极值点.(1)求 a 与b 的关系式(用 a 表示b ),并求函数 f (x ) 的单调区间;(2)设 a > 0 , g (x ) = (a 2 +25)e x.若存在 x , x ∈[0, 4],使得 f (x ) - g (x ) < 1成立,求 a 的取值范围.41 2 1 212.已知函数 f (x ) = ax 3 + 1x 2 cos - 2x + c 的图像过点(1,37) ,且在[-2,1] 上递减,在[1, +∞) 上递增. 26(1) 求 f (x ) 的解析式;45 1 1 2 2 1 1 2 2 (2) 若对任意的 x , x ∈[m , m + 3] 都有 f (x ) - f (x ) ≤ 成立,求正实数 m 的取值范围.1212213.设函数 f (x ) = 1 mx 3 - (2 +m )x 2 + 4x + 1, g (x ) = mx + 5 .32(1) 当m > 0 时,求函数 f (x ) 的递增区间;(2) 是否存在负实数 m ,使得对任意的 x 1, x 2 ∈[1, 2],都有 g (x 1 ) - f (x 2 ) ≤ 1?若存在,求 m 的范围;若不存在,请说明理由.6.导数应用之极值点偏移1.(1)设不同的两点 A (x , y ), B (x , y ) 均在二次函数 f (x ) = ax 2 + bx + c ( abc ≠ 0 )的图像上,记直线 AB的斜率为 k ,求证: k =f '(x 1 + x 2) ; 2(2)设不同的两点 A (x , y ), B (x , y ) 均在“伪二次函数” g (x ) = ax 2+ bx + c ln x (abc ≠ 0 )的图像上,记 直线 AB 的斜率为 k ,试问: k = g '(x 1 + x 2 ) 还成立吗?22.设函数 f (x ) = ax 2 + (1 - 2a )x - ln x (a ∈ R ) .(1) 当 a > 0 时,求函数 f (x ) 的单调递增区间;(2) 记函数 y = f (x ) 的图像为曲线C ,设 A (x 1 , y 1 ) , B (x 2 , y 2 ) 是曲线C 上不同的两点, M 为线段 AB 的中点,过点 M 作 x 轴的垂线交曲线C 于点 N .试问:曲线C 在点 N 处的切线是否平行于直线 AB ?3. 设函数 f (x ) = x 2 - (a - 2)x - a ln x .(1) 求函数 f (x ) 的单调区间;(2) 若函数有两个零点,求满足条件的最小正整数a 的值; (3) 若方程 f (x ) = c 有两个不等实根 x 1 , x 2 ,求证: f '(x 1 + x 2 ) > 0 .24.设函数f (x) = 2 ln x +mx -x2.(1)若曲线y =f (x) 在点(1, f (1)) 处的切线方程为y = 2x +n ,求实数m, n 的值;f (a) -f (b)>-2 ;(2)若m >-4 ,求证:当a >b > 0 时,有a2-b2(3)若函数f (x) 有两个零点x1 , x2 (x1 <x2 ) ,且x0 是x1 , x2 的等差中项,求证: f '(x0 ) < 0 .5.设函数f (x) = ln x -ax 有两个零点x ,x ,求证: x x >e2.1 2 1 26.设函数f ( x) =e x-ax +a 的两个零点为x ,x ,求证: x x <x +x .1 2 1 2 1 27.设函数f (x) =e x-ax ,其中a >e ,(1)求证:函数f (x) 有且仅有两个零点x1 ,x2 ,且0 <x1 < 1 <x2 ;(2)对于(1)中的x1 , x2 ,求证: f '(x1 ) +f '(x2 ) > 0 .1 8. 设函数 f (x ) = e x + mx 的图像在点 P (0, f (0)) 处的切线方程为 2x - y +1 = 0 ,求证:对满足 a < b < c 的实数 a , b , c ,都有 f (b ) - f (a ) < f (c ) - f (b )成立.b - ac - b7.导数应用之不等式证明(1)1 1 11.证明:对任意的n ∈ N + ,都有ln( n + 1) > n 2 - n3 .2.已知 m , n ∈ N + ,且1 < m < n ,求证: (1+ m )n > (1+ n )m .3. 设函数 f (x ) =+ a ln(x -1), (1- x )n(1) 当 n = 2 时,求函数 f (x ) 的极值;(2) 当 a = 1 时,证明:对任意的n ∈ N + ,当 x ≥ 2 时,都有 f (x ) ≤ x -1.4. 已知函数 f (x ) = e x - a ln(x +1) -1 在点 P (0, f (0)) 处的切线垂直于 y 轴,(1) 求函数 f (x ) 的单调区间;(2)当 m > n > 0 时,求证: e m -n -1 > ln(m +1) - ln(n +1) .n n +2 n n +15. 设函数 f (x ) = xex,且 f 1 (x ) =f '(x ) , fn +1 (x ) = f n '(x ) (n ∈ N + ) .(1)求 f 1 (x ) , f 2 (x ) , f 3 (x ) , f n (x ) 的解析式;(2)求证:对任意的实数 a , b ,以及任意的正整数 n ,都有 f 2n (a ) - f 2n -1 (b ) <f (n ) .6. 设函数 f (x ) = mx - x ln x 在 x = 1 处取得极值,数列{a }满足e -1 < a < 1 , a= f (a ) (n ∈ N + ) .n1n +1n(1) 求函数 f (x ) 的单调区间;(2) 求证:对任意的 n ∈ N * ,都有e -1 < a <1;(3) 求证:对任意的 n ∈ N * ,都有 a + a < 2a .7. 记函数 f 2 n (x ) = +x + x + + x(n ∈ N ) ,求证:当 为偶数时,方程 f (x ) = 0 没有实数根;当n11! 2!n !+nnn为奇数时,方程 f n (x ) = 0 有唯一实数根 x n ,且 x n +2 < x n .xx 2 x 3 x n8.设函数 f n ( x ) = -1 + 12 + 22 + 32 + + n2 ( x ∈ R , n ∈ N + ) ,2(1) 证明:对每个n ∈ N + ,存在唯一的 x n ∈[ 3,1] ,满足 f n ( x n ) = 0 ;1 (2) 证明:对任意 p ∈ N + ,由(1)中 x n 构成的数列{x n }满足0 < x n - x n + p <n.8.导数应用之不等式证明(2)1. 