栅格结构的建立
- 格式:doc
- 大小:50.00 KB
- 文档页数:3
GIS的空间数据结构GIS(地理信息系统)中的空间数据结构是指用来存储、组织和管理地理空间数据的方式和方法。
它们是构建GIS系统的基础,对于实现空间数据的高效查询、分析和可视化表示具有重要意义。
本文将介绍常见的空间数据结构,包括矢量数据结构、栅格数据结构和层次数据结构。
一、矢量数据结构(Vector Data Structure)是用点、线和面等几何要素来表示地理现象的空间数据结构。
常见的矢量数据结构包括点、线和面三种类型:1. 点(Point)是空间数据最基本的要素,它由一个坐标对(x, y)表示,常用于表示一个具体的地理位置或地物。
2. 线(Line)是由若干个连接起来的点所组成的线条,它可以用来表示道路、河流等线状地物。
3. 面(Polygon)是由若干个边界相连的线所围成的封闭区域,它可以用来表示国家、城市等面状地物。
矢量数据结构是一种拓扑结构,在存储空间数据时,常采用点-线-面的层次结构,以及节点、弧段和拓扑关系等数据结构来存储和组织地理空间数据。
二、栅格数据结构(Raster Data Structure)将地理空间数据划分为一系列均匀的像素或单元格,用像素值或单元格值来表示地物属性。
栅格数据结构适用于连续分布的地理现象,如温度、降雨等。
常见的栅格数据结构包括:1. 栅格图像(Raster Image)是将地理空间数据以图像的方式呈现,每个像素的灰度值或颜色代表了地物属性的强度或类型。
栅格图像可以通过数字遥感技术获取,并被广泛应用于地貌分析、图像处理等领域。
2. 数值地形模型(Digital Elevation Model,DEM)是一种栅格数据结构,用于表达地球表面的海拔高度。
DEM常用于地形分析、洪水模拟等应用中。
栅格数据结构的主要优点是简单、易于操作和处理,但由于其离散性,对于空间数据的存储和处理需求较大。
三、层次数据结构(Hierarchical Data Structure)是一种将地理空间数据按层次结构进行组织和管理的数据结构。
1、地理信息系统(geographic information system , 即gis )——一门集计算机科学、 信息学、地理学等多门科学为一体的新兴学科, 它是在计算机软件和硬件支持下, 运用系 统工程和信息科学的理论,科学管理和综合分析具有空间内涵的地理数据,以提供对规划 、管理、决策和研究所需信息的空间信息系统。
2.栅格——栅格结构是最简单最直接的空间数据结构, 是指将地球表面划分为大小均匀 紧密相邻的网格阵列, 每个网格作为一个象元或象素由行、列定义, 并包含一个代码表示 该象素的属性类型或量值, 或仅仅包括指向其属性记录的指针。
因此, 栅格结构是以规则 的阵列来表示空间地物或现象分布的数据组织,组织中的每个数据表示地物或现象的非几何属性特征。
特点:属性明显, 定位隐含, 即数据直接记录属性本身, 而所在的位置则根据行列号转换为相应的坐标,即定位是根据数据在数据集中的位置得到的,在栅格结构中,点用一个栅格单元表示;线状地物用沿线走向的一组相邻栅格单元表示,每个栅格单元最 多只有两个相邻单元在线上;面或区域用记有区域属性的相邻栅格单元的集合表示,每个 栅格单元可有多于两个的相邻单元同属一个区域。
3.矢量——它假定地理空间是连续, 通过记录坐标的方式尽可能精确地表示点、线、 多边形等地理实体, 坐标空间设为连续, 允许任意位置、长度和面积的精确定义。
