当前位置:文档之家› 鼓式制动器设计方案(设计方案说明书)

鼓式制动器设计方案(设计方案说明书)

鼓式制动器设计方案(设计方案说明书)
鼓式制动器设计方案(设计方案说明书)

毕业设计设计说明书

题目 SC6408V 商用车

鼓式制动器总成设计专业车辆工程<汽车工程)

班级 2006级汽车一班

学生 ___ 廖械兵

指导老师___ 文孝霞

重庆交通大学2018年

前言

1 本课题的目的和意义

近年来,国内、外对汽车制动系统的研究与改进的大部分工作集中在通过对汽车制动过程的有效控制来提高车辆的制动性能及其稳定性,如ABS 技术等,而对制动器本身的研究改进较少。然而,对汽车制动过程的控制效果最终都须通过制动器来实现,现代汽车普遍采用的摩擦式制动器的实际工作性能是整个制动系中最复杂、最不稳定的因素,因此改进制动器机构、解决制约其性能的突出问题具有非常重要的意义。

对于蹄-鼓式制动器,其突出优点是可利用制动蹄的增势效应而达到很高的制动效能因数,并具有多种不同性能的可选结构型式,以及其制动性能的可设计性强、制动效能因数的选择范围很宽、对各种汽车的制动性能要求的适应面广,至今仍然在除部分轿车以外的各种车辆的制动器中占主导地位。但是,传统的蹄-鼓式制动器存在本身无法克服的缺点,主要表现于:其制动效能的稳定性较差,其摩擦副的压力分布均匀性也较差,衬片磨损不均匀;另外,在摩擦副局部接触的情况下容易使制动器制动力矩发生较大的变化,因此容易使左右车轮的制动力产生较大差值,从而导致汽车制动跑偏。

对于钳-盘式制动器,其优点在于:制动效能稳定性和散热性好,对摩擦材料的热衰退较不敏感,摩擦副的压力分布较均匀,而且结构较简单、维修较简便。但是,钳-盘式制动器的缺点在于:其制动效能因数很低<只有0.7 左右),因此要求很大的促动力,导致制动管路内液体压力高,而且其摩擦副的工作压强和温度高;制动盘易被污染和锈蚀;当用作后轮制动器时不易加装驻车制动机构等。

因此,现代车辆上迫切需要一种可克服已有技术不足之处的先进制动器,它可充分发挥蹄-鼓式制动器制动效能因数高的优点,同时具有摩擦副压力分布均匀、制动效能稳定以及制动器间隙自动调节机构较理想等优点。

2 商用车制动系概述

汽车制动系是用以强制行驶中的汽车减速或停车、使下坡行驶的汽车车速保持稳定以及使已停驶的汽车在原地(包括在斜坡上>驻留不动的机构。从汽车诞生时起,车辆制动系统在车辆的安全方面就扮演着至关重要的角色。近年来,随着车辆技术的进步

和汽车行驶速度的提高,这种重要性表现得越来越明显。也只有制动性能良好、制动系工作可靠的汽车,才能充分发挥其动力性能。

汽车制动系统种类很多,形式多样。传统的制动系统结构型式主要有机械式、气动式、液压式、气—液混合式。它们的工作原理基本都一样,都是利用制动装置,用工作时产生的摩擦热来逐渐消耗车辆所具有的动能,以达到车辆制动减速,或直至停车的目的。汽车制动系至少应有两套独立的制动装置,即行车制动装置和驻车制动装置;重型汽车或经常在山区行驶的汽车要增设应急制动装置及辅助制动装置,牵引汽车应有自动制动装置等。

作为制动系的主要组成部分,在车辆上常用的传统蹄-鼓式制动器包括领从蹄型、双领蹄型、双从蹄型、双向自增力型等不同的结构型式。

3 鼓式制动器技术研究进展和现状

长期以来,为了充分发挥蹄-鼓式制动器的重要优势,旨在克服其主要缺点的研究工作和技术改进一直在进行中,尤其是对蹄-鼓式制动器工作过程和性能计算分析方法的研究受到高度重视。这些研究工作的重点在于制动器结构和实际使用因素等对制动器的效能及其稳定性等的影响,取得了一些重要的研究成果,得到了一些比较可行、有效的改进措施,制动器的性能也有了一定程度的提高。

1978 年,Brian Ingram 等提出一种蹄平动的鼓式制动器形式;这种制动器的制动蹄因为受到滑槽的限制,只能平动不能转动,因此没有增势效应,也没有减势效应,与盘式制动器类似,理论上制动效能和摩擦系数的关系是线性的,制动稳定性较好,同时,可以有效地防止传统鼓式制动器普遍的摩擦片偏磨现象,但制动效能因数较低。

1997年,提出了一种“电控自增力鼓式制动器”设计方案,该制动器是通过机械的方法来实现鼓式制动器的自增力,制动效能因数的变化范围为2~6。应用一套电控机械装置调整领蹄的支承点来提高制动器的制动效能数,以补偿由于摩擦材料的热衰退而引起的摩擦系数降低。该制动器达到相同的制动力矩所要求的输入力是盘式制动器1/7。该系统的控制装置允许每个制动器单独工作,从而提高了行车的安全性,另外对驾驶和操纵舒适性也有所提高,但仍然存在一些问题,诸如系统复杂、高能耗、高成本、维护困难等。

1999年提出一种四蹄八片<块)式制动器,通过对结构参数合理匹配设计,制动效能因数有一定地提高,同时制动效能_因数对摩擦系数的敏感性也可以有适当地改

善,这就在一定程度上改善了制动效能的稳定性。2000 年,提出一种具有多自由度联动蹄的新型蹄-鼓式制动器,该型式的制动器使得制动效能因数及其稳定性得到显著提高;摩擦副间压力分布趋于均匀,可保证摩擦副间接触状态的稳定,并延长摩擦片使用寿命;性能参数可设计性强,可根据对制动效能的需要,较灵活地进行制动器设计。

另外,近年来则出现了一些全新的制动器结构形式,如磁粉制动器、湿式多盘制动器、电力液压制动臂型盘式制动器、湿式盘式弹簧制动器等。对于关键磁性介质——磁粉,选用了抗氧化性强、耐磨、耐高温、流动性好的军工磁粉;磁毂组件选用了超级电工纯铁DT4,保证了空转力矩小、重复控制精度高的性能要求;在热容量和散热等方面,采用了双侧带散热风扇,设计了散热风道等,使得该技术有着极好的应用前景[3]。

