当前位置:文档之家› 实验一 金属箔式应变计性能—应变电桥

实验一 金属箔式应变计性能—应变电桥

实验一 金属箔式应变计性能—应变电桥

实验目的:

1、观察了解箔式应变片的结构及粘贴方式;

2、测试应变梁变形的应变输出;

3、熟悉传感器常用参数的计算方法。 实验原理:

本实验说明箔式应变片及直流电桥的原理和工作情况。 应变片是最常用的测力传感元件。当用应变片测试时,应变片要牢固地粘贴在测试体表面,测件受力发生形变,应变片的敏感栅随同变形,其电阻值也随之发生相应的变化。通过测量电路,转换成电信号输出显示。

电桥电路是最常用的非电量电测电路中的一种,当电桥平衡时,桥路对臂电阻乘积相等,电桥输出为零,在桥臂四个电阻R 1、R 2、R 3、R 4中,电阻的相对变化率分别为ΔR l /R l 、ΔR 2/R 2、ΔR 3/R 3、ΔR 4/R 4,当使用一个应变片时,R

R=

R

?∑;当二个应变片组成差动状态工作,则有

2R

R=

R

?∑;用四个应变片组成二个差动对工作,且R 1= R 2= R 3= R 4=R ,4R

R=

R

?∑。 实验所需部件:

直流稳压电源土4V 、应变式传感器实验模块、贴于主机工作台悬臂梁上的箔式应变计、螺旋测微仪、数字电压表。 实验步骤:

1、连接主机与模块电路电源连接线,差动放大器增益置于最大位置〈顺时针方向旋到底),差动放大器"+" "一"输入端对地用实验线短路。输出端接电压表2V 挡。开启主机电源,用调零电位器调整差动放大器输出电压为零,然后拔掉实验线,调零后模块上的"增益、调零"电位器均不应再变动。

(图1)

2、观察贴于悬臂梁根部的应变计的位置与方向,按(图1)将所需实验部件连接成测试桥路,图中R 1、R 2、R 3分别为模块上的固定标准电阻,R 为应变计〈可任选上梁或下梁中的一个

工作片),图中每两个节之间可理解为一根实验连接线,注意连接方式,勿使直流激励电源短路。

将螺旋测微仪装于应变悬臂梁前端永久磁钢上,并调节测微仪使悬臂梁基本处于水平位置。

3、确认接线无误后开启主机,并预热数分钟,使电路工作趋于稳定。调节模块上的WD电位器,使桥路输出为零。

4、用螺旋测微仪带动悬臂梁分别向上和向下位移各5mm,每位移1mm记录一个输出电压

根据表中所测数据在坐标图上做出v-x曲线,计算灵敏度S:S=ΔV / Δx;非线性δL =Δmax/y F..·S ×100%;迟滞δH=±ΔHmax/y F..·S ×100%;精确度A=ΔA/y F..·S ×100%。式中Δmax为输出值与拟合直线(用最小二乘法找出)的最大偏差;y F·S满量程输出平均值,此处为5mm时的输出值。

注意事项:

1、实验前应检查实验连接线是否完好,学会正确插拔连接线,这是顺利完成实验的基本保证。

2、由于悬臂梁弹性恢复的滞后及应变片本身的机械滞后,所以当螺旋测微仪回到初始位置后桥路电压输出值并不能马上回到零,此时可一次或几次将螺旋测微仪反方向旋动一个较大位移,使电压值回到零后再进行反向采集实验。

3、做单臂电桥实验时,由于应变片的零漂和蠕变现象的客观存在,桥路中的三个精密电阻与应变片的零漂值一致的可能性很小,如果没有采用补偿的话,单臂电桥测试电路必然会出现输出电压漂移现象,这是真实地反映了应变片的特性,但是只要采用了半桥或全桥测试电路,系统就会非常稳定,这是因为同一批次的应变片的漂移和蠕变特性相近,接成半桥和全桥形式后根据桥路的拥减特性原理就起到了非常好的补偿作用,这也是应变片在实际应用中无一例外地采用全桥(或半桥〉测试电路的原因。

4、因为是小信号测试,所以调零后做实验时电压表应置2V档,实验中要尽量避免外界信号干扰。

五、思考题:

单臂电桥时,作为桥臂电阻应变片应选用:(1)正(受拉)应变片(2)负(受压)应变片(3)正、负

金属箔式应变片——单臂电桥性能实验1

金属箔式应变片——单臂电桥性能实验实验报告 一、实验目的: 了解金属箔式应变片的应变效应,单臂电桥工作原理和性能。 二、实验仪器: 应变传感器实验模块、托盘、砝码、数显电压表、±15V 、±4V 电源、万用表(自备)。 三、实验原理: 电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为 ε?=?k R R (1-1) 式中 R R ?为电阻丝电阻相对变化; k 为应变灵敏系数; l l ?=ε为电阻丝长度相对变化。 金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感组件。如图1-1所示,将四个金属箔应变片分别贴在双孔悬臂梁式弹性体的上下两侧,弹性体受到压力发生形变,应变片随弹性体形变被拉伸,或被压缩。 图1-1 双孔悬臂梁式称重传感器结构图 通过这些应变片转换弹性体被测部位受力状态变化,电桥的作用完成电阻到电压的比例变化,如图1-2所示R5=R6=R7=R 为固定电阻,与应变片一起构成一个单臂电桥,其输出电压 R R R R E U ??+??=211/40 (1-2) E 为电桥电源电压; 式1-2表明单臂电桥输出为非线性,非线性误差为L=%10021???- R R 。

图1-2 单臂电桥面板接线图 四、实验内容与步骤 1.应变传感器上的各应变片已分别接到应变传感器模块左上方的R1、R2、R3、R4上,可用万用表测量判别,R1=R2=R3=R4=350Ω。 2.差动放大器调零。从主控台接入±15V电源,检查无误后,合上主控台电源开关,将差动放大器的输入端Ui短接并与地短接,输出端Uo2接数显电压表(选择2V档)。将电位器Rw3调到增益最大位置(顺时针转到底),调节电位器Rw4使电压表显示为0V。关闭主控台电源。(Rw3、Rw4的位置确定后不能改动) 3.按图1-2连线,将应变式传感器的其中一个应变电阻(如R1)接入电桥与R5、R6、R7构成一个单臂直流电桥。 4.加托盘后电桥调零。电桥输出接到差动放大器的输入端Ui,检查接线无误后,合上主控台电源开关,预热五分钟,调节Rw1使电压表显示为零。 5.在应变传感器托盘上放置一只砝码,读取数显表数值,依次增加砝码和读取相应的数显表值,直到200g砝码加完,记下实验结果,填入下表。 6.实验结束后,关闭实验台电源,整理好实验设备。 五、数据记录与分析 1、数据记录表格 2、用matlab绘制W-U曲线图如下图所示