设函数 f (x ) =1- x + ln x .ax(1) 若函数 f (x ) 在[1,+∞) 上为增函数,求正实数 a 的取值范围; (2) 当 a = 1 时,求证:对大于1的任意正整数 n ,都有ln n >1 + 1 + 1 + ⋅⋅⋅ + 1 .234 n2. 设函数 f (x ) = x - ln(x + a ) 的最小值为0 ,其中 a >0 .(1) 若对任意的 x ∈[0,+∞) ,有 f (x ) ≤ kx 2 成立,求实数 k 的最小值; (2) 证明:对大于1的任意正整数 n ,都有1 + 3 1+ + 51 < 2n -1 1 ln(2n +1) .23. 设函数 f (x ) = kx 2 , g (x ) = ln x ,(1) 讨论关于 x 的方程 f (x ) = g (x ) 在区间[e -1, e ] 内的实数根的个数;ln1 ln 2 ln 3 ln 4 ln n 1(2) 求证:对任意的正整数 n ,都有 14 + + 24 34 + 44 + + n 4 < 2e.e 1 1 1 14. 设函数 f ( x ) = x - a ln(1 + x 2 ) ,1 2(1) 若函数 f ( x ) 在区间( , ) 上递增,求实数a 的取值范围;3 3(2)证明:当 x > 0 时, ln(1+ x 2 ) < x ;(3)证明:对大于1的任意正整数 n ,都有(1 +14 )(1 + 24 )(1 + 34 ) (1 + n4 ) < 2e .5.设函数 f (x ) =2x,其中 f (1) = 1 , f ( 1 ) = 2 .在数列{x }中, x = 1,且 x= f (x ) .ax + b(1) 求数列{x n }的通项 x n .2 3n1 12n +1n(2) 求证:对任意的正整数n ,都有 x 1x 2 x 3 x n >2e.6. 设函数 f (x ) = e x - ax -1 ,(1) 若 f (x ) ≥ 0 对 x ∈ R 均成立,求正实数 a 的取值集合;(2)求证:对任意的正整数 n ,都有( 1 )n + ( 2)n + ( 3)n + + ( n )n <e.nn n n e -17. 设函数 f ( x ) = e x - x - 1 ,(1) 求证:函数 f (x ) 有且只有一个零点;1 n 3 n 5 n 2n - 1 n(2) 求证:对任意的正整数 n ,都有( ) 2n + ( ) 2n + ( ) 2n + + ( 2n) < .e - 1k k 1 1 2 2 n n 1 2 1 2 n8.(1)设函数 f (x ) = rx - x r +1- r (x > 0) ,其中0 < r < 1.求函数 f (x ) 的最小值;(2) 用(1)的结果证明命题:设 a ≥ 0 , a ≥ 0 , b , b 为正实数,若b + b = 1,则 a b 1 a b 2 ≤ a b + a b ;121212121 12 2(3) 请将(2)中的命题推广到一般形式,并用数学归纳法证明你所推广的命题.9.(1)求函数 f (x ) = ln x - x + 1的最大值;(2) 设a , b 均为正实数,证明:若a b + a b+ + a b ≤ b + b + + b ,则a b 1 a b 2 a b n ≤ 1 ;(3) 设a , b 均为正实数,证明:若b + b + + b = 1 ,则 1 ≤ b b b b b b ≤ b 2 + b 2 + + b 2 . k k 1 2 1 2 n n1 2 nn 1 2 nn。
【最新】《函数与导数》专题解析一、选择题1.已知函数()2100ax x f x lnx x ⎧+≤=⎨⎩,,>,,下列关于函数()()0f f x m +=的零点个数的判断,正确的是( )A .当a =0,m ∈R 时,有且只有1个B .当a >0,m ≤﹣1时,都有3个C .当a <0,m <﹣1时,都有4个D .当a <0,﹣1<m <0时,都有4个 【答案】B 【解析】 【分析】分别画出0a =,0a >,0a <时,()y f x =的图象,结合()t f x =,()0f t m +=的解的情况,数形结合可得所求零点个数. 【详解】令()t f x =,则()0f t m +=,当0a =时, 若1m =-,则0t ≤或t e =,即01x <≤或e x e =, 即当0a =,m R ∈时,不是有且只有1个零点,故A 错误;当0a >时,1m ≤-时,可得0t ≤或m t e e -=≥,可得x 的个数为123+=个,即B 正确;当0a <,1m <-或10m -<<时,由0m ->,且1m -≠,可得零点的个数为1个或3个,故C ,D 错误. 故选:B .【点睛】本题考查了函数零点的相关问题,考查了数形结合思想,属于中档题.2.设定义在(0,)+∞的函数()f x 的导函数为()f x ',且满足()()3f x f x x'->,则关于x 的不等式31(3)(3)03x f x f ⎛⎫---< ⎪⎝⎭的解集为( )A .()3,6B .()0,3C .()0,6D .()6,+∞【答案】A 【解析】 【分析】根据条件,构造函数3()()g x x f x =,利用函数的单调性和导数之间的关系即可判断出该函数在(,0)-∞上为增函数,然后将所求不等式转化为对应函数值的关系,根据单调性得出自变量值的关系从而解出不等式即可. 【详解】解:Q 3(1)(3)(3)03x f x f ---<,3(3)(3)27x f x f ∴---(3)0<, 3(3)(3)27x f x f ∴--<(3),Q 定义在(0,)+∞的函数()f x ,3x ∴<,令3()()g x x f x =,∴不等式3(3)(3)27x f x f --<(3),即为(3)g x g -<(3),323()(())3()()g x x f x x f x x f x '='=+',Q()()3f x f x x'->, ()3()xf x f x ∴'>-, ()3()0xf x f x ∴'+>,32()3()0x f x x f x ∴+>,()0g x ∴'>, ()g x ∴单调递增,又因为由上可知(3)g x g -<(3), 33x ∴-<,3x <Q , 36x ∴<<.故选:A . 【点睛】本题主要考查不等式的解法:利用条件构造函数,利用函数单调性和导数之间的关系判断函数的单调性,属于中档题.3.已知函数f (x )=e b ﹣x ﹣e x ﹣b +c (b ,c 均为常数)的图象关于点(2,1)对称,则f (5)+f (﹣1)=( ) A .﹣2 B .﹣1C .2D .4【答案】C 【解析】 【分析】根据对称性即可求出答案. 【详解】解:∵点(5,f (5))与点(﹣1,f (﹣1))满足(5﹣1)÷2=2, 故它们关于点(2,1)对称,所以f (5)+f (﹣1)=2, 故选:C . 