当前位置:文档之家› 操作系统实验试题

操作系统实验试题

操作系统实验试题
操作系统实验试题

第一套题:文件更名

要求:1.在系统中建立一个文件(文件名自定)。(10分)

2.用rename函数编写一个C程序(程序名自定)更改第一点要求中的文件名(文件名自定);在程序中应有如下基本功能:当执行文件时,使用方法出错,请给出提示,如程序名参数1参数2,并退出;如rename函数调用不成功,给出相应的出错信息,否则,给出相应的成功信息。(60分)

3.调试成功。(20分)

4.用相应的命令查看调试结果。(10分)

注:rename函数原型是:itn rename( const char*oldname, const char *newname)

#include

#include

int main(int argc,char *argv[])

{

if(argc!=3) {

printf(“usage:a.out \n”);

exit(1);

}

if(rename(argv[1], argv[2])<0)

printf(“ERROR:rename() call failed\n”);

else

printf(:”r ename() call successful\n”);

exit(0);

}

第二套题:改变当前目录到指定目录

要求:

1.在系统中建立一个用建目录命令(目录名自定)。(10分)

2.用chdir和getwd函数编写一个C程序(程序名自定)改变当前目录到指定目录,然后打印出该目录名。在程序中应有如下基本功能:当执行文件时,使用方法出错,请给出提示,如程序名参数,并退出;如chdir函数调用不成功,给出相应的出错信息,退出。

否则,调用getwd函数,如getwd函数调用不成功,给出相应的出错信息,退出。否则,打印该目录名。(60分)

3.调试成功。(20分)

4.用相应的命令查看指定目录。(10分)

注:getwd函数原型是:itn getwd (char*pathbuf);它的功能确定调用进程当前工作目录的绝对路经名,复制该路经名所指、由我们自己提供的字符数组中,然后返回指向该数组的指针。调用成功返回0,否则,返回-1。chdir函数原型是:itnchdir ( const char*pathname);它的功能是pathname指定的目录成为当前目录,调用成功返回0,否则,返回-1。该程序需要有头文件:unistd.h 、stdlib.h、limits.h。

#include

#include

#include < unistd.h >

#include

int main(int argc,char *argv[])

{

char *ptr=malloc(PA TH_MAX+1);

if(argc!=2) {

printf(“usage:a.out \n”);

exit(1);

}

if(chdir (argv[1] <0)

{printf(“ERROR chdir call failed\n”); exit(1);}

if(getwd (ptr)==NULL)

{printf(:” getwd call failed \n”); exit(1);}

printf(:” cmd=%s\n”,ptr); exit(0);

}

第三套题:用fork( )编写一个创建进程的C程序

要求:

1.用fork( )编写一个创建进程的C程序(程序名自定)。程序的功能:如果fork( )调用不成功,则作空循环;如成功,子进程执行execl("/bin/ps","ps","-af",(char * )0);父进程执行execl("/bin/ls","ls","","/home/stu",(char * )0);(80分)

2.调试成功。(20分)

派生进程执行新程序*/

#include

main()

{

int pid;

while((pid=fork())==-1);

if(pid==0)

{

execl("/bin/ps","ps","-af",(char * )0);

}

else

{

execl("/bin/ls","ls","","/home/stu",(char * )0);

}

}

第四题:用fork( )编写一个创建进程的C程序

1.用fork( )编写一个创建进程的C程序(程序名自定)。程序的功能:如果fork( )调用不成功,给出错误信息,退出;如成功,子进程执行execl("/bin/ps","ps","-af",(char * )0);父进程执行系统调用wait(NULL)把自已阻塞下来睡眠,直至子子进程执行execl("/bin/ps","ps","-af",(char * )0)完毕, 父进程并显示出子进程执行完毕的信息printf(“ls completed\n”)。(80分)

2.调试成功。(20分)

#include

main()

{

int pid;

pid=fork();

swich(pid){

case –1:

printf(“fork failed\n”);

exit(1);

case 0:

execl("/bin/ps","ps","-af",(char * )0);

exit(1);

default:

wait(NULL);

printf(“ls completed\n”);

exit(0);

}

第六题:编写一个程序,用fork系统调用创建两个了进程。

要求:

1.程序运行时,在系统中有一个父进程和两个子进程。让每一个进程显示一个字符;

父进程显示字符’A’,两个子进程分别显示字符’B’和’C’。

2.正确写出上面功能的程序。(60分)

3.调试出程序。(40分)

原程序:见指导书P68。

第七套题:编写一个程序,用fork系统调用创建两个了进程

要求:

1.序运行时,在系统中有一个父进程和一个子进程。显示进程标识符;

父进程显示字符’It is a parent process!’,子进程显示’ It is a parent process!’。

2.正确写出上面功能的程序。(60分)

调试出程序。(40分)

main()

{ int i;

while((i=fork()==-1);

printf(“i=%d\n”,i);

if(i) printf(“It is a parent process!\n);

else printf(“It is a parent process!\n);

}

第五套题:编写一个程序,创建两个进程通信

要求:

1.用fork( )编写一个创建进程的C程序,创建两个进程Sever和Client通信

Client发来一条信息,Sever接收一条信息。

2.正确写出上面功能的程序。(60分)

调试出程序。(40分)

原程序:见指导书P76。

第八套题:编写一个程序,实现进程的管道通信

要求:

1.编写一个C程序,实现进程的管道通信。使用系统调用pipe()建立一条管道。两个子进程p1,p2分别向管道各写一句:

Child1 is sending message!