对于点实体, 矢量结构中只记录其在特定坐标系下的坐标和属性代码;对于线实体, 用一系列坐标对的连线表示;多边形是指边界完全闭合的空间区域,用一系列坐标对的连线表示。
4. “拓扑”(topology)一词来源于希腊文,它的原意是 “形状的研究”。
拓扑学是 几何学的一个分支,它研究在拓扑变换下能够保持不变的几何属性——拓扑属性(拓扑属 性:一个点在一个弧段的端点, 一个点在一个区域的边界上;非拓扑属性:两点之间的距离, 弧段的长度, 区域的周长、面积) 。
栅格结构名词解释栅格结构是20世纪80年代初期在国外开始兴起的一种数据组织方式。
从逻辑意义上来讲,栅格就是对所研究的对象进行划分,形成一个个以主题或边界为特征的基本单元,每个单元称之为一个栅格。
在大量的科学信息处理过程中,人们需要对一些复杂的科学对象进行划分,并通过编码和解码,使得许多数据变成有规则排列的二维数组,这种基于“栅格”的数据组织方式就称为栅格结构。
由于采用了编码、解码的方法,栅格结构在组织和表示大量的、非线性数据时,具有很高的效率。
例如在模式识别领域中,经常要对许多数据,尤其是那些非线性数据进行处理。
其实质是对图像中的每个像素进行重新编码。
一幅图像可看作一个像素集合,而每个像素集合可以看作一个栅格,所以当图像被处理时,也就是将一个像素集合的所有栅格按一定的顺序进行重新编码。
栅格编码之所以能够提高计算机的效率,主要是因为它与人类思维活动有相似之处。
具体地说,人类把一个像素看作一个整体,然后再把它分解成若干个子像素。
对于一幅图像而言,相当于把图像中的每个像素都看作一个栅格。
由于所有像素之间具有内在的联系,在这些像素集合中找出它们之间的联系,便可以在大量的、非线性的数据中找到某些规律,并在此基础上获得识别结果。
由此可见,栅格结构不仅适用于线性数据,同样也适用于非线性数据。
栅格结构与线性结构相比,由于采用了非线性数据,所以更容易实现多层次、多方面、多目标的联想和推理,从而取得事半功倍的效果。
另外,栅格结构还可以支持事物自身的抽象和概括,从而能够发挥多层次、多视角的知识融合作用。
栅格结构中的栅格是相互关联的单元。
一个单元在某个特定的位置,可以包含另一个单元,但不可能包含其他单元。
例如,一个圆圈可以包含一个点和另一个点,但却不能包含第三个点。
栅格结构的数据存储方法既可以按一定的顺序存储,也可以按照一定的层次或组织原则存储。
栅格结构具有以下几个特点: 1、组织灵活、方便实用、高度共享; 2、运算简捷、高效准确; 3、高保密性; 4、运行快速、节省空间; 5、经济节约、投资较少。
栅格数据结构与矢量数据结构的比较引言概述:在地理信息系统(GIS)中,栅格数据结构和矢量数据结构是两种常见的数据表示方式。
栅格数据结构将地图分割成规则的像素网格,每一个像素包含特定的属性信息;而矢量数据结构则是通过点、线、面等几何要素来描述地图特征。
本文将从数据表示方式、数据存储方式、数据处理方式、数据精度和应用领域等方面对栅格数据结构与矢量数据结构进行比较。
一、数据表示方式1.1 栅格数据结构:将地图分割成规则的像素网格,每一个像素代表一个地理位置,包含特定属性信息。
1.2 矢量数据结构:通过点、线、面等几何要素来描述地图特征,如点表示一个地理位置,线表示道路或者河流,面表示湖泊或者森林等。
二、数据存储方式2.1 栅格数据结构:数据以二维数组的形式存储,每一个像素的属性信息存储在数组中的对应位置。
2.2 矢量数据结构:数据以几何要素和属性表的形式存储,几何要素描述地物的空间位置,属性表存储地物的属性信息。
三、数据处理方式3.1 栅格数据结构:适合进行表面分析和遥感影像处理,如地形分析、土地利用分类等。