直流平衡电桥测电阻实验报告材料

大连理工大学 大 学 物 理 实 验 报 告 院(系) 材料学院 专业 材料物理 班级 0705 姓 名 童凌炜 学号 200767025 实验台号 实验时间 2008 年 12 月 10 日,第16周,星期 三 第 5-6 节 实验名称 直流平衡电桥测电阻 教师评语 实验目的与要求: 1) 掌握用单臂电桥测电阻的原理, 学会测量方法。 2) 掌握用双臂电桥测电阻的原理, 学会测量方法。 主要仪器设备: 1) 单臂电桥测电阻:QJ24型直流单臂电桥,自制惠更斯通电桥接线板,检流计,阻尼开关、四位 标准电阻箱、滑线变阻器、电路开关、三个带测电阻、电源; 2) 双臂电桥测电阻:QJ44型直流双臂电桥,待测铜线和铁线接线板、电源、米尺和千分尺。 实验原理和内容: 1 直流单臂电桥(惠斯通电桥) 1.1 电桥原理 单臂电桥结构如右图所示, 由四臂一桥组成; 电桥平衡条件是BD 两点电位相等, 桥上无电流通过, 此时有关系s s x R M R R R R ?== 2 1 成立, 其中M=R1/R2称为倍率, Rs 为四位标准电阻箱(比较臂), Rx 为待测电阻(测量臂)。 1.2 关于附加电阻的问题: 附加电阻指附加在带测电阻两端的导线电阻与接触 电阻, 如上图中的r1, r2, 认为它们与Rx 串联。如果R x 远大于r ,则r 1+r 2可以忽略不计,

但是当R x 较小时,r 1+r 2就不可以忽略不计了,因此单臂电桥不适合测量低值电阻, 在这种情况下应当改用双臂电桥。 2 双臂电桥(开尔文电桥) 2.1 双臂电桥测量低值电阻的原理 双臂电桥相比单臂电桥做了两点改进, 增加R3、R4两个高值电桥臂, 组成六臂电桥;将Rx 和Rs 两个低值电阻改用四端钮接法, 如右图所示。在下面的计算推导中可以看到, 附加电阻通过等效和抵消, 可以消去其对最终测量值的影响。 2.2 双臂电桥的平衡条件 双臂电桥的电路如右图所示。 在电桥达到平衡时,有1234\\R R R R =,由基尔霍夫第二定律及欧姆定律可得并推导得: 31123 3141312242342 431323424 33112424 ()0x S x x x x x x I R I R I R R R R r R I R I R I R R R R R R r R R R R R R R M R I r I r R R R R R R R R R R R R ? =-? ??? ?=-?=+-? ??++?????===?=++?? ??=?-=?? 可见测量式与单臂电桥是相同的, R1/R2=R3/R4=M 称为倍率(此等式即消去了r 的影响), Rs 为比较臂, Rx 为测量臂。 使用该式, 即可测量低值电阻。 步骤与操作方法: 1. 自组惠斯通电桥测量中值电阻 a) 按照电路图连接电路, 并且根据待测电阻的大小来选择合适的M 。 b) 接通电路开关, 接通检流计开关; 调节电阻箱Rs 的阻值(注意先大后小原则), 使检流 计指零, 记下电阻箱的阻值Rs c) 重复以上步骤测量另外两个待测电阻值。 2. 使用成品单臂电桥测量中值电阻 a) 单臂成品电桥的面板如下页右上图所示。

电桥的和差特性

实验六 电桥的和差特性 一、 目的 1.加深理解并验证电桥和差特性,为实测组桥打下基础。 2.掌握静态电阻应变仪全桥测量法。 二、 要求 使用YJD —1型静态电阻应变仪,按照所要求的六种全桥接线进行测量,比较其结果,以验证电桥和差特性分析的结论,电桥相邻两臂应变片有同号变化(应变)时输出电压为两者之差,异号为两者之和(简述为“邻臂同号相减,异号相加”),当相对两臂应变有同号电阻变化时输出电压为两者之和,异号为两者之差(简称为“对臂同号相加,异号相减”)。 三、 实验原理 根据图3—1等臂电桥的输出电压公式: R R R R R E U ) (4321?-?-?-?- =? 图3—1 等臂电桥工作情况 可知,通过改变桥臂应变片所受拉压应变情况以改变桥臂电阻变化情况,可使电桥的输出电压具有和差特性。 四、 需用仪器设备和工具材料 调压变压器 1台

YJD—1静动态电阻应变仪1套 贴好应变片的等强度梁2套 万用表1块 螺丝刀、连接导线等 五、实验步骤 1.按图3—2要求,选用标定梁上所贴应变片组成全桥接入应变仪,接好仪器连接线,检查仪器各开关处于初始位置,请知道教师检查合格后,接通电源,按静态应变测量方法进行仪器调整,直至加载测量。 2.按电桥单臂工作情况(图3—2),对标定梁加载一次(5牛),记下应变仪输出应变读数ε读(με)。 3.同理,如图3—3所示“邻臂同号”和“异号”两种要求,图3—4所示“对臂同号”和“异号”两种要求及图3—5所示“四臂异号”工作要求,分别接线和各加载一次(5牛),记录相应的仪器输出应变读数ε读(每次改变电桥接线时,选择开关均应旋到“A”上,改变后重新调整电桥平衡)。 所得数据填入下表: 接桥方法单臂邻臂同号邻臂异号对臂同号对臂异号四臂异号 输出ε读(ε) 与单臂比值 加载重量(牛) 4.请指导教师审查实验数据合格后,再关断仪器电源。 整理仪器及实验台。

应变片单臂半桥全桥性能比较实验

应变片单臂、半桥、全桥性能比较实验 应变片基本原理: 电阻应变式传感器是在弹性元件上通过特定工艺粘贴电阻应变片来组成。一种利用电阻材料的应变效应将工程结构件的内部变形转换为电阻变化的传感器。此类传感器主要是通过一定的机械装置将被测量转化成弹性元件的变形,然后由电阻应变片将弹性元件的变形转换成电阻的变化,再通过测量电路将电阻的变化转换成电压或电流变化信号输出。它可用于能转化成变形的各种非电物理量的检测,如力、压力、加速度、力矩、重量等,在机械加工、计量、建筑测量等行业应用十分广泛。 所谓电阻应变效应是指具有规则外形的金属导体或半导体材料在 外力作用下产生应变而其电阻值也会产生相应地改变,这一物理现象 称为电阻应变效应 (a)丝式应变片 (b)箔式应变片 应变片结构图 (a)单臂(b)半桥