尽管对蹄-鼓式制动器的设计研究取得了一定的成绩,但是对传统蹄-鼓式制动器的设计仍然有着不可替代的基础性和研发性作用,也可为后续设计提供理论参考。

4 研究重点以及目的

研究重点:根据设计车型的特点,合理计算该车型制动系统制动力及制动器最大制动力矩、鼓式制动器的结构形式及选择、鼓式制动器主要参数的计算与确定、摩擦衬块的磨损特性计算、制动器热容量和温升的核算、制动力矩的计算与校核、在二维或三维设计平台AUTO CAD中完成鼓式制动器零件图以及装配图的绘制、设计合理性的分析和评价等。

本次设计的目的是通过合理整和已有的设计,阅读大量文献,掌握机械设计的基本步骤和要求,以及传统的机械制图的步骤和规则;掌握鼓式制动器总成的相关设计方法,以进一步扎实汽车设计基本知识;学会用AUTO CAD,UG等三维软件进行基本的二维或三维建模和制图,同时提高分析问题及解决问题的能力。提出将各种设计方法互相结合,针对不同的设计内容分别应用不同的方法,以促进其设计过程方法优化、设计结果精益求精。

目录

中文摘要I

英文摘要II

第1章鼓式制动器结构形式及选择1

1.1鼓式制动器的形式结构1

1.2 鼓式制动器按蹄的属性分类2

1.2.1 领从蹄式制动器2

1.2.2 双领蹄式制动器6

1.2.3 双向双领蹄式制动器7

1.2.4 单向増力式制动器9

1.2.5 双向増力式制动器9

第2章制动系的主要参数及其选择13

2.1 制动力与制动力分配系数13

2.2 同步附着系数18

2.3制动器最大制动力矩20

2.4 鼓式制动器的结构参数与摩擦系数21

2.4.1 制动鼓内径D22

2.4.2 摩擦衬片宽度b和包角β23

24

2.4.3 摩擦衬片起始角

2.4.4 制动器中心到张开力P作用线的距离a24

2.4.5 制动蹄支承点位置坐标k和c24

2.4.6 衬片摩擦系数f24

第3章制动器的设计计算25

3.1浮式领—从蹄制动器(平行支座面> 制动器因素计算25

3.2制动驱动机构的设计计算27

3.2.1所需制动力计算27

3.2.2制动踏板力验算28

3.2.3 确定制动轮缸直径29

3.2.4轮缸的工作容积29

3.2.5 制动器所能产生的制动力计算30

3.3制动蹄片上的制动力矩31

3.4制动蹄上的压力分布规律35

3.5 摩擦衬片的磨损特性计算37

3.6 制动器的热容量和温升的核算40

3.7行车制动效能计算41

3.8 驻车制动的计算42

第4章制动器主要零件的结构设计45

4.1制动鼓45

4.2 制动蹄46

4.3 制动底板47

4.4 制动蹄的支承47

4.5 制动轮缸47

4.6 摩擦材料47

4.7 制动器间隙48

结论50

致谢52

参考文献51

附录 153

附录 254

摘要

鼓式制动也叫块式制动,现在鼓式制动器的主流是内张式,它的制动蹄位于制动轮内侧,刹车时制动块向外张开,摩擦制动轮的内侧,达到刹车的目的。

制动系统在汽车中有着极为重要的作用,如果失效将会造成灾严重的后果。制动系统的主要部件就是制动器,在现代汽车上仍然广泛使用的是具有较高制动效能的蹄—鼓式制动器。本设计就摩擦式鼓式制动器进行了相关的设计和计算。在设计过程中,以实际产品为基础,根据我国工厂目前进行制动器新产品开发的一般程序,并结合理论设计的要求,首先根据给定车型的整车参数和技术要求,确定制动器的结构形式及、制动器主要参数,然后计算制动器的制动力矩、制动蹄上的压力分布、蹄片变形规律、制动效能因数、制动减速度、耐磨损特性、制动温升等,并在此基础上进行制动器主要零部件的结构设计。最后,完成装配图和零件图的绘制。

关键词:鼓式制动器,制动力矩,制动效能因数,制动减速度,制动温升

ABSTRACT

Drum brake, also known as block-type brake, drum brakes, now within the mainstream style sheets, and its brake shoes located inside the brake wheel, brake brake blocks out when open, the inside wheel friction brake, to achieve the purpose of the brakes.

In the vehicle braking system has a very important role, failure will result in disaster if serious consequences. The main parts of the braking system is the brake, in the modern car is still widely used in high performance brake shoe - brake drum. The design of the friction drum brakes were related to the design and calculation. In the design process, based on the actual product, according to our current brake factory general new product development process, and theoretical design requirements, the first model of the vehicle according to the given parameter and the technical requirements, determine the brake structure and, brake main parameters, and then calculate the braking torque brake, brake shoes on the pressure distribution, deformation shoe, brake effectiveness factor, braking deceleration, wear characteristics, brake temperature, etc., and in this brake on the basis of the structural design of major components. Finally, assembly drawings and parts to complete mapping.

KEY WORDS:drum brake, braking torque, brake efficiency factor, braking deceleration, brake temperature rising

第1章鼓式制动器结构形式及选择

除了辅助制动装置是利用发动机排气或其他缓速措施对下长坡的汽车进行减缓或稳定车速外,汽车制动器几乎都是机械摩擦式的,既是利用固定元件与旋转元件工作表面间的摩擦而产生制动力矩使汽车减速或停车的。

鼓式制动器又分为内张型鼓式制动器和外束型鼓式制动器。内张型鼓式制动器的固定摩擦元件是一对带有摩擦蹄片的制动蹄,后者又安装在制动底板上,而制动底板则又紧固于前梁或后桥壳的突缘上<对车轮制动器)或变速器壳或与其相固定的支架上<对中央制动器);其旋转摩擦元件固定在轮毂上或变速器第二轴后端的制动鼓,并利用制动鼓的圆柱表面与制动蹄摩擦片的外表面作为一对摩擦表面在制动鼓上产生摩擦力矩,故称为蹄式制动器。外束型鼓式制动器的固定摩擦元件是带有摩擦片且刚度较小的制动带;其旋转摩擦元件为制动鼓,并利用制动鼓的外圆柱表面和制动带摩擦片的内圆弧面作为一对摩擦表面,产生摩擦力矩作用于制动鼓,故又称为带式制动器。在汽车制动系中,带式制动器曾仅用作某些汽车的中央制动器,现代汽车已经很少使用,所以内张型鼓式制动器通常简称为鼓式制动器,而通常所说的鼓式制动器即是指这种内张型鼓式制动器。

