当前位置:文档之家› 植物蛋白提取

植物蛋白提取

植物蛋白提取
植物蛋白提取

植物全蛋白提取方法:

TCA丙酮沉淀法、Tris-HC1法、Trizol沉淀法提取法。

1 TCA丙酮沉淀法

基于蛋白在酸或疏水条件下变性使蛋白浓缩并去除污染物原理的TCA丙酮沉淀法,最早用于小麦蛋白的提取,是目前提取植物蛋白的常用方法之一。

具有降低次生代谢物质的干扰、减少蛋白降解等优点。

TCA能有效地抑制蛋白酶对蛋白质的水解作用,保证在制样过程中蛋白质不被降解;丙酮溶液能除去样品中的酚类及色素等干扰物质,同时实验过程中采用的高速离心办法能较好地去除多糖的影响。然而该方法的一个最大缺点是蛋白质很难重新溶解,而且样品中的非蛋白成分很难除去,可能会丢失膜蛋白和疏水性蛋白,导致2-DE图谱上有明显的横纵条纹。

在研磨样品时加入聚乙烯吡咯烷酮(PVP)或交联聚乙烯基吡咯烷酮(PVPP)用来吸附样品中富含的酚、醌类物质。它们能通过疏水键与酚类形成复合物,离心可以去除该复合物。然而,TCA丙酮沉淀法中与蛋白共沉淀的污染物在随后的有机溶剂清洗步骤中通常难以去除,可以通过振荡和延长蛋白沉淀在裂解缓冲液中温育时间的方法来增加蛋白的溶解能力。在提取的过程中同时加入了TCA、β-巯基乙醇及DTT 3 种药剂可以更好的抑制蛋白质的水解及去除干扰物质。TCA丙酮提取法耗时少且容易操作,一般作为植物蛋白提取的初始方案,该方法常用于幼嫩组织中蛋白的提取,对更为复杂的植物组织该方法并非最佳选择。但该方法还是在植物蛋白的提取中占有重要位置,很多木本植物的样品应用该方法效果很好,如鹅掌楸叶片、巴东木莲的雌蕊柱头、槟榔叶片、银杏叶片及枝条、茶树叶片及芽、红豆杉的愈伤组织、石斛叶片等。草本植物中的大豆叶片、生菜叶片、黄瓜叶片、番茄子叶、龙胆花芽、灰木相思叶片等应用该方法都获得了较清晰的2-DE图谱。

TCA protein precipitation protocol

Stock Solutions: 100% (w/v) Trichloroacetic acid (TCA)

recipe: dissolve 500g TCA (as shipped) into 350 ml dH2O, store at RT.

Precipitation Protocol:

1. Add 1 volume of TCA stock to 4 volumes of protein sample.

i.e. in 1.5ml tube with maximum vol., add 250μl TCA to 1.0ml sample.

2. Incubate 10 min at 4°C.

3. Spin tube in microcentrifuge at 14K rpm, 5 min.

4. Remove supernatant, leaving protein pellet intact. Pellet should be formed from whitish,fluffy ppt.

5. Wash pellet with 200μl cold acetone.

6. Spin tune in microfuge at 14K rpm, 5min.

7. Repeat steps 4-6 for a total of 2 acetone washes.

8. Dry pellet by placing tube in 95°C heat block for 5-10 min to drive off acetone.

9. For SDS-PAGE, add 2X or 4X sample buffer (with or without bME) and boil smaple for

10 min in 95°C herat block before loading smaple onto polyacrylamide gel.

2 Trizol沉淀法

与TCA 丙酮沉淀法相比,Trizol沉淀蛋白质的方法可有效地除去色素、酚类等干扰电泳的化学物质,特别是对植物样品中高丰度蛋白——Rubisco1,5-二磷酸核酮糖羧化酶/加氧酶(Ribulose-1,5-bisphosphate carboxylase/oxygenase,通常简写为RuBisCO)。采用此方法能够减少高丰度蛋白对2-DE结果的干扰。植物样品中高丰度蛋白(如Rubisco)的存在对其他蛋白质,尤其是低丰度蛋白的检测的影响也很大,因此,选择合适的蛋白质制备方法尤其重

要。另外,使用聚乙二醇也可以去除该蛋白,效果较好。Trizol法相对于酚法蛋白质获得产率高,方法操作亦不复杂,但对试剂要求严格,大量制备样品时成本较高。目前使用此方法的植物比较少,对野牛草的种子、幼苗叶片及黄花苜蓿幼苗提取蛋白的效果很好。

1.取冻存组织加入1ml Trizol(invitrogen)匀浆,样品量不可超过总体积的10%,室温孵育5min,超声粉碎至组织完全溶于液体中;

2.加入0.2ml氯仿,剧烈晃动15s,室温孵育2-3min,4℃12000×g离心15min;此时溶液分为水相和有机相。

3.小心吸取并丢弃上层水相(该水相中富含细胞总RNA,用于提取RNA,进行PCR实验);

4.在剩下的中间层及有机相中加入0.3ml无水乙醇,颠倒充分混匀后室温放置2-3min,4℃下2000×g离心5min;

5.小心吸取并收集上层有机相(沉淀为DNA),转移到新的离心管中,加入1.5ml异丙醇,轻轻混匀后室温放置10min,4℃下12000×g离心10min;此时沉淀为蛋白。

6.弃上清液,加2ml0.3M盐酸胍(95%乙醇溶解)清洗沉淀3次,每次清洗过程中,先将沉淀保存于清洗液中20min,然后在4℃下7500×g离心5min。最后一次清洗后,丢弃上层液相,将沉淀悬浮于2ml乙醇中,涡旋震荡15s后在室温下放置20min,然后在4℃下7500×g离心5min。

7.丢弃上层液相,将沉淀真空干燥5-10min。然后将沉淀溶解于1%SDS(十二烷基硫酸钠)中。在50℃水浴中反复吹打以助溶。不溶物在4℃下10000×g离心10min去除。收集上清,转移到新的收集管中。该上清中的蛋白样品可直接用于Western Blotting实验或保存于-20℃。常见问题:

1.得率低:样品裂解或匀浆处理不彻底;最后得到的蛋白质沉淀未完全溶解

2.蛋白质降解:组织取出后未马上冷冻

3.电泳时条带变形:蛋白质沉淀洗涤不充分

3 Tris-HC1法

Tris-HCl法在膜蛋白和疏水性蛋白的提取方面有所改善。用含SDS的Tris-HCl与TCA丙酮联合使用提取蛋白质;用80%的丙酮洗涤以除去水溶性杂质(包括高浓度的盐离子),比TCA 丙酮法利用高速离心与丙酮洗涤的方法能更有效地排除杂质,也比传统的脱盐和透析方法要省时省力。Tris-HC1法提取的蛋白图谱效果明显比用TCA丙酮法提取的效果好,主要表现在不同分子量范围内蛋白点的数目及分离效果方面。TCA丙酮法所提取蛋白在小分子量区域分布不均匀,蛋白点不清晰,水平条纹与竖直条纹较为严重,而Tris-HC1法克服了上述缺点,并分离出TCA丙酮法所不易分离出的酸性蛋白,TCA丙酮法能够得到较多中等分子量蛋白而Tris-HC1法除了分离到较多的中等分子量的蛋白质外,还得到了很多的高分子量和低分子量蛋白质。另外,Tris-HC1法操作简便,时间较短,成本适中,提取步骤简单,减少了因处理步骤繁多而造成的蛋白质的损失,大大提高了实验结果的重复性。Tris-HC1法对箭毒木种子、白桦花芽及苹果叶片的提取效果非常好。在清洗步骤中,用10 倍体积的-20℃预冷10% TCA 丙酮沉降蛋白质,实验表明Tris-HCl 提取法所得图谱背景清晰,没有横纵条纹及弥散状的蛋白质点,蛋白质点数最多。

(1)准确称取0.5g叶片,剪碎后加入0.25mLTris-HCL溶液冰浴研磨。

(2)加入0.75mL提取液。(7moL/L尿素,2moL/L硫脲,0.4%CHAPS,10mmoL/LDTr)(3)研磨至匀浆后,转移至1.5mL离心管中,10000r/min。

(4)取上清,即为含蛋白样品。

植物提取蛋白定量:

总蛋白定量分析

1.常用的总蛋白定量分析方法。

2.针对特定蛋白的定量检测

常用的方法是酶联免疫吸附试验,免疫印迹分析和质谱。

酶联免疫吸附试验(ELISA)