(c)全桥 应变片测量电路 在差动放大器增益相同的情况下:半桥电压表读数是单臂的两倍, 全桥电压表读数是单臂的四倍。因此在整个实验过程中都要保持放大 器增益不变。 单臂:在应变片测量原理图中R1、R2 R3为固定电阻,RX为金属箔式应变片。 半桥:在应变片测量原理图中R1、R2、为固定电阻,R3 RX为金属箔式应变片。R3与RX符号相反。 全桥:在应变片测量原理图中R1、R2、R3 RX全为金属箔式应变片。全桥实验时图中四个电阻均为金属箔式应变片,接线时两相邻的应变片的位置符号相反,对应位置的应变片符号相同。 应变片测量原理图 实验步骤: 一调零: 1 按图接线 差动放大器调零接线示意图 2、增益电位器RW3顺时针轾轻转到底再逆时针回调1圈,再调RW4 使电压表在200mv时显示为零。 单臂实验: 1、按图接线后用RW倜零。 2、把10个20克的法码放到托盘上调增益RW使电压表显示为50mv。 3、把法码全取下再依放上读取数据填于表中。 4、关闭电源,取下法码。 应变片单臂电桥性能实验数据 重量(g)0

惠斯通电桥测电阻实验报告

肇 庆 学 院 肇 庆 学 院 电子信息与机电工程 学院 普通物理实验 课 实验报告 级 班 组 实验合作者 实验日期 姓名: 学号 老师评定 实验题目: 惠斯通电桥测电阻 实验目的: 1.了解电桥测电阻的原理和特点。 2.学会用自组电桥和箱式电桥测电阻的方法。 3.测出若干个未知电阻的阻值。 1.桥式电路的基本结构。 电桥的构成包括四个桥臂(比例臂R 2和R 3,比较臂R 4,待测臂R x ),“桥”——平衡指示器(检流计)G 和工作电源E 。在自组电桥线路中还联接有电桥灵敏度调节器R G (滑线变阻器)。 2.电桥平衡的条件。 惠斯通电桥(如图1所示)由四个“桥臂”电阻(R 2、R 3、R 4、和R x )、一个“桥”(b 、d 间所接的灵敏电流计)和一个电源E 组成。b 、d 间接有灵敏电流计G 。当b 、d 两点电位相等时,灵敏电流计G 中无电流流过,指针不偏转,此时电桥平衡。所以,电桥平衡的条件是:b 、d 两点电位相等。此时有 U ab =U ad ,U bc =U dc , 由于平衡时0=g I ,所以b 、d 间相当于断路,故有 I 4=I 3 I x =I 2 所以 44R I R I x x = 2233R I R I = 可得 x R R R R 324= 或 43 2R R R R x = 一般把 K R R =3 2称为“倍率”或“比率”,于是 R x =KR 4 要使电桥平衡,一般固定比率K ,调节R 4使电桥达到平衡。 3.自组电桥不等臂误差的消除。 实验中自组电桥的比例臂(R 2和R 3)电阻并非标准电阻,存在较大误差。当取K=1时,实际上R 2与R 3不完全相等,存在较大的不等臂误差,为消除该系统误差,实验可采用交换测量法进行。先按原线路进行测量得到一个R 4值,然后将R 2与R 3的位置互相交换(也可将R x 与R 4的位置交换),按同样方法再测 一次得到一个R ’ 4值,两次测量,电桥平衡后分别有: 43 2R R R R x ?= ' 42 3R R R R x ?= 联立两式得: ' 44R R R x ?= 由上式可知:交换测量后得到的测量值与比例臂阻值无关。 4.电桥灵敏度 电桥灵敏度就是电桥偏离平衡状态时,电桥本身的灵敏感反映程度。在实际测量中,为了便于灵敏度 I 2 I x c

金属箔式应变片性能一单臂电桥实验报告

实验一金属箔式应变片性能一单臂电桥 (998 B型) 一、实验目的 了解金属箔式应变片,单臂单桥的工作原理和工作情况。 二、实验仪器 CSY型-998A传感器系统实验仪(直流稳压电源、电桥、差动放大器、双平行梁、测微头、一片应变片、F/V表、主、副电源)。 旋钮初始位置:直流稳压电源打到±2V档,F/V表打到2V档,差动放大增益最大。 三、实验原理 本实验说明箔式应变片及单臂直流电桥的电源的原理和工作情况。 应变片是最常用的测力传感元件。当用应变片测试时,应变片要牢固地粘贴在测试体表面,当测件受力发生形变,应变片的敏感栅随同变形,其电阻也随之发生相应的变化,通过测量电路,转换成电信号输出显示。 电桥电路是最常用的非电量电测电路中的一种,当电桥平衡时,桥路对臂电 阻乘积相等,电桥输出为零,在桥臂四个电阻R 1、R 2 、R 3 、R 4 中,电阻的相对变 化率分别为ΔR 1/R 1 、ΔR 2 /R 2 、ΔR 3 /R 3 、ΔR 4 /R 4 ,当使用一个应变片时,ΣR =ΔR/ R;当二个应变片组成差动状态工作,则有ΣR =2ΔR/ R;用四个应变片组成二 个差对工作,且R 1=R 2 =R 3 =R 4 ,ΣR =4ΔR/ R; 由此可知,单臂、半桥、全桥电路的灵敏度依次增大。 四、实验内容 1、了解所需单元、部件在实验仪上的所在位置,观察梁上的应变片,应变片为棕色衬底箔式结构小方薄片。上下二片梁的外表面各贴二片受力应变片和一片补偿应变片,测微头在双平行梁前面的支座上,可以上、下、前、后、左、右调节。 2、将差动放大器调零:用连线将差动放大器的正(+)、负(-)、地短接。将差动放大器的输出端与F/V表的输入插口Vi相连;开启主、副电源;调节差动放大器的增益到最大位置,然后调整差动放大器的调零旋钮使F/V表显示为