1.1鼓式制动器的形式结构

鼓式制动器可按其制动蹄的受力情况分类<见图1.1),它们的制动效能,制动鼓的受力平衡状况以及对车轮旋转方向对制动效能的影响均不同。

图 1.1 鼓式制动器简图

(a>领从蹄式<用凸轮张开);

向双领蹄式;

制动蹄按其张开时的转动方向和制动鼓的转动方向是否一致,有领蹄和从蹄之分。制动蹄张开的转动方向与制动鼓的旋转方向一致的制动蹄,称为领蹄;反之,则称为从蹄。

1.2 鼓式制动器按蹄的属性分类

1.2.1 领从蹄式制动器

如图1.1

1.1

“减势”作用使从蹄所受的法向反力减小。

图 1.2 PERROT 公司的S 凸轮制动器

图 1.3 俄KamA3汽车的S 凸轮式车轮制动器

1 制动蹄;2凸轮;3制动底板;4调整臂;5凸轮支座及制动气室;6滚轮

对于两蹄的张开力12p p p ==的领从蹄式制动器结构,如图1.1

势”作用,使其进一步压紧制动鼓使其所受的法向反力加大;从蹄由于摩擦力矩的“减势”作用而使其所受的法向反力减少。这样,由于两蹄所受的法向反力不等,不能相互平衡,其差值要由车轮轮毂承受。这种制动时两蹄法向反力不能相互平衡的制动器称为非平衡式制动器。液压或锲块驱动的领从蹄式制动器均为非平衡式结构,也叫简单非平衡式制动器。非平衡式制动器对轮毂轴承造成附加径向载荷,而且领蹄摩擦衬片表面的单位压力大于从蹄的,磨损较严重。为使衬片寿命均匀。可将从蹄的摩擦衬片包角适当地减小。

对于如图1.1

领从蹄式制动器的两个蹄常有固定的支点。张开装置有凸轮式<见图1.1

图1.4 锲块式张开装置的车轮制动器

1 制动蹄;2制动底座;3制动气室;4 锲块;5 滚轮;6 柱塞;7 当块;8 棘爪; 9 调整螺钉;10 调整套筒

图1.5制动轮缸具有两个等直径活塞的车轮制动器图 1.6制动轮缸有四个直径活塞的车轮制动器

1 活塞;

2 活塞支承圈;

3 密封圈;

4 支承; 1 制动蹄; 2 制动底板; 3制动器间隙调

5 制动底板;

6 制动蹄;

7 支承销;凸轮;4偏心支承销

9 制动蹄定位销;10 驻车制动传动装置

领从蹄式制动器的效能及稳定性均处于中等水平,但由于其在汽车前进和倒车时的制动性能不变,结构简单,造价较低,也便于附装驻车制动机构,故仍广泛用作中,重型载货汽车前,后轮以及轿车后轮制动器。

根据支承结构及调整方法的不同,领从蹄鼓式液压驱动的车轮制动器又有不同的

结构方案,如图1.7所示

图 1.7 领从蹄式制动器的结构方案<液压驱动)

当汽车前进时,若两制动蹄均为领蹄的制动器,称为双领蹄式制动器。但这种制

动器在汽车倒车时,两制动蹄又都变为从蹄,因此,它又称为单向为单向双领蹄式制

动器。如图1.1

动轮缸等机件在制动底板上是以制动底板中心为对称布置的,因此两蹄对鼓作用的合力恰好相互平衡,故属于平衡式制动器。

单向双领蹄式制动器根据其调整方法的不同,又有多种结构方案,如图9所示。

图 1.8 单向双领蹄式制动器的结构方案<液压驱动)

双领蹄式制动器有高的正向制动效能,但倒车时变为双从蹄式,使制动效能大减。中级轿车的前制动器常用这种形式,这是由于这类汽车前进制动时,前轴的轴荷及附着力大于后轴,而倒车时则相反,采用这这种结构作为前轮制动器并与领从蹄式后轮制动器相匹配,则可较容易地获得所希望的前,后制动力分配<12f f F F )并使前,后轮制动器的许多零件有相同的尺寸。它不用于后轮还由于有两个互相成中心对称的制动轮缸,难于附加驻车制动驱动机构。 1.2.3 双向双领蹄式制动器

当制动鼓正向和反向旋转时两制动蹄均为领蹄的制动器,称为双向双领蹄式制动器。如1.1

图 1.9 双向双领蹄式鼓式制动器的结构方案<液压驱动)

制动鼓靠摩擦力带动两制动蹄转过一小角度,使两制动蹄的转动方向均与制动鼓的转向方向一致;当制动鼓反向旋转时,其过程类同但方向相反。因此,制动鼓在正向,反向旋转时两制动蹄均为领蹄,故称双向双领蹄式制动器。它也属于平衡式制动器。由于这种这种制动器在汽车前进和倒退时的性能不变,故广泛用于中,轻型载货汽车和部分轿车的前,后轮。但用作后轮制动器时,需另设中央制动器。

图 1.10 LCCAS公司的曲柄机构制动器

图 1.11 PERROT的双锲式制动器

1.2.4 单向増力式制动器

如图1.1

虽然这种制动器在汽车前进制动时,其制动效能很高,且高于前述各种制动器,但在倒车制动时,其制动效能却是最低的。因此,仅用于少数轻,中型货车和轿车上作前轮制动器。

1.2.5 双向増力式制动器

如图1.1

蹄,而且经顶杆传给它的推力Q要比制动轮缸给第一蹄或第二蹄的推力大很多。但制动时作用于第二蹄上端的制动轮缸推力起着减小第二蹄与支承销间压紧力的作用。双向増力式制动器也是属于非平衡式制动器。

图1.12给出了双向増力式制动器<浮动支承)的几种结构方案,图14给出了双向増力式制动器<固定支点)另外几种结构方案。

图 1.12 双向増力式制动器<浮动支承)的结构方案

图 1.13 双向増力式制动器<固定支点)的结构方案

双向増力式制动器在高级轿车上用得较多,而且往往将其作为行车制动与驻车制动共用的制动器,但行车制动是由液压通过制动轮缸产生制动蹄的张开力进行制动,而驻车制动则是用制动操纵手柄通过拉绳及杠杆等操纵。另外,它也广泛用于汽车中央制动器,因为驻车制动要求制动器正,反向的制动效能都很高,而且驻车制动若不用于应急制动时不会产生高温,因而热衰退问题并不突出。

