当前位置:文档之家› 测试题五(相似矩阵与二次型)

测试题五(相似矩阵与二次型)

测试题五(相似矩阵与二次型)
测试题五(相似矩阵与二次型)

测试题五(相似矩阵与二次型)

一.单项选择题

1. 若n 阶非奇异矩阵A 的各行元素之和均为常数a ,则矩阵12)21

(-A 有一特征值为( C ).

(A) 22a ; (B)22a - ; (C)22-a ; (D)22--a . 2. 若λ为四阶矩阵A 的特征多项式的三重根,则A 对应于λ的 特征向量最多有( A )个线性无关.

(A) 3个; (B) 1个; (C) 2个; (D) 4个. 3. 设α是矩阵A 对应于其特征值λ的特征向量,则矩阵AP P 1- 对应于λ的特征向量为( A ).

(A)α1-P ; (B)αP ; (C)αT P ; (D)α .

4. 若A 为n 阶实对称矩阵,且二次型Ax x x x x f T n =),,,(21 正定,则下列结论不正确的是

( D ) .

(A) A 的特征值全为正;(B)

A

的一切顺序主子式全为正;

(C) A 的主对角线上的元素全为正;

(D)对一切n 维列向量x ,Ax x T 全为正. 5. 设B A ,为n 阶矩阵,那么( B ).

(A) 若B A ,合同,则B A ,相似;(B) 若B A ,相似,则B A ,等价; (C) 若B A ,等价,则B A ,合同;(D) 若B A ,相似,则B A ,合同. 二. 填空题

1. 若A 为正定矩阵,且E A A T =,则=A 1 .

2. 已知???

?

?

?

?=x A 0

0110

002的伴随矩阵*A 有一特征值为2-,则 =x -1,-2

3. 若二阶矩阵A 的特征值为1-和1,则2004A = E .

4. n 阶方阵A 的特征值均非负,且E A =2,则其特征值必为 1

5. 二次型432143212),,,(x ax x x x x x x f -=的秩为2,则=a 0 .

三. 判断题(正确打V ,错误打×)

1.若112???=n n n n x x A ,则2是n n A ?的一个特征值. ( × ) 2.实对称矩阵A 的非零特征值的个数等于它的秩. ( V )

3.二次型Ax x x x x f T n =),,,(21 在正交变换Py x =下一定化为标准型.( × ) 4. 若k ααα,,,21 线性无关且都是A 的特征向量,则将它们先正交化,再单位化后仍

为A 的特征向量. ( × )

5.已知A 为n 阶矩阵,x 为n 维列向量,如果A 不对称,则Ax x T 不是二次型. ( × )

四. 求矩阵???

?

?

?

?---=73

5946

524A 的特征值与特征向量. 五. 若矩阵A 满足O E A A =+-232,证明A 的特征值只能是1或2.

六. 证明?????

??=01

0100

002

A 与???

?

?

?

?--=26

0010

001B 相似. 七. 设???

?

?

?

?=0011100y x

A 与对角阵相似,求x 和y 应满足的条件. 八.已知A 为实对称可逆矩阵,证明二次型Ax x x x x f T n =),,,(21 与 二次型x A x x x x g T n 121),,,(-= 具有相同的规范型. 九.求()n n A ?=1的特征值与特征向量.

十.已知0>a ,且二次型322322213212332),,(x ax x x x x x x f +++=通过正 交变换化成标准形23222152y y y f ++=,求参数a 及所用的正交变 换矩阵.

线性代数第六章二次型试的题目及问题详解

第六章 二次型 一、基本概念 n 个变量的二次型是它们的二次齐次多项式函数,一般形式为 f(x 1,x 2, …,x n )= a 11x 12+2a 12x 1x 2+2a 13x 1x 3+…+2a 1n x 1x n + a 22x 22+2a 23x 1x 3+ …+2a 1n x 1x n + …+a nn x n 2 =21 2n ii i ij i j i i j a x a x x =≠+∑∑. 它可以用矩阵乘积的形式写出:构造对称矩阵A ???? ?? ? ????????? ??==∑∑==n nn n n n n n n i n j j i ij n x x x a a a a a a a a a x x x x x a x x x f M ΛM M M Λ Λ ΛΛ212 122221112112111 21),,(),,( 记[]T x x x X Λ,,21=,则f(x 1,x 2,…,x n )= X T AX 称对称阵A 为二次型f 的矩阵, 称对称阵A 的秩为二次型f 的秩. 注意:一个二次型f 的矩阵A 必须是对称矩阵且满足AX X f T =,此时二次 型的矩阵是唯一的,即二次型f 和它的矩阵A (A 为对称阵)是一一对应的,因此, 也把二次型f 称为对称阵A 的二次型。 实二次型 如果二次型的系数都是实数,并且变量x 1,x 2,…,x n 的变化范围也限定 为实数,则称为实二次型.大纲的要求限于实二次型. 标准二次型 只含平方项的二次型,即形如2 222211n n x d x d x d f +++=Λ 称为二次型的标准型。 规范二次型 形如2 21221q p p p x x x x ++--+ΛΛ的二次型,即平方项的系数只 1,-1,0,称为二次型的规范型。 二、可逆线性变量替换和矩阵的合同关系 对二次型f(x 1,x 2,…,x n )引进新的变量y 1,y 2,…,y n ,并且把x 1,x 2,…,x n 表示为它们的齐一次线性函数 ?? ???? ?+++=+++=+++=n nn n n n n n n n y c y c y c x y c y c y c x y c y c y c x ΛM ΛΛ22112222121212121111 代入f(x 1,x 2,…,x n )得到y 1,y 2,…,y n 的二次型g(y 1,y 2,…,y n ). 把上述过程称为对二次型f(x 1,x 2,…,x n )作了线性变量替换,如果其中的系数矩阵 c 11 c 12 … c 1n C = c 21 c 22 … c 2n … … … c n1 c n2 … c nn 是可逆矩阵,则称为可逆线性变量替换.下面讲的都是可 逆线性变量替换.变换式可用矩阵乘积写出:CY X =