实验9 非平衡电桥特性测定

大学物理实验教案 实验名称: 非平衡电桥特性测定 一 实验目的 1、了解非平衡电桥的工作原理。 2、了解非平衡电桥在单臂输入,双臂输入以及全臂输入时的输出特性。 二 实验仪器 电源,数字电压表,滑线变阻器,电阻箱(4个)。 三 实验原理 如图所示是电桥测量线路的基本形式。它由R 1,R 2,R 3,R 4四个阻抗元件首尾串接而成, 即称为桥臂。在串接回路中相对的两个结点A 、C 接入电桥电源U s (也称工作电压);在另两个相对结点B 、D 上将有电压U o (也称输出电压)产生。若适当选取四个桥臂阻抗元件的阻值,在接入电桥的工作电压U s 时,电桥没有输出电压U o (U o =0),这时称电桥为平衡电 桥;反之,为非平衡电桥(U o ≠0)。即可得 S B U R R R U 212+= , S D U R R R U 4 33+= , 而桥路输出电压D B O U U U -=,将上两式代入得:S S O KU U R R R R R R R R U =++-= ) )((43213142。 当式中的比例常数K 为 (1)0=K (3142R R R R =)时,0=O U ,这种情况是平衡电桥。 (2)0K (3142R R R R >)时,0≠O U 。这两种情况是非平衡电桥。 根据直流非平衡电桥电阻变化值接入桥臂的方法不同而桥路输出特性分为(如上图所示): 1、单臂输入时的桥路输出特性 若设各桥臂的阻值为R 1=R 2=R 3=R 4=R O , 把传感器输出的电阻变化量(△R )接入桥臂R 1,即R 1=R O +△R ,由上式可知:输出电压U O 与电桥输入电阻变化量△R 的关系为: S S O O U U R R R U εε2424+-=?+?-=,(式中 0R R ?= ε定为传感器电阻的相对变化)定义电桥输出灵敏度为:)(R d dU S O R ?= ?,则单臂输入时,电桥输出灵敏度为: O S R U S 41= 。 S O U U 4ε - ≈,这时桥路的输出电压与电阻的相对变化才有近似线性关系。 2、双臂输入时的桥路输出特性

双臂电桥测低电阻实验报告

《基础物理》实验报告 学院:国际软件学院专业:数字媒体技术2011 年 6 月3日实验名称双臂电桥测低电阻 姓名陈鲁飞年级/班级10级原软工四班学号 一、实验目的四、实验内容及原始数据 二、实验原理五、实验数据处理及结果(数据表格、现象等) 三、实验设备及工具六、实验结果分析(实验现象分析、实验中存在问题的讨论) 一、实验目的 1.了解测量低电阻的特殊性。 2.掌握双臂电桥的工作原理。 3.用双臂电桥测金属材料(铝.铜)的电阻率。 二、实验原理 我们考察接线电阻和接触电阻是怎样对低值电阻测量结果产生影响的。例如用安培表和毫伏表按欧姆定律R=V/I测量电阻Rx,电路图如图 1 所示, 考虑到电流表、毫伏表与测量电阻的接触电阻后,等效电路图如图 2所示。 由于毫伏表内阻Rg远大于接触电阻R i3和R i4,因此他们对于毫伏表的测量影响可忽略不计,此时按照欧姆定律R=V/I得到的电阻是(Rx+ R i1+ R i2)。当待测电阻Rx小于1时,就不 能忽略接触电阻R i1和R i2对测量的影响了。 因此,为了消除接触电阻对于测量结果的影响,需要将接线方式改成下图 3方式,将低电阻Rx以四端接法方式连接,等效电路如图 4 。此时毫伏表上测得电眼为Rx的电压降,由Rx = V/I即可准测计算出Rx。接于电流测量回路中成为电流头的两端(A、D),与接于电压测量回路中称电压接头的两端(B、C)是各自分开的,许多低电阻的标准电阻都做成四端钮方式。 根据这个结论,就发展成双臂电桥,线路图和等效电路图5和图6所示。标准电阻Rn 电流头接触电阻为R in1、R in2,待测电阻Rx的电流头接触电阻为R ix1、R ix2,都连接到双臂电桥测量回路的电路回路内。标准电阻电压头接触电阻为R n1、R n2,待测电阻Rx电压头接触电阻为R x1、R x2,连接到双臂电桥电压测量回路中,因为它们与较大电阻R1、R 2、R3、R相串连,故其影响可忽略。 由图5和图6,当电桥平衡时,通过检流计G的电流I G = 0, C和D两点电位相等,根据基尔霍夫定律,可得方程组(1)

单臂半桥传感器实验报告总结

单臂半桥传感器实验报告总结 篇一:单臂半桥全桥传感器实验报告 实验一金属箔式应变片――单臂电桥性能实验 一、实验目的:了解金属箔式应变片的应变效应,单臂电桥工作原理和性 能。 二、基本原理:电阻丝在外力作用下发生机械变形时,其电阻值发生变化, 这就是电阻应变效应,描述电阻应变效应的关系式为:ΔR/R=Kε,式中ΔR/R为电阻丝电阻相对变化,K为应变灵敏系数,ε=Δl/l为电阻丝长度相对变化,金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感元件,通过它转换被测部位受力状态变化、电桥的作用完成电阻到电压的比例变化,电桥的输出电压反映了相应的受力状态。对单臂电桥输出电压 Uo1= EKε/4。 图1-1 应变式传感器安装示意图 三、需用器件与单元:应变式传感器实验模板、应变式传感器-电子秤、 砝码、数显表、±15V电源、±4V电源、万用表(自备)。 四、实验步骤: 1.根据图(1-1)应变式传感器(电子秤)已装于应变传感器模板上。传感器中各应变片已接入模板的左上方的R1、

R2、R3、R4。加热丝也接于模板上,可用万用表进行测量判别,R1=R2=R3=R4=350Ω,加热丝阻值为50Ω左右。 2.接入模板电源±15V(从主控台引入),检查无误后,合上主控台电源开关,将实验模板调节增益电位器RW3顺时针调节大致到中间位置,再进行差动放大 器调零,方法为将差放的正负输入端与地短接,输出端与主控台面板上数显表 电压输入端Vi相连,调节实验模板上调零电位器RW4,使数显表显示为零(数显表的切换开关打到2V档)。关闭主控箱电源(注意:当Rw3、Rw4的位置一旦确定,就不能改变。一直到做完实验三为止)。 3.将应变式传感器的其中一个电阻应变片R1(即模板左上方的R1)接入电桥作为一个桥臂与R5、R6、R7接成直流电桥(R5、R6、R7模块内已接好),接好电桥调零电位器RW1,接上桥路电源±4V(从主控台引入),此时应将±4地与±15地短接。如图1-2所示。检查接线无误后,合上主控台电源开关。调节RW1,使数显表显示为零。 图1-2应变式传感器单臂电桥实验接线图 4.在电子称上放置一只砝码,读取数显表数值,依次增加砝码和读取相应的数显表值,直到200g(或500 g)砝码加完。记下实验结果填入表1-1,关闭电源。 表1-1单臂电桥测量时,输出电压与加负载重量值