酶联免疫吸附试验(ELISA)是溶液中特定蛋白定量的一种常用方法。通常是在96孔板上进行的。关键步骤是特定抗原/蛋白的固定。具体来说,ELISA有不同变种。直接或间接ELISA,是特定抗原/蛋白直接吸附到检测板。封闭未被抗原包被的孔板表面,然后在孔板中加入酶标(直接ELISA)或未酶标(间接ELISA)的第一抗体,在测试孔板中,一抗与抗原/蛋白相结合。对于未酶标的第一抗体,加入酶标的第二抗体与第一抗体结合。最后,加入酶底物(通常,四甲基联苯胺-TMB或碱性磷酸酶-AP),溶液发生颜色变化,使用分光光度计检测。颜色变化与蛋白质浓度是直接相关的。ELISA常用的一个变种是夹心ELISA,也就是说,特定抗原/蛋白结合在孔板表面包被的第一抗体(捕获抗体)和酶标的第二抗体(检测抗体)之间。直接ELISA的优点是速度快,并且没有第二抗体的交叉反应问题,但局限是,第一抗体的标记可能是费时和昂贵的。此外,信号放大是最弱的。因此,间接ELISA是更常用的,因为可以从公司买到各种各样的第二抗体,最重要的是灵敏度提高了。然而,可能会发生第二抗体的交叉反应。最后,任何ELISA测定蛋白质浓度的一个重要环节都是蛋白质标准曲线,通常是连续稀释已知浓度的蛋白质,从而绘制标准曲线。

免疫印迹分析

免疫印迹只能半定量。通过凝胶电泳把原始或变性的蛋白质分开。把蛋白质转膜(硝酸纤维素或polyvinylidene-PVDF),然后使用特定的酶标抗体检测。最后,加入适当的底物(化学发光底物)产生可检测的信号。虽然免疫印迹比ELISA更费时,但是免疫印迹不仅可以对特定的蛋白进行定量,而且可以在一次实验中同时检测蛋白质修饰。

蛋白质质谱

蛋白质质谱是蛋白质定量的新兴方法。在蛋白质组学分析中,除了蛋白定性之外,一个重要的步骤就是对特定的蛋白的定量。质谱蛋白定量的方法有很多。常用的方法,较重的稳定同位素碳(13C)或氮(15N)加入到第一个样本(多肽或蛋白质),而相应的轻同位素(12C 和14N)加入到第二个样本(内标),然后混合这两个样本进行分析。由于两个样本的质量差,用质谱分析仪测定的两个样本峰强度的比值,就相当于其相对丰度比。质谱蛋白定量的第二种方法,可以不用标记样本(即用基质辅助激光解吸/电离- MALDI分析)。这里,我们要强调的是,使用质谱这种通用方法就可以在一次实验中同时定量和定性检测。然而,这种方法需要的检测仪器可能不是任何实验室都能买得起,这可能就限制了这种方法的使用。非变性胶与变性胶区别:

非变性凝胶里面没加变性剂,一般是SDS。非变性胶跑出来的蛋白能保持其活性一般用做功能试验,如EMSA。由于没有变性剂的原因非变性胶电泳时除了与蛋白分子量有关也会受都电荷的影响,因此对蛋白等电点的确定和缓冲液的酸碱性有注意,有时需要倒转电泳时的正负极。从跑的胶来看,变性胶会比较好看,带比较窄,非变性胶跑出来则比较粗糙。

Western blot protocol

步骤:

1. 分离胶和积层胶,制胶板;

注意:灌分离胶时不要加太多。

2. 蛋白变性:准备蛋白样本,加入等体积的2×上样Buffer稀释,置于沸水中煮10min(预染marker煮5min)

3. 加样:每孔加入20~40μl样品

4. 电泳:置于电泳槽中电泳45min,恒定电流90mA(2块板),如为1块板则电流为50mA;

5. 取出胶板,用切割刀修好胶;

6. 将胶置于转膜液中浸泡;

7. 按顺序放好下列物质:黑面→海绵→滤纸→胶→NC膜→滤纸(用吸管赶去气泡)→海绵;

8. 置于转膜槽中于,黑面对黑面,加上冰块,加入转膜液;

9. 装好电极,于恒定电压100V下,90min;

10. 丽春红染膜;

11. 用TBST洗去丽春红;

12. 封闭:加入5%脱脂奶粉+TBST,常温摇床摇1h;

13. 回收封闭液,加入一抗【一抗用5%BSA+TBS稀释】;

14. 置于4℃摇床摇过夜;

15. 回收一抗,TBST洗膜,10min,共3次;

16. 加入二抗【二抗用5%脱脂奶粉+TBS稀释】,常温摇床摇1h;

17. 回收二抗,TBST洗膜,10min,共3次;

18. 将膜置于发光液中浸泡约1min;

19. 将膜铺于曝光盒中,于暗室中曝光,洗胶片。

常用溶液配制:

Ⅰ细胞裂解液(PLC Lysis Buffer)

Final concentration100ml500ml

1M Hepes(pH7.5)50mM5ml25ml

5M NaCl150mM3ml15ml

Glycerol10%10ml50ml

50mM MgCl2 1.5mM3ml15ml

Triton×1001%1ml5ml

0.5M EDTA(pH8.0)1mM200μl1ml

0.1M NaPPi10mM10ml50ml

0.5M NaF10Mm2ml10ml

每次提取蛋白前加入1%蛋白酶抑制剂

Ⅱ. SDS-PAGE胶配方及其它常用溶液的配制

1.30%丙烯酰胺

丙烯酰胺29g

N-N’-亚甲双丙烯酰胺1g

溶于总体积为60ml的水中,加热至37℃使其溶解,补加水至终体积为100ml。用Nalgene 滤器(0.45μm孔径)过滤除菌或Whatman 1号滤纸过滤,查证该溶液的pH值不大于7.0,置棕色瓶中保存于RT。

注:(1)丙烯酰胺是强烈的神经毒素,可经皮肤吸收,丙烯酰胺的作用具累积性。

(2)称取时,必须戴手套、口罩;取溶液时也要戴手套。

(3)贮存期间,丙烯酰胺和双丙烯酰胺缓慢转化为丙烯酸和双丙烯酸,这一脱氨反应是光催化和碱催化的。应检查丙烯酰胺溶液的pH值是否在7.0或更低,并应在RT下避光保存。每隔数月应重新配制溶液。

2.3M Tris-HCl,pH8.8(用于分离胶)

Tris碱分子量为121.1。将72.66gTris碱溶于重蒸水(不超过200ml)中,加浓盐酸调节pH 至8.8,让溶液泠却至RT,再最终调至所需pH值。加重蒸水定容至200ml,1.034×105 Pa,20min 高压灭菌,RT贮存。

注:(1)如溶液呈现黄色,应予丢弃,并置备质量更好的Tris.

(2)Tris溶液的pH值因温度而异,温度每升高1℃,pH值大约降低0.03个单位。3.2M Tris-HCl,pH6.8(用于积层胶)

同上方法,将48.44gTris碱加重蒸水定容至200ml,加浓盐酸调节pH至6.8。

4.10%十二烷基硫酸钠(SDS)

在900ml水中溶解100g电泳级SDS,加热至68℃助溶,加入几滴浓盐酸调节溶液的pH值至7.2,加水定容至1L,分装备用。

注:SDS的微细晶粒易于扩散,因此称量时要戴面罩,称量完毕后要清除残留在称量工作区和天平上的SDS,10%SDS溶液无须灭菌。

5.TEMED(N,N,N’,N’-四甲基乙二胺)

TEMED通过催化过硫酸铵形成自由基而加速丙烯酰胺与双丙烯酰胺的聚合。由于TEMED 只能以游离碱的形式发挥作用,因此pH值较低时聚合反应受到抑制。

6.10%过硫酸胺

过硫酸胺提供驱动丙烯酰胺和双丙烯酰胺聚合所必需的自由基。可用去离子水配制小量10%(W/V)的贮存液于保存于4℃。由于过硫酸铵会缓慢分解,故应隔新鲜配制。

方法:把1gAPS溶解于终量为10ml水溶液中,4℃保存数周。

7. 电泳缓冲液SDS buffer: 10X(running buffer)

Tris base 30.3g

Glycine 144.0g

SDS 10.0g

ddH2O to 1L

(1X conc: 25mM Tris base, 192mM glycine, 0.1%SDS,)

8. 转膜缓冲液Transfer Buffer(10×) pH8.3

Tris base 30.3g

Glycine 144.0g

20%v/v methanol (Fresh!)

ddH2O to 1 L

(1X conc: 25mM Tris base, 192mM glycine, 200ml methanol)