上述制动器的特点是用制动器效能,效能稳定性和摩擦衬片磨损均匀程度来评价。増力式制动器效能最高,双领蹄式次之,领蹄式更次之,还有一种双从蹄式制动蹄的效能最低,故极少采用。而就工作稳定性来看,名次排列正好与效能排列相反,

双从蹄式最好,増力式最差。摩擦系数的变化是影响制动器工作效能稳定性的主要因素。

还应指出,制动器的效能不仅与制动器的结构形式,结构参数和摩擦系数有关,也受到其他有关因素的影响。例如制动蹄摩擦衬片与制动鼓仅在衬片的中部接触时输出的制动力矩最小;而在衬片的两端接触时,输出的制动力矩就大。制动器的效能常以制动器效能因数或简称为制动器因数BF

BF=

式中 f 1N ,f 2N :—制动器摩擦副间的摩擦力,见图1.1;

1N ,2N :— 制动器摩擦副间的法向力,对平衡式鼓式制动器:1N =2N f —制动器摩擦副的摩擦系数;

P —鼓式制动器的蹄端作用力,见图1.1。

图 1.14 制动器因数BF 与摩擦系数f 的关系曲线

1増力式制动器;2双领蹄式制动器;3领从蹄式制动器;4盘式制动器;5双从蹄式制动器

基本尺寸比例相同的各种内张型鼓式制动器的制动因数BF 与摩擦系数f 之间的关系如图15所示。BF 值大,即制动效能好。在制动过程中由于热衰退,摩擦系数是变化的,因此摩擦系数变化时。BF 值变化小的,制动效能稳定性就好。

制动器因数值愈大,摩擦副的接触情况对制动效能的影响也就愈大。所以,对制动器的正确调整,对高效能的制动器尤为重要。

结合本次课题研究的对象

领从蹄鼓式制动器的设计

摘要:随着生活水平的提高和科技的迅猛发展,人们的生活节奏变得越来越快,因此人们对交通工具的快捷性要求越来越高。为了应对高车速对人们安全构成的威胁,许多法规对汽车的安全性提出了更高的要求,制动系的设计成为其中很重的一个方面。本设计根据制动器的工作原理,对多种制动器进行分析比较,选择了制动效能较高的鼓式制动器作为设计的对象。依据给定的参数,进行重要数值的计算。随后,又根据工艺学的知识,进行制动器零件的设计和工艺分析。 总之,本设计的目的是为了设计出高效、稳定的制动器,以提高汽车的安全性。 关键词:制动系; 制动效能; 制动器

Abstract Keywords:Braking system ; Braking quality ; Brake

1 绪论 1.1 汽车制动系概述 尽可能提高车速是提高运输生产率的主要技术措施之一。但这一切必须以保证行驶安全为前提。因此,在宽阔人少的路面上汽车可以高速行驶。但在不平路面上,遇到障碍物或其它紧急情况时,应降低车速甚至停车。如果汽车不具备这一性能,提高汽车行驶速度便不可能实现。所以,需要在汽车上安装一套可以实现减速行驶或者停车的制动装置——制动系统。 制动系是汽车的一个重要组成部分,它直接影响汽车的行驶安全性。随着高速公路的迅速发展和汽车密度的日益增大,交通事故时有发生。因此,为保证汽车行驶安全,应提高汽车的制动性能,优化汽车制动系的结构。 制动装置可分为行车制动、驻车制动、应急制动和辅助制动四种装置。其中行驶中的汽车减速至停止的制动系叫行车制动系。使已停止的汽车停驻不动的制动系称为驻车制动系。每种车都必须具备这两种制动系。应急制动系成为第二制动系,它是为了保证在行车制动系失效时仍能有效的制动。辅助制动系的作用是使汽车下坡时车速稳定的制动系。 汽车制动系统是一套用来使四个车轮减速或停止的零件。当驾驶员踩下制动踏板时,制动动作开始。踏板装在顶端带销轴的杆件上。踏板的运动促使推杆移动,移向主缸或离开主缸。 主缸安装在发动机室的隔板上,主缸是一个由驾驶员通过踏板操作的液压泵。当踏板被踩下,主缸迫使有压力的制动液通过液压管路到四个车轮的每个制动器。液压管路由钢管和软管组成。它们将压力液从主缸传递到车轮制动器。 盘式制动器多用于汽车的前轮,有不少车辆四个车轮都用盘式制动器。制动盘装在轮辋上、与车轮及轮胎一起转动。当驾驶员进行制动时,主缸的液体压力传递到盘式制动器。该压力推动摩擦衬片靠到制动盘上,阻止制动盘转动。

鼓式制动器的建模与仿真资料

河北工业大学 毕业设计说明书 作者:张南学号: 100287系:机械工程 专业:车辆工程 题目:鼓式制动器的建模与仿真 指导者:刘茜副教授 评阅者: 2014年 06 月 08 日

毕业设计说明书中文摘要

目录 1.绪论 (1) 制动系统的原理 (1) 鼓式制动器的介绍 (1) 鼓式制动器优缺点 (3) 2.鼓式制动器零件建模及装配 (4) 零件建模 (4) 制动器的装配 (13) 3. 虚拟样机模型的建立及性能仿真分析 (15) 制动器各部件间约束关系的建立 (15) 几何体间约束的关系与选择 (17) ADAMS\View的运动仿真 (25) ADAMS\View仿真结果 (27) 结论 (33) 参考文献 (34) 致谢 (35)

1.绪论 制动系统原理 制动系统是行车安全中非常重要的一部分,制动系统主要表现为通过踩下制动踏板,制动系统将力进行一系列传递从而最终表现为车辆的行车速度降低直至停车。制动系统原理图如下图。制动系统由制动踏板、助力泵、总泵活塞、制动鼓、液压管道、驻车制动等组成。踩下制动踏板将力传递到制动系统,助力泵将踏板上的力进行放大并传递到制动总泵中推动总泵活塞运动,将力传递到制动器的制动鼓,产生摩擦力矩从而使车轮速度降低直至停车。 图制动系统的原理图 1.1鼓式制动器的介绍 鼓式制动器应用在车辆上面已经有很长时间的历史,由于它的可靠性稳定以及大制动力均衡,使得鼓式制动器至今仍被装置在许多车型上 (多用于后轮)。鼓式制动器是通过液压装置将制动蹄向外推,使制动蹄摩擦片与随着车轮转动的制动鼓发生摩擦产生制动力矩从而使车辆实现制动的效果。鼓式制动器的制动鼓内侧与摩擦片接触的位置就是制动装置产生制动力矩的位置。在获得相同制动力矩的情况下,鼓式制动器的制动鼓直径较盘式制动器的制动鼓要小得多。因此需要较大制动力的德众大型