电桥实验

静态电阻应变仪操作及应变片组桥实验 1 实验目的 ⑴掌握静态电阻应变仪的使用方法; ⑵了解电测应力原理,掌握直流测量电桥的加减特性; ⑶分析应变片组桥与梁受力变形的关系,加深对等强度梁概念的理解。 2 设备仪器 ⑴50KN电子万能试验机一台; ⑵静态电阻应变仪一台; ⑶等强度测试梁一套。 3 实验原理 图2-1实验装置图 实验装置如图2-1,梁的厚h=11.65mm 、宽b(X)=X/9 ,在X=200mm和X=300mm 处梁的上下表面沿对称轴方向粘贴了四片电阻应变片D1、D2、D3、D4。电阻片阻值:120Ω,灵敏度系数:2.12,电阻片长:5mm。由这四个电阻片在静态电阻应变仪上接成不同的测量桥路进行测量可以熟练掌握应变仪的使用。 实验中,要明确电阻应变片和静态电阻应变仪的测量原理: ⑴电阻应变片测量原理 目前常用的箔式电阻应变片是用0.003~0.01mm高阻抗镍铜箔材经化学腐蚀等工序制成电阻箔栅,然后焊接引出线,涂上绝缘胶粘固到塑料基膜上。使用时,只须把基膜面用特制胶水

牢固粘贴到构件的测点处。这样当构件受力变形时电阻应变片亦随之变形,则电阻应变片的电阻值将发生改变。其特性关系为: ΔR/R 0∕ΔL/L 0=K 即是说,应变片电阻的改变率与长度的改变率的比为一常数K ,而长度的改变率ΔL/L 0=ε。 常数K 也称电阻应变片的灵敏系数,电阻应变片作为产品出厂时会给出K 、R 0、L 0 。 因此,只要有专门的电子仪器能测出应变片的电阻改变率ΔR/R 0,即可完成应力测量σ=E ε 这种专门的电子仪器已广泛应用,就是静态电阻应变仪。 ⑵静态电阻应变仪测量原理 静态电阻应变仪是依据惠斯顿电桥原理进行测量的。 惠斯顿电桥如图2-2所示: 图2—2 惠斯顿电桥 若在节点A 、C 之间给一直流电压V AC ,则B 、D 之间有电压输出V BD ,且V BD =(R 1R 3-R 2R 4)V AC /(R 1+R 2)(R 3+R 4),当R 1R 3=R 2R 4时,称电桥满足平衡条件,此时V BD =0,且由该电桥特性知当 R 1=R 2=R 3=R 4=R 时,电桥为全等臂电桥。 dV BD = 4 AC V (ΔR 1/R-ΔR 2/R+ΔR 3/R-ΔR 4/R ) 由于电阻应变片有ΔR/R=K ε,上式可写成: dV BD =K 4 AC V (ε1-ε2+ε3-ε4) 即是说电桥输出电压与四个桥臂上电阻应变片所产生应变的代数和成正比。即 4 dV BD /K V AB =(ε1-ε2+ε3-ε4) 令4 dV BD /K V AB =ε 则ε=(ε1-ε2+ε3-ε4)。 这便是静态电阻应变仪测量原理。同时,也表明了测量电桥的加减特性。利用电桥的加减特性可以根据不同的测量需求实现单臂、半桥、全桥等测量。要记住的是静态电阻应变仪 BD

应变片单臂半桥全桥性能比较实验

应变片单臂半桥全桥性 能比较实验 Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】

应变片单臂、半桥、全桥性能比较实验应变片基本原理: 电阻应变式传感器是在弹性元件上通过特定工艺粘贴电阻应变片来组成。一种利用电阻材料的应变效应将工程结构件的内部变形转换为电阻变化的传感器。此类传感器主要是通过一定的机械装置将被测量转化成弹性元件的变形,然后由电阻应变片将弹性元件的变形转换成电阻的变化,再通过测量电路将电阻的变化转换成电压或电流变化信号输出。它可用于能转化成变形的各种非电物理量的检测,如力、压力、加速度、力矩、重量等,在机械加工、计量、建筑测量等行业应用十分广泛。 所谓电阻应变效应是指具有规则外形的金属导体或半导体材料在外力作用下产生应变而其电阻值也会产生相应地改变,这一物理现象称为“电阻应变效应 (a) 丝式应变片 (b) 箔式应变片 应变片结构图 (a)单臂(b)半桥(c)全桥 应变片测量电路 在差动放大器增益相同的情况下:半桥电压表读数是单臂的两倍,全桥电压表读数是单臂的四倍。因此在整个实验过程中都要保持放大器增益不变。 单臂:在应变片测量原理图中R1、R2、R3为固定电阻,RX为金属箔式应变片。 半桥:在应变片测量原理图中R1、R2、为固定电阻,R3、RX为金属箔式应变片。R3与RX符号相反。

全桥:在应变片测量原理图中R1、R2、R3、RX全为金属箔式应变片。全桥实验时图中四个电阻均为金属箔式应变片,接线时两相邻的应变片的位置符号相反,对应位置的应变片符号相同。 应变片测量原理图 实验步骤: 一、调零: 1、按图接线 差动放大器调零接线示意图 2、增益电位器RW3顺时针轾轻转到底再逆时针回调1圈,再调RW4使电压表在 200mv时显示为零。 二、单臂实验: 1、按图接线后用RW1调零。 2、把10个20克的法码放到托盘上调增益RW3使电压表显示为50mv。 3、把法码全取下再依放上读取数据填于表中。 4、关闭电源,取下法码。 应变片单臂电桥性能实验数据 应变片单臂电桥实验接线示意图 三、半桥实验: 1、按图接线。 应变片半桥实验接线示意图 2、用RW1调零(增益RW3和放大器调零RW4保持在单臂实验壮态不变) 。