Child2 is sending message!

父进程从管道中读出来自两个子进程的信息,显示在屏幕上。

2.正确写出上面功能的程序。(60分)

调试出程序。(40分)

原程序:见指导书P74。

嵌入式操作系统实验报告

中南大学信息科学与工程学院实验报告 姓名:安磊 班级:计科0901 学号: 0909090310

指导老师:宋虹

目录 课程设计内容 ----------------------------------- 3 uC/OS操作系统简介 ------------------------------------ 3 uC/OS操作系统的组成 ------------------------------ 3 uC/OS操作系统功能作用 ---------------------------- 4 uC/OS文件系统的建立 ---------------------------- 6 文件系统设计的原则 ------------------------------6 文件系统的层次结构和功能模块 ---------------------6 文件系统的详细设计 -------------------------------- 8 文件系统核心代码 --------------------------------- 9 课程设计感想 ------------------------------------- 11 附录-------------------------------------------------- 12

课程设计内容 在uC/OS操作系统中增加一个简单的文件系统。 要求如下: (1)熟悉并分析uc/os操作系统 (2)设计并实现一个简单的文件系统 (3)可以是存放在内存的虚拟文件系统,也可以是存放在磁盘的实际文件系统 (4)编写测试代码,测试对文件的相关操作:建立,读写等 课程设计目的 操作系统课程主要讲述的内容是多道操作系统的原理与技术,与其它计算机原理、编译原理、汇编语言、计算机网络、程序设计等专业课程关系十分密切。 本课程设计的目的综合应用学生所学知识,建立系统和完整的计算机系统概念,理解和巩固操作系统基本理论、原理和方法,掌握操作系统开发的基本技能。 I.uC/OS操作系统简介 μC/OS-II是一种可移植的,可植入ROM的,可裁剪的,抢占式的,实时多任务操作系统内核。它被广泛应用于微处理器、微控制器和数字信号处理器。 μC/OS 和μC/OS-II 是专门为计算机的嵌入式应用设计的,绝大部分代码是用C语言编写的。CPU 硬件相关部分是用汇编语言编写的、总量约200行的汇编语言部分被压缩到最低限度,为的是便于移植到任何一种其它的CPU 上。用户只要有标准的ANSI 的C交叉编译器,有汇编器、连接器等软件工具,就可以将μC/OS-II嵌入到开发的产品中。μC/OS-II 具有执行效率高、占用空间小、实时性能优良和可扩展性强等特点,最小内核可编译至2KB 。μC/OS-II 已经移植到了几乎所有知名的CPU 上。 严格地说uC/OS-II只是一个实时操作系统内核,它仅仅包含了任务调度,任务管理,时间管理,内存管理和任务间的通信和同步等基本功能。没有提供输入输出管理,文件系统,网络等额外的服务。但由于uC/OS-II良好的可扩展性和源码开放,这些非必须的功能完全 可以由用户自己根据需要分别实现。 uC/OS-II目标是实现一个基于优先级调度的抢占式的实时内核,并在这个内核之上提供最基本的系统服务,如信号量,邮箱,消息队列,内存管理,中断管理等。 uC/OS操作系统的组成 μC/OS-II可以大致分成核心、任务处理、时间处理、任务同步与通信,CPU的移植等5个部分。如下图:

操作系统实验三

计算机操作系统实验报告 实验内容: P、V原语的模拟实现 实验类型:验证型 指导教师:毕国堂 专业班级: 姓名: 学号: 实验地点:东6E507 实验时间:2017/10/23

一、实验目的 1.理解信号量相关理论 2.掌握记录型信号量结构 3.掌握P、V原语实现机制 二、实验内容 1.输入给定的代码 2.进行功能测试并得出证正确结果 三、实验要求 1.分析signal和wait函数功能模块 ●Signal函数 在进行资源增加时,首先判断增加的资源是否存在,如果不存在则报错 并结束函数;如果存在则将需要增加的资源数量加一,然后再判断增加 后的资源数是否大于0,如果大于0则表示之前等待队列为空,没有需 要分配的进程;如果增加后的资源不大于0,表示之前等待队列中存在 进程,则将队首的进程取出并将资源分给该进程。 ●Wait 函数 在执行wait函数时,先判断请求的资源和进程是否存在,如果不存在则 报错提示;如果存在则将对应资源的资源数减一,然后判断减少后的资 源数是否小于0,如果小于0,表示该资源等待队列为空,可直接将资源 分配给请求的进程;如果不小于0则表示之前资源的等待队列不为空, 则将请求的进程插在等待队列最后。 2.画出signal和wait函数流程图

3.撰写实验报告 四、实验设备 1.PC机1台安装visual c++ 6.0 五、测试

1.首先将所有的资源分配完 2.这时再请求资源时就会出现等待现象 3.此时增加一个资源s0,则进程1对s0的等待结束直接获取资源s0 4.当再增加资源s0、s1时则进程1也结束对资源s1的等待,并且s0资源 为有空闲状态 六、实验思考 1.如何修改wait操作,使之能一次申请多个信号量? wait函数传入一个进程号和多个资源名,在wait函数中使用循环依