第六章习题解答

第六章二极管与晶体管 6.1半导体导电和导体导电的主要差别有哪几点? 答:半导体导电和导体导电的主要差别有三点,一是参与导电的载流子不同,半导体中有电子和空穴参与导电,而导体只有电子参与导电;二是导电能力不同,在相同温度下,导体的导电能力比半导体的导电能力强得多;三是导电能力随温度的变化不同,半导体的导电能力随温度升高而增强,而导体的导电能力随温度升高而降低,且在常温下变化很小。 6.2杂质半导体中的多数载流子和少数载流子是如何产生的?杂质半导体中少数载流子的浓度与本征半导体中载流子的浓度相比,哪个大?为什么? 答:杂质半导体中的多数载流子主要是由杂质提供的,少数载流子是由本征激发产生的,由于掺杂后多数载流子与原本征激发的少数载流子的复合作用,杂质半导体中少数载流子的浓度要较本征半导体中载流子的浓度小一些。 6.3 什么是二极管的死区电压?它是如何产生的?硅管和锗管的死区电压的典型值是多少? 答:当加在二极管上的正向电压小于某一数值时,二极管电流非常小,只有当正向电压大于该数值后,电流随所加电压的增大而迅速增大,该电压称为二极管的死区电压,它是由二极管中PN的内电场引起的。硅管和锗管的死区电压的典型值分别是0.7V和0.3V。 6.4 为什么二极管的反向饱和电流与外加电压基本无关,而当环境温度升高时又显著增大? 答:二极管的反向饱和电流是由半导体材料中少数载流子的浓度决定的,当反向电压超过零点几伏后,少数载流子全部参与了导电,此时增大反向电压,二极管电流基本不变;而当温度升高时,本征激发产生的少数载流子浓度会显著增大,二极管的反向饱和电流随之增大。 6.5 怎样用万用表判断二极管的阳极和阴极以及管子的好坏。 答:万用表在二极管档时,红表笔接内部电池的正极,黑表笔接电池负极(模拟万用表相反),测量时,若万用表有读数,而当表笔反接时万用表无读数,则说明二极管是好

第6章二次型

第6章 二次型 在解析几何中,为了便于研究二次曲线 221ax bxy cy ++= 的几何性质,可以作适当的坐标旋转变换 { cos sin sin cos x x y y x y θθθθ ''=-''=+ 代入上式,则化成标准形式 221mx ny ''+= 标准方程便于画图和研究方程的性质. 二次齐次多项式的化简具有重要意义性,在许多理论问题与实际问题中常会遇到.现在我们把这类问题一般化,讨论n 个变量的二次齐次多项式的化简问题. 第1节 二次型及其矩阵 定义6.1 含有n 个变量12,,,n x x x ???的二次齐次函数 222 212111222333(,,,)n nn n f f x x x a x a x a x a x =???=+++???+ 121213131123232211222222,n n n n n n n n a x x a x x a x x a x x a x x a x x --+++++++++ 称为n 元二次型(其中2 ii i a x 称为平方项,()ij i j a x x i j ≠称为混乘项). 若取ij ji a a =,则2ij i j ij i j ji j i a x x a x x a x x =+,于是上式可以写成 21111212131311n n f a x a x x a x x a x x =+++???+ 2 21212222323222 112233n n n n n n n n nn n a x x a x a x x a x x a x x a x x a x x a x +++++++++++ 1111122133122112222332() ()n n n n x a x a x a x a x x a x a x a x a x =+++???+++++???++????????????????????????????????????????? , 1122331 1 () () n n n n nn n n n ij i j i j x a x a x a x a x a x x ==++++???+?∑∑

二次型的矩阵表示

§1 二次型的矩阵表示 一、二次型的定义 1.问题的引入 在解析几何中,我们看到,当坐标原点与中心重合时,一个有心二次曲线的一般方程是 ax 2+2bxy+cy 2=f (1) 为了便于研究这个二次曲线的几何性质,我们可以选择适当的角度θ,作转轴(反时针方向转轴) ? ?????+=-=θθθθcos sin sin cos ' '''y x y y x x (2) 把方程(1)化成标准方程。在二次曲面的研究中也有类似的情况。 (1)的左端是一个二次齐次多项式。从代数的观点看,所谓化标准方程就是用变量的线性替换(2)化简一个二次齐次多项式,使它只含有平方项。二次齐次多项式不但在几何中出现,而且在数学的其它分支以及物理、力学中也常常会碰到。这一章就是来介绍它的一些最基本的性质。 2.n 元二次型 设P 是一数域,一个系数在数域P 中的x 1,x 2,…,x n 的二次齐次多项式 f (x 1,x 2,…,x n ) = a 1121x +2a 12x 1x 2+…+2a 1n x 1x n +a 222 2x +… +2a 2n x 2x n +…+a nn x 2n (3)