轻型货车鼓式制动器设计

轻型货车鼓式制动器设计 制动系统在汽车中有着极为重要的作用,如果失效将会造成灾严重的后果。制动系统的主要部件就是制动器,在现代汽车上仍然广泛使用的是具有较高制动效能的蹄—鼓式制动器。 鼓式制动也叫块式制动,现在鼓式制动器的主流是内张式,它的制动鼓位于制动轮内侧,刹车时制动块向外张开,摩擦制动鼓的内侧,达到刹车的目的。本设计就摩擦式鼓式制动器进行了相关的设计和计算。在设计过程中,以实际产品为基础,根据我国工厂目前进行制动器新产品开发的一般程序,并结合理论设计的要求进行设计。首先根据给定车型的整车参数和技术要求,确定制动器的结构形式、驱动形式及制动器主要参数,然后计算制动器的制动力矩、制动效能因数、制动减速度、制动温升等,并在此基础上进行制动器主要零部件的结构设计,如制动鼓、制动蹄、制动底板等。最后,完成装配图和零件图的绘制。 1.1选题背景与意义 随着汽车性能的提高,对汽车安全性能的要求也越来越高。制动器是汽车制动系统中最重要的安全部件,对汽车的安全性有着重要的作用,因此对制动器的设计进行分析研究有着重要的意义。鼓式制动器作为现代汽车广泛使用的具有较高制动效能的制动器,尽管对其的设计研究取得了一定的成绩,但是对传统鼓式制动器的设计仍然有着不可替代的基础性和研发性作用,也可以为后续设计提供理论参考。这样,在以后的设计研究当中,不仅可以延续鼓式制动器的优点,还能在此基础上设计出制动性能更好的制动器,满足汽车的安全性和乘员舒适性,提高汽车的整体性能。 1.2研究现状 长期以来,为了充分发挥鼓式制动器的重要优势,旨在克服其主要缺点的研究工作和技术改进一直在进行中,尤其是对鼓式制动器工作过程和性能计算分析方法的研究受到高度重视。这些研究工作的重点在于制动器结构和实际使用因素等对制动器的效能及其稳定性等的影响,取得了一些重要的研究成果,得到了一些比较可行、有效的改进措施,制动器的性能也有了一定程度的提高。 如以某汽车前轮鼓式双领蹄式制动器的制动蹄为研究对象,进行了受力分析并建立了力学模型,使用Pro/E建立了CAD模型,运用ANSYS进行了有限元

毕业设计盘式制动器设计说明书

汽车盘式制动器设计 摘要:本文主要是介绍盘式制动器的分类以及各种盘式制动器的优缺点,对所选车型制动器的选用方案进行了选择,针对盘式制动器做了主要的设计计算,同时分析了汽车在各种附着系数道路上的制动过程,对前后制动力分配系数和同步附着系数、利用附着系数、制动效率等做了计算。在满足制动法规要求及设计原则要求的前提下,提高了汽车的制动性能。 关键词:盘式制动器;制动力分配系数;同步附着系数;利用附着系数;制动效率

Automobile disc brake design Abstract:This paper is mainly the disc brake of the classification and various kinds of disc brake of the advantages and disadvantages are introduced, the selection scheme of the chosen vehicle brake was selected and for disc brake do the main design calculation and analysis of the car in a variety of attachment coefficient road on the braking process of, of braking force distribution coefficient and the synchronous adhesion coefficient, utilization coefficient of adhesion, braking efficiency calculated. Under the premise of meeting the requirements of the braking regulation requirement and design principle and improve the braking performance of automobile. Key words: Disc brake,Braking force distribution,coefficient,Synchronization coefficient,Synchronous adhesion coefficient,The use of adhesion coefficient,Braking efficiency

领从蹄式鼓式制动器结构及其制动性能1

领从蹄式鼓式制动器结构及其制动性能 摘要:如何开发出高性能的制动系统,为安全行驶提供保障是我们要解决的主要问题。本说明书分四个章节,主要介绍了领从蹄式鼓式制动器结构及其制动性能,并与其他种类制动器作比较,为整车制动性能研究提供更全面的试验数据和性能评价。 关键字:领从蹄式;制动器;制动性能 Leading-shoe Drum Brake Structure And Braking Performance Abstract:How to develop high-performance braking system, to provide protection for the safe driving is the main problem we have to solve. This manual is divided into four chapters, focuses on the leading shoe drum brakes from the structure and braking performance, and comparison with other types of brakes, the braking performance of the vehicle to provide a more comprehensive test data and performance evaluation. Keywords: Leading shoe;Brake;Braking performance 目录 序言 (1) 第1章制动器概述…………………………………………………………………… 1 第2章鼓式制动器…………………………………………………………………… 3 2.1鼓式制动器概

鼓式制动器 设计说明书

车辆工程专业课程设计题目:鼓式制动器设计 学院机械与能源工程学院专业车辆工程 年级车辆10级班级车辆1012 姓名李开航学号 2010715040 成绩指导老师赖祥生

精品文档 目录 第1章绪论....................................................... 1.1制动系统设计的目的 (1) 1.2制动系统设计的要求 (1) 第2章鼓式制动器的设计计算及相关说明 (2) 2.1鼓式制动器有关计算 (2) 2.1.1基本参数 (2) 2.1.2确定前后轴制动力矩分配系数β (2) 2.1.3鼓式制动器制动力矩的确定 (3) 2.2鼓式制动器的结构参数与摩擦系数的选取 (4) 2.2.1制动鼓半径 (4) 2.2.2制动鼓摩擦衬片的包角、宽度、和起始角 (4) 2.2.3张开力作用线至制动器中心的距离 (4) 2.2.4制动蹄支销中心的坐标位置 (5) 2.2.5摩擦片的摩擦系数 (5) 2.3后轮制动轮缸直径与工作容积的设计计算 (5) 2.4摩擦衬片的磨损特性计算 (6) 2.5驻车计算 (8) 第3章鼓式制动器主要零件的结构设计 (10) 3.1制动鼓 (10) 3.2制动蹄 (11) 3.3制动底板 (12) 3.4支承 (12) 3.5制动轮缸 (13) 3.6摩擦材料 (13) 3.7制动器间隙 (13) 第4章鼓式制动器的三维建模 (14) 第5章结论 (15) 参考文献 (16)