操作系统课程设计答案

// tjty.cpp : Defines the entry point for the console application. // #include "stdafx.h" #include #define Bsize 3 #define Psize 20 struct pageInfor { int content;//页面号 int timer;//被访问标记 }; class PRA { public: PRA(void); int findSpace(void);//查找是否有空闲内存 int findExist(int curpage);//查找内存中是否有该页面 int findReplace(void);//查找应予置换的页面 void display(void);//显示 void FIFO(void);//FIFO算法 void LRU(void);//LRU算法 void Optimal(void);//OPTIMAL算法 void BlockClear(void);//BLOCK恢复 pageInfor * block;//物理块 pageInfor * page;//页面号串 private: }; PRA::PRA(void) { int QString[20]={7,0,1,2,0,3,0,4,2,3,0,3,2,1,2,0,1,7,0,1}; block = new pageInfor[Bsize]; for(int i=0; i

block[i].timer = 0; } page = new pageInfor[Psize]; for(i=0; i= block[pos].timer) pos = i;//找到应予置换页面,返回BLOCK中位置return pos; } void PRA::display(void) {

实时操作系统报告

实时操作系统课程实验报告 专业:通信1001 学号:3100601025 姓名:陈治州 完成时间:2013年6月11日

实验简易电饭煲的模拟 一.实验目的: 掌握在基于嵌入式实时操作系统μC/OS-II的应用中,基于多任务的模式的编程方法。锻炼综合应用多任务机制,任务间的通信机制,内存管理等的能力。 二.实验要求: 1.按“S”开机,系统进入待机状态,时间区域显示当前北京时间,默认模式“煮饭”; 2.按“C”选择模式,即在“煮饭”、“煮粥”和“煮面”模式中循环选择; 3.按“B”开始执行模式命令,“开始”状态选中,时间区域开始倒计时,倒计时完成后进入“保温”状态,同时该状态显示选中,时间区域显示保温时间; 4.按“Q”取消当前工作状态,系统进入待机状态,时间区域显示北京时间,模式为当前模式; 5.按“X”退出系统,时间区域不显示。 6.煮饭时长为30,煮粥时长为50,煮面时长为40. 三.实验设计: 1.设计思路: 以老师所给的五个程序为基础,看懂每个实验之后,对borlandc的操作有了大概的认识,重点以第五个实验Task_EX为框架,利用其中界面显示与按键扫描以及做出相应的响应,对应实现此次实验所需要的功能。 本次实验分为界面显示、按键查询与响应、切换功能、时钟显示与倒计时模块,综合在一起实验所需功能。 2.模块划分图: (1)界面显示: Main() Taskstart() Taskstartdispinit() 在TaskStartDispInit()函数中,使用PC_DispStr()函数画出界面。

(2)按键查询与响应: Main() Taskstart() 在TaskStart()函数中,用if (PC_GetKey(&key) == TRUE)判断是否有按键输入。然后根据key 的值,判断输入的按键是哪一个;在响应中用switch语句来执行对应按键的响应。 (3)切换功能: l计数“C”按 键的次数 M=l%3 Switch(m) M=0,1,2对应于煮饭,煮粥,煮面,然后使用PC_DispStr()函数在选择的选项前画上“@”指示,同时,在其余两项钱画上“”以“擦出”之前画下的“@”,注意l自增。 四.主要代码: #include "stdio.h" #include "includes.h" #include "time.h" #include "dos.h" #include "sys/types.h" #include "stdlib.h" #define TASK_STK_SIZE 512 #define N_TASKS 2 OS_STK TaskStk[N_TASKS][TASK_STK_SIZE]; OS_STK TaskStartStk[TASK_STK_SIZE]; INT8U TaskData[N_TASKS];

操作系统原理-进程调度实验报告

一、实验目的 通过对进程调度算法的设计,深入理解进程调度的原理。 进程是程序在一个数据集合上运行的过程,它是系统进行资源分配和调度的一个独立单位。 进程调度分配处理机,是控制协调进程对CPU的竞争,即按一定的调度算法从就绪队列中选中一个进程,把CPU的使用权交给被选中的进程。 进程通过定义一个进程控制块的数据结构(PCB)来表示;每个进程需要赋予进程ID、进程到达时间、进程需要运行的总时间的属性;在RR中,以1为时间片单位;运行时,输入若干个进程序列,按照时间片输出其执行序列。 二、实验环境 VC++6.0 三、实验内容 实现短进程优先调度算法(SPF)和时间片轮转调度算法(RR) [提示]: (1) 先来先服务(FCFS)调度算法 原理:每次调度是从就绪队列中,选择一个最先进入就绪队列的进程,把处理器分配给该进程,使之得到执行。该进程一旦占有了处理器,它就一直运行下去,直到该进程完成或因发生事件而阻塞,才退出处理器。 将用户作业和就绪进程按提交顺序或变为就绪状态的先后排成队列,并按照先来先服务的方式进行调度处理,是一种最普遍和最简单的方法。它优先考虑在系统中等待时间最长的作业,而不管要求运行时间的长短。 按照就绪进程进入就绪队列的先后次序进行调度,简单易实现,利于长进程,CPU繁忙型作业,不利于短进程,排队时间相对过长。 (2) 时间片轮转调度算法RR