称为数域P 上的一个n 元二次型,简称二次型。例如 x 21+x 1x 2+3x 1x 2+2x +4x 2x 3+3x 2 3 就是有理数域上的一个三元二次型。为了以后讨论上的方便,在(3)中,x i x j (i

线性代数第六章练习题

第六章练习题 一、 填空题 1. 设110100100000110,011,010,020003013000003A B C D ????????????????====???????????????????????? , 在,,B C D 中, 与A 等价的有 ; 与A 相似的有 ;与A 合同的有 . 2. 二次型123113(,,)361139T f x x x X X ?? ?= ? ??? ,它的矩阵是 ,它是 定二次型. 3. 设112 3 32000000,000000a a A a B a a a ????????==???????????? , 则当C = 时, .T C AC B = 4. 参数a 的取值范围是 时,二次型 222123123121323(,,)23224f x x x x ax x x x x x x x =++-+-是正定的二次型. 二、计算与证明题 1. 设二次型123121323(,,),f x x x x x x x x x =+- 1) 写出二次型123121323(,,)f x x x x x x x x x =+-的矩阵; 2) 二次型123(,,)f x x x 是不是正定二次型? 3) 用非退化线性替换X CY =化二次型123(,,)f x x x 为标准形, 并写出所用的线性替换. 2. 已知二次型2212313121323(,,)33484f x x x x x x x x x x x =++++, (1) 写出二次型的矩阵A ; (2)用正交线性替换X QY =, 化二次型123(,,)f x x x 为标准形; (3) 求实对称矩阵B , 使得3 .A B = 3. 实二次型222123123121323(,,)55266f x x x x x ax x x x x x x =++-+-的秩是2, 1)写出二次型123(,,)f x x x 的矩阵表示; 2)求参数a 及二次型123(,,)f x x x 的矩阵特征值;

第六章二次型总结

第六章二次型总结-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

第六章 二次型(一般无大题) 基本概念 1. 二次型: n 个变量12,, ,n x x x 的二次齐次函数 212111121213131122222 232322(,, ,)222222n n n n n nn n f x x x a x a x x a x x a x x a x a x x a x x a x =+++ ++++ ++ + 称为n 元二次型,简称二次型. 其中ij ji a a =,则 ()2 1211112121313112 21212222323222 11223311121121 22221 2 1 2 (,, ,)2n n n n n n n n n n n nn n n n n n n nn n T f x x x a x a x x a x x a x x a x x a x a x x a x x a x x a x x a x x a x a a a x a a a x x x x a a a x x Ax =+++ +++++ ++ +++++???? ??? ? ??= ??? ??????? = 因此,二次型也记AX X f T =,A 称为二次型f 的矩阵,二次型矩阵均为对称矩阵,且二次型与对称矩阵一一对应,并把矩阵A 例题:写出下列二次型的矩阵:(p 书126例6.1) 2.合同矩阵的定义及性质 2.1合同矩阵定义 设,A B 均为n 阶方阵,若存在可逆矩阵C ,使得T C AC B =,则称矩阵A 与B 合同,记A B ?.实对称矩阵A 与B 合同的充要条件是二次型T x Ax 与 T x Bx 有相同的正,负惯性指数.(A 的正, 负惯性指数:A 的特征值的个数) 合同是矩阵之间的另一种关系,它满足 (1)反身性,即T A E AE =; (2)对称性,即若T B C AC =,则有()11T A C BC --=; (3)传递性,若111T A C AC =和2212T A C AC =,则有()()21212T A C C A C C = 因此,经过非退化的线性替换,新二次型的矩阵与原二次型的矩阵是合同的. 在数域P 中要使两个二次型等价,充分必要条件就是它们的矩阵合同.

第六章习题与复习题(二次型)----高等代数

习题6.1 1.写出下列二次型的矩阵. (1)222 123123121323(,,)f x x x x x x x x x x x x =+++++ (2)12341223(,,,)f x x x x x x x x =- (3)1234135(,,,)246785T f x x x x X X ?? ?= ? ??? 2.将二次型 222 1231231223(,,)32810f x x x x x x x x x x =+-+- 表成矩阵形式,并求该二次型的秩. 3.设 A = ??? ? ? ? ?3210 000 00a a a ,B = ???? ? ? ?132 00000a a a 证明A 与B 合同,并求可逆矩阵C ,使得B =T C A C . 4.如果n 阶实对称矩阵A 与B 合同,C 与D 合同,证明A O B O O C O D ???? ? ????? 与合同. 习题6.2 1.用正交变换法化下列实二次型为标准形,并求出所用的正交变换. (1)222 12312323(,,)2334f x x x x x x x x =+++ 2.已知二次型2221231231223(,,)222f x x x x x x cx x x x =++++的秩为2. (1) 求c; (2) 求一正交变换化二次型为标准形. 3.已知二次型22 12323121323(,,)43248f x x x x x ax x x x x x =-+-+经正交变换化为标准形