9. TBST(10X) pH: 7.5

Tris base 24.2g

NaCl 80.0g

Tween-20 10 ml

ddH2O to 1L

(1X conc: 100mM Tris base, 150mM NaCl, 0.1%Tween20)

10.Tris缓冲盐溶液(1X TBS,25mmol/L Tris)

NaCl 8.0g

KCl 0.2g

Tris碱 3.0g

溶解于800ml蒸馏水中,加入0.015酚红并用HCl调pH值至7.4,用蒸馏水定容至1L,分装后在15lbf/in2(1.034×105 Pa),高压下灭菌20min,RT贮存。

11.发光剂

100mM Tris Base(pH8.5)10 ml

250mM Luminol (in DMSO) 50 μl

90mM P-Coumaric Acid (in DMSO) 22 μl

30%H2O2 2.75 μl

SDS-PAGE Mini-Gel Recipes

10%Running Gel

植物蛋白饮料工艺设计

《食品工厂设计与环境保护》大作业 一工艺流程图 二、设计说明书 市场背景 植物蛋白饮料主要原料为植物核果类籽及植物的种籽。这些籽仁含有大量脂肪、蛋白质、维生素、矿物质等,是人体生命活动中不可缺少的营养物质。植物蛋白及其制品由于不含胆固醇而含大量的亚油酸和亚麻酸,长期食用不仅不会造成血管壁上的胆固醇沉积,而且还对血管壁上沉降胆固醇既有溶解作用。植物籽仁中含有较多的维生素E,可防止不饱和脂肪氧化,去除过剩的胆固醇,防止血管硬化,减少褐斑,有预防老年病的作用。植物蛋白饮料还富含钙、锌、铁等多种物质和微量元素,为碱性食品,可以缓冲肉类,鱼、蛋、家禽、谷物等酸性食品的不良作用。部分人尤其是多数亚洲人体内不含乳搪酶,饮用牛奶有过敏问题,而饮用不含乳糖的植物蛋白饮料就无此问题。 世界上部分地区食物与蛋白供应不足,己成为人类无法回避的问题。根据FAO统计,发展中国家有20%的居民热量不足,60%的居民食物中的蛋白质满足不了要求。这种实际情况,迫使各国政府和人民采取有效措施解决食物与蛋白的供应问题。 我国人民解决了温饱,但饮食结构中缺乏优质蛋白。鉴于我国人多地少及粮食转化为动物蛋白的效率低(即Ikg动物蛋白消耗能源和劳动工本分别高于植物蛋白的9倍和7倍)等因素,中国食品工业协会以及相关部门先后提出发展植物蛋白与动物蛋白并举的方针。 以椰子汁、杏仁露等为代表的植物蛋白饮料将掀起新一波饮料浪潮。《中国饮料行业“十二五”发展规划建议》中,中国饮料工业协会估计,以椰子、大豆、花生、杏仁、核桃等植物果仁、果肉为原料的植物蛋白饮料或将迎来高速发展期。与此同时,包括海南椰岛集团、汇源集团、维他奶等饮料企业纷纷进军植物饮料领域,欲抢占市场先机。据了解,随着饮料行业发展和国内消费者对健康饮料的追求,中国饮料产业结构也在不断调整。《中国饮料行业“十二五”发展规划建议》显示,中国饮料工业协会保守估计,未来五年,我国饮料

植物蛋白饮料的常见质量问题及控制措施

植物蛋白饮料的常见质量问题及控制措施摘要:本文阐述了植物蛋白饮料在生产、运输、销售、贮存过程中容易出现的坏包、脂肪上浮及蛋白质聚集、絮凝、凝结、沉淀等主要质量问题。从原辅料、加工工艺、加工设备的技术水平、包装材料、贮存等过程,分析其产生原因,并提出相应的控制措施,特别是在乳化稳定剂的使用方面。 植物蛋白饮料是以各种核果类及植物的种子(如花生、核桃、大豆、杏仁、椰子等)为主料,经过原料预处理、浸泡、磨浆、过滤、均质、杀菌等工序,调配制成的植物蛋白饮品。这些产品口味鲜香独特,富含丰富的蛋白质和脂肪,且药食兼备。随着人们对健康、营养的日益关注,植物蛋白饮料的消费日益增长,品种日益增多。 植物蛋白饮料是多种成分组成的一种复杂的分散体系,其分散质为蛋白质和脂肪,分散剂为水,外观呈乳状液态,属热力学不稳定体系。本文针对植物蛋白饮料常见的坏包、脂肪上浮及蛋白质聚集、絮凝、分层、沉淀等质量问题进行分析,并提出相应的解决办法,从而使该类产品质量稳定。 1、坏包 植物蛋白饮料富含蛋白质、脂肪,很容易发生胀罐、胀袋、酸败等变质现象。 原因分析及控制措施: 1.1、原料的选取不当 生产植物蛋白饮料宜选择新鲜、无霉变、成熟度较高的植物籽仁。 1.2、杀菌方式选择不正确 欲达到室温下长期存放产品的效果,有两种杀菌方式可以选择,一种是先灌装,然后经过121℃、保温15~20min的高压杀菌方式;另一种就是采用超高温瞬时杀菌(即UHT法)和无菌灌装。 1.3、杀菌过程控制不当 在高压杀菌过程中,产品在进入杀菌罐之前要分层放置,不能过多、过挤,以防止引起杀菌不透的现象;对UHT-无菌灌装方式,按规定对UHT杀菌机进行有效的CIP清洗,使UHT杀菌机处于正常工作状态,温度显示准确。对于包材必须经过双氧水杀菌,不能有遗漏之处。无菌灌装区域在工作期间应始终处于无菌状态,严格检查封口质量。 1.4、设备、管道的清洗与消毒不彻底 就我国现有的生产工艺条件,要想生产杀菌效果很好的产品,不但杀菌方式的选择、杀菌过程的控制十分重要,而且设备、管道的清洗与消毒也是保证产品品质的一个相当重要的因素。管道的清洗程序如下:①用清水冲洗10~15min;②用生产温度下的热碱性洗涤剂循环10~15min(加浓度为2%-2.5%的氢氧化钠溶液);③用清水冲洗至中性,即pH 值为7;④定期(如每周)用65~70℃的酸性洗涤剂循环15~20min。对于UHT杀菌方式,除按照规定进行有效的CIP清洗外,对UHT杀菌机与无菌灌装机之间的所有管路和无菌罐在进料前,用高温热水循环40min,杀菌前应仔细检查管路活节处有无渗漏现象,检查活节处的密封垫是否完好。 2、脂肪上浮与蛋白质聚集、絮凝、凝结、沉淀等 在生产工艺、设备控制相对较好的前提下,产品在货架期内出现的主要问题为产品的稳定性问题(即脂肪上浮与蛋白质聚集、絮凝、凝结、沉淀等); 原因分析及控制措施: 2.1、水质不符合软饮料用水要求 水的硬度对植物蛋白饮料的影响,不但会降低蛋白质的提取率(即降低蛋白质的溶解度),而且会引起蛋白质一定程度的变性,从而造成饮料分层及沉淀量增加。所以用水一定要符合软饮料用水要求,特别是水的硬度。 2.2、原料的预处理不当 对于该类产品,原料的预处理是十分关键的。这不但会影响产品的口感和风味,而且对产品的稳定性影响较大。如花生奶,如果花生烘烤过度,会引起蛋白质部分变性,沉淀量增多。一般花生的烘烤温度为120~130℃,时间为20~25min最好。 2.3、均质条件的选择不合适 植物蛋白饮料通过高压均质可减小颗粒直径,在不考虑电荷影响时,颗粒沉降速度符合斯托克斯定律。要使饮料稳定,必须选择沉降速度的最小值,对于特定的蛋白饮料,粒子密度、介质粘度都为定值,无疑是有选择颗粒的最小值,而采用高压均质,使颗粒直径减小,粒子达到微粒化的一个重要措施。其中均质的压力、温度和均质次数是保证均质效果的重要工艺参数。如果均质压力、温度较低,则脂肪、蛋白粒子的直径较大,容易引起颗粒聚集,从而引起脂肪上浮和沉淀。在生产中建议采用两次均质,一次均质压力为20~25MPa,二次均质压力为30~40MPa,均质温度为75℃左右,均质效果较好,颗粒直径可达到1~2μm。 2.4、杀菌强度的控制不当 在杀菌过程中,高温对植物蛋白饮料稳定性的影响主要表现在对蛋白质变性作用的影响。高温使分子

植物蛋白行业发展现状调研及投资前景分析报告(2020-2026)