原理:时间片轮转法主要用于进程调度。采用此算法的系统,其程序就绪队列往往按进程到达的时间来排序。进程调度按一定时间片(q)轮番运行各个进程. 进程按到达时间在就绪队列中排队,调度程序每次把CPU分配给就绪队列首进程使用一个时间片,运行完一个时间片释放CPU,排到就绪队列末尾参加下一轮调度,CPU分配给就绪队列的首进程。 固定时间片轮转法: 1 所有就绪进程按 FCFS 规则排队。 2 处理机总是分配给就绪队列的队首进程。 3 如果运行的进程用完时间片,则系统就把该进程送回就绪队列的队尾,重新排队。 4 因等待某事件而阻塞的进程送到阻塞队列。 5 系统把被唤醒的进程送到就绪队列的队尾。 可变时间片轮转法: 1 进程状态的转换方法同固定时间片轮转法。 2 响应时间固定,时间片的长短依据进程数量的多少由T = N × ( q + t )给出的关系调整。 3 根据进程优先级的高低进一步调整时间片,优先级越高的进程,分配的时间片越长。 多就绪队列轮转法: (3) 算法类型 (4)模拟程序可由两部分组成,先来先服务(FCFS)调度算法,时间片轮转。流程图如下:

操作系统实验实验1

广州大学学生实验报告 1、实验目的 1.1、掌握进程的概念,明确进程的含义 1.2、认识并了解并发执行的实质 2.1、掌握进程另外的创建方法 2.2、熟悉进程的睡眠、同步、撤消等进程控制方法 3.1、进一步认识并发执行的实质 3.2、分析进程竞争资源的现象,学习解决进程互斥的方法 4.1、了解守护进程 5.1、了解什么是信号 5.2、INUX系统中进程之间软中断通信的基本原理 6.1、了解什么是管道 6.2、熟悉UNIX/LINUX支持的管道通信方式 7.1、了解什么是消息 7.2、熟悉消息传送的机理 8.1、了解和熟悉共享存储机制 二、实验内容 1.1、编写一段程序,使用系统调用fork( )创建两个子进程。当此程序运行时,在系统 中有一个父进程和两个子进程活动。让每一个进程在屏幕上显示一个字符:父进程显示'a',子进程分别显示字符'b'和字符'c'。试观察记录屏幕上的显示结果,并分析原因。 1.2、修改上述程序,每一个进程循环显示一句话。子进程显示'daughter …'及 'son ……',父进程显示'parent ……',观察结果,分析原因。 2.1、用fork( )创建一个进程,再调用exec( )用新的程序替换该子进程的内容 2.2、利用wait( )来控制进程执行顺序 3.1、修改实验(一)中的程序2,用lockf( )来给每一个进程加锁,以实现进程之间的互斥 3.2、观察并分析出现的现象 4.1、写一个使用守护进程(daemon)的程序,来实现: 创建一个日志文件/var/log/Mydaemon.log ; 每分钟都向其中写入一个时间戳(使用time_t的格式) ; 5.1、用fork( )创建两个子进程,再用系统调用signal( )让父进程捕捉键盘上来的中断信号(即按^c键);捕捉到中断信号后,父进程用系统调用kill( )向两个子进程发出信号,子进程捕捉到信号后分别输出下列信息后终止: Child process1 is killed by parent! Child process2 is killed by parent! 父进程等待两个子进程终止后,输出如下的信息后终止: Parent process is killed! 5.2、用软中断通信实现进程同步的机理

操作系统实验报告一

重庆大学 学生实验报告 实验课程名称操作系统原理 开课实验室DS1501 学院软件学院年级2013专业班软件工程2 班学生姓名胡其友学号20131802 开课时间2015至2016学年第一学期 总成绩 教师签名洪明坚 软件学院制

《操作系统原理》实验报告 开课实验室:年月日学院软件学院年级、专业、班2013级软件工 程2班 姓名胡其友成绩 课程名称操作系统原理 实验项目 名称 指导教师洪明坚 教师 评语教师签名:洪明坚年月日 1.实验目的: ?进入实验环境 –双击expenv/setvars.bat ?检出(checkout)EPOS的源代码 –svn checkout https://www.doczj.com/doc/5117848213.html,/svn/epos ?编译及运行 –cd epos/app –make run ?清除所有的临时文件 –make clean ?调试 –make debug ?在“Bochs Enhanced Debugger”中,输入“quit”退出调试 –调试指令,请看附录A 2.实验内容: ?编写系统调用“time_t time(time_t *loc)” –功能描述 ?返回从格林尼治时间1970年1月1日午夜起所经过的秒数。如果指针loc 非NULL,则返回值也被填到loc所指向的内存位置 –数据类型time_t其实就是long ?typedef long time_t; 3.实验步骤: ?Kernel space –K1、在machdep.c中,编写系统调用的实现函数“time_t sys_time()”,计算用户秒数。需要用到 ?变量g_startup_time,它记录了EPOS启动时,距离格林尼治时间1970年1午夜的秒数 ?变量g_timer_ticks

操作系统原理实验-系统内存使用统计5

上海电力学院 计算机操作系统原理 实验报告 题目:动态链接库的建立与调用 院系:计算机科学与技术学院 专业年级:信息安全2010级 学生姓名:李鑫学号:20103277 同组姓名:无 2012年11 月28 日上海电力学院

实验报告 课程名称计算机操作系统原理实验项目线程的同步 姓名李鑫学号20103277 班级2010251班专业信息安全 同组人姓名无指导教师姓名徐曼实验日期2012/11/28 实验目的和要求: (l)了解Windows内存管理机制,理解页式存储管理技术。 (2)熟悉Windows内存管理基本数据结构。 (3)掌握Windows内存管理基本API的使用。 实验原理与内容 使用Windows系统提供的函数和数据结构显示系统存储空间的使用情况,当内存和虚拟存储空间变化时,观察系统显示变化情况。 实验平台与要求 能正确使用系统函数GlobalMemoryStatus()和数据结构MEMORYSTATUS了解系统内存和虚拟空间使用情况,会使用VirtualAlloc()函数和VirtualFree()函数分配和释放虚拟存储空间。 操作系统:Windows 2000或Windows XP 实验平台:Visual Studio C++ 6.0 实验步骤与记录 1、启动安装好的Visual C++ 6.0。 2、选择File->New,新建Win32 Console Application程序, 由于内存分配、释放及系统存储 空间使用情况均是Microsoft Windows操作系统的系统调用,因此选择An application that support MFC。单击确定按钮,完成本次创建。 3、创建一个支持MFC的工程,单击完成。