第1章绪论 1.1制动系统设计的目的 汽车是现代交通工具中用得最多,最普遍,也是最方便的交通运输工具。汽车制动系是汽车底盘上的一个重要系统,它是制约汽车运动的装置。而制动器又是制动系中直接制约汽车运动的一个关键装置,是汽车上最重要的安全件。汽车的制动性能直接影响汽车的行驶安全性。随着公路业的迅速发展和车流密度的日益增大,人们对安全性、可靠性要求越来越高,为保证人身和车辆的安全,必须为汽车配备十分可靠的制动系统。 1.2制动系统设计的要求 本次的课程设计选择了鼓式制动器,制定出制动系统的结构方案,确定计算制动系统的主要设计参数制动器主要参数设计和液压驱动系统的参数计算。利用CATIA绘制装配图,布置图和零件图。最终进行制动力分配编程,对设计出的制动系统的各项指标进行评价分析。 第2章鼓式制动器的设计计算及相关说明 2.1鼓式制动器有关计算

(完整版)毕业设计浮钳盘式制动器

原始数据: 整车质量:空载:1550kg ;满载:2000kg 质心位置:a=L 1=1.35m ;b=L 2=1.25m 质心高度:空载:hg=0.95m ;满载:hg=0.85m 轴 距:L=2.6m 轮 距: L 0=1.8m 最高车速:160km/h 车轮工作半径:370mm 轮毂直径:140mm 轮缸直径:54mm 轮 胎:195/60R14 85H 1.同步附着系数的分析 (1)当0φφ<时:制动时总是前轮先抱死,这是一种稳定工况,但丧失了转向能力; (2)当0φφ>时:制动时总是后轮先抱死,这时容易发生后轴侧滑而使汽车失去方向稳定性; (3)当0φφ=时:制动时汽车前、后轮同时抱死,是一种稳定工况,但也丧失了转向能力。 分析表明,汽车在同步附着系数为0φ的路面上制动(前、后车轮同时抱死)时,其制动减速度为g qg dt du 0φ==,即0φ=q ,q 为制动强度。而在其他附着系数φ的路面上制动时,达到前轮或后轮即将抱死的制动强度φ

根据相关资料查出轿车≥0φ0.6,故取6.00=φ. 同步附着系数:=0φ0.6 2.确定前后轴制动力矩分配系数β 常用前制动器制动力与汽车总制动力之比来表明分配的比例,称为制动器制动 力分配系数,用β表示,即:u F F u 1 =β,21u u u F F F += 式中,1u F :前制动器制动力;2u F :后制动器制动力;u F :制动器总制动力。 由于已经确定同步附着系数,则分配系数可由下式得到: 根据公式:L h L g 02φβ+= 得:68.06 .285.06.025.1=?+=β 3.制动器制动力矩的确定 为了保证汽车有良好的制动效能,要求合理地确定前,后轮制动器的制动力矩。 根据汽车满载在沥青,混凝土路面上紧急制动到前轮抱死拖滑,计算出后轮制动器的最大制动力矩2M μ 由轮胎与路面附着系数所决定的前后轴最大附着力矩: e g r qh L L G M ?υ)(1max 2-= 式中:?:该车所能遇到的最大附着系数; q :制动强度; e r :车轮有效半径; max 2μM :后轴最大制动力矩;

(整理)领从蹄式鼓式制动器结构及其制动性能

第2章鼓式制动器2.1鼓式制动器概述鼓式制动也叫块式制动,是靠制动块在制动轮上压紧来实现刹车的。 早期设计的制动系统,其刹车鼓的设计在1902年就已经使用在马车上了,直到1920年左右才开始在汽车工业广泛应用。现在鼓式制动器的主流是内张式,它的制动块(刹车蹄)位于制动轮内侧,在刹车的时候制动块向外张开,摩擦制动轮的内侧,达到刹车的目的。相对于盘式制动器来说,鼓式制动器的制动效能和散热性都要差许多,鼓式制动器的制动力稳定性差,在不同路面上制动力变化很大,不易于掌控。而由于散热性能差,在制动过程中会聚集大量的热量。制动块和轮鼓在高温影响下较易发生极为复杂的变形,容易产生制动衰退和振抖现象,引起制动效率下降。 另外,鼓式制动器在使用一段时间后,要定期调校刹车蹄的空隙,甚至要把整个刹车鼓拆出清理累积在内的刹车粉。当然,鼓式制动器也并非一无是处,它造价便宜,而且符合传统设计。四轮轿车在制动过程中,由于惯性的作用,前轮的负荷通常占汽车全部负荷的70%-80%,前轮制动力要比后轮大,后轮起辅助制动作用。 因此轿车生产厂家为了节省成本,就采用前盘后鼓的制动方式。不过对于重型车来说,由于车速一般不是很高,刹车蹄的耐用程度也比盘式制动器高,因此许多重型车至今仍使用四轮鼓式的设计。 2.2鼓式制动器分类 一般内张鼓式行车制动器都采用带摩擦片的制动蹄作为固定元件。位于制动鼓内部的制动蹄在一端承受促动力时,可绕其另一端的支点向外旋转,压靠到制动鼓(旋转元件)内圆面上,产生摩擦力矩(制动力矩)进行制动。凡对制动蹄加力使蹄转动的装置称为制动蹄促动装置,常用的促动装置有制动轮缸、凸轮促