【点睛】本题主要考查函数的对称性的应用,属于中档题.4.已知直线2y kx =-与曲线ln y x x =相切,则实数k 的值为( ) A .ln 2 B .1C .1ln2-D .1ln2+【答案】D 【解析】由ln y x x =得'ln 1y x =+,设切点为()00,x y ,则0ln 1k x =+,000002ln y kx y x x =-⎧⎨=⎩,0002ln kx x x ∴-=,002ln k x x ∴=+,对比0ln 1k x =+,02x ∴=,ln 21k ∴=+,故选D.5.已知函数()32f x x x x a =--+,若曲线()y f x =与x 轴有三个不同交点,则实数a的取值范围为( ) A .11,27⎛⎫-∞- ⎪⎝⎭B .()1,+?C .5,127⎛⎫-⎪⎝⎭D .11,127⎛⎫-⎪⎝⎭【答案】C 【解析】 【分析】根据曲线()y f x =与x 轴有三个不同交点,可转化为函数()32g x x x x =-++与y a =的图象有三个不同的交点,即可求出实数a 的取值范围. 【详解】Q 函数()32f x x x x a =--+与x 轴有三个不同交点,可转化为函数()32g x x x x =-++与y a =的图象有三个不同的交点.又()2321(31)(1)g x x x x x '=-++=-+-Q ,∴在1,,(1,)3⎛⎫-∞-+∞ ⎪⎝⎭上,()0g x '<;在1,13⎛⎫- ⎪⎝⎭上,()0g x '>.∴()15327g x g ⎛⎫=-=- ⎪⎝⎭极小值,()()11g x g ==极大值,5127a ∴-<<. 故选:C 【点睛】本题考查函数的零点及导数与极值的应用,考查了转化思想和数形结合思想,属于中档题.6.已知定义在R 上的可导函数()f x ,对于任意实数x ,都有()()2f x f x x -+=成立,且当()0,x ∈+∞时,都有()'f x x >成立,若()()112f a f a a -≥+-,则实数a 的取值范围为( ) A .1,2⎛⎤-∞ ⎥⎝⎦B .1,2⎡⎫+∞⎪⎢⎣⎭C .(],2-∞D .[)2,+∞【答案】A 【解析】 【分析】构造函数21()()2g x f x x =-,可判断函数()g x 为奇函数且在R 上是增函数,由函数的性质可得a 的不等式,解不等式即可得答案. 【详解】 令21()()2g x f x x =-,则()()g x f x x ''=-, ()0,x ∈+∞Q 时,都有()'f x x >成立,即有()0g x '>,∴在()0,∞+,()g x 单调递增,Q 定义在R 上的函数()f x ,对于任意实数x ,都有()()2f x f x x -+=成立,所以(0)0f =,2222111()()()()()222g x f x x x f x x x f x g x ⎡⎤∴-=--=--=-=-⎣⎦, ()g x ∴是定义在R 上的奇函数,又(0)(0)0g f == ∴在R 上()g x 单调递增.又()()112f a f a a -≥+-Q ()()()2211111222g a a g a a a ∴-+-≥++-,即()()1112g a g a a a a -≥⇒-≥⇒≤. 因此实数a 的取值范围为1,2⎛⎤-∞ ⎥⎝⎦.故选:A 【点睛】本题考查构造函数、奇函数的判断,及导数与单调性的应用,且已知条件构造出21()()2g x f x x =-是解决本题的关键,考查了理解辨析能力与运算求解能力,属于中档题.7.曲线2y x =与直线y x =所围成的封闭图形的面积为( ) A .16B .13C .12D .56【答案】A 【解析】曲线2y x =与直线y x =的交点坐标为()()0,0,1,1 ,由定积分的几何意义可得曲线2y x=与直线y x =所围成的封闭图形的面积为()1223100111|236x x dx x x ⎛⎫-=-= ⎪⎝⎭⎰ ,故选A.8.36ax ⎛⎫- ⎪ ⎪⎝⎭的展开式中,第三项的系数为1,则11a dx x =⎰( ) A .2ln 2 B .ln 2 C .2 D .1【答案】A 【解析】 【分析】首先根据二项式定理求出a ,把a 的值带入11adx x⎰即可求出结果. 【详解】解题分析根据二项式3ax ⎛- ⎝⎭的展开式的通项公式得221213()4a T C ax x +⎛== ⎝⎭. Q 第三项的系数为1,1,44aa ∴=∴=,则4411111d d ln 2ln 2a x x x x x ===⎰⎰.故选:A 【点睛】本题考查二项式定理及定积分. 需要记住二项式定理展开公式:1C k n k kk n T a b -+=.属于中等题.9.已知函数()2f x x x =+,且()1231lnlog 223a f b f c f -⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,,,则a b c ,,的大小关系为( )A .a c b <<B .b c a <<C .c a b <<D .b a c <<【答案】A 【解析】 【分析】由函数()2f x x x =+,可得()()f x f x -=,得到函数()f x 为偶函数,图象关于y 轴对称,又由由二次函数的性质可得,函数()f x 在[0,)+∞上为单调递增函数,则函数()f x 在(,0)-∞上为单调递减函数,再根据对数函数的性质,结合图象,即可求解.【详解】由题意,函数()2f x x x =+,满足()()22()f x x x x x f x -=-+-=+=,所以函数()f x 为定义域上的偶函数,图象关于y 轴对称,又当0x ≥时,()2f x x x =+,由二次函数的性质可得,函数()f x 在[0,)+∞上为单调递增函数,则函数()f x 在(,0)-∞上为单调递减函数,又由31ln 22<=,113222log log 1<=-,1122-=,根据对称性,可得11323(ln )(2)(log )2f f f -<<,即a c b <<,故选A .【点睛】本题主要考查了函数的奇偶性和单调性的应用,其中解答中得到函数的单调性与奇偶性,以及熟练应用对数函数的性质是解答的关键,着重考查了推理与运算能力,属于基础题.10.函数log (3)1a y x =-+(0a >且1a ≠)的图像恒过定点A ,若点A 在直线10mx ny +-=上,其中·0m n >,则41m n+的最小值为() A .16 B .24C .50D .25【答案】D 【解析】 【分析】由题A (4,1),点A 在直线上得4m+n =1,用1的变换构造出可以用基本不等式求最值的形式求最值. 