植物蛋白行业发展现状调研及投资前景分析报告(2020-2026) 恒州博智(QYResearch) 2020年

2019年全球植物蛋白市场总值达到了750亿元,预计2026年可以增长到1622亿元,年复合增长率(CAGR)为11.5%。 本报告研究全球与中国植物蛋白的发展现状及未来发展趋势,分别从生产和消费的角度分析植物蛋白的主要生产地区、主要消费地区以及主要的生产商。重点分析全球与中国的主要厂商产品特点、产品产品类型、不同产品类型产品的价格、产量、产值及全球和中国主要生产商的市场份额。主要生产商包括: DowDuPont ADM CHS Manildra Group Roquette Midwest Grain CropEnergies Tereos Syral Showa Sangyo Fuji Oil Cargill Cosucra Nisshin Oillio Tate & Lyle

World Food Processing Topagri Gushen Biological Shansong Biological Tianguan Yuwang Group Scents Holdings Chinalotus Goldensea Industry Sinoglory Health Food Shuangta Food Harbin Hi-tech Soybean Fiber Source Biological Engineering Oriental Protein Tech Wonderful Industrial Group Tianjing Plant Albumen 按照不同产品类型,包括如下几个类别: >80% <80% 按照不同应用,主要包括如下几个方面:食品和饮料 饲料

如何解决植物蛋白饮料生产中的常见问题

如何解决植物蛋白饮料生产中的常见问题 问:植物蛋白饮料生产中有哪些常见问题?如何解决? 答:植物蛋白饮料如花生奶、核桃奶、杏仁露、椰奶等奶饮品的营养价值早已被世人所知,但许多厂家在生产中存在这样或那样的问题,如絮凝、沉淀、浮油、水析、色泽较深、香味不够或带有生青味或豆腥味等等。 1.产生絮凝、沉淀 1.1 生产用水的水质不行水的硬度过高,水中铁、锰等离子含量过高,会使蛋白质饮料絮凝沉淀,可以通过对水进行软化处理解决。也可以不对水进行处理,添加一定量的磷酸盐或熬和剂解决。 1.2 pH值过低奶品在灌装杀菌前pH值过低,也会引起蛋白质在高温杀菌过程中絮凝沉淀,所以应该在奶品灌装前用NaOH或NaHCO3溶液调整pH值为7.0左右,使产品的pH值远离蛋白质的等电点。但pH值也不能太高,否则会使产品带有不好闻的碱味,并使奶品的颜色过深。 1.3 杀菌强度过大,冷却不及时中性奶的高温杀菌温度一般为121℃,20分钟,若杀菌温度过高,时间过长,会使蛋白质絮凝、沉淀,颜色加深。解决办法是降低杀菌强度,及时冷却至室温。 1.4 稳定剂使用不当也会产生絮凝沉淀解决办法:若产品油脂含量高,则选用爱可瑞牌XGW-ZH02型---植物蛋白饮料乳化稳定剂;脂肪含量较低,则选用爱可瑞牌XGW-ZH01型---植物蛋白饮料乳化稳定剂。 1.5 颗粒太大均质操作不当引起的。解决方法:应该先用胶体磨磨两遍,然后采用二级均质机均质,均质时料液的温度一般为70--80℃,一级压力为30Mpa以上,二级压力为25Mpa左右,使均质后的颗粒达到50微米以下。 1.6 稳定剂的用量不够若产生的沉淀为粉末状而不是絮凝状,则可能是稳定剂用量不够,应适当增加用量。 2. 产品带有生青味或豆腥味产生生青味或豆腥味一般是因为灭酶强度不够或操作不当。对于花生,采用烘烤灭酶,烘烤温度为130--140℃,时间30—40分钟(时间长短与花生的干燥程度有关),也不能烤得不够,否则可能产生絮凝,一般烤到花生皮转色较好。对于大豆,则采用热烫灭酶,快速使大豆中的脂肪氧化酶失活,以免产生豆腥味;采用热水磨浆,同时选用好的香精增强奶的香味。花生奶中添加蝶之舞牌花生香精可以很好的掩盖生花生味。 3. 油圈严重产生原因:乳化稳定剂选用不当;乳化稳定剂添加不足或过头。解决方法:选用爱可瑞牌XGW-ZH02型---植物蛋白饮料乳化稳定剂,使用量和使用方法参照产品说明。 4. 水析水析是指产品中的蛋白质从水中析出并呈皱褶状凝聚,悬浮于瓶中上部,瓶的下层为淡黄色的清水层。产生的原因有:稳定剂使用不当;灭菌操作不当;封口不良等。若因稳定剂原因引起的水析,则选用爱可瑞牌XGW-ZH01或ZH02稳定剂就可以解决问题;若是因灭菌操作不当引起水析则采用15ˊ--20ˊ--10ˊ/121℃(即15分钟内升到121℃,接着恒温20分钟,然后快速将温度降到常温)就可以避免水析。若是由于封口不良引起的水析,则只要加强封口检查。 5. 微生物引起的腐败腐败了的奶也会出现上述几种现象。解决方法:改

2013年植物蛋白饮料杏仁露市场分析

2013年植物蛋白饮料杏仁露市场分析 一、杏仁露简介——植物蛋白饮料的代表之一 (2) 二、植物蛋白饮料方兴未艾 (3) 三、知名植物蛋白饮料企业简介——河北养元、银鹭 (4)

一、杏仁露简介——植物蛋白饮料的代表之一 “露露”牌杏仁露是以野生杏仁为原料,采用特殊工艺精制而成的植物蛋白饮料。露露洁白如奶,细腻如玉,香味独特,回味悠长,冷饮清暑,热饮祛寒,老幼皆宜。 主要原料野生甜杏仁是一种健康食品,适量食用不仅可以有效控制人体内胆固醇的含量,还能显著降低心脏病和多种慢性病的发病危险。素食者食用甜杏仁可以及时补充蛋白质、微量元素和维生素,例如铁、锌及维生素E。野生杏仁是一种再生能力很强的野生植物,不需人工任何管理;主要分布在我国北纬35°-45°的范围内燕山山脉河北一带,其中承德地区是野生杏仁的主产区,产量占全国的1/4左右。另外周边地区辽宁朝阳市、内蒙赤峰市、河北张家口市的杏仁产量也很丰富。 “露露”牌杏仁露属于天然植物蛋白饮料,含有丰富的碘、钙、锌等微量元素和18种氨基酸,具有止咳、润肺、降血脂、防止动脉硬化、增强人体免疫力等保健功能,长期饮用可以降低胆固醇和甘油三酯,具有预防心血管疾病的保健作用。1997年9月被国家卫生部正式批准为保健食品;1998年10 月有中国绿色食品发展中心批准为绿色食品;1999 年1 月国家工商局商标局认定"露露"商标为中国驰名商标。在全国植物蛋白领域曾有“南椰树,北露露”的美誉。

二、植物蛋白饮料方兴未艾 植物蛋白饮料,在原料上,相对于动物蛋白饮料而言,以蛋白质含量较高的五谷杂粮、大豆、植物果实等为原料,经处理、制浆、调配、均质、灌装、杀菌等工序加工而成的饮料。在成份和功能上,这些植物含有大量蛋白质、脂肪、维生素、矿物质等,是人体所需的营养物质,还富含钙、锌、铁等多种矿物质和微量元素,可以缓冲肉、鱼、蛋、等酸性食品的不良作用。另外,许多植物籽仁还具有良好的保健和疗效作用,如杏仁有降血脂和预防动脉粥样硬化形成的功能;花生仁可预防高血压、动脉硬化和心血管疾病等。植物蛋白饮料蛋白含量与牛奶的蛋白含量相近,更便于人体吸收、更安全,既可以解渴,又能补充营养。 植物蛋白饮料相对于其他饮料具有明显的优点:一是植物蛋白能够提供比动物蛋白更完善的营养结构,不仅解渴,还可以快速补充营养。二是植物蛋白饮料不会对消费者产生乳糖不耐受症,更适合国人