操作系统实验之内存管理实验报告

学生学号 实验课成绩 武汉理工大学 学生实验报告书 实验课程名称 计算机操作系统 开 课 学 院 计算机科学与技术学院 指导老师姓名 学 生 姓 名 学生专业班级 2016 — 2017 学年第一学期

实验三 内存管理 一、设计目的、功能与要求 1、实验目的 掌握内存管理的相关内容,对内存的分配和回收有深入的理解。 2、实现功能 模拟实现内存管理机制 3、具体要求 任选一种计算机高级语言编程实现 选择一种内存管理方案:动态分区式、请求页式、段式、段页式等 能够输入给定的内存大小,进程的个数,每个进程所需内存空间的大小等 能够选择分配、回收操作 内购显示进程在内存的储存地址、大小等 显示每次完成内存分配或回收后内存空间的使用情况 二、问题描述 所谓分区,是把内存分为一些大小相等或不等的分区,除操作系统占用一个分区外,其余分区用来存放进程的程序和数据。本次实验中才用动态分区法,也就是在作业的处理过程中划分内存的区域,根据需要确定大小。 动态分区的分配算法:首先从可用表/自由链中找到一个足以容纳该作业的可用空白区,如果这个空白区比需求大,则将它分为两个部分,一部分成为已分配区,剩下部分仍为空白区。最后修改可用表或自由链,并回送一个所分配区的序号或该分区的起始地址。 最先适应法:按分区的起始地址的递增次序,从头查找,找到符合要求的第一个分区。

最佳适应法:按照分区大小的递增次序,查找,找到符合要求的第一个分区。 最坏适应法:按分区大小的递减次序,从头查找,找到符合要求的第一个分区。 三、数据结构及功能设计 1、数据结构 定义空闲分区结构体,用来保存内存中空闲分区的情况。其中size属性表示空闲分区的大小,start_addr表示空闲分区首地址,next指针指向下一个空闲分区。 //空闲分区 typedef struct Free_Block { int size; int start_addr; struct Free_Block *next; } Free_Block; Free_Block *free_block; 定义已分配的内存空间的结构体,用来保存已经被进程占用了内存空间的情况。其中pid作为该被分配分区的编号,用于在释放该内存空间时便于查找。size表示分区的大小,start_addr表示分区的起始地址,process_name存放进程名称,next指针指向下一个分区。 //已分配分区的结构体 typedef struct Allocate_Block { int pid; int size; int start_addr; char process_name[PROCESS_NAME_LEN]; struct Allocate_Block *next; } Allocate_Block; 2、模块说明 2.1 初始化模块 对内存空间进行初始化,初始情况内存空间为空,但是要设置内存的最大容量,该内存空间的首地址,以便之后新建进程的过程中使用。当空闲分区初始化

嵌入式实时操作系统vxworks实验教程[1]

???VxWorks 偠 ? Laboratory Tutorial for Embedded Real ˉtime Operating System VxWorks ?? ? ? ? ? ? ? 2003 10

???VxWorks 偠 ? ? 1 ???? (1) 1.1 ?? (1) 1.2 ??? (7) 2 ? MPC860 (16) 3 ???VxWorks ? ? Tornado (25) 3.1 ???VxWorks (25) 3.2 Tornado? ? (43) 4 VxWorks?BootRom (48) 5 偠 (55) 5.1 偠??Tornado??? (55) 5.2 偠?? ??? ? ? (74) 5.3 偠?? ? ? ?? (78) 5.4 偠 ?? ??? (101) 5.5 偠?? ?????? ?? (110) 5.6 偠 ? ?????? ?? (116) ? A hwa-xpc860 偠 (120)

1 ???? ?? ?? 催? ?? ??? ?? ? ? ?? ??Ё?????? ? ?? ?? ? ? ?? ?? (Embebdded computer) Ё??? ?? ? ??? ⑤?20??60 ?? ????? ? ????? ? 1.1.1 ???? ??? ?? ? Н? ??? ????? ?? ?? ???? ???? ?? ?? ?? ?? ???? ??? ????? ? ?????BIOS? ? ? ???? ?催 ? ? ? ㄝ???? ? ??? ? ? ? ?????????? ???? ?? ? ? ? ? ???? ?? ? ? ???? ?ㄝ???? ???? ??? ? ? ??? ? ???? ? ? ?? ㄝ ?? ? ??? ? ?? ? (control)???Mointer) ??(Managemet)ㄝ ?? 1.1.2 ? ?????? ? ? 1.1. 2.1 ? ?? ? ?? ??4?? ? 1? ? ? ? ?? ? ? ???Ё ????? ???? ?? ? ? ?? ?2? ? ??? ?? ?????? ? ????? ??? П? ??? ??????? ? ?? ???? ? 3? ? ? ? ????? ?? ? 催 ? ? ? 4? ? 乏 ? ?? ?? ? ? ? ??? ? ? Ё??∴??? ?? ?? ?? ? mW??uW??1.1.2.2 ? ???? ???? ?? ?? ? ? ?? ? ??? ?? ? ? ? ? ???1000 ??????? 30 ?? ?