222 1236,,f y y by a b =++求的值与所用正交变换. 22224. 222444,,. x x ay z bxy xy yz y Q z a b Q ξηζηζ???? ? ? +++++== ? ? ? ????? +=2已知二次曲面方程可经正交变换化为椭圆柱面 方程求的值与正交矩阵 5.用配方法化下列二次型为标准形,并求出所用的可逆线性变换. (1)222 123123121323(,,)25228f x x x x x x x x x x x x =+++++ 6.在二次型f (x 1,x 2,x 3 )=213232221)()()(x x x x x x -+-+-中,令 ??? ??-=-=-=133 3222 11x x y x x y x x y 得f =2 3 2221y y y ++可否由此认定上式为原二次型f 的标准形且原二次型的秩为3 ?为什么?若结论是否定的,请你将f 化为标准形并确定f 的秩. 7.判断矩阵01111213A B ???? == ? ????? 与是否合同. 习题6.3 1.判定下列实二次型的正定性. (1)222 1231231223(,,)23442f x x x x x x x x x x =++-- (2)222123123121323(,,)23222f x x x x x x x x x x x x =---+-+ (3)123121323(,,)5f x x x x x x x x x =+- (4)∑∑≤<≤=+ n j i j i n i i x x x 11 2 2. a 为何值时,实二次型222123123121323(,,)(2)22f x x x x a x ax x x x x x x =++++--是正定 的.

二次型及其矩阵

第五章 二次型 在解析几何中,为了便于研究二次曲线 122=++cy bxy ax 的几何性质,可以选择适当的坐标旋转变换 ? ??'+'='-'=θθθ θcos sin sin cos y x y y x x 把方程化为标准形式 122='+'y c x m . 这类问题具有普遍性,在许多理论问题和实际问题中常会遇到,本章将把这类问题一般化,讨论n 个变量的二次多项式的化简问题. 第一节 二次型及其矩阵 分布图示 ★ 引言 ★ 二次型的定义 ★ 例1 ★ 二次型的矩阵形式 ★ 例2 ★ 例3 ★ 例4 ★ 例5 ★ 线性变换 ★ 例6 ★ 矩阵的合同 ★ 内容小结 ★ 习题5-1 内容要点 一、二次型的概念 定义1 含有n 个变量n x x x ,,,21 的二次齐次函数 n n n n n n n n n nn n x x a x x a x x a x x a x x a x a x a x a x x x f 1,12232231121122 222221112122222),,,(--+++++++++++= 称为二次型. 当ij a 为复数时,f 称为复二次型;当ij a 为实数时,f 称为实二次型.在本章中只讨论实二次型. 只含有平方项的二次型 2222211n n y k y k y k f +++= 称为二次型的标准型 (或法式). 二、二次型的矩阵 取ij ji a a =,则,2i j ji j i ij j i ij x x a x x a x x a +=于是

∑== ++++++++++++=n j i j i ij n nn n n n n n n n n n x x a x a x x a x x a x x a x a x x a x x a x x a x a x x x f 1 ,22211222 22212211121122 11121),,,( ) ()()(22112222121212121111n nn n n n n n n n x a x a x a x x a x a x a x x a x a x a x ++++++++++++= . ),,,(),,,(212 122221 112 1121221122 22121121211121AX X x x x a a a a a a a a a x x x x a x a x a x a x a x a x a x a x a x x x T n nn n n n n n n nn n n n n n n n =??? ? ? ? ? ????????? ??=? ?????? ??+++++++++= 其中 ?? ? ? ? ? ? ??=???? ?? ? ??=nn n n n n n a a a a a a a a a A x x x X 2 122221 1121121, . 称AX X x f T =)(为二次型的矩阵形式. 其中实对称矩阵A 称为该二次型的矩 阵.二次型f 称为实对称矩阵A 的二次型. 实对称矩阵A 的秩称为二次型的秩. 于是,二次型f 与其实对称矩阵A 之间有一一对应关系. 三、线性变换 定义2 关系式 ????? ??+++=+++=+++=n nn n n n n n n n y c y c y c x y c y c y c x y c y c y c x 21122212121121111 称为由变量n x x x ,,,21 到n y y y ,,,21 的线性变换. 矩阵 ?? ? ? ? ? ? ??=nn n n n n c c c c c c c c c C 2 1222 21112 11 称为线性变换矩阵. 当0||≠C 时,称该线性变换为可逆线性变换. 对于一般二次型AX X X f T =)(,我们的问题是:寻求可逆的线性变换CY X =将二次型化为标准型,将其代入得

线性代数习题相似矩阵及二次型

5-1向量的内积与方阵的特征值 1.设λ为矩阵A 的特征值,且0≠λ,则 λ A 为 的特征值。 ;.; .; .; .1*1--A d A c A b A a λλ 2.设A 为n 阶实对称阵,21,x x 为A 的不同特征值对应的特征向量,则 。 1.21=x x a T 1.x b 与2x 线性相关; 1.x c 与2x 线性无关; 0.21=+x x d 3.设21,λλ都为n 阶矩阵A 的特征值)(21λλ≠,且21,x x 分别为对应于21,λλ的特征向量,则当 满足时,2211x k x k x +=必为A 的特征向量。 0.1=k a 且02=k ; 0.1=k b 且02≠k ; 0.1≠k c 且02≠k ; 0.21=?k k d 4.设n 阶方阵A 的特征值全不为零,则 。 n A r d n A r c n A r b n A r a <≤≠=)(.;)(.;)(.;)(. 5.设矩阵??? ? ? ??--=314020112A ,求A 的特征值及特征向量.