植物蛋白饮料的市场规模发展现状

植物蛋白饮料的市场规模发展现状及因素解析 露露、椰树多年停留在10亿左右的销售规模 以承德露露和海南椰树椰汁为代表的植物蛋白饮料的市场规模一直做不大,相对茶饮料和果汁饮料的市场规模相差甚远。露露和椰树着两个领先品牌多年来也基本徘徊在10亿元左右的销售规模,再往上做就变的非常困难。其主要原因到底是植物蛋白饮料市场规模本身就小,还是对目标消费者及其需求把握不准,以及对消费者需求引导不够呢?北京精准企划凭借15年食品企业成功营销策划的实战经验,我们认为虽然植物蛋白饮料的市场规模没有茶饮料大,但如果生产企业的营销水平不断提高,营销方式不断创新,从现在卖一瓶饮料,发展到卖二瓶,甚至是三瓶,植物蛋白饮料的市场规模必然会成倍增长。就像有了王老吉后,凉茶饮料的市场规模由几个亿变成了150亿以上,一下翻了数十倍。 植物蛋白饮料强势品牌存在的营销漏洞 应该说植物蛋白饮料的知名品牌中承德露露、椰树椰汁和大寨核桃露都是非常努力的企业,在营销方面走在了其它植物蛋白饮料的前面,同时也都表现出了专业的营销水平。尤其是露露的品牌规划和市场规划已接近可口可乐、康师傅这样国际品牌的营销模式。但精准企划认为这三个品牌都还有不足之处,直接影响了产品销量的进一步提升。 承德露露:品牌代言人是许晴。露露美颜坊的卖点是润出自然美丽。品牌传播口号是“我的私房美容饮品”。露露基本代表了植物蛋白饮料营销的最高水准。但也有明显的不足之处,就是没有将品牌传播上升到历史、文化的高度。让自己成为杏仁功效、历史文化的传承者和发扬者,是正宗杏仁饮料的第一品牌。这不仅限制了产品销量的扩大,也为潜在的竞争对手留下的市场机会。 椰树椰汁:广告口号是“喝椰树椰汁,白白嫩嫩”。传播口号太直白,容易引起目标消费者的反感。椰树椰汁有着非常突出的产品力,产品的口感也非常好。就是品牌规划和营销模式一直处在不温不火的状态。没有精准的品牌定位;没有一句能让消费者记住的广告口号;没有提炼出打动消费者的产品卖点。公司网站的设计也完全与椰树椰汁的品牌形象相差甚远。椰树椰汁在营销方面的表现好像有越来越弱的趋势。

植物蛋白主要上下游产品分析

北京中元智盛市场研究有限公司

目录 植物蛋白主要上下游产品分析 (2) 第一节植物蛋白上下游分析 (2) 一、与行业上下游之间的关联性 (2) 二、上游原材料供应形势分析 (2) 2、豆类 (3) 3、谷类 (3) 4、螺旋藻蛋白 (4) 三、下游产品解析 (5) 第二节植物蛋白行业产业链分析 (5) 一、行业上游影响及风险分析 (5) 二、行业下游风险分析及提示 (6) 三、关联行业风险分析及提示 (6) 1

植物蛋白主要上下游产品分析 第一节植物蛋白上下游分析 一、与行业上下游之间的关联性 植物蛋白的上游主要由油料种子、大豆、谷类、螺旋藻等原材料厂商组成。植物蛋白下游主要应用于食品、医疗、饲料、饮料等领域。 图表- 1:植物蛋白产业链分析 杭州先略整理 二、上游原材料供应形势分析 1、油料种子 油料种子主要包括花生、油菜子、向日葵、芝麻等,其蛋白质种类主要以球蛋白为主。其中花生中蛋白质含量为26%~29%,其中球蛋白含量可以达到90%,其加工后溶解性高、黏度低,可用于制作面包及饮料等。向日葵是重要的油脂原料来源,其含有较高的球蛋白,但其赖氨酸含量有限。油菜籽产量很高,油菜籽含蛋白质25%,去油后的菜籽粕含有35%~45%的蛋白质。在植物蛋白质中,油菜籽蛋白的营养价值最高,没有限制性氨基酸,特别是含有许多在大豆中含量不足的含硫氨基酸。以油菜籽的脱脂物为原料可以加工浓缩蛋白。蛋白质在提取、分离等加工过程中,容易受到因加热而变性的影响,使蛋白质溶解度降低,不能 2

3 形成胶体,而油料种子蛋白质具有很好的保水性与持油性。此外,经分离得到的变性少的蛋白质,其发泡性、乳化性、凝胶性都很好。 2、豆类 豆类中蛋白质的含量丰富,其主要存在于蛋白质体中,豆类的蛋白质含量高达40%,蛋白质体中达80%。一般而言,豆类蛋白质中碱性氨基酸含量较少,谷氨酸、天冬氨酸等酸性氨基酸含量较多,其中也以球蛋白为主,还含有丰富的不饱和脂肪酸、钙、磷、铁、膳食纤维等,不含胆固醇,具有很高的营养价值。现代营养学家研究证实,豆类蛋白质具有降低高血压、减少心血管病、促进营养吸收和降血脂的功效。不仅如此,豆类中还含有皂苷、异黄酮等活性成分,具有抗衰老、提高免疫力、促进钙物质吸收的功能。豆制品生产中普遍存在蛋白质提取率偏低的问题,以大豆提取为例,目前大豆蛋白质的提取率大多在60%以下。大多数大豆蛋白都可溶于水,所以提高大豆蛋白质的提取率具有很大的潜力。根据蛋白质溶解特性大豆蛋白可分为清蛋白和球蛋白2类;又根据离心分离系数(即沉降系数)不同,大豆分离蛋白可分为2S 、7S 、11S 和 15S 等4种组分。 图表- 2:2012-2016年中国大豆产量分析 数据来源:中国食品工业协会豆制品专业委员会 3、谷类 谷类主要包括玉米、小麦、黑麦等,谷类中的蛋白质不溶于水或盐溶液,其

植物蛋白饮料制作过程

1. 材料与设备 (1)原料核桃仁、花生仁、鲜奶、奶粉、蔗糖、稳定剂。 (2)菌种嗜热链球菌、保加利亚乳杆菌(绵阳雪宝乳品厂提供)。 (3)仪器与设备FA1004型全自动电子天平、250B生化培养箱、远红外线食品烤炉、食物搅拌器、HH.S21-HI4型电热恒温水浴祸、SS-350型原子吸收分光光度计。 2. 工艺流程 ①核桃仁→浸泡→去皮→磨浆→过滤→核桃浆;②花生仁→焙烤→去皮→浸泡→磨浆→过滤→花生浆;③鲜奶→检测→过滤。 甜味剂、乳化剂、稳定剂 ①+②+③→混合→调配→均质→过滤→ 杀菌→冷却→接种→灌装→发酵→成熟→成品。 3. 操作要点 (1)核桃浆的制备核桃仁先用热水浸泡约20 min后,用7%的氢氧化钠溶液煮沸5 min,用流动水冲洗干净,然后在0.36%~ 0.38%的盐酸溶液中浸泡10 min,再用清水冲洗,将去皮后的核桃仁以1∶4的比例加入60 ℃的软水进行磨浆、过滤,即成核桃浆。 (2)花生浆的制备先将花生在120 ℃烘箱中焙烤17 min。焙烤后的花生仁要做去皮处理,再用60 ℃的温水浸泡4 h,与约80 ℃的水以1∶1的比例进行磨浆,用0.01%氢氧化钠溶液调节pH值,后经过滤得花生浆。 (3)鲜奶处理验收后的鲜奶经过滤,再加入适量脱脂奶粉调节固形物含量。 (4)混合将核桃浆、花生浆、鲜奶,以1∶5∶4的比例混合均匀。 (5)调配将甜味剂、稳定剂、乳化剂分别用蒸馏水溶解后,加入到上述混合液中。 (6)均质将调配好的混合液在20 MPa ~30 MPa压力下均质。 (7)杀菌、冷却、接种杀菌温度应控制在90 ℃,时间为20 min。杀菌后要迅速将混合液冷却到42 ℃~45 ℃。将冷却后的混合乳液接种4%的生产发酵剂。 (8)分装、发酵将接种后的乳液分装后放入生化培养箱中,在44 ℃的温度条件下培养4 h。 (9)冷却、后熟从培养箱中取出发酵产品迅速冷却到10 ℃以下,再放入冰箱中,在2 ℃~5 ℃条件下存放12 h~24 h,即得成品。 4. 结果分析 (1)花生浆制备关键点①烘烤工艺参数的确定。由试验得知,花生仁在高温烘烤时,若箱内温度较高,时间过长时,花生组织便可能受热破坏,蛋白质变性,花生浆稳定性较差,蛋白质量相对较低;温度低时间又短时,有些抗营养因子未被破坏,某些羰基化合物仍然存在,有明显的生腥味。试验结果表明最佳工艺参数是,烘烤温度为120 ℃,时间为17 min。经此条件烘烤后,花生仁的胰原酶阻碍因子、甲状腺肿素、植物性血球凝素及植酸、草酸等成分被破坏或失去活性,可消除食用后的不适症状,避免了成品的生味,还会诱发出各种芳香物。②加水量的确定。磨浆时的加水量对成品的营养成分含量有很大影响。加水量越多,营养成分越易溶出,固形物含量降低,不利于发酵。结果见表1。 (2)核桃浆制备的主要因素核桃蛋白质的溶出率与温度、pH值的变化有关。温度较低时,不利于蛋白质的溶出;温度升高,有利于蛋白质的溶出。经实验确定温度保持在60 ℃为宜。核桃蛋白质是由多种等电点所组成的复杂蛋白质。在等电点时,核桃蛋白以两性离子状态存在,溶解度很低,溶出率也低。在偏离等电点的酸性介质中,蛋白质分子主要