实验报告电桥测电阻实验报告

实验题目: 惠斯通电桥测电阻 实验目的: 1.了解电桥测电阻的原理和特点。 2.学会用自组电桥和箱式电桥测电阻的方法。 3.测出若干个未知电阻的阻值。 实验仪器 实验原理: 1.桥式电路的基本结构。 电桥的构成包括四个桥臂(比例臂R 2和R 3,比较臂R 4,待测臂R x ),“桥”——平衡指示器(检流计)G 和工作电源E 。在自组电桥线路中还联接有电桥灵敏度调节器R G (滑线变阻器)。 2.电桥平衡的条件。 惠斯通电桥(如图1所示)由四个“桥臂”电阻(R 2、R 3、R 4、和R x )、一个“桥”(b 、d 间所接的灵敏电流计)和一个电源E 组成。b 、d 间接有灵敏电流计G 。当b 、d 两点电位相等时,灵敏电流计G 中无电流流过,指针不偏转,此时电桥平衡。所以,电桥平衡的条件是:b 、d 两点电位相等。此时有 U ab =U ad ,U bc =U dc , 由于平衡时0=g I ,所以b 、d 间相当于断路,故有 I 4=I 3 I x =I 2 所以 44R I R I x x = 2233R I R I = 可得 x R R R R 324= 或 43 2R R R R x = 一般把 K R R =3 2 称为“倍率”或“比率”,于是 R x =KR 4 要使电桥平衡,一般固定比率K ,调节R 4使电桥达到平衡。 3.自组电桥不等臂误差的消除。 实验中自组电桥的比例臂(R 2和R 3)电阻并非标准电阻,存在较大误差。当取K=1时,实际上R 2与R 3不完全相等,存在较大的不等臂误差,为消除该系统误差,实验可采用交换测量法进行。先按原线路进行测量得到一个R 4值,然后将R 2与R 3的位置互相交换(也可将R x 与R 4的位置交换),按同样方法再测一次得到一个R ’4值,两次测量,电桥平衡后分别 R 2 R x B C

自动化传感器实验报告一 金属箔式应变片——单臂电桥性能实验

广东技术师范学院实验报告 学院: 自动化 专业: 自动化 班级: 08自动化 成 绩: 姓名: 学号: 组 别: 组员: 实验地点: 实验日期: 指导教师签名: 实验一 项目名称: 金属箔式应变片——单臂电桥性能实验 一、 实验目的 了解金属箔式应变片的应变效应,单臂电桥工作原理和性能。 二、 基本原理 金属丝在外力作用下发生机械形变时,其电阻值会发生变化,这就是金属的电阻应变效应。金属的电阻表达式为: l R S ρ = (1) 当金属电阻丝受到轴向拉力F 作用时,将伸长l ?,横截面积相应减小S ?,电阻率因晶格变化等因素的影响而改变ρ?,故引起电阻值变化R ?。对式(1)全微分,并用相对变化量来表示,则有: R l S R l S ρρ ????=-+ (2) 式中的l l ?为电阻丝的轴向应变,用ε表示,常用单位με(1με=1×610mm mm -)。 若径向应变为r r ?,电阻丝的纵向伸长和横向收缩的关系用泊松比μ表示为 l r r l μ??=-(),因为S S ?=2(r r ?),则(2)式可以写成: 01212R l l l k R l l l l l ρρρμμρ??????=++=++=?()() (3) 式(3)为“应变效应”的表达式。0k 称金属电阻的灵敏系数,从式(3)可见,0k 受两个因素影响,一个是(1+μ2),它是材料的几何尺寸变化引起的,另一个是ρρε?() ,是 材料的电阻率ρ随应变引起的(称“压阻效应”)。对于金属材料而言,以前者为主,则 μ210+≈k ,对半导体,0k 值主要是由电阻率相对变化所决定。实验也表明,在金属丝拉 伸比例极限内,电阻相对变化与轴向应变成比例。通常金属丝的灵敏系数0k =2左右。 用应变片测量受力时,将应变片粘贴于被测对象表面上。在外力作用下,被测对象表面产生微小机械变形时,应变片敏感栅也随同变形,其电阻值发生相应变化。通过转换电路转换为相应的电压或电流的变化,根据(3)式,可以得到被测对象的应变值ε,而根据应

单臂电桥性能实验报告

实验一 金属箔式应变片——单臂电桥性能实验 一、实验目的:了解金属箔式应变片的应变效应,单臂电桥工作原理和性能。 二、基本原理:电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为: εK R R =?/ 式中R R /?为电阻丝电阻的相对变化,K 为应变灵敏系数,l l /?=ε为电阻丝长度相对变化,金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感元件,通过它转换被测部位的受力状态变化,电桥的作用是完成电阻到电压的比例变化,电桥的输出电压反映了相应的受力状态。单臂电桥输出电压U O14/εEK =。 三、需用器件与单元:应变式传感器实验模块、应变式传感器、砝码、数显表、±15V 电源、±4V 电源、万用表(自备)。 四、实验步骤: 1、根据图1-1应变式传感器已装于应变传感器模块上。传感器中各应变片已接入模块的左上方的R 1、R 2、R 3、R 4。加热丝也接于模块上,可用万用表进行测量判别,R 1= R 2= R 3= R 4=350Ω,加热丝阻值为50Ω左右。 2、接入模块电源±15V (从主控箱引入),检查无误后,合上主控箱电源开关,将实验模块调节增益电位器Rw 3顺时针调节大致到中间位置,再进行差动放大器调零,方法为将差放的正、负输入端与地短接,输出端与主控箱面板上的数显表电压输入端Vi 相连,调节实验模块上调零电位器Rw 4,使数显表显示为零(数显表的切换开关打到2V 档)。关闭主控箱电源。 图1-1 应变式传感器安装示意图

3、将应变式传感器的其中一个应变片R 1(即模块左上方的R 1)接入电桥作为一个桥臂与R 5、R 6、R 7接成直流电桥(R 5、R 6、R 7模块内已连接好),接好电桥调零电位器Rw 1,接上桥路电源±4V (从主控箱引入)如图1-2所示。检查接线无误后,合上主控箱电源开关。调节Rw 1,使数显表显示为零。 4、在电子秤上放置一只砝码,读取数显表数值,依次增加砝码和读取相应的数显表值,直到500g (或200g )砝码加完。记下实验结果填入表1-1,关闭电源。 表1-1 单臂电桥输出电压与加负载重量值 5、根据表1-1计算系统灵敏度S ,S=W u ??/(u ?输出电压变化量;W ?重量变化量)计算线性误差:δf1=y m /? F ?S ×100%,式中m ?为输出值(多次测量时为平均值)与拟合直线的最大偏差:y F ?S 满量程输出平均值,此处为500g 或200g 。 五、思考题: 单臂电桥时,作为桥臂电阻应变片应选用:(1)正(受拉)应变片(2)负(受压)应变片(3)正、负应变片均可。 图1-2 应变式传感器单臂电桥实验接线图