6.试用施密特法把向量组?? ??? ???? ???---=011 101110 11 1),,(321a a a 正交化。 7.设A 与B 都为n 阶正交阵,证明:AB 也是正交阵。 8.证明:正交阵的行列式必定等于1或—1。 9.设x 为n 维列向量且1=x x T ,而T xx E H 2-=,试证H 是对称的正交矩阵。

习题5-2 相似矩阵与对称矩阵的对角化 1.设A 与B 为n 阶方阵,则B A =是A 与B 相似的 。 .a 充分条件; .b 必要条件; .c 充要条件; .d 无关 条件 2.对实对称阵?? ? ???-=???? ??=10 01,10 01 B A ,有A 与B 。 .a 互为逆矩阵; .b 相似; .c 等价; .d 正交 3. n 阶矩阵A 与对角阵相似的充要条件是 。 a. 矩阵A 有n 个特征值; b. 矩阵A 有n 个线性无关的特 征向量; c. 矩阵A 的行列式0≠A ; d. 矩阵A 的特征多项式有重根 4. 设n 阶矩阵A 与B 相似,则 。 a.A 与B 正交; b. A 与B 有相同的特征向量; c. A 与B 等价; d. A 与B 相同的特征值。 5.若A 与B 是相似矩阵,证明T A 与T B 也相似。

二次型及其矩阵表示

第六章 二次型 第一讲 二次型及其矩阵表示、标准形 教 学 目 的:通过本节的学习,使学生了解并掌握二次型的基本概念及其矩 阵表示方法. 教学重点与难点:二次型的矩阵表示 教学计划时数:2课时 教 学 过 程: 一、二次型的概念 定义1:含有n 个变量n x x x ,,,21 的二次齐次函数 22 2 121112221212112323221,1(,, ,)22222n nn n n n n n n n n n f x x x a x a x a x a x x a x x a x x a x x a x x --=+++++ ++++++ (1) 称为二次型. 附:1、当ij a 为复数时,f 称为复二次型;当ij a 为实数时,f 称为实二次型; 2、ij a 可以等于0,即(1)式中的各项都存在. 例1 ()2 2 2 12312313,,2454f x x x x x x x x =++-;()123121323,,f x x x x x x x x x =++ 都为实二次型; 二、二次线性与对称矩阵 在(1)式中,取ij ji a a =,则,2i j ji j i ij j i ij x x a x x a x x a +=令12(,,,)T n x x x x =,则(1) 式可化为 11121121 222212121 2 (,,,)(,, ,).n n T n n n n nn n a a a x a a a x f x x x x x x x Ax a a a x ???? ??? ??? == ??? ??????? 称12(,, ,)T n f x x x x Ax =为二次型的矩阵形式,记为()T f x x Ax =,其中实对称矩阵A 称 为该二次型的矩阵.二次型f 称为实对称矩阵A 的二次型.实对称矩阵A 的秩称为二次型f 的秩,即()()R A R f =.

线性代数第六章二次型试题(卷)与答案解析

第六章 二次型 一、基本概念 n 个变量的二次型是它们的二次齐次多项式函数,一般形式为 f(x 1,x 2,…,x n )= a 11x 12+2a 12x 1x 2+2a 13x 1x 3+…+2a 1n x 1x n + a 22x 22+2a 23x 1x 3+ …+2a 1n x 1x n + …+a nn x n 2 =21 2n ii i ij i j i i j a x a x x =≠+∑∑. 它可以用矩阵乘积的形式写出:构造对称矩阵A ???? ?? ? ????????? ??==∑∑==n nn n n n n n n i n j j i ij n x x x a a a a a a a a a x x x x x a x x x f M ΛM M M Λ Λ ΛΛ212 122221112112111 21),,(),,( 记[]T x x x X Λ,,21=,则f(x 1,x 2,…,x n )= X T AX 称对称阵A 为二次型f 的矩阵, 称对称阵A 的秩为二次型f 的秩. 注意:一个二次型f 的矩阵A 必须是对称矩阵且满足AX X f T =,此时二次 型的矩阵是唯一的,即二次型f 和它的矩阵A (A 为对称阵)是一一对应的,因此,也把二次型f 称为对称阵A 的二次型。 实二次型 如果二次型的系数都是实数,并且变量x 1,x 2,…,x n 的变化围也限定为实数,则称为实二次型.大纲的要求限于实二次型. 标准二次型 只含平方项的二次型,即形如2 222211n n x d x d x d f +++=Λ 称为二次型的标准型。 规二次型 形如2 21221q p p p x x x x ++--+ΛΛ的二次型,即平方项的系数只 1,-1,0,称为二次型的规型。 二、可逆线性变量替换和矩阵的合同关系 对二次型f(x 1,x 2,…,x n )引进新的变量y 1,y 2,…,y n ,并且把x 1,x 2,…,x n 表示为它们的齐一次线性函数 ?? ???? ?+++=+++=+++=n nn n n n n n n n y c y c y c x y c y c y c x y c y c y c x ΛM ΛΛ22112222121212121111 代入f(x 1,x 2,…,x n )得到y 1,y 2,…,y n 的二次型g(y 1,y 2,…,y n ). 把上述过程称为对二次型f(x 1,x 2,…,x n )作了线性变量替换,如果其中的系数矩阵 c 11 c 12 … c 1n C = c 21 c 22 … c 2n … … … 12 …n 是可逆矩阵,则称为可逆线性变量替换.下面讲的都是可逆线性变量替换.变换式可用矩阵乘积写出:CY X = Y AC C Y CY A CY AX X f T T T T )()()(===