计算机操作系统实验四

实验三进程与线程 问题: 进程是具有独立功能的程序关于某个数据集合上的一次运行活动,是系统进行资源分配和调度的独立单位,具有动态性、并发性、独立性、异步性和交互性。然而程序是静态的,并且进程与程序的组成不同,进程=程序+数据+PCB,进程的存在是暂时的,程序的存在是永久的;一个程序可以对应多个进程,一个进程可以包含多个程序。当操作系统引入线程的概念后,进程是操作系统独立分配资源的单位,线程成为系统调度的单位,与同一个进程中的其他线程共享程序空间。 本次实验主要的目的是: (1)理解进程的独立空间; (2)加深对进程概念的理解,明确进程和程序的区别; (3)进一步认识并发执行的实质; (4)了解红帽子(Linux)系统中进程通信的基本原理。 (5)理解线程的相关概念。 要求: 1、请查阅资料,掌握进程的概念,同时掌握进程创建和构造的相关知识和线程创建和 构造的相关知识,了解C语言程序编写的相关知识; (1)进程: 进程(Process)是计算机中的程序关于某数据集合上的一次运行活动,是系统进行资源分配和调度的基本单位,是操作系统结构的基础。程序是指令、数据及其组织形式的描述,进程是程序的实体。进程的概念主要有两点:第一,进程是一个实体。每一个进程都有它自己的地址空间,一般情况下,包括文本区域(text region)、数据区域(data region)和堆栈(stack region)。文本区域存储处理器执行的代码;数据区域存储变量和进程执行期间使用的动态分配的内

存;堆栈区域存储着活动过程调用的指令和本地变量。第二,进程是一个“执行中的程序”。程序是一个没有生命的实体,只有处理器赋予程序生命时(操作系统执行之),它才能成为一个活动的实体,我们称其为进程。 (2)进程的创建和构造: 进程简单来说就是在操作系统中运行的程序,它是操作系统资源管理的最小单位。但是进程是一个动态的实体,它是程序的一次执行过程。进程和程序的区别在于:进程是动态的,程序是静态的,进程是运行中的程序,而程序是一些保存在硬盘上的可执行代码。新的进程通过克隆旧的程序(当前进程)而建立。fork() 和clone()(对于线程)系统调用可用来建立新的进程。 (3)线程的创建和构造: 线程也称做轻量级进程。就像进程一样,线程在程序中是独立的、并发的执行路径,每个线程有它自己的堆栈、自己的程序计数器和自己的局部变量。但是,与独立的进程相比,进程中的线程之间的独立程度要小。它们共享内存、文件句柄和其他每个进程应有的状态。 线程的出现也并不是为了取代进程,而是对进程的功能作了扩展。进程可以支持多个线程,它们看似同时执行,但相互之间并不同步。一个进程中的多个线程共享相同的内存地址空间,这就意味着它们可以访问相同的变量和对象,而且它们从同一堆中分配对象。尽管这让线程之间共享信息变得更容易,但你必须小心,确保它们不会妨碍同一进程里的其他线程。 线程与进程相似,是一段完成某个特定功能的代码,是程序中单个顺序的流控制,但与进程不同的是,同类的多个线程是共享同一块内存空间和一组系统资源的,而线程本身的数据通常只有微处理器的寄存器数据,以及一个供程序执行时使用的堆栈。所以系统在产生一个线程,或者在各个线程之间切换时,负担要比进程小得多,正因如此,线程也被称为轻型进程(light-weight process)。一个进程中可以包含多个线程。 2、理解进程的独立空间的实验内容及步骤

操作系统实验报告

操作系统实验报告 集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-

实验二进程调度1.目的和要求 通过这次实验,理解进程调度的过程,进一步掌握进程状态的转变、进程调度的策略,进一步体会多道程序并发执行的特点,并分析具体的调度算法的特点,掌握对系统性能的评价方法。 2.实验内容 阅读教材《计算机操作系统》第二章和第三章,掌握进程管理及调度相关概念和原理。 编写程序模拟实现进程的轮转法调度过程,模拟程序只对PCB进行相应的调度模拟操作,不需要实际程序。假设初始状态为:有n个进程处于就绪状态,有m个进程处于阻塞状态。采用轮转法进程调度算法进行调度(调度过程中,假设处于执行状态的进程不会阻塞),且每过t个时间片系统释放资源,唤醒处于阻塞队列队首的进程。 程序要求如下: 1)输出系统中进程的调度次序; 2)计算CPU利用率。 3.实验环境 Windows操作系统、VC++6.0 C语言 4设计思想: (1)程序中进程可用PCB表示,其类型描述如下:

structPCB_type { intpid;//进程名 intstate;//进程状态 2——表示“执行”状态 1——表示“就绪”状态 0——表示“阻塞”状态 intcpu_time;//运行需要的CPU时间(需运行的时间片个数) } 用PCB来模拟进程; (2)设置两个队列,将处于“就绪”状态的进程PCB挂在队列ready中;将处于“阻塞”状态的进程PCB挂在队列blocked中。队列类型描述如下: structQueueNode{ structPCB_typePCB; StructQueueNode*next; } 并设全程量: structQueueNode*ready_head=NULL,//ready队列队首指针 *ready_tail=NULL,//ready队列队尾指 针

操作系统实验心得(精选多篇)