中国植物蛋白饮料市场消费者调研及投资策略研究报告(2013-2018)

中国植物蛋白饮料市场消费者调研及投资策略研究报告(2013-2018) 第一章植物蛋白饮料的行业定位及投资特性 第一节植物蛋白饮料行业定位 一、行业定义 二、产品分类 三、行业发展生命周期研判 第二节植物蛋白饮料行业投资特性分析 一、市场发展特点 二、市场成长及行业集中度 三、竞争范围分析 四、技术水平及研发能力 五、现代化及标准化趋势 第二章2011-2013年中国植物蛋白饮料行业发展现状概述 第一节植物蛋白饮料国际发展概述 一、产品重点生产国家和地区概况 二、国外行业发展成熟度分析 三、2011-2013年国外市场运行特点 四、2013-2018年国际发展趋势分析 第二节中国植物蛋白饮料发展概述 一、行业发展历史沿革 二、国内行业发展成熟度分析 三、2011-2013年国内市场运行特点 四、2013-2018年国内市场发展趋势分析、 第三节2010年国内市场发展中存在问题分析

第三章2011-2013年中国植物蛋白饮料行业市场发展环境分析第一节2011-2013年中国宏观经济环境分析 一、国民经济增长 二、中国居民消费价格指数 三、工业生产运行情况 四、房地产业投资情况 五、中国制造业采购经理指数 第二节2011-2013年中国植物蛋白饮料行业政策环境分析 一、植物蛋白饮料行业政策分析 二、植物蛋白饮料相关政策影响分析 第三节2011-2013年中国植物蛋白饮料行业社会环境分析 一、人口环境分析 二、教育环境分析 三、文化环境分析 四、生态环境分析 第四章2007-2013年中国植物蛋白饮料制造行业主要数据监测分析第一节2007-2013年中国植物蛋白饮料制造行业规模分析 一、企业数量增长分析 二、从业人数增长分析 三、资产规模增长分析 第二节2013年中国植物蛋白饮料制造行业结构分析 一、企业数量结构分析 1、不同类型分析 2、不同所有制分析 二、销售收入结构分析 1、不同类型分析 2、不同所有制分析 第三节2007-2013年中国植物蛋白饮料制造行业产值分析

植物蛋白饮料项目计划方案

植物蛋白饮料项目计划方案 一、项目提出的理由 从行业构成看,由于新产业和新商业模式发展迅速,带动相关行业的增加值增长较快,占比不断提高。今年前三季度,信息传输软件和信息技术服务业、租赁和商务服务业、交通运输仓储和邮政业增加值分别比2017年同期增长31.2%、9.4%和8.0%,领先于其他行业的增长。在这些行业的带动下,第三产业增加值增速高于GDP增速。 二、项目选址 项目选址位于xxx经济新区。地区生产总值2526.07亿元,比上年增长9.68%。其中,第一产业增加值202.09亿元,增长10.65%;第二产业增加值1566.16亿元,增长8.73%第三产业增加值757.82亿元,增长5.55%。 一般公共预算收入218.22亿元,同比增长8.65%,一般公共预算支出538.93亿元,同比增长9.17%。国税收入332.47亿元,同比增长11.17%;地税收入亿元64.86,同比增长6.65%。

居民消费价格上涨1.08%。其中,食品烟酒上涨0.78%,衣着上涨0.66%,居住上涨0.70%,生活用品及服务上涨0.81%,教育文化和娱乐上涨0.67%,医疗保健上涨0.99%,其他用品和服务上涨1.04%,交通和通信上涨0.79%。 全部工业完成增加值1929.69亿元。规模以上工业企业实现增加值1233.52亿元,比上年增长5.58%。 所选场址应避开自然保护区、风景名胜区、生活饮用水源地和其他特别需要保护的环境敏感性目标。项目建设区域地理条件较好,基础设施等配套较为完善,并且具有足够的发展潜力。 三、建设背景及必要性 1、本期工程项目建设有利于促进项目建设地先进制造业的发展,有利于形成市场规模和良好经济社会效益的产业集群,推动产业结构转型升级;坚持自主创新与技术引进、利用全球创新资源有机结合;推进产学研联合攻关,构建“政府—企业—高校—科研院所—金融机构”相结合的产业技术研发模式,推动一批关键共性技术开发,大力推进科技成果产业化;同时,积极引进境外先进技术,加快引进、消化、吸收和再创新。 2、《中国制造2025蓝皮书(2017)》6月30日在北京发布。蓝皮书称,中国制造业取得诸多成就,但长期积累的发展环境不优的问题仍待彻底改变。蓝皮书由国家制造强国建设战略咨询委员会编著,该书总结《中国制造2025》实施两年来各项重点任务落实情况,评估相关政策实施效果,分

植物蛋白的危害

植物奶油是"慢性毒药": 中国缺乏限量标准(组图) 导读: 近日央视《经济半小时》报道了植物奶油存在健康隐患的消息后,引起社会广泛关注。我们大家突然意识到身边95%的洋快餐、蛋糕、面包都含有这种物质,植物奶油产生的反式脂肪酸一时成为众矢之的。其实,关于反式脂肪对人体健康的隐患并不是最近新的研究成果。反式脂肪会导致人体内生理功能出现多重障碍,容易造成心脑血管疾病。近年来,欧美很多国家都对食品中反式脂肪的含量有明确的规定,并且对食品包装上的标注也由严格规定。但中国没有国家限量标准,市场上的标注也混乱不清,消费者在缺乏知情权的情况下,面临着反式脂肪对健康的严重威胁。 ★植物奶油反式脂肪成分对人体危害大 植物奶油,也称作“人造奶油”或“氢化油”,德国化学家威罕?诺门所发明,1902年取得专利。原理是在加热植物油时,加入金属催化剂,通入氢气,使液体油脂变成半固体油脂。人造奶油由于呈固态,比液态天然植物油好储存,价格又低于天然动物脂肪,而且保质期长口感好,因此受到人们的欢迎。然而在“氢化”的过程中部份的脂肪改变为反式脂肪。反式脂肪对人体健康并无益处,也不是人体所需要的营养素。人造奶油对人体危害大即是因反式脂肪而起。 植物奶油有着各种好听的名字:“植物奶精”、“植脂末”、“起酥油”、“人造黄油”、“植物黄油”或“麦淇琳”。 2007年哈佛大学公共卫生学院进行的一项新研究发现,反式脂肪酸与心脏病患病风险之间关系密切。 研究人员发现红血球中的反式脂肪酸水平越高,患冠心病风险越大。 反式脂肪酸难以被身体代谢,易诱发糖尿病