线性代数二次型习题及答案

第六章 二次型 1.设方阵1A 与1B 合同,2A 与2B 合同,证明1 2A ?? ?? ?A 与12?? ???B B 合同。 证:因为1A 与1B 合同,所以存在可逆矩1C ,使T 1111=B C A C , 因为2A 与2B 合同,所以存在可逆矩2C ,使T 2222=B C A C . 令 12?? = ??? C C C ,则C 可逆,于是有 T T 1111111 T 2222222??????????== ? ? ? ?????????????B C A C C AC B C A C C A C 1T 2?? = ??? A C C A 即 12A ?? ???A 与12?? ??? B B 合同. 2.设A 对称,B 与A 合同,则B 对称 证:由A 对称,故T =A A 。 因B 与A 合同,所以存在可逆矩阵C ,使T =B C AC ,于是 T T T T T T ()====B C AC C A C C AC B 即B 为对称矩阵. 3.设A 是n 阶正定矩阵,B 为n 阶实对称矩阵,证明:存在n 阶可逆矩阵P ,使 BP P AP P T T 与均为对角阵. 证:因为A 是正定矩阵,所以存在可逆矩阵M ,使 E AM M =T 记T 1=B M BM ,则显然1B 是实对称矩阵,于是存在正交矩阵Q ,使 T 11diag(, ,)n D μμ==Q B Q T 11, ,. n μμ=B M BM 其中为的特征值 令P=MQ ,则有 D BP P E AP P ==T T , ,A B 同时合同对角阵。 4.设二次型211 1 ()m i in n i f a x a x == + +∑,令()ij m n a ?=A ,则二次型f 的秩等于()r A 。 证:方法一 将二次型f 写成如下形式: 2111 ()m i ij j in n i f a x a x a x ==+ ++ +∑ 设A i = 1(,,,,)i ij in a a a ),,1(m i =

第六章 二次型总结

第六章 二次型(一般无大题) 基本概念 1. 二次型: n 个变量12,, ,n x x x 的二次齐次函数 212111121213131122222 232322(,, ,)222222n n n n n nn n f x x x a x a x x a x x a x x a x a x x a x x a x =+++ ++++ ++ + 称为n 元二次型,简称二次型. 其中ij ji a a =,则 ()2 1211112121313112 21212222323222 11223311121121 22221 2 1 2 (,, ,)2n n n n n n n n n n n nn n n n n n n nn n T f x x x a x a x x a x x a x x a x x a x a x x a x x a x x a x x a x x a x a a a x a a a x x x x a a a x x Ax =+++ +++++ ++ +++++???? ??? ? ??= ??? ??????? = 因此,二次型也记AX X f T =,A 称为二次型f 的矩阵,二次型矩阵均为对称矩阵,且二次型与对称矩阵一一对应,并把矩阵A 的秩称为二次型的秩,记作R (f )=R (A ). 例题:写出下列二次型的矩阵:(p 书126例6.1) 2.合同矩阵的定义及性质 2.1合同矩阵定义 设,A B 均为n 阶方阵,若存在可逆矩阵C ,使得T C AC B =,则称 矩阵A 与B 合同,记A B ?.实对称矩阵A 与B 合同的充要条件是二次型T x Ax 与T x Bx 有相同的 正,负惯性指数.(A 的正, 负惯性指数:A 的特征值的个数) 合同是矩阵之间的另一种关系,它满足 (1)反身性,即T A E AE =; (2)对称性,即若T B C AC =,则有()11T A C BC --=; (3)传递性,若111T A C AC =和2212T A C AC =,则有()()21212T A C C A C C = 因此,经过非退化的线性替换,新二次型的矩阵与原二次型的矩阵是合同的. 在数域P 中要使两个二次型等价,充分必要条件就是它们的矩阵合同. 2.2 合同矩阵的性质