物理实验用惠斯通电桥测电阻实验报告

物理实验用惠斯通电桥测电阻实验报告 Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】

班级___信工C班___ 组别______D______ 姓名____李铃______ 学号__ 日期指导教师___刘丽峰___ 【实验题目】_________用惠斯通电桥测电阻___ 【实验目的】 1、掌握惠斯通(Wheastone)电桥测电阻的原理; 2、学会正确使用惠斯通电桥测量电阻的方法; 3、了解提高电桥灵敏度的几种方法; 4、学会测量单电桥的灵敏度。 【实验仪器】 QJ- 23型箱式电桥,滑线电阻,转柄电阻箱(0~Ω),检流计,直流电源,待测电阻,开关,导线若干。 【实验原理】 1.惠斯通电桥测量电阻的原理 图是惠斯通电桥的原理图。图中R1、R2和R0是已知阻值的电阻,它们和被测电阻Rx连成一个四边形,每一条边称作电桥的一个臂。四边形的对角A和B之间接电源E;对角C和D之间接有检流计G,它像桥一样。电源接通,电桥线路中各支路均有电流通过。当C、D两点之间的电位不相等时,桥路中的电流IG≠0,检流计的指针发生偏转;当C、D两点之间的电位相等时,“桥”路中的电流IG=0,检流计指针指零,这时我们称电桥处于平衡状态。 当电桥平衡时,, 两式相除可得到Rx的测量公式 (5-1) 电阻R1R2为电桥的比率臂,R0为比较臂,Rx为待测臂。 只要检流计足够灵敏,等式(1)就能相当好地成立,被测电阻值Rx可以仅从三个已知电阻的值来求得,而与电源电压无关。由于R1、R2和R0可以使用标准电阻,而标准电阻可以制作得十分精密,这一过程相当于把Rx和标准电阻相比较,因而测量的准确度可以达到很高。 2.电桥的灵敏度 电桥平衡后,将R0改变△R0,检流计指针偏转△n格。如果一个很小的△R0能引起较大的△n偏转,电桥的灵敏度就高,电桥的平衡就能够判断得更精细。

金属箔式应变片性能实验报告

实验报告 姓名:学号:班级: 实验项目名称:实验一金属箔式应变片性能——单臂电桥,半桥 实验目的:了解金属箔式应变片,单臂单桥的工作原理和工作情况;:验证单臂、半桥性能及相互之间关系。 实验原理: 单臂、半桥、全桥是指在电桥组成工作时,有一个桥臂、二个桥臂、全部四个桥臂(用应变片)阻值都随被测物理量而变化。 电桥的灵敏度:电桥的输出电压(或输出电流) 与被测应变在电桥的一个桥臂上引起的电阻变化率之 间的比值,称为电桥的灵敏度。如图是直流电桥,它 的四个桥臂由电阻R1、R2、R3、R4组成,U。是供桥电 压,输出电压为: 当R1×R3=R2×R4则输出电压U为零,电桥处于平 衡状态。 如果将R4换成贴在试件上的应变片,应变片随试件的受力变形而变形,引起应变片电阻R4的变化,平衡被破坏,输出电压U发生变化。当臂工作时,电桥只有R4桥臂为应变片,电阻变为R+R,其余各臂仍为固定阻值R,代入上式有 组桥时,R1和R3,R2和R4受力方向一致。 实验步骤(电路图): (1)了解所需单元、部件在实验仪上的所在位置,观察梁上的应变片,测微头在双平行梁前面的支座上,可以上、下、前、后、左、右调节。 (2)将差动放大器调零:用连线将差动放大器的正(+)、负(-)、地短接。将差动放大器的输出端与F/V表的输入插口Vi 相连;开启主、副电源;调节差动放大器的增益到最大位置,然后调整差动放大器的调零旋钮使F/V表显示为零,关闭主、副电源。

(3)根据图1接线R1、R2、R3为电桥单元的固定电阻。R4为应变片;将稳压电源的切换开关置±4V档,F/V表置20V档。调节测微头脱离双平行梁,开启主、副电源,调节电桥平衡网络中的W1,使F/V表显示为零,然后将F/V表置2V档,再调电桥W1(慢慢地调),使F/V表显示为零。 图1金属箔式应变片性能—单臂电桥电路 (4)将测微头转动到10mm刻度附近,安装到双平等梁的自由端(与自由端磁钢吸合),调节测微头支柱的高度(梁的自由端跟随变化)使F/V表显示最小,再旋动测微头,使F/V 表显示为零(细调零),这时的测微头刻度为零位的相应刻度。 (5)——往下或往上旋动测微头,使梁的自由端产生位移记下F/V表显示的值。建议每旋动测微头一周即ΔX=0.5mm 记一个数值填入下表: (6)据所得结果计算灵敏度S=ΔV/ΔX(式中ΔX为梁的自由端位移变化,ΔV为相应F /V表显示的电压相应变化)。 (7) 将R3固定电阻换为与R4工作状态相反的另一应变片即取二片受力方向不同应变片,形成半桥,调节测微头使梁到水平位置(目测),调节电桥W1使F/V表显示表显示为零,重复(5)过程同样测得读数,填入下表: 实验结果及分析: 单臂电桥结果: 位移(mm)-1.0 -0.5 0.5 1.0 1.5 电压(mv)-0.057 -0.044 0.012 0.025 0.036 灵敏度计算:电压变化的平均值=0.013mv S=ΔV/ΔX=0.026mv/mm 结果分析:半桥的灵敏度是单臂电桥灵敏度的2倍。 实验中的注意事项及实验感想、收获或建议等:

1.应变电桥性能实验

实验一金属箔式应变片――单臂电桥性能实验 一、实验目的:了解金属箔式应变片的应变效应,单臂电桥工作原理和性能。 二、基本原理:电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为:ΔR/R=Kε式中ΔR/R为电阻丝电阻相对变化,K为应变灵敏系数,ε=Δl/l为电阻丝长度相对变化,金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感元件,通过它转换被测部位受力状态变化、电桥的作用完成电阻到电压的比例变化,电桥的输出电压反映了相应的受力状态。,对单臂电桥输出电压U o1= EKε/4。 三、需用器件与单元:应变式传感器实验模板、应变式传感器、电子秤、砝码、数显表、±15V电源、±4V电源、万用表(自备)。 四、实验步骤: 1、根据图(1-1)应变式传感器(电子秤)已装于应变传感器模板上。传感器中各应 变片已接入模板的左上方的R1、R2、R3、R4。加热丝也接于模板上,可用万用表进行测量判别,R1=R2=R3=R4=350Ω,加热丝阻值为50Ω左右 图1-1 应变式传感器安装示意图 2、接入模板电源±15V(从主控台引入),检查无误后,合上主控台电源开关,将实验 模板调节增益电位器R W3顺时针调节大致到中间位置,再进行差动放大器调零,方