早在10年前,欧洲8个国家就联合开展了多项有关人造脂肪危害的研究。由于反式脂肪酸在人体里是完全不被接受的,所以会导致体内生理功能出现多重障碍。科学家发现反式脂肪酸,很难被身体分解,也无法被代谢出去,一般的脂肪吃在身体里7天就代谢了,反式脂肪吃在身体里50天甚至更长的时间才可以代谢。没有代谢掉的反式脂肪最后只能留在体内,囤积在细胞或血管壁上。德国营养医学协会负责人安德雷?菲格教授告诉记者,研究结果显示,对于心血管疾病的发生发展,人造脂肪负有极大的责任,它导致心血管疾病的几率是饱和脂肪酸的3―5倍,甚至还会损害人们的认知功能。此外,人造脂肪还会诱发肿瘤(乳腺 癌等)、哮喘、2 型糖尿病、过敏等疾病,对胎儿体重、青少年发育也有不利影响。菲格教授打了这样一个比方:如果在一份看上去“大油大肉”的浓汁肉排和一盘用人造脂肪做出来的炸薯条之间进行取舍,那么选择前者更有利于健康。医学研究还证实,人们过多摄入反式脂肪会诱发糖尿病;通过胎盘以及母乳转运给胎儿,对其视网膜、中枢神经系统和大脑功能发育产生不利影响;还可影响神经、生殖系统的发育,减少男性荷尔蒙分泌,抑制儿童的正常身体发育。 哈佛大学研究:提高患心血管疾病概率 2007年哈佛大学公共卫生学院进行的一项研究发现,反式脂肪酸与心脏病患病 风险之间关系密切。在研究过程中,研究人员共对从32826人身上采集的血样进行了检测,这些人参与了1989年至1990年针对布里哈姆妇女医院的护士进行的研究。在随后的6年时间里,参与者中共有166人被确诊为冠心病患者,此外,研究人员还将他们与327名控制组成员进行了比较。在调整年龄、吸烟及其他与饮食和生活方式有关的心血管风险因素之后,研究人员发现红血球中的反式脂肪酸水平越高,患冠心病风险越大。反式脂肪酸水平处于最高四分位值的女性患冠心病风险是处于最低四分位值女性的3倍。 由于人体无法自身生成反式脂肪酸,因此人体中的反式脂肪酸均由食品中摄入。临床试验结果显示,反式脂肪酸包括饱和脂肪酸,能够提高LDL(低密度脂蛋白)胆固醇水平,同时降低HDL(高密度脂蛋白)胆固醇水平,是唯一一个可 以产生这种双重影响的脂肪酸。HDL被视为一种“有益”的胆固醇,LDL则被视 为一种“有害”的胆固醇。 什么食品含植物奶油 并不是所有人都了解植物奶油,似乎在市场上的食品成分中也并不是很常见。其实,植物奶油在市场上有着各种好听的名字:“植物奶精”、“植脂末”、“起酥油”、“人造黄油”、“植物黄油”或“麦淇琳”。根据中国人民解放军301医院与福州大学联合做的反式脂肪酸最新调查研究,从2005年到2009年,专家对国内市场上 52个著名食品品牌、167种加工食品进行测定。抽检食品中发现,87%的样品含有反式脂肪酸,包括所有的奶酪制品、蛋糕、面包、油炸薯条类小吃,以及95%的“洋快餐”、90%的冰激凌、80%的人造奶油、71%的饼干。

优质植物蛋白质来源及其应用

蛋白质是人类生命活动的基础,为人类提供营养的同时也对人体生理代谢起着重要的调控作用。过去人们认为动物(肉、奶、蛋)是优质蛋白质的主要来源,但随着人口的增长和消费水平的提高,动物蛋白质的供应模式已难以满足人们对蛋白质的需求,尤其在发展中国家,普遍陷入了蛋白质资源短缺的危机。近年来的研究表明,大量摄入动物性蛋白质会导致一系列的健康危机,如肥胖、心血管疾病等。因此,现在人们对植物性蛋白质越来越重视。而在中国传统饮食文化中,也提倡摄入植物性蛋白质。 植物蛋白质来源 目前,植物是食用及饲用蛋白质的主要来源,全球蛋白产量的80%为植物蛋白质。植物蛋白质来源广泛,其营养价值与动物蛋白相仿。但植物蛋白还具有一些特殊的功能,如降低胆固醇,抗肿瘤和改善心脑血管系统等。现在提取技术成熟的优质植物蛋白主要来源于大豆、大米、小麦和玉米等农作物。 大豆蛋白特点及营养 大豆自古以来都是我国人民重要的膳食蛋白来源。大豆种子富含蛋白质,比重约占种子重量的40%,在某些野生豆品种中含量甚至高达55%。大豆贮藏-的蛋白质主要是大豆球蛋白,其中11s大豆球蛋白(glycinin)和7s伴大豆球蛋白(β-conglycinin)占了总量的70%。除此之外,大豆中还含有胰蛋白酶抑制剂、植物凝集素、蛋白酶和磷酸酶等其他一些蛋白质。 大豆蛋白质的消化率高。临床研究表明,大豆蛋白的消化率可以同肉、奶、蛋的蛋白消化率相媲美。大豆蛋白质营养价值评价的通用标准是氨基酸分数(aas)。aas法是将待测蛋白与标准蛋白中各个必需氨基酸的含量进行比较,得到该待测蛋白的必需氨基酸得分。如果同时考虑到蛋白的消化率,对待测蛋白的aas值进行修正,可以得到蛋白质消化率修正后的氨基酸得分(pdcaas)。这种方法能准确反映出大豆蛋白的营养价值,被世界卫生组织等机构广泛采用。表2列出了几种常见食品的pdcaas值,通过比较可以发现大豆分离蛋白同鸡蛋清蛋白一样是满分,远高于其他植物蛋白的得分,也高于动物蛋白牛肉的得分。所以大豆蛋白不但氨基酸种类平衡,含量高,而且容易被人体消化吸收,是一种不多见的优良植物性完全蛋白质。 大豆蛋白除了可以满足2岁以上人体对各种必需氨基酸的需求之外,对人体的健康还有特别的益处。随着人们生活水平的提高,心血管疾病成了导致死亡的重要原因。血液中的胆固醇含量过高是引起心血管疾病的主要原因。相对于食用动物蛋白,食用大豆蛋白可以避免摄入过多胆固醇。人体内的胆固醇有两种,一种是低密度脂蛋白(ldl)胆固醇,它会引起动脉粥样硬化,造成心血管疾病。还有一种是高密度脂蛋白(hdl)胆固醇,可以清除血管壁沉积,保持动脉血管的畅通。大豆蛋白可以显著降低前者在血液中的浓度,并对后者没有影响,因此可以起到预防心血管疾病的作用。 含硫氨基酸含量较低是大豆蛋白的一个缺点,但因此也让大豆蛋白在减缓人体钙流失方面起到帮助作用。研究表明,含硫氨基酸同尿钙流失有关。与动物蛋白相比,大豆蛋白造成的尿钙损失较少,进而能有效防止骨质疏松。同样道理,在饮食中利用大豆蛋白代替动物蛋白可以减少血液中含硫氨基酸的水平,而血液中高含量的同型半胱氨酸(蛋氨酸的代谢产物)会导致肾脏病人患血管病,食用大豆蛋白对肾病患者有很大的帮助。研究还发现大豆球蛋白(7s和11s)中含有3个可以抑制血管紧张肽原酶活性的短肽片断。血管紧张肽原酶与人体血液循环和血压关系紧密,因此大豆蛋白还有抗高血压的功能。但大豆的抗营养因子会限制大豆的适用范围,如大豆中较高的嘌呤含量不适宜痛风病人食用。 其他谷物蛋白特点及营养 水稻、小麦等禾本科作物种子的蛋白含量一般在7%-15%,其含量相对于大豆来说较少,但考虑到每年水稻和小麦的庞大产量,大米和小麦蛋白年产量仍相当可观。

植物蛋白饮料稳定性的研究

植物蛋白饮料稳定性的研究 摘要:植物蛋白饮料是以植物果仁、果肉及大豆为原料(如大豆、花生、杏仁、核桃仁、椰子等),经加工、调配后,再经高压杀菌或无菌包装制得的乳状饮料。根据加工原料的不同,植物蛋白饮料可分为四大类。豆乳饮料:是以大豆为主要原料,经磨碎、提浆、脱腥等工艺制成的无豆腥味的制品。其制品又分为纯豆乳、调制豆乳、豆乳饮料。椰子乳:是以新鲜成熟的椰子果肉为原料,经压榨制成椰子浆,加入适量水、糖类等配料调制而成的乳浊状制品。杏仁乳:以杏仁为原料,经浸泡、磨碎、提浆等工序后,再加入适量水、糖类等配料调制而成的乳浊状制品。核桃乳:核桃乳为纯天然植物蛋白饮品,该产品以优质核桃仁、纯净水为主要原料,采用现代工艺、科学调配精制而成,口感细腻、具有特殊的核桃浓郁香味,冷饮、热饮均可,热饮香味更浓。 关键词:植物蛋白饮料稳定性影响 植物蛋白饮料在加工中的热稳定性即热加工过程中的抗凝性,是植物蛋白饮料是否可以成功生产的关键问题,而且其在储藏过程中的稳定性,也是植物蛋白饮料的一项及其重要的质量指标。[1]根据多次的试验结果发现,影响植物蛋白饮料热稳定性的主要因素有:蛋白饮料的ph值、溶液离子强度、蛋白质浓度以及增稠剂的选择和使用等。本文仅就作为添加剂使用的增稠剂以及溶液离子强度对植物蛋白饮料稳定性的影响进行探讨。 一、化学因素对植物蛋白饮料稳定性的影响 (一)ph对植物蛋白饮料稳定性的影响 pH是影响植物蛋白饮料稳定性的关键因素。乳液pH接近蛋白质的等电点时,蛋白质分子呈电中性状态,溶解性最小,其不能吸引水分子,水化层遭到破坏,蛋白质分子容易相互聚成大团块下沉或上浮。多数植物蛋白质等电点的pH在4~6之间,有的到6.5左右,甚至接近7。为了提高蛋白质的水化能力,维持植物蛋白饮料的稳定性,在不影响风味和口感的前提下,乳化液的pH应远离植物蛋白的等电点。理论上只要乳液的pH远离植物蛋白等电点,就可制备出长期稳定的植物蛋白饮料。但研究发现,当体系pH大于蛋白质的等电点时,有利于提高植物蛋白饮料的稳定性;当体系pH低于蛋白质的等电点时,不利于体系的稳定。[2]这是由于在偏离蛋白质等电点的碱性环境中,植物蛋白质的溶解性和乳化性均较好,为提高乳状液稳定性添加的各种稳定剂在此环境中也稳定,能起到正常的稳定乳状液的作用;而在偏离蛋白质等电点的酸性环境中,大多数稳定剂的胶体保护作用因pH过低而明显下降,乳状液失去稳定剂的保护,同时低pH环境有利于蛋白质在热力处理时变性,不利于植物蛋白饮料的稳定。 同种植物中,往往含有多种蛋白质,各种蛋白质的等电点也不相同,植物蛋白饮料生产中要充分考虑不同蛋白质的这一特性,才能确定出产品最适宜的工艺pH。如花生蛋白质就有花生球蛋白、伴花生球蛋白等,花生球蛋白和伴花生球蛋白的等电点分别是5.1~5.2和3.9~4.0。但pH也不能太高,否则会使产品带有不好闻的碱味,并使制品的颜色过