操作系统实验心得 每一次课程设计度让我学到了在平时课堂不可能学到的东西。所以我对每一次课程设计的机会都非常珍惜。不一定我的课程设计能够完成得有多么完美,但是我总是很投入的去研究去学习。所以在这两周的课设中,熬了2个通宵,生物钟也严重错乱了。但是每完成一个任务我都兴奋不已。一开始任务是任务,到后面任务就成了自己的作品了。总体而言我的课设算是达到了老师的基本要求。总结一下有以下体会。 1、网络真的很强大,用在学习上将是一个非常高效的助手。几乎所有的资料都能够在网上找到。从linux虚拟机的安装,到linux的各种基本命令操作,再到gtk的图形函数,最后到文件系统的详细解析。这些都能在网上找到。也因为这样,整个课程设计下来,我浏览的相关网页已经超过了100个(不完全统计)。当然网上的东西很乱很杂,自己要能够学会筛选。不能决定对或错的,有个很简单的方法就是去尝试。就拿第二个实验来说,编译内核有很多项小操作,这些小操作错了一项就可能会导致编译的失败,而这又是非常要花时间的,我用的虚拟机,编译一次接近3小时。所以要非常的谨慎,尽量少出差错,节省时间。多找个几个参照资料,相互比较,慢慢研究,最后才能事半功倍。 2、同学间的讨论,这是很重要的。老师毕竟比较忙。对于课程设计最大的讨论伴侣应该是同学了。能和学长学姐讨论当然再好不过了,没有这个机会的话,和自己班上同学讨论也是能够受益匪浅的。

大家都在研究同样的问题,讨论起来,更能够把思路理清楚,相互帮助,可以大大提高效率。 3、敢于攻坚,越是难的问题,越是要有挑战的心理。这样就能够达到废寝忘食的境界。当然这也是不提倡熬夜的,毕竟有了精力才能够打持久战。但是做课设一定要有状态,能够在吃饭,睡觉,上厕所都想着要解决的问题,这样你不成功都难。 4、最好在做课设的过程中能够有记录的习惯,这样在写实验报告时能够比较完整的回忆起中间遇到的各种问题。比如当时我遇到我以前从未遇到的段错误的问题,让我都不知道从何下手。在经过大量的资料查阅之后,我对段错误有了一定的了解,并且能够用相应的办法来解决。 在编程中以下几类做法容易导致段错误,基本是是错误地使用指针引起的 1)访问系统数据区,尤其是往系统保护的内存地址写数据,最常见就是给一个指针以0地址 2)内存越界(数组越界,变量类型不一致等) 访问到不属于你的内存区域 3)其他 例如: <1>定义了指针后记得初始化,在使用的时候记得判断是否为 null <2>在使用数组的时候是否被初始化,数组下标是否越界,数组元素是否存在等 <3>在变量处理的时候变量的格式控制是否合理等

操作系统原理实验四

实验4 进程控制 1、实验目的 (1)通过对WindowsXP进行编程,来熟悉和了解系统。 (2)通过分析程序,来了解进程的创建、终止。 2、实验工具 (1)一台WindowsXP操作系统的计算机。 (2)计算机装有Microsoft Visual Studio C++6.0专业版或企业版。 3、预备知识 (3)·CreateProcess()调用:创建一个进程。 (4)·ExitProcess()调用:终止一个进程。 4、实验编程 (1)编程一利用CreateProcess()函数创建一个子进程并且装入画图程序(mspaint.exe)。阅读该程序,完成实验任务。源程序如下: # include < stdio.h > # include < windows.h > int main(VOID) ﹛STARTUPINFO si; PROCESS INFORMA TION pi; ZeroMemory(&si,sizeof(si)); Si.cb=sizeof(si); ZeroMemory(&pi,sizeof(pi)); if(!CreateProcess(NULL, “c: \ WINDOWS\system32\ mspaint.exe”, NULL, NULL, FALSE, 0, NULL, NULL, &si,&pi)) ﹛fprintf(stderr,”Creat Process Failed”); return—1; ﹜ WaitForSingleObject(pi.hProcess,INFINITE); Printf(“child Complete”); CloseHandle(pi.hProcess); CloseHandle(pi hThread); ﹜

操作系统实验四

青岛理工大学课程实验报告

算法描述及实验步骤 功能:共享存储区的附接。从逻辑上将一个共享存储区附接到进程的虚拟地址空间上。用于建立调用进程与由标识符shmid指定的共享内存对象之间的连接。 系统调用格式:virtaddr=shmat(shmid,addr,flag) 该函数使用头文件如下: #include #include #include (8)shmdt( ) 功能:用于断开调用进程与共享内存对象之间的连接,成功时返回0,失败返回-1。 系统调用格式: int shmdt(shmaddr) char *shmaddr;/*采用shmat函数的返回值*/ (9)shmctl( ) 功能:共享存储区的控制,对其状态信息进行读取和修改。用于对已创建的共享内存对象进行查询、设置、删除等操作。 系统调用格式:shmctl(shmid,cmd,buf) 该函数使用头文件如下: #include #include #include 2、步骤: (1)定义进程变量(2)定义两个字符数组 (3)创建管道(4)如果进程创建不成功,则空循环(5)如果子进程创建成功,pid为进程号(6)锁定管道 (7)给Outpipe赋值(8)向管道写入数据 (9)等待读进程读出数据(10)解除管道的锁定 (11)结束进程等待子进程结束(12)从管道中读出数据 (13)显示读出的数据(14)父进程结束 创建jincheng.c 插入文字