法为将差放的正负输入端与地短接,输出端与主控台面板上数显表输入端V i相连,调节实验模板上调零电位器R W4,使数显表显示为零(数显表的切换开关打到2V 档)。关闭主控箱电源(注意:当R w3、R w4的位置一旦确定,就不能改变。一直到做完实验三为止)。 3、将应变式传感器的其中一个电阻应变片R1(即模板左上方的R1)接入电桥作为一 个桥臂与R5、R6、R7接成直流电桥(R5、R6、R7模块内已接好),接好电桥调零电位器R W1,接上桥路电源±4V(从主控台引入)如图1-2所示。检查接线无误后,合上主控台电源开关。调节R W1,使数显表显示为零。 图1-2应变式传感器单臂电桥实验接线图 4、在电子称上放置一只砝码,读取数显表数值,依次增加砝码和读取相应的数显表值, 直到200g(或500 g)砝码加完。记下实验结果填入表1-1,关闭电源。 重量(g) 电压(mv)

用单臂电桥测电阻带实验数据处理

本科实验报告 实验名称: 用单臂电桥测电阻 实验13 用单臂电桥测电阻(略写)【实验目的】 (1)掌握用单臂电桥测量电阻的原理和方法。 (2)学习用交换法减小和消除系统误差。 (3)初步研究电桥的灵敏度。 【实验原理】 单臂电桥,也叫惠斯登电桥,适用于精确测量中值电阻(10~的测量装置。 电桥法测电阻,其实质是把被测电阻与标准电阻相比较,已确定其值。由于电阻的制造可以达到很高的精度,所以用电桥法测电阻也可以达到很高的精度。 电桥分为直流电桥和交流电桥两大类。直流电桥又分为单臂电桥和双臂电桥。惠斯登电桥是直流电桥中的单臂电桥;双臂电桥又称为开尔文电桥,适用于测量低电阻(~10Ω)。 单臂电桥的线路原理 单臂电桥的基本线路如图所示。它是由四个电阻R1,R2,Rs,Rx连成一个四边形ACBD,在对角线AB上接上电源E,在对角线CD上接上检流计P组成。接入检流计(平衡指示)的

对角线称为“桥”,四个电阻称为“桥臂”。在一般情况下,桥路上检流计中有电流通过,因而检流计的指针偏转。若适当调节某一电阻值,例如改变Rs的大小可使C,D两点的电位相等,此时流过检流计P的电流Ip=0,称为电桥平衡。则有 (1) (2) (3) 由欧姆定律知 = 2 (4) =s (5) 由以上两式可得 (6) 此式即为电桥的平衡条件。若R1,R2,Rs已知,Rx即可由上式求出。通常取R1,R2为标准电阻,称为比率臂,将称为桥臂比;Rs为可调电阻,成为比较臂。改变Rs使电桥达到平衡,即检流计P中无电流流过,便可测出被测电阻Rx的值。 用交换法减小和消除系统误差 分析电桥线路和测量公式可知,用单臂电桥测量Rx的误差,除其他因素外,还与标准电阻R1,R2的误差有关。可以用交换法来消除这一系统误差,方法是:先连接好电桥线路,调节Rs使P中无电流,可求出Rs,然后将R1与R2交换位置,再调节Rs使P中无电流, 记下此时的Rs',可得,相乘可得Rx=, 这样就消除了由R1,R2本身的误差引起的对Rx引入的测量误差。Rx的测量误差只与电阻箱Rs的仪器误差有关,而Rs可选用高精度的标准电阻箱,这样系统误差就可减小。 电桥的灵敏度 检流计的灵敏度总是有限的,如实验中所用的检流计,指针偏转一格所对应的电流大约为A。当通过它的电流比A还要小时,指针偏转小于0.1格,就很难察觉出来。假设电桥在R1/R2=1时调到了平衡,则有Rx=Rs。这时,若把Rs改变ΔRs,电桥就失去了平衡,检流计中有电流Ip流过。但是如果Ip小到使检流计觉察不出来,还会认为电桥还是平衡的,因而得出Rx=Rs+ΔRs。这样就会因为检流计的反应不够灵敏而带来一个测量误差ΔRx=ΔRs。为表示此误差对测量结果影响的严重程度,引入电桥灵敏度的概念,定义为 S=(7) 之中,是在电桥平衡后Rx的微小改变量(实际上是改变Rs,可以证明,改变任意臂所得出的电桥灵敏度是一样的)是由于电桥偏离平衡而引起的检流计的偏转格数。S越大,说明电桥越灵敏,带来的误差也越小,举例来说,检流计有五分之一格的偏转时既可以觉察

应变片性能实验

实验一 应变传感器的性能研究 一、实验类型:验证性实验。 二、实验目的 1. 观察了解箔式应变片的结构及粘贴方式; 2. 测试应变梁变形的应变输出; 3. 验证单臂、半桥、全桥测量电桥的输出关系,比较不同桥路的功能。 三、实验内容 1. 设计并实现应变传感器的测试桥路; 2. 测量单臂、半桥、全桥测量电桥的输出,记录数据、绘制关系曲线,并分析。 四、实验原理 1. 本实验说明箔式应变片及单臂直流电桥的原理和工作情况。 应变片是最常用的测力传感元件。当用应变片测试时,应变片要牢固地粘贴在测试体表面,当测件受力发生形变,应变片的敏感栅随同变形,其电阻值也随之发生相应的变化。通过测量电路,转换成电信号输出显示。 电桥电路是最常用的非电量电测电路中的一种,当电桥平衡时,桥路对臂电阻乘积相等,电桥输出为零,在桥臂四个电阻R1、R2、R3、R4中,电阻的相对变化率分别为ΔR1/R1、ΔR2/R2、ΔR3/ R3、ΔR4/R4,当使用一个应变片时,∑?= R R R ;当二个应变片组成差动状态工作,则有 2R R R ?= ∑;用四个应变片组成二个差动对工作,且R1= R2 = R3 = R4 = R ,4R R R ?= ∑。 由此可知,单臂,半桥,全桥电路的灵敏度依次增大。 2. 已知单臂、半桥和全桥的 R ∑分别为ΔR/R 、2ΔR/R 、4ΔR/ R 。根据戴维南定理可以 得出测试电桥的输出电压近似等于1/4E R ??∑,电桥灵敏度//Ku V R R =?,于是对应 于单臂、半桥和全桥的电压灵敏度分别为1/4E 、1/2E 和E 。由此可知,当E 和电阻相对变化一定时,电桥及电压灵敏度与各桥臂阻值的大小无关。 五、实验要求 1. 熟悉CSY 系统传感器实验系统; 2. 能自行设计实现应变式传感器的测量桥路; 3. 掌握应变式传感器的各种测量电路的性能。 六、实验仪器设备 主机箱中的±2V~±10V(步进可调)直流稳压电源、±15V 直流稳压电源、电压表;应变式传感器实验模板、托盘、砝码。

相关主题
文本预览
相关文档 最新文档