3.2 矢量数据结构:适合进行空间分析和地理网络分析,如路径规划、地理空间查询等。
四、数据精度4.1 栅格数据结构:数据精度受像素大小限制,像素越小,地图表现越精细,但文件大小也会增加。
4.2 矢量数据结构:数据精度受几何要素的精度限制,几何要素越复杂,地图表现越精细,但数据处理和存储的复杂度也会增加。
五、应用领域5.1 栅格数据结构:适合于遥感、气象、环境等领域的数据处理和分析,如卫星影像处理、气候摹拟等。
5.2 矢量数据结构:适合于城市规划、土地管理、导航等领域的空间分析和决策支持,如城市规划、土地利用规划等。
综上所述,栅格数据结构和矢量数据结构各有其优势和局限性,在实际应用中需要根据具体需求来选择合适的数据表示方式。
栅格数据结构适合处理连续性数据和遥感影像,而矢量数据结构适合处理离散性数据和空间分析。
栅格数据结构和存储模型栅格数据结构是一种常见的数据表示方式,广泛应用于地理信息系统(GIS)、遥感影像处理、气象学等领域。
它将地理空间划分成规则的网格单元,并以此来表示地理现象或属性。
本文将介绍栅格数据结构的基本概念和存储模型。
一、栅格数据结构的基本概念栅格数据结构是将地理空间划分为等大小的网格单元,并在每个网格单元中存储地理现象或属性的值。
栅格数据结构的基本概念包括以下几点:1. 网格单元:栅格数据结构将地理空间划分为等大小的网格单元,每个网格单元都有固定的大小和形状。
网格单元可以是正方形、长方形或其他形状,根据实际应用需求进行选择。
2. 分辨率:分辨率是指栅格数据中每个网格单元表示的地理现象或属性的最小单位。
分辨率越小,表示的地理现象或属性越精细,但数据量也相应增大。
3. 值域:值域是指栅格数据中每个网格单元存储的地理现象或属性的取值范围。
根据实际应用需求,可以是整数、浮点数或其他类型的数据。
4. 空间参考系统:栅格数据结构需要使用空间参考系统来定义地理坐标和网格单元之间的映射关系。
常见的空间参考系统包括经纬度坐标系统和投影坐标系统。
二、栅格数据的存储模型栅格数据的存储模型是指将栅格数据存储在计算机中的方式。
常见的栅格数据存储模型包括以下几种:1. 栅格图像:栅格图像是将栅格数据以图像的形式存储在计算机中。
每个网格单元的值对应图像中的像素值,可以使用常见的图像格式(如BMP、JPEG、TIFF等)进行存储和处理。
2. 栅格数组:栅格数组是将栅格数据以二维数组的形式存储在计算机中。
每个网格单元的值对应数组中的一个元素,可以使用多维数组或矩阵进行存储和处理。
3. 矢量栅格混合模型:矢量栅格混合模型是将栅格数据和矢量数据结合起来进行存储和处理。
栅格数据用于表示地理现象或属性的分布情况,矢量数据用于表示地理现象或属性的几何形状。
三、栅格数据结构的应用栅格数据结构广泛应用于地理信息系统、遥感影像处理、气象学等领域。
地理信息系统栅格数据结构地理信息系统栅格数据结构
⒈引言
⑴背景
⑵目的
⑶范围
⒉栅格数据结构概述
⑴定义
⑵栅格数据的特点
⑶栅格数据的应用领域
⒊栅格数据的存储方式
⑴预定义栅格数据存储格式
⑵动态栅格数据存储格式
⑶压缩栅格数据存储格式
⒋栅格数据的组成
⑴像元
⑵值域
⑶行列索引
⑷坐标系统
⒌栅格数据的建立与获取
⑴栅格数据的获取途径
⑵栅格数据的建立方法
⑶数据获取与数据建立的对应关系⒍栅格数据的操作与分析
⑴数据预处理
⑵数据查询
⑶数据变换
⑷空间分析
⑸空间统计
⒎栅格数据的质量评估
⑴完整性评估
⑵准确性评估
⑶一致性评估
⑷可重复性评估
⒏栅格数据的标准与规范
⑴国际标准与规范
⑵国内标准与规范
⒐附件