【详解】令x ﹣3=1,解得x =4,y =1,则函数y =log a (x ﹣3)+1(a >0且a≠1)的图象恒过定点A (4,1), ∴4m+n =1, ∴41m n +=(41m n +)(4m+n )=16+14n 4m m n++=17+8=25,当且仅当m =n 15=时取等号,故则41m n +的最小值为25, 故选D . 【点睛】本题考查均值不等式,在应用过程中,学生常忽视“等号成立条件”,特别是对“一正、二定、三相等”这一原则应有很好的掌握.11.设奇函数()f x 在[]11-,上为增函数,且()11f =,若[]11x ∃∈-,,使[]11a ∀∈-,,不等式()221f x t at ≤--成立,则t 的取值范围是( )A .22t -≤≤B .1122t -≤≤ C .2t ≥或2t ≤-或0t = D .12t ≥或12t ≤-或0t =【答案】C 【解析】 【分析】()f x 在[]11x ∈-,上为增函数,[]11x ∃∈-,,使[]11a ∀∈-,,不等式()221f x t at ≤--成立,只需对于[]11a ∀∈-,,()2121f t at -≤--即可.【详解】∵奇函数()f x 在[]11x ∈-,上为增函数,且()11f =, ∴函数在[]11x ∈-,上的最小值为()()111f f -=-=-,又∵[]11x ∃∈-,,使[]11a ∀∈-,,不等式()221f x t at ≤--成立,∴()22111t at f --≥-=-,即220t at -≥, ①0t =时,不等式成立;②0t >时,()2220t at t t a -=-≥恒成立,从而2t a ≥,解得2t ≥;③0t <时,()2220t at t t a -=-≥恒成立,从而2t a ≤,解得2t ≤-故选:C.本题考查了含参数不等式恒成立问题,需要将不等式问题转化为函数最值问题,考查了理解辨析能力、运算求解能力和分类讨论思想,是中档题.12.已知函数()0,1ln ,1x f x x x <⎧=⎨≥⎩,若不等式()≤-f x x k 对任意的x ∈R 恒成立,则实数k 的取值范围是( ) A .(],1-∞ B .[)1,+∞C .[)0,1D .(]1,0-【答案】A 【解析】 【分析】先求出函数()f x 在(1,0)处的切线方程,在同一直角坐标系内画出函数()0,1ln ,1x f x x x <⎧=⎨≥⎩和()g x x k =-的图象,利用数形结合进行求解即可.【详解】当1x ≥时,()''1ln ,()(1)1f x x f x f x=⇒=⇒=,所以函数()f x 在(1,0)处的切线方程为:1y x =-,令()g x x k =-,它与横轴的交点坐标为(,0)k .在同一直角坐标系内画出函数()0,1ln ,1x f x x x <⎧=⎨≥⎩和()g x x k =-的图象如下图的所示:利用数形结合思想可知:不等式()≤-f x x k 对任意的x ∈R 恒成立,则实数k 的取值范围是1k ≤. 故选:A本题考查了利用数形结合思想解决不等式恒成立问题,考查了导数的应用,属于中档题.13.若函数f (x )=()x 1222a x 1log x 1x 1⎧++≤⎪⎨+⎪⎩,,>有最大值,则a 的取值范围为( ) A .()5,∞-+ B .[)5,∞-+ C .(),5∞-- D .(],5∞-- 【答案】B 【解析】 【分析】分析函数每段的单调性确定其最值,列a 的不等式即可求解. 【详解】由题()xf x 22a,x 1=++≤,单调递增,故()()f x f 14a,;≤=+()()12f x log x 1,x 1,=+>单调递减,故()()f x f 11>=-,因为函数存在最大值,所以4a 1+≥-,解a 5≥-. 故选B. 【点睛】本题考查分段函数最值,函数单调性,确定每段函数单调性及最值是关键,是基础题.14.函数()3ln xf x x =的部分图象是( ) A . B .C .D .【答案】A 【解析】根据奇偶性排除B ,当1x >时,()3ln 0xf x x=>,排除CD ,得到答案. 【详解】()()()33ln ln ,x x f x f x f x x x=-==--, ()f x 为奇函数,排除B 当1x >时,()3ln 0xf x x=>恒成立,排除CD 故答案选A 【点睛】本题考查了函数图像的判断,通过奇偶性,特殊值法排除选项是解题的关键.15.已知函数()ln xf x x=,则使ln ()()()f x g x a f x =-有2个零点的a 的取值范围( ) A .(0,1) B .10,e ⎛⎫ ⎪⎝⎭C .1,1e ⎛⎫ ⎪⎝⎭D .1,e ⎛⎫-∞ ⎪⎝⎭【答案】B 【解析】 【分析】令()ln xt f x x==,利用导数研究其图象和值域,再将ln ()()()f x g x a f x =-有2个零点,转化为ln ta t=在[),e +∞上只有一解求解. 【详解】 令()ln x t f x x ==,当01x <<时,()0ln xt f x x==<, 当1x >时,()2ln 1()ln x t f x x -''==,当1x e <<时,0t '<,当x e >时,0t '>, 所以当x e =时,t 取得最小值e ,所以t e ≥, 如图所示:所以ln ()()()f x g x a f x =-有2个零点,转化为ln t a t =在[),e +∞上只有一解, 令ln t m t =,21ln 0t m t -'=≤,所以ln t m t=在[),e +∞上递减, 所以10m e<≤, 所以10a e <≤,当1a e =时,x e =,只有一个零点,不合题意, 所以10a e<<故选:B【点睛】本题主要考查导数与函数的零点,还考查了数形结合的思想和运算求解的能力,属于中档题.16.()263,034,0x x x x f x x ⎧---≤=⎨->⎩,则函数()y f f x =⎡⎤⎣⎦的零点个数为( ) A .3 B .5 C .6 D .7【答案】D【解析】【分析】作出()f x 的图像,将()y f f x =⎡⎤⎣⎦的零点个数即()0f f x =⎡⎤⎣⎦的实数根个数,令()t f x =,解()0f t =有三个实数根,再结合图像即可得到答案.【详解】由题意,()y f f x =⎡⎤⎣⎦的零点个数即()0f f x =⎡⎤⎣⎦的实数根个数,作()f x 的图像如图所示,设()t f x =,则()0f t =,当0t ≤时,即2630t t ---=,解得,1236,36t t =-=-当0t >时,即340t -=,解得33log 4t =; 结合图像知,()36f x =-()36f x =-+3()log 4f x =时有三个根,所以()0f f x =⎡⎤⎣⎦有7个根,即()y f f x =⎡⎤⎣⎦的零点个数为7. 