调 试 过 程 及 实 验 结 果 运行: 运行后: 总 结 (对实验结果进行分析,问题回答,实验心得体会及改进意见) 虽然对pipe()、msgget()、msgsnd()、msgrcv()、msgctl()、shmget()、shmat()、 shmdt()、shmctl()的功能和实现过程有所了解,但是运用还是不熟练,过去没 见过,所以运行了一个简单的程序。 利用管道机制、消息缓冲队列、共享存储区机制进行进程间的通信,加深了对 其了解。 (1)管道通信机制,同步的实现过程:当写进程把一定数量的数据写入pipe, 便去睡眠等待,直到读进程取走数据后,再把它唤醒。当读进程读一空pipe 时,也应睡眠等待,直到写进程将数据写入管道后,才将之唤醒,从而实现进 程的同步。 管道通信的特点:A管道是半双工的,数据只能向一个方向流动;需要双方通 信时,需要建立起两个管道;B. 只能用于父子进程或者兄弟进程之间(具有亲 缘关系的进程);C.单独构成一种独立的文件系统:管道对于管道两端的进程而

操作系统实验报告4

《操作系统》实验报告 实验序号: 4 实验项目名称:进程控制

Printf(“child Complete”); CloseHandle(pi.hProcess); CloseHandle(pi hThread); ﹜ 修改后: #include #include int main(VOID) { STARTUPINFO si; PROCESS_INFORMA TION pi; ZeroMemory(&si,sizeof(si)); si.cb=sizeof(si); ZeroMemory(&pi,sizeof(pi)); if(!CreateProcess(NULL, "c:\\WINDOWS\\system32\\mspaint.exe", NULL, NULL, FALSE, 0, NULL, NULL, &si,&pi)) { fprintf(stderr,"Creat Process Failed"); return -1; } WaitForSingleObject(pi.hProcess,INFINITE); printf("child Complete"); CloseHandle(pi.hProcess); CloseHandle(pi.hThread); } 在“命令提示符”窗口运行CL命令产生可执行程序4-1.exe:C:\ >CL 4-1.cpp

实验任务:写出程序的运行结果。 4.正在运行的进程 (2)、编程二下面给出了一个使用进程和操作系统版本信息应用程序(文件名为4-5.cpp)。它利用进程信息查询的API函数GetProcessVersion()与GetVersionEx()的共同作用。确定运行进程的操作系统版本号。阅读该程序并完成实验任务。 #include #include

操作系统实验一

本科实验报告 课程名称:操作系统 学号: 姓名: 专业: 班级: 指导教师: 课内实验目录及成绩 信息技术学院

实验(实验一) 1 实验名称:基本shell命令及用户管理 2 实验目的 2.1 掌握安装Linux操作系统的方法。 2.2 掌握Linux操作系统的基本配置。 2.3 了解GNOME桌面环境。 2.4 掌握基本shell命令的使用。 3 实验准备 3.1 下载VMware Workstation虚拟机软件(版本不限)。 3.2 准备Linux操作系统的安装源(内核版本和发行版本均不限)。 注:实验准备、实验内容4.1和4.2作为回家作业布置,同学们利用课余时间可在私人计算机上完成。 4 实验要求、步骤及结果 4.1 安装虚拟机软件。 【操作要求】安装VMware Workstation虚拟机软件,并填写以下4.1.1和4.1.2的内容。 4.1.1【VMware Workstation虚拟机版本号】 4.1.2【主要配置参数】 4.2 安装Linux操作系统。 【操作要求】安装Linux操作系统,版本不限。 Linux发行版本: Linux内核版本:

【主要操作步骤:包括分区情况】 1、创建一台虚拟机安装操作系统时客户机操作系统选择Linux 2、修改虚拟机的安装路径。 3、建一个新的虚拟磁盘,磁盘的空间20GB,并且将单个文件存储虚拟磁盘。 4、设置分区完毕,安装虚拟机 4.3 了解Linux操作系统的桌面环境之一GNOME。 【操作要求】查看桌面图标,查看主菜单,查看个人用户主目录等个人使用环境。【操作步骤1】桌面图标

【操作步骤2】主菜单 【操作步骤3】个人用户主目录 【操作步骤4】启动字符终端

操作系统实验报告_实验五

实验五:管道通信 实验内容: 1.阅读以下程序: #include #include #include main() { int filedes[2]; char buffer[80]; if(pipe(filedes)<0) //建立管道,filedes[0]为管道里的读取端,filedes[1]则为管道的写入端 //成功则返回零,否则返回-1,错误原因存于errno中 err_quit(“pipe error”); if(fork()>0){ char s[ ] = “hello!\n”; close(filedes[0]); //关闭filedes[0]文件 write(filedes[1],s,sizeof(s)); //s所指的内存写入到filedes[1]文件内 close(filedes[1]); //关闭filedes[0]文件 }else{ close(filedes[1]); read(filedes[0],buffer,80); //把filedes[0]文件传送80个字节到buffer缓冲区内 printf(“%s”,buffer); close(filedes[0]); } } 编译并运行程序,分析程序执行过程和结果,注释程序主要语句。

2.阅读以下程序: #include #include #include main() { char buffer[80]; int fd; unlink(FIFO); //删除FIFO文件 mkfifo(FIFO,0666); //FIFO是管道名,0666是权限 if(fork()>0){ char s[ ] = “hello!\n”;

相关主题
文本预览
相关文档 最新文档