⑴附件1: 栅格数据样例
⑵附件2: 栅格数据处理代码示例
法律名词及注释:
⒈栅格数据:一种将地理空间数据划分为规则网格状空间单元进行存储、管理和分析的数据结构。
⒉像元:栅格数据中的最小单位,用于表示一个空间位置。
⒊值域:栅格数据中每个像元对应的属性值。
⒋行列索引:栅格数据中像元的行号和列号索引。
⒌坐标系统:用于确定栅格数据中每个像元的位置,通常采用经纬度或投影坐标系统。
本文档涉及附件:
⒈附件1: 栅格数据样例●包含实际栅格数据的示例文件,用于演示栅格数据的结构和内容。
⒉附件2: 栅格数据处理代码示例●包含处理栅格数据的示例代码,可供参考和学习。
§2.3 栅格数据结构
三、栅格结构的建立
要建立一个栅格数据结构需要明确三个内容:数据来源(即获取数据的途径),栅格系统的确定和栅格代码的确定。
(一)栅格数据的获取途径
栅格数据的获取方式通常有:
1、来自于遥感数据
通过遥感手段获得的数字图像就是一种栅格数据。
它是遥感传感器在某个特定的时间、对一个区域地面景象的辐射和反射能量的扫描抽样,并按不同的光谱段分光并量化后,以数字形式记录下来的象素值序列。
2、来自于对图片的扫描
通过扫描仪对地图或其它图件的扫描,可把资料转换为栅格形式的数据。
具体为:扫描仪扫描专题图的图像数据得到每个像元的(行、列、颜色(灰度)),定义颜色与属性对应表,用相应属性代替相应颜色,得到每个像元的(行、列、属性),再进行栅格编码、存贮,即得到该专题图的栅格数据。
3、由矢量数据转换而来
通过运用矢量数据栅格化技术,把矢量数据转换成栅格数据。
这种情况通常是为了有利于GIS中的某些操作,如叠加分析等,或者是为了有利于输出。
4、由手工方法获取
在专题图上均匀划分网格,逐个网格地确定其属性代码的值,最后形成栅格数据文件。
(二)栅格系统的确定
栅格系统的确定包括栅格坐标系的确定和栅格单元尺寸的确定(图2-3-4)。
1、栅格坐标系的确定
表示具有空间分布特征的地理要素,不论采用什么编码系统,什么数据结构(矢、栅)都应在统一的坐标系统下,而坐标系的确定实质是坐标系原点和坐标轴的确定。
由于栅格编码一般用于区域性GIS,原点的选择常具有局部性质,但为了便于区域的拼接,栅格系统的起始坐标应与国家基本比例尺地形图公里网的交点相一致,并分别采用公里网的纵横坐标轴作为栅格系统的坐标轴。
2、栅格单元的尺寸
栅格单元的尺寸确定的原则是应能有效地逼近空间对象的分布特征,又减少数据的冗余度。
格网太大,忽略较小图斑,信息丢失。
一般讲实体特征愈复杂,栅格尺寸越小,分辨率愈高,然而栅格数据量愈大,按分辨率的平方指数增加,计算机成本就越高,处理速度越慢。
具体可采用保证最小多边形的精度标准来确定尺寸的方法。
(三)栅格代码(属性值)的确定
为了保证数据的质量,当一个栅格单元内有多个可选属性值时(图2-3-5),要按一定方法来确定栅格属性值。
1、中心归属法:每个栅格单元的值由该栅格的中心点所在的面域的属性来确定,如图2-3-5中的(a),栅格属性值可据此确定为B。
2、长度占优法:每个栅格单元的值由该栅格中线段最长的实体的属性来确定。
如图2-3-5中的(c),栅格属性值可据此确定为2。
3、面积占优法:每个栅格单元的值由该栅格中单元面积最大的实体的属性来确定。
如图2-3-5中的(a),栅格属性值可据此确定为A。
4、重要性法:根据栅格内不同地物的重要性,选取最重要的地物的类型作为栅格单元的属性值。
这种方法适用于具有特殊意义而面积较小的实体要素。
若图2-3-5中的(b),a代表草地,b代表铁路,栅格属性值可据此确定为b。
完。