故选:D【点睛】本题主要考查函数的零点问题、解函数值以及一元二次函数和指数函数的图像,考查学生数形结合的思想,属于中档题.17.若函数()()sin x f x ex a =+在区间,22ππ⎛⎫- ⎪⎝⎭上单调递增,则实数a 的取值范围是()A .)2,⎡+∞⎣B .[)1,+∞C .()1,+∞D .()2,-+∞ 【答案】B【解析】【分析】将问题转化为()0f x '≥在,22ππ⎛⎫- ⎪⎝⎭上恒成立;根据导函数解析式可知问题可进一步转化204x a π⎛⎫++≥ ⎪⎝⎭在,22ππ⎛⎫- ⎪⎝⎭上恒成立;利用正弦型函数值域求法可求得(2124x a a a π⎛⎫⎤++∈-+ ⎪⎦⎝⎭,则只需10a -+?即可,解不等式求得结果. 【详解】由题意得:()()sin cos 4x x x f x e x a e x e x a π⎫⎛⎫'=++=++ ⎪⎪⎝⎭⎭ ()f x Q 在,22ππ⎛⎫- ⎪⎝⎭上单调递增 ()0f x '∴≥在,22ππ⎛⎫- ⎪⎝⎭上恒成立又0x e > 04x a π⎛⎫++≥ ⎪⎝⎭在,22ππ⎛⎫- ⎪⎝⎭上恒成立当,22x ππ⎛⎫∈- ⎪⎝⎭时,3,444x πππ⎛⎫+∈- ⎪⎝⎭ sin 4x π⎛⎤⎛⎫∴+∈ ⎥ ⎪ ⎝⎭⎝⎦ (14x a a a π⎛⎫⎤++∈-+ ⎪⎦⎝⎭ 10a ∴-+≥,解得:[)1,a ∈+∞ 本题正确选项:B【点睛】本题考查根据函数在一段区间内的单调性求解参数范围问题,涉及到正弦型函数值域的求解问题;本题解题关键是能够将问题转化为导函数在区间内恒大于等于零的问题,从而利用三角函数的最值来求得结果.18.已知函数()f x 为偶函数,当x <0时,2()ln()f x x x =--,则曲线()y f x =在x =1处的切线方程为( )A .x -y =0B .x -y -2=0C .x +y -2=0D .3x -y -2=0【答案】A【解析】【分析】先求出当0x >时,()f x 的解析式,再利用导数的几何意义计算即可得到答案.【详解】当0x >时,0x -<,2()ln f x x x -=-,又函数()f x 为偶函数,所以2()ln f x x x =-,(1)1f =,所以'1()2f x x x=-,'(1)1f =,故切线方程为11y x -=-,即y x =. 故选:A .【点睛】本题考查导数的几何意义,涉及到函数的奇偶性求对称区间的解析式,考查学生的数学运算能力,是一道中档题.19.曲线21x y e -=+在点(0,2)处的切线与直线y 0=和y x =所围成图形的面积( ) A .1B .13C .23D .12【答案】B【解析】【分析】利用导数的几何意义,求得曲线在点(0,2)处的切线方程,再求得三线的交点坐标,利用三角形的面积公式,即可求解,得到答案.【详解】由题意,曲线21x y e-=+,则22x y e -'=-,所以200|2|2x x x y e -=='=-=-, 所以曲线21x y e -=+在点(0,2)处的切线方程为22(0)y x -=--,即220x y +-=,令0y =,解得1x =,令y x =,解得23x y ==, 所以切线与直线y 0=和y x =所围成图形的面积为1211233⨯⨯=,故选B . 【点睛】 本题主要考查了利用导数研究曲线在某点处的切线方程,以及两直线的位置关系的应用,着重考查了推理与运算能力,属于基础题.20.已知函数()f x 的导函数为()f x ',在()0,∞+上满足()()xf x f x '>,则下列一定成立的是( )A .()()2019202020202019f f >B .()()20192020f f >C .()()2019202020202019f f <D .()()20192020f f < 【答案】A【解析】【分析】构造函数()()f x g x x=,利用导数判断函数()y g x =在()0,∞+上的单调性,可得出()2019g 和()2020g 的大小关系,由此可得出结论.【详解】令()()()0f x g x x x =>,则()()()2xf x f x g x x '-'=. 由已知得,当0x >时,()0g x '>.故函数()y g x =在()0,∞+上是增函数,所以()()20202019g g >,即()()2020201920202019f f >,所以()()2019202020202019f f >. 故选:A.【点睛】 本题考查利用构造函数法得出不等式的大小关系,根据导数不等式的结构构造新函数是解答的关键,考查推理能力,属于中等题.。
高三《函数与导数解答题》1. 已知2()ln ,() 3.f x x x g x x ax ==-+-(1)求函数f(x)的最小值;(2)对一切(0,),2()()x f x g x ∈+∞≥恒成立,求实数a 的取值范围; 解:(1)'()=ln 1f x x +由'()0f x =得1x e=当'1(0,),()0,()x f x f x e ∈<时单调递减;当'1(+),()0,()x f x f x e∈∞>,时单调递增;min 11()()f x f e e==-(2)232ln 3,2ln x x x ax a x x x≥-+-≤++则设'23(3)(1)()2ln (0),()x x h x x x x x x x +-=++>=则h① (0,1),()0,()x h x h x '∈<单调递减, ② (1,),()0,()x h x h x '∈+∞>单调递增,所以min ()(1)4h x h ==,对一切(0,),2()()x f x g x ∈+∞≥恒成立, 所以min ()4a h x ≤=2. 已知函数)(ln 2)(),()(R b x xbx g R a ax x f ∈+=∈=,)()()(x g x f x G -=,且(1)0G =,()G x 在1x =的切线斜率为0。