动装置及楔形促动装置,相应的鼓式制动器称为轮缸式制动器、凸轮式制动器和楔式制动器。领从蹄式制动器、双领蹄式制动器、双从蹄式制动器都是轮缸式制动器的一种。 2.3鼓式制动器工作原理及应用 鼓式制动器的旋转元件是制动鼓,固定元件是制动蹄,制动时制动蹄在促动装置作用下向外旋转,外表面的摩擦片压靠到制动鼓的内圆柱面上,对鼓产生制动摩擦力矩。凡对蹄端加力使蹄转动的装置统称为制动蹄促动装置,制动蹄促动装置有轮缸、凸轮和楔。以液压制动轮缸作为制动蹄促动装置的制动器称为轮缸式制动器;以凸轮作为促动装置的制动器称为凸轮式制动器;用楔作为促动装置的制动器称为楔式制动器。 在轿车制动鼓上,一般只有一个轮缸,在制动时轮缸受到来自总泵液力后,轮缸两端活塞会同时顶向左右制动蹄的蹄端,作用力相等。但由于车轮是旋转的,制动鼓作用于制动蹄的压力左右不对称,造成自行增力或自行减力的作用。因此,业内将自行增力的一侧制动蹄称为领蹄,自行减力的一侧制动蹄称为从蹄,领蹄的摩擦力矩是从蹄的2~2.5倍,两制动蹄摩擦衬片的磨损程度也就不一样。 为了保持良好的制动效率,制动蹄与制动鼓之间要有一个最佳间隙值。随着摩擦衬片磨损,制动蹄与制动鼓之间的间隙增大,需要有一个调整间隙的机构。过去的鼓式制动器间隙需要人工调整,用塞尺调整间隙。现在轿车鼓式制动器都是采用自动调整方式,摩擦衬片磨损后会自动调整与制动鼓间隙。当间隙增大时,制动蹄推出量超过一定范围时,调整间隙机构会将调整杆(棘爪)拉到与调整齿下一个齿接合的位置,从而增加连杆的长度,使制动蹄位置位移,恢复正常间隙。 轿车鼓式制动器一般用于后轮(前轮用盘式制动器)。鼓式制动器除了成本比较低之外,还有一个好处,就是便于与驻车(停车)制动组合在一起,凡是后轮为鼓式制动器的轿车,其驻车制动器也组合在后轮制动器上。这是一个机械系统,它完全与车上制动液压系统是分离的:利用手操纵杆或驻车踏板(美式车)拉紧钢拉索,操纵鼓式制动器的杠件扩展制动蹄,起到停车制动作用,使得汽车不会溜动;松开钢拉索,回位弹簧使制动蹄恢复原位,制动力消失。 2.4鼓式制动器主要参数 2.4.1 制动鼓内径D

雅力士轿车盘式制动器的设计_毕业设计

摘要 国内汽车市场迅速发展,然而随着汽车保有量的增加,带来的安全问题也越来越引起人们的注意,而制动系统则是汽车主动安全的重要系统之一。汽车制动系使行驶中的汽车减速或停车、使下坡行驶的汽车车速保持稳定以及使已停驶的汽车在原地(包括在斜坡上)驻留不动的机构。随着高速公路的迅速发展和车速的提高以及车流密度的日益增大,为了保证行车安全,汽车制动系的工作可靠性显得日益重要。也只有制动性能良好、制动系工作可靠的汽车,才能充分发挥其动力性能。 本说明书主要介绍了雅力士轿车前制动器的设计。首先介绍了汽车制动系统的结构、分类,并通过对鼓式制动器和盘式制动器的结构及优缺点进行分析。最终确定方案采用液压双回路前盘后鼓式制动器。 关键词:制动、盘式制动器、设计参数、制动性能。

ABSTRACT Domestic automobile market developing quickly, however, with the increase of the auto possession, bring security is more and more attention, and brake system is the important car active safety system one. The brake is a moving car slow down or stop, make the downhill cars speed stability and make already in place of the car they offend (including in slope) stay fixed institution. With the rapid development of the highway speed and the improvement of traffic density and increases day by day, in order to guarantee safety, car brake system reliability of work appear increasingly important. Also only brake performance is good, brake system reliable car and fully play its dynamic performance this manual mainly introduces the design of the car brake system yaris. First this paper reviewed the automobile braking system structure, classification, and through to the drum brake disc brake and the structure and the advantages and disadvantages are analyzed. Ultimately determine the scheme adopts hydraulic double circuit with disk and drum brake system. Key words: brake、disk brake 、design parameters、braking performance

鼓式制动器设计说明书

课程设计 小型轿车后轮鼓式制动器设计 学生姓名: 专业班级: 指导教师: 学院: 年月

东北林业大学 课程设计任务书 小型轿车后轮鼓式制动器设计 学生姓名: 专业班级: 指导教师: 学院:

小型轿车后轮鼓式制动器设计 摘要 随着汽车保有量的增加,带来的安全问题也越来越引起人们的注意,制动系统是汽车主动安全的重要系统之一。如何开发出高性能的制动器系统,为安全行驶提供保障是我们要解决的主要问题。另外,随着汽车市场竞争的加剧,如何缩短开发周期、提高设计效率,降低成本等,提高产品的市场竞争力,已经成为企业成功的关键。 本说明书主要介绍了小型轿车(0.9t)后轮鼓式制动器的设计计算,主要零部件的参数选择的设计过程。 关键词:汽车;鼓式制动器

目录 摘要 1绪论.........................................................................................................错误!未定义书签。 1.1概述 .................................................................................................... 错误!未定义书签。 1.2设计要求 ............................................................................................ 错误!未定义书签。 1.3设计目标 ............................................................................................ 错误!未定义书签。 2 鼓式制动器结构参数选择.....................................................................错误!未定义书签。 2.1制动鼓直径D或半径R.................................................................... 错误!未定义书签。 2.2制动蹄摩擦衬片的包角β和宽度b................................................. 错误!未定义书签。 2.3 摩擦衬片起始角β0 ........................................................................... 错误!未定义书签。 2.4 张开力P的作用线至制动器中心的距离a ..................................... 错误!未定义书签。 2.5制动蹄支撑销中心的坐标位置k与c.............................................. 错误!未定义书签。 2.6 摩擦片系数f ..................................................................................... 错误!未定义书签。 2.7 制动轮缸直径 d和管路压力p....................................................... 错误!未定义书签。 w 3制动蹄片上制动力矩的有关计算..........................................................错误!未定义书签。 4 鼓式制动器主要零部件结构设计及校核计算.....................................错误!未定义书签。 4.1鼓式制动器主要零件结构设计 ........................................................ 错误!未定义书签。 4.1.1 制动鼓............................................................................................. 错误!未定义书签。 4.1.2 制动蹄............................................................................................. 错误!未定义书签。 4.1.3 制动底板......................................................................................... 错误!未定义书签。 4.1.4 制动蹄的支撑................................................................................. 错误!未定义书签。 4.1.5 制动轮缸......................................................................................... 错误!未定义书签。 4.1.6 自动间隙调整机构......................................................................... 错误!未定义书签。 4.1.7 制动蹄回位弹簧............................................................................. 错误!未定义书签。 4.2 校核 .................................................................................................... 错误!未定义书签。 4.2.1 摩擦力矩和摩擦材料的校核......................................................... 错误!未定义书签。 4.2.2 摩擦衬片的磨损特性计算............................................................. 错误!未定义书签。 4.2.3 制动蹄支撑销剪切应力的校核计算............................................. 错误!未定义书签。结论 (14) 参考文献 (15) 附录 (16) 致谢 (17)