如何做大植物蛋白饮料市场及销售

如何做大植物蛋白饮料市场 国内植物蛋白饮料几乎与果汁、乳饮、碳酸饮料等细分饮料行业同步发展,但现今的销售规模差距很大。椰树椰汁、承德露露两大巨头的植物蛋白饮系(不含两公司的其它系列饮品)加在一起的销量规模在18 亿元左右,整个植物蛋白饮料行业总体销售规模不到50亿元。这与国内潜在的500亿元以上的市场容量,距离相差甚远。 植物蛋白饮品虽然具备天然、营养等先天优势,但销量始终难有突破。是什么原因造成其发展迟滞,销售规模难以突破?又该如何突破销售发展瓶颈呢? 五个关键因素阻碍行业发展 1、产品品规单一 一是包装材质单调,马口铁材质三片罐装几乎成了统一的产品包装。 二是产品品种太少,市场上植物蛋白饮品主要有椰汁、杏仁露、花生露、核桃露、大豆饮品(商超只有冲饮)等几大类。行业内的领军品牌绝大多数的植物饮料产品非常少。如:椰树椰汁、承德露露杏仁露、大寨核桃露等。除了银鹭等极少数企业开发了少数的混合型植物蛋白饮料外,其它基本走的是单一产品路线。过于单调的产品规规与口感无法适应不同销售渠道与差异化口感需求; 三是包装容量小,以椰树椰汁与承德露露为代表的植物蛋白饮料企业,240ml左右的装量只够一饮而尽,产品包装量首先难以与饮料首先应该满足解渴这个刚性需求相匹配。 四是产品包装不能与时共进,产品包装陈旧、落伍同样不能满足现代时尚消费需求。 2、渠道表现力弱 植物蛋白饮料做为典型的快速消费品,在渠道表现上忽略了快消品的方便购买和感性视觉化产品这两个影响销量的主要因素。走进各大超市的饮料区,植物蛋白饮料的陈列可谓形单影只,排面小,出样单一,销售旺季时节,各类饮料轰轰烈烈地争夺销售终端资源时,植物蛋白饮料的地堆、端架、大排面、异型等抢眼陈列鲜见;平时的终端陈列与售点氛围表现更是形影相吊。 通过笔者对各类型的终端走访与了解的情况来看,植物蛋白饮料有效网点的覆盖率在40%以下。大、中学校、车站码头、旅游景点、网吧等有效终端的见面率也不是很高;甚至一些诸如沃尔玛等现代大型商业系统都难觅踪迹。餐饮类饮料销售主渠道表现上更现不足,大型餐饮终端比较少见,中小型餐馆铺货率凤毛麟角。火车、团购等特殊销售渠道感觉都视乎无力而为之。 3、宣传推广保守

含乳饮料及植物蛋白饮料生产许可证审查细则

含乳饮料及植物蛋白饮料生产许可证审查细则 一、发证产品范围 实施食品生产许可证管理的含乳饮料及植物蛋白饮料产品包括以鲜乳或乳制品(经发酵或未经发酵)为主要原料,经调配、均质、灌装、杀菌(或杀菌、灌装)等工序加工而成的含乳饮料和以蛋白质含量较高的植物果实、种子或核果类、坚果类的果仁等为原料,经处理、制浆、调配、均质、灌装、杀菌(或杀菌、灌装)等工序加工而成的植物蛋白饮料产品。 二、基本生产流程和关键控制环节 (一)基本生产流程。 1.含乳饮料 乳(复原乳)→调配→均质→杀菌灌装(灌装杀菌)→成品 ↓↑ 杀菌冷却水+辅料 ↓↓ 发酵→均质→调配→均质→杀菌灌装(灌装杀菌)→成品 注:活性乳酸菌饮料无最后一步杀菌过程。 2.植物蛋白饮料 水水+辅料 ↓↓ 原料→预处理→制浆→过滤脱气→调配→均质→杀菌灌装(或灌装杀菌)→成品 (二)关键控制环节。 原辅材料、包装材料的质量控制;生产车间,尤其是配料和灌装车间的卫生管理控制;水处理工序的管理控制;管道设备的清洗消毒;配料计量;杀菌工序的控制;瓶及盖的清洗消毒;操作人员的卫生管理。 (三)容易出现的质量安全问题。 设备、环境、原辅材料、包装材料、水处理工序、人员等环节的管理控制不到位,易造成化学和生物污染,而使产品的卫生指标等不合格;原料质量及

配料控制等环节易造成蛋白质不达标、食品添加剂超范围和超量使用。

三、必备的生产资源 (一)生产场所。 1.对于生产含乳饮料及植物蛋白饮料产品的企业,应具备原辅材料及包装材料仓库、成品仓库、水处理车间、配料车间、杀菌及自动灌装封盖车间、包装车间等生产场所。各生产车间进口处须安装手的清洗消毒设施(应采用非手动式开关)以及符合要求的鞋靴消毒池(或其他设施)。 2.生产车间依其清洁度要求应分为:非食品生产处理区(办公室、配电、动力装备等)、一般作业区(品质实验室、原料处理、仓库、外包装等)、准清洁作业区(杀菌车间、配料车间、预包装清洗消毒车间等)、清洁作业区(灌装车间、乳酸菌发酵车间、菌种培养车间等)。各区之间应给予有效隔离,防止交叉污染。 3.准清洁区和清洁作业区应相对密闭,设有空气处理装置和空气消毒设施,清洁作业区应为10万级以上洁净厂房,入口处应设有人员和物流净化设施。 (二)必备的生产设备。 1.原料预处理设施(适用植物蛋白饮料); 2.磨浆机或胶体磨(适用植物蛋白饮料); 3.过滤机或离心机(适用植物蛋白饮料); 4.贮罐; 5.发酵罐(适用发酵型产品); 6.均质机; 7.杀菌设备; 8.自动灌装封盖设备; 9.水处理设备;10.生产日期和批号标注设施;11.管道设备清洗消毒设施。 四、产品相关标准 GB11673-2003《含乳饮料卫生标准》;GB16321-2003《乳酸菌饮料卫生标准》;GB16322-2003《植物蛋白饮料卫生标准》;QB1554-92《乳酸菌饮料》;QB/T2439-99《花生乳(露)》;QB/T2438-99《杏仁乳(露)》;QB/T2300-97《椰子乳(汁)》;QB/T2132-95《豆乳和豆乳饮料》;QB/T2301-97《核桃乳(露)》;备案有效的企业标准。 五、原辅材料的有关要求 原料乳要符合GB6914《生鲜牛乳收购标准》的要求,乳粉要符合GB5410《全脂乳粉》和GB5411《脱脂乳粉》的要求;植物蛋白饮料的原料(大豆、花生等)应符合其产品标准的要求;其他原辅材料应符合GB10791-1989《软饮料原辅材料的要求》的规定;包装材料应符合GB10790-1989《软饮料的检验规则、标志、包装、运输、贮存》的规定。原辅材料中涉及生产许可证管理的产品必须采购获证企业的合格产品。

相关主题
文本预览
相关文档 最新文档