(1)求,a b ;(2)设/1()2,n a G n n=+-求证:121111118n a a a +++< 解:(1)()2ln (0)bG x ax x x x=-->,由(1)0G = 得:0a b -= /22()b G x a x x =+- 又/(1)0G =,则2a b += 1,1a b ∴==…………4分 (2)/212()1(0)G x x x x =+->,/1()2,n a G n n =+- 21n a n n ∴=--……5分2111n a n n ∴=--,易证:1n =时,111118a <;2n =时12111118a a +<;3n ≥时,221111111()12(2)(1)321n a n n n n n n n n =<==--------+ 121111*********(1)34253621n a a a n n ∴+++<-++-+-+-++--+ 11111111()361118n n n =---<-+3. 已知函数)0(3ln )(≠∈--=a R a ax x a x f 且. (Ⅰ)求函数)(x f 的单调区间;(Ⅱ)若函数)(x f y =的图像在点))2(,2(f 处的切线的倾斜角为︒45,问:m 在什么范围取值时,对于任意的[]2,1∈t ,函数⎥⎦⎤⎢⎣⎡++=)('2)(23x f mx x x g 在区间)3,(t 上总存在极值?(Ⅲ)当2=a 时,设函数32)2()(-+--=xep x p x h ,若在区间[]e ,1上至少存在一个0x ,使得)()(00x f x h >成立,试求实数p 的取值范围.解:(Ι)由xx a x f )1()('-=知: 当0>a 时,函数)(x f 的单调增区间是)1,0(,单调减区间是),1(+∞;当0<a 时,函数)(x f 的单调增区间是),1(+∞,单调减区间是)1,0(;………………4分(Ⅱ)由()212af '=-=2a ⇔=-,∴()223f x ln x x =-+-,()22f 'x x =-. ………………………6分故3232()'()(2)222m m g x x x f x x x x ⎡⎤=++=++-⎢⎥⎣⎦,∴2'()3(4)2g x x m x =++-,∵ 函数)(x g 在区间)3,(t 上总存在极值,∴0)('=x g 有两个不等实根且至少有一个在区间)3,(t 内…………7分又∵函数)('x g 是开口向上的二次函数,且02)0('<-=g ,∴ ⎩⎨⎧><0)3('0)('g t g …………8分由4320)('--<⇔<t tm t g ,∵=)(t H 432--t t 在[]2,1上单调递减,所以9)1()(min -==H t H ;∴9-<m ,由023)4(27)3('>-⨯++=m g ,解得337->m ; 综上得:379.3m -<<- 所以当m 在)9,337(--内取值时,对于任意的[]2,1∈t ,函数⎥⎦⎤⎢⎣⎡++=)('2)(23x f m x x x g 在区间)3,(t 上总存在极值。
高中数学函数与导数常考题型整理归纳题型一:利用导数研究函数的性质利用导数研究函数的单调性、极值、最值是高考的热点问题之一,每年必考,一般考查两类题型:(1)讨论函数的单调性、极值、最值,(2)利用单调性、极值、最值求参数的取值范围.【例1】已知函数f (x )=ln x +a (1-x ).(1)讨论f (x )的单调性;(2)当f (x )有最大值,且最大值大于2a -2时,求实数a 的取值范围.解 (1)f (x )的定义域为(0,+∞),f ′(x )=1x -a .若a ≤0,则f′(x )>0,所以f (x )在(0,+∞)上单调递增.若a >0,则当x ∈⎝ ⎛⎭⎪⎫0,1a 时,f ′(x )>0; 当x ∈⎝ ⎛⎭⎪⎫1a ,+∞时,f ′(x )<0, 所以f (x )在⎝ ⎛⎭⎪⎫0,1a 上单调递增,在⎝ ⎛⎭⎪⎫1a ,+∞上单调递减. 综上,知当a ≤0时,f (x )在(0,+∞)上单调递增;当a >0时,f (x )在⎝ ⎛⎭⎪⎫0,1a 上单调递增,在⎝ ⎛⎭⎪⎫1a ,+∞上单调递减. (2)由(1)知,当a ≤0时,f (x )在(0,+∞)上无最大值;当a >0时,f (x )在x =1a 处取得最大值,最大值为f ⎝ ⎛⎭⎪⎫1a =ln 1a +a ⎝ ⎛⎭⎪⎫1-1a =-ln a +a -1. 因此f ⎝ ⎛⎭⎪⎫1a >2a -2等价于ln a +a -1<0. 令g (a )=ln a +a -1,则g (a )在(0,+∞)上单调递增,g (1)=0.于是,当0<a <1时,g (a )<0;当a >1时,g (a )>0.因此,实数a 的取值范围是(0,1).【类题通法】(1)研究函数的性质通常转化为对函数单调性的讨论,讨论单调性要先求函数定义域,再讨论导数在定义域内的符号来判断函数的单调性.(2)由函数的性质求参数的取值范围,通常根据函数的性质得到参数的不等式,再解出参数的范围.若不等式是初等的一次、二次、指数或对数不等式,则可以直接解不等式得参数的取值范围;若不等式是一个不能直接解出的超越型不等式时,如求解ln a +a -1<0,则需要构造函数来解.【变式训练】 已知a ∈R ,函数f (x )=(-x 2+ax )e x (x ∈R ,e 为自然对数的底数).(1)当a =2时,求函数f (x )的单调递增区间;(2)若函数f (x )在(-1,1)上单调递增,求实数a 的取值范围.解 (1)当a =2时,f (x )=(-x 2+2x )e x ,所以f ′(x )=(-2x +2)e x +(-x 2+2x )e x=(-x 2+2)e x .令f ′(x )>0,即(-x 2+2)e x >0,因为e x >0,所以-x 2+2>0,解得-2<x < 2.所以函数f (x )的单调递增区间是(-2,2).(2)因为函数f (x )在(-1,1)上单调递增,所以f ′(x )≥0对x ∈(-1,1)都成立,因为f ′(x )=(-2x +a )e x +(-x 2+ax )e x=-x 2+(a -2)x +a ]e x ,所以-x 2+(a -2)x +a ]e x ≥0对x ∈(-1,1)都成立.因为e x >0,所以-x 2+(a -2)x +a ≥0对x ∈(-1,1)都成立,即a ≥x 2+2x x +1=(x +1)2-1x +1=(x +1)-1x +1对x ∈(-1,1)都成立. 令y =(x +1)-1x +1,则y ′=1+1(x +1)2>0. 所以y =(x +1)-1x +1在(-1,1)上单调递增, 所以y <(1+1)-11+1=32.即a ≥32. 因此实数a 的取值范围为a ≥32.题型二:利用导数研究函数零点或曲线交点问题函数的零点、方程的根、曲线的交点,这三个问题本质上同属一个问题,它们之间可相互转化,这类问题的考查通常有两类:(1)讨论函数零点或方程根的个数;(2)由函数零点或方程的根求参数的取值范围.【例2】设函数f(x)=ln x +m x ,m ∈R .(1)当m =e(e 为自然对数的底数)时,求f (x )的极小值;(2)讨论函数g (x )=f ′(x )-x 3零点的个数.解 (1)由题设,当m =e 时,f (x )=ln x +e x , 定义域为(0,+∞),则f ′(x )=x -e x 2,由f ′(x )=0,得x =e.∴当x ∈(0,e),f ′(x )<0,f (x )在(0,e)上单调递减,当x ∈(e ,+∞),f ′(x )>0,f (x )在(e ,+∞)上单调递增,∴当x =e 时,f (x )取得极小值f (e)=ln e +e e =2,∴f (x )的极小值为2.