线性代数第六章二次型试题及答案解析

* * 第六章 二次型 一、基本概念 n 个变量的二次型是它们的二次齐次多项式函数,一般形式为 f(x 1,x 2, …,x n )= a 11x 12+2a 12x 1x 2+2a 13x 1x 3+…+2a 1n x 1x n + a 22x 22+2a 23x 1x 3+ …+2a 1n x 1x n + …+a nn x n 2 =21 2n ii i ij i j i i j a x a x x =≠+∑∑. 它可以用矩阵乘积的形式写出:构造对称矩阵A ? ???? ?? ????????? ??==∑∑==n nn n n n n n n i n j j i ij n x x x a a a a a a a a a x x x x x a x x x f 212 122221112112111 21),,(),,( 记[]T x x x X ,,21=,则f(x 1,x 2,…,x n )= X T AX 称对称阵A 为二次型f 的矩阵, 称对称阵A 的秩为二次型f 的秩. 注意:一个二次型f 的矩阵A 必须是对称矩阵且满足AX X f T =,此时二次 型的矩阵是唯一的,即二次型f 和它的矩阵A (A 为对称阵)是一一对应的,因此, 也把二次型f 称为对称阵A 的二次型。 实二次型 如果二次型的系数都是实数,并且变量x 1,x 2,…,x n 的变化范围也限定 为实数,则称为实二次型.大纲的要求限于实二次型. 标准二次型 只含平方项的二次型,即形如2 222211n n x d x d x d f +++= 称为二次型的标准型。 规范二次型 形如2 21221q p p p x x x x ++--+ 的二次型,即平方项的系数只 1,-1,0,称为二次型的规范型。 二、可逆线性变量替换和矩阵的合同关系 对二次型f(x 1,x 2,…,x n )引进新的变量y 1,y 2,…,y n ,并且把x 1,x 2,…,x n 表示为它们的齐一次线性函数 ?? ???? ?+++=+++=+++=n nn n n n n n n n y c y c y c x y c y c y c x y c y c y c x 22112222121212121111 代入f(x 1,x 2,…,x n )得到y 1,y 2,…,y n 的二次型g(y 1,y 2,…,y n ). 把上述过程称为对二次型f(x 1,x 2,…,x n )作了线性变量替换,如果其中的系数矩阵 c 11 c 12 … c 1n C = c 21 c 22 … c 2n … … … c n1 c n2 … c nn 是可逆矩阵,则称为可逆线性变量替换.下面讲的都是可 逆线性变量替换.变换式可用矩阵乘积写出:CY X =

线性代数二次型习题及答案 2

线性代数二次型习题及答案 2 第六章 二次型 1.设方阵1A 与1B 合同,2A 与2B 合同,证明1 2A ?? ???A 与12?? ???B B 合同、 证:因为1A 与1B 合同,所以存在可逆矩1C ,使T 1111=B C A C , 因为2A 与2B 合同,所以存在可逆矩2C ,使T 2222=B C A C 、 令 12?? = ??? C C C ,则C 可逆,于就是有 T T 1111111 T 2222222??????????== ? ? ? ?????????????B C A C C AC B C A C C A C 1T 2?? = ??? A C C A 即 12A ?? ?? ?A 与12?? ???B B 合同、 2、设A 对称,B 与A 合同,则B 对称 证:由A 对称,故T =A A . 因B 与A 合同,所以存在可逆矩阵C ,使T =B C AC ,于就是 T T T T T T ()====B C AC C A C C AC B 即B 为对称矩阵. 3、设A 就是n 阶正定矩阵,B 为n阶实对称矩阵,证明:存在n 阶可逆矩阵P ,使 BP P AP P T T 与均为对角阵、 证:因为A 就是正定矩阵,所以存在可逆矩阵M ,使 E AM M =T 记T 1=B M BM ,则显然1B 就是实对称矩阵,于就是存在正交矩阵Q ,使 T 11diag(, ,)n D μμ==Q B Q T 11, ,. n μμ=B M BM 其中为的特征值 令P=MQ ,则有 D BP P E AP P ==T T , ,A B 同时合同对角阵、 4.设二次型211 1 ()m i in n i f a x a x == + +∑,令()ij m n a ?=A ,则二次型f 的秩等于()r A 、 证:方法一 将二次型f 写成如下形式: 2111 ()m i ij j in n i f a x a x a x ==+ ++ +∑

线性代数二次型习题及答案

·107· 第六章 二次型 1.设方阵1A 与1B 合同,2A 与2B 合同,证明1 2A ?? ?? ?A 与12?? ???B B 合同. 证:因为1A 与1B 合同,所以存在可逆矩1C ,使T 1111=B C A C , 因为2A 与2B 合同,所以存在可逆矩2C ,使T 2222=B C A C . 令 12?? = ??? C C C ,则C 可逆,于是有 T T 1111 111 T 2222222??????????== ? ? ? ?????????????B C A C C AC B C A C C A C 1 T 2?? = ??? A C C A 即 12A ?? ???A 与12?? ??? B B 合同. 2.设A 对称,B 与A 合同,则B 对称 证:由A 对称,故T =A A . 因B 与A 合同,所以存在可逆矩阵C ,使T =B C AC ,于是 T T T T T T ()====B C AC C A C C AC B 即B 为对称矩阵. 3.设A 是n 阶正定矩阵,B 为n 阶实对称矩阵,证明:存在n 阶可逆矩阵P ,使 BP P AP P T T 与均为对角阵. 证:因为A 是正定矩阵,所以存在可逆矩阵M ,使 E AM M =T 记T 1=B M BM ,则显然1B 是实对称矩阵,于是存在正交矩阵Q ,使 T 11diag(, ,)n D μμ==Q B Q T 11, ,. n μμ=B M BM 其中为的特征值 令P=MQ ,则有 D BP P E AP P ==T T , ,A B 同时合同对角阵. 4.设二次型211 1 ()m i in n i f a x a x == + +∑,令()ij m n a ?=A ,则二次型f 的秩等于()r A . 证:方法一 将二次型f 写成如下形式: 2111 ()m i ij j in n i f a x a x a x ==+ ++ +∑ 设A i = 1(, ,,,)i ij in a a a ),,1(m i =