(2)由题设g (x )=f ′(x )-x 3=1x -m x 2-x 3(x >0),令g (x )=0,得m =-13x 3+x (x >0).设φ(x )=-13x 3+x (x >0),则φ′(x )=-x 2+1=-(x -1)(x +1),当x ∈(0,1)时,φ′(x )>0,φ(x )在(0,1)上单调递增;当x ∈(1,+∞)时,φ′(x )<0,φ(x )在(1,+∞)上单调递减.∴x =1是φ(x )的唯一极值点,且是极大值点,因此x =1也是φ(x )的最大值点.∴φ(x )的最大值为φ(1)=23.又φ(0)=0,结合y =φ(x )的图象(如图),可知①当m >23时,函数g (x )无零点;②当m =23时,函数g (x )有且只有一个零点;③当0<m <23时,函数g (x )有两个零点;④当m ≤0时,函数g (x )有且只有一个零点.综上所述,当m >23时,函数g (x )无零点;当m =23或m ≤0时,函数g (x )有且只有一个零点;当0<m <23时,函数g (x )有两个零点.【类题通法】利用导数研究函数的零点常用两种方法:(1)运用导数研究函数的单调性和极值,利用单调性和极值定位函数图象来解决零点问题;(2)将函数零点问题转化为方程根的问题,利用方程的同解变形转化为两个函数图象的交点问题,利用数形结合来解决.【变式训练】函数f (x )=(ax 2+x )e x ,其中e 是自然对数的底数,a ∈R .(1)当a >0时,解不等式f (x )≤0;(2)当a =0时,求整数t 的所有值,使方程f (x )=x +2在t ,t +1]上有解.解 (1)因为e x >0,(ax 2+x )e x ≤0.∴ax 2+x ≤0.又因为a >0,所以不等式化为x ⎝ ⎛⎭⎪⎫x +1a ≤0. 所以不等式f (x )≤0的解集为⎣⎢⎡⎦⎥⎤-1a ,0. (2)当a =0时,方程即为x e x =x +2,由于e x >0,所以x =0不是方程的解,所以原方程等价于e x -2x -1=0.令h (x )=e x -2x -1,因为h ′(x )=e x +2x 2>0对于x ∈(-∞,0)∪(0,+∞)恒成立,所以h (x )在(-∞,0)和(0,+∞)内是单调递增函数,又h (1)=e -3<0,h (2)=e 2-2>0,h (-3)=e -3-13<0,h (-2)=e -2>0,所以方程f (x )=x +2有且只有两个实数根且分别在区间1,2]和-3,-2]上,所以整数t 的所有值为{-3,1}.题型三:利用导数研究不等式问题导数在不等式中的应用是高考的热点,常以解答题的形式考查,以中高档题为主,突出转化思想、函数思想的考查,常见的命题角度:(1)证明简单的不等式;(2)由不等式恒成立求参数范围问题;(3)不等式恒成立、能成立问题.【例3】设函数f (x )=e 2x -a ln x .(1)讨论f (x )的导函数f ′(x )零点的个数;(2)证明:当a >0时,f (x )≥2a +a ln 2a .(1)解 f (x )的定义域为(0,+∞),f ′(x )=2e 2x -a x (x >0).当a ≤0时,f ′(x )>0,f ′(x )没有零点.当a >0时,设u (x )=e 2x ,v (x )=-a x ,因为u (x )=e 2x 在(0,+∞)上单调递增,v (x )=-a x 在(0,+∞)上单调递增,所以f ′(x )在(0,+∞)上单调递增.又f ′(a )>0,当b 满足0<b <a 4且b <14时,f ′(b )<0(讨论a ≥1或a <1来检验),故当a >0时,f ′(x )存在唯一零点.(2)证明 由(1),可设f ′(x )在(0,+∞)上的唯一零点为x 0,当x ∈(0,x 0)时,f ′(x )<0; 当x ∈(x 0,+∞)时,f ′(x )>0.故f (x )在(0,x 0)上单调递减,在(x 0,+∞)上单调递增,所以当x =x 0时,f (x )取得最小值,最小值为f (x 0)由于2e2x 0-a x 0=0, 所以f (x 0)=a 2x 0+2ax 0+a ln 2a ≥2a +a ln 2a . 故当a >0时,f (x )≥2a +a ln 2a .【类题通法】1.讨论零点个数的答题模板第一步:求函数的定义域;第二步:分类讨论函数的单调性、极值;第三步:根据零点存在性定理,结合函数图象确定各分类情况的零点个数.2.证明不等式的答题模板第一步:根据不等式合理构造函数;第二步:求函数的最值;第三步:根据最值证明不等式.【变式训练】 已知函数f (x )=ax +ln x (a ∈R ).(1)若a =2,求曲线y =f (x )在x =1处的切线方程;(2)求f (x )的单调区间;(3)设g (x )=x 2-2x +2,若对任意x 1∈(0,+∞),均存在x 2∈0,1]使得f (x 1)<g (x 2),求a 的取值范围.解 (1)由已知得f ′(x )=2+1x (x >0),所以f ′(1)=2+1=3,所以斜率k =3.又切点为(1,2),所以切线方程为y -2=3(x -1),即3x -y -1=0,故曲线y =f (x )在x =1处的切线方程为3x -y -1=0.(2)f ′(x )=a +1x =ax +1x (x >0),①当a ≥0时,由于x >0,故ax +1>0,f ′(x )>0,所以f (x )的单调增区间为(0,+∞).②当a <0时,由f ′(x )=0,得x =-1a .在区间⎝ ⎛⎭⎪⎫0,-1a 上,f ′(x )>0,在区间⎝ ⎛⎭⎪⎫-1a ,+∞上,f ′(x )<0,所以函数f (x )的单调递增区间为⎝ ⎛⎭⎪⎫0,-1a ,单调递减区间为⎝ ⎛⎭⎪⎫-1a ,+∞. (3)由已知得所求可转化为f (x )max <g (x )max ,g (x )=(x -1)2+1,x ∈0,1],所以g (x )max =2,由(2)知,当a ≥0时,f (x )在(0,+∞)上单调递增,值域为R ,故不符合题意.当a <0时,f (x )在⎝ ⎛⎭⎪⎫0,-1a 上单调递增,在⎝ ⎛⎭⎪⎫-1a ,+∞上单调递减,故f (x )的极大值即为最大值,是f ⎝ ⎛⎭⎪⎫-1a =-1+ln ⎝ ⎛⎭⎪⎫-1a =-1-ln(-a ), 所以2>-1-ln(-a ),解得a <-1e 3.。
全国新课标卷1、卷2适用
函数与导数综合题型一网打尽汇编(可作教师版的习题材料)
一、选择题
1.(安徽理3) 设()f x 是定义在R 上的奇函数,当x ≤0时,()f x x x 2
=2-,则()f 1=
(A )-3 (B) -1 (C)1 (D)3
【答案】A
【命题意图】本题考查函数的奇偶性,考查函数值的求法.属容易题.