第六章二次型

第六章 二 次 型 内容提要 一、基本概念 1.二次型 含有n 个变量n x x x ,,,21 的二次齐次多项式 n n n x x a x x a x x a x a x x x f 11311321122 11121222),,,(+++= n n x x a x x a x a 223223222222++++ ++ 2n nn x a 称为一个(n 元)二次型.本章只讨论实二次型,即系数全是实数的二次型. 由于i j j i x x x x =,具有对称性,若令ij ji a a =,j i <,则 i j ji j i ij j i ij x x a x x a x x a +=2,j i <. 于是可以写成对称形式 n n n x x a x x a x x a x a x x x f 1131132112211121),,,(++++= n n x x a x x a x a x x a 22322322221221+++++ + 2332211n nn n n n n n n x a x x a x x a x x a +++++ ∑∑===n i n j j i ij x x a 1 1 . 记 ?? ???? ??= nn n n n n a a a a a a a a a A 2 1 22221 11211, ????? ? ??=n x x x X 21, 则二次型可以用矩阵形式表示为 AX X x x x f T n =),,,(21 . 我们把A 称为二次型对应的矩阵,A 是一个对称矩阵.事实上,由一个实对称矩阵也可构造唯一的实二次型,也就是说,实二次型与实对称矩阵是互相唯一确定的,所以,研究二次型的性质可以转化为研究A 所具有的性质. 2.二次型的标准形和规范形 标准形 2222222121n n y b y b y b f +++= ,

线性代数第六章二次型试题及答案

1 第六章 二次型 一、基本概念 n 个变量的二次型就是它们的二次齐次多项式函数,一般形式为 f(x 1,x 2,…,x n )= a 11x 12+2a 12x 1x 2+2a 13x 1x 3+…+2a 1n x 1x n + a 22x 22+2a 23x 1x 3+ …+2a 1n x 1x n + …+a nn x n 2 =21 2n ii i ij i j i i j a x a x x =≠+∑∑、 它可以用矩阵乘积的形式写出:构造对称矩阵A ???? ?? ? ????????? ??==∑∑==n nn n n n n n n i n j j i ij n x x x a a a a a a a a a x x x x x a x x x f M ΛM M M Λ ΛΛΛ212 122221112112111 21),,(),,( 记[]T x x x X Λ,,21=,则f(x 1,x 2,…,x n )= X T AX 称对称阵A 为二次型f 的矩阵, 称对称阵A 的秩为二次型f 的秩、 注意:一个二次型f 的矩阵A 必须就是对称矩阵且满足AX X f T =,此时二次 型的矩阵就是唯一的,即二次型f 与它的矩阵A(A 为对称阵)就是一一对应的,因此, 也把二次型f 称为对称阵A 的二次型。 实二次型 如果二次型的系数都就是实数,并且变量x 1,x 2,…,x n 的变化范围也限定为实数,则称为实二次型、大纲的要求限于实二次型、 标准二次型 只含平方项的二次型,即形如2 222211n n x d x d x d f +++=Λ 称为二次型的标准型。 规范二次型 形如2 2 12 2 1q p p p x x x x ++--+ΛΛ的二次型,即平方项的系数只 1,-1,0,称为二次型的规范型。 二、可逆线性变量替换与矩阵的合同关系 对二次型f(x 1,x 2,…,x n )引进新的变量y 1,y 2,…,y n ,并且把x 1,x 2,…,x n 表示为它们的 齐一次线性函数 ?? ???? ?+++=+++=+++=n nn n n n n n n n y c y c y c x y c y c y c x y c y c y c x ΛM ΛΛ22112222121212121111 代入f(x 1,x 2,…,x n )得到y 1,y 2,…,y n 的二次型g(y 1,y 2,…,y n )、 把上述过程称为对二次型f(x 1,x 2,…,x n )作了线性变量替换,如果其中的系数矩阵 c 11 c 12 … c 1n C = c 21 c 22 … c 2n … … … c n1 c n2 … c nn 就是可逆矩阵,则称为可逆线性变量替换、下面讲的都就是可逆线性变量替换、变换式可用矩阵乘积写出:CY X = Y AC C Y CY A CY AX X f T T T T )()()(=== 记AC C B T =,则B B T =,从而BY Y f T =。 由AC C B T =知,两个n 阶对称矩阵A 与B 合同且r(A)=r(B) 定理1:二次型AX X f T =经可逆线性变换CY X =后,变成新的二次型 BY Y f T =,它的矩阵AC C B T =且)()(B r A r = 定理2:两个二次型可以用可逆线性变量替换互相转化的充分必要条件为它们的矩阵合同、 三、正交变换化二次型为标准型 定理3:对实二次型AX X f T =,其中A A T =,总有正交变换QY X =,使2 222211)(n n T T T T y y y Y Y Y AQ Q Y AX X f λλλΛ++=Λ=== 其中 ????? ???? ?? ?=Λn λλλO 2 1 ,λ为f 的矩阵A 的特征值。

相关主题
文本预览
相关文档 最新文档