【解析】2(1)(1)[2(1)(1)]3f f =--=----=-.故选A. 2.(安徽理10) 函数()()m n
f x ax x =1-g
在区 间〔0,1〕上的图像如图所示,则m ,n 的值
可能是
(A )1,1m n ==
(B) 1,2m n ==
(C) 2,1m n ==
(D) 3,1m n ==
【答案】B 【命题意图】本题考查导数在研究
函数单调性中的应用,考查函数图像,考查思维的综合能力.难度大.
【解析】代入验证,当1,2m n ==,()()()f x ax x n x x x 232=1-=-2+g ,则 ()()f x a x x 2'=3-4+1,由()()f x a x x 2'=3-4+1=0可知,121,13x x ==,结 合图像可知函数应在10,3⎛⎫ ⎪⎝⎭递增,在1,13⎛⎫ ⎪⎝⎭递减,即在
13x =取得最大值,由 ()()f a 21111=⨯1-=3332g ,知a 存在.故选B.
3.(安徽文5)若点(a,b)在lg y x = 图像上,a ≠1,则下列点也在此图像上的是
(A )(a 1,b ) (B) (10a,1-b) (C) (a 10
,b+1) (D)(a2,2b)
【答案】D 【命题意图】本题考查对数函数的基本运算,考查对数函数的图像与对应点的关系.
【解析】由题意lg b a =,lg lg b a a 22=2=,即()2
,2a b 也在函数lg y x = 图像上.
4.(安徽文10) 函数()()n f x ax x 2
=1-g
在 区间〔0,1〕上的图像如图所示,则n 可
能是
(A )1 (B) 2
(C) 3 (D) 4
【答案】A 【命题意图】本题考查导数在研究函数单调性中的应用,考查函数图像,考查思维的综合能力.难度大.
【解析】代入验证,当1n =时, ()()()f x ax x a x x x 232=1-=-2+g
,则()()f x a x x 2'=3-4+1,
由()()f x a x x 2'=3-4+1=0可知,121,13x x ==,结合图像可知函数应在10,3⎛⎫ ⎪⎝
⎭递增,在1,13⎛⎫ ⎪⎝⎭递减,即在13x =取得最大值,由()()f a 21111=⨯1-=3332g ,知a 存在.故选A.
5.(北京理6)根据统计,一名工人组装第x 件某产品所用的时间(单位:分钟)为
,(),c x A x f x c x A A ⎧<⎪⎪=⎨⎪≥⎪⎩(A ,
c 为常数)。
已知工人组装第4件产品用时30分钟,组装第A 件
产品时用时15分钟,那么c 和A 的值分别是
A. 75,25
B. 75,16
C. 60,25
D. 60,16
【答案】D 【解析】由条件可知,x A ≥时所用时间为常数,所以组装第4件产品用时必然满足第一个分段函数,即
(4)30604c f c ==⇒=,60()1516f A A A ==⇒=,选D 。
6.(北京文8)已知点()0,2A ,()2,0B ,若点C 在函数2
y x =的图象上,则使得ABC ∆的面积为2的点C 的个数为
A. 4
B. 3
C. 2
D. 1
【答案】A
7.(福建理5)1(2)0x e x dx
+⎰等于
A .1
B .1e -
C .e
D .1e +
【答案】C
8.(福建理9)对于函数()sin f x a x bx c =++ (其中,,,a b R c Z ∈∈),选取,,a b c 的一组值计算(1)f 和
(1)f -,所得出的正确结果一定不可能是
A .4和6
B .3和1
C .2和4
D .1和2
【答案】D 9.(福建理10)已知函数()x f x e x =+,对于曲线()y f x =上横坐标成等差数列的三个点A ,B ,C ,给
出以下判断:
①△ABC 一定是钝角三角形
②△ABC 可能是直角三角形
③△ABC 可能是等腰三角形
④△ABC 不可能是等腰三角形
其中,正确的判断是
A .①③
B .①④
C .②③
D .②④
【答案】B
10.(福建文6)若关于x 的方程x2+mx +1=0有两个不相等的实数根,则实数m 的取值范围是
A .(-1,1)
B .(-2,2)
C .(-∞,-2)∪(2,+∞)
D .(-∞,-1)∪(1,+∞)
【答案】C
11.(福建文8)已知函数f(x)=⎩⎨⎧2x , x >0 x +1,x≤0
,若f(a)+f(1)=0,则实数a 的值等于 A .-3 B .-1 C .1 D .3
【答案】A
12.(福建文10)若a >0,b >0,且函数f(x)=4x3-ax2-2bx +2在x =1处有极值,则ab 的最大值等于
A .2
B .3
C .6
D .9
【答案】D
13.(广东理4)设函数()f x 和g(x)分别是R 上的偶函数和奇函数,则下列结论恒成立的是
A .()f x +|g(x)|是偶函数
B .()f x -|g(x)|是奇函数
C .|()f x | +g(x)是偶函数
D .|()f x |- g(x)是奇函数
【答案】A
【解析】因为 g(x)是R 上的奇函数,所以|g(x)|是R 上的偶函数,从而()f x +|g(x)|是偶函数,故选A.
14.(广东文4)函数1()lg(1)1f x x x =
++-的定义域是 ( )
A .(,1)-∞-
B .(1,)+∞
C .(1,1)(1,)-+∞
D .(,)-∞+∞
【答案】C
15.(广东文10)设)(),(),(x h x g x f 是R 上的任意实值函数.如下定义两个函数()()x g f 和()()x g f ∙;
对任意R x ∈,()()())(x g f x g f = ;()()())(x g x f x g f =∙.则下列等式恒成立的是( )。