盘式制动器毕业设计(论文)

盘式制动器毕业设计(论文) 1.课题研究的目的及意义 汽车的设计与生产涉及到许多领域,其独有的安全性、经济性、舒适性等众多指标,也对设计提出了更高的要求。汽车制动系统是汽车行驶的一个重要主动安全系统,其性能的好坏对汽车的行驶安全有着重要影响。随着汽车的形式速度和路面情况复杂程度的提高,更加需要高性能、长寿命的制动系统。其性能的好坏对汽车的行驶安全有着重要影响,如果此系统不能正常工作,车上的驾驶员和乘客将会受到车祸的伤害。 汽车是现代交通工具中用得最多、最普遍、也是运用得最方便的交通工具。汽车制动系统是汽车底盘上的一个重要系统,它是制约汽车运动的装置,而制动器又是制动系中直接作用制约汽车运动的一个关键装置,是汽车上最重要的安全件。汽车的制动性能直接影响汽车的行驶安全性。随着公路业的迅速发展和车流密度的日益增大,人们对安全性、可靠性的要求越来越高,为保证人身和车辆安全,必须为汽车配备十分可靠的制动系统。 车辆在形式过程中要频繁进行制动操作,由于制动性能的好坏直接关系到交通和人身安全,因此制动性能是车辆非常重要的性能之一,改善汽车的制动性能始终是汽车设计制造和使用部门的重要任务。 现代汽车普遍采用的摩擦式制动器的实际工作性能是整个制动系中最复杂、最不稳定的因素,因此改进制动器机构、解决制约其性能的突出问题具有非常重要的意义。2.汽车制动器的国内外现状及发展趋势 对制动器的早期研究侧重于试验研究其摩擦特性,随着用户对其制动性能和使用寿命要求的不断提高,有关其基础理论与应用方面的研究也在深入进行。 目前,汽车所用的制动器几乎都是摩擦式的,可分为鼓式和盘式两大类。盘式制动器被普遍使用。但由于为了提高其制动效能而必须加制动增力系统,使其造价较高,故低端车一般还是使用前盘后鼓式。汽车制动过程实际上是一个能量转换过程,它把汽车行驶时产生的动能转换为热能。高速行驶的汽车如果频繁使用制动器,制动器因摩擦会产生大量的热量,使制动器温度急剧升高,如果不能及时的为制动器散热,它的效率就会大大降低,影响制动性能,出现所谓的制动效能热衰退现象。 在中高级轿车上前后轮都已经采用了盘式制动器。不过,时下还有不少经济型轿车采用的还不完全是盘式制动器,而是前盘后鼓式混合制动器(即前轮采用盘式制动器、后轮采用鼓式制动器),这主要是出于成本上的考虑,同时也是因为轿车在紧急制动时,负荷前移,对前轮制动的要求比较高,一般来说前轮用盘式制动器就够了。当然,前后轮都使用盘式制动器是一种趋势。在货车上,盘式制动器也有被采用的,但离完全取代

鼓式制动器设计

一《车辆工程专业课程设计》设计任务书 一.设计任务:商用汽车制动系统设计 二.基本参数: P285 三.设计内容 主要进行制动器系统设计,设计的内容包括: 1.查阅资料、调查研究、制定设计原则 2.根据给定的设计参数(发动机功率?,汽车轴距,车轮滚动半径,汽车空(满)载时的总质量、轴荷分布、质心位置),选择制动器的基本结构及驱动机构布置方案,设计出一套完整的制动系统,设计过程中要进行必要的计算。 3.制动系统结构设计和主要技术参数的确定 (1)制动器主要参数确定 (2)制动器设计计算 (3)制动器主要结构元件设计 (4)制动驱动机构的设计计算 4.绘制制动器装配图及主要零部件的零件图 四.设计要求 1.制动器总成(前或后)的装配图,1号图纸一张。 装配图要求表达清楚各部件之间的装配关系,标注出总体尺寸,配合关系及其它需要标注的尺寸,在技术要求部分应写出总成的调整方法和装配要求。 2.主要零部件的零件图,3号图纸4张。

要求零件形状表达清楚、尺寸标注完整,有必要的尺寸公差和形位公差。在技术要求应标明对零件毛胚的要求,材料的热处理方法、标明处理方法及其它特殊要求。 3.编写设计说明书。 五.设计进度与时间安排 本课程设计为3周 1.明确任务,分析有关原始资料,复习有关讲课内容及熟悉参考资料0.5周。 2.设计计算 1.0周 3.绘图 1.0周 4.编写说明书、答辩0.5周 六、主要参考文献 1.成大先机械设计手册(第三版) 2.汽车工程手册机械工业出版社 3.陈家瑞汽车构造(下册)人民交通出版社 4.王望予汽车设计机械工业出版社 5.余志生汽车理论机械工业出版社 6.王丰元汽车设计课程设计指导书中国电力出版社 七.注意事项 (1)为保证设计进度及质量,设计方案的确定、设计计算的结果等必须取得指导教师的认可,尤其在绘制总布置图前,设计方案应由指导教师审阅。图面要清晰干净;尺寸标注正确。 (2)编写设计说明书时,必须条理清楚,语言通达,图表、公式及其标注要清晰明确,对重点部分,应有分析论证,要能反应出学生独立工作和解决问题的能力。 (3)独立完成图纸的设计和设计说明书的编写,若发现抄袭或雷同按不及格处理。

盘式制动器毕业设计

1.课题研究的目的及意义 汽车的设计与生产涉及到许多领域,其独有的安全性、经济性、舒适性等众多指标,也对设计提出了更高的要求。汽车制动系统是汽车行驶的一个重要主动安全系统,其性能的好坏对汽车的行驶安全有着重要影响。随着汽车的形式速度和路面情况复杂程度的提高,更加需要高性能、长寿命的制动系统。其性能的好坏对汽车的行驶安全有着重要影响,如果此系统不能正常工作,车上的驾驶员和乘客将会受到车祸的伤害。 汽车是现代交通工具中用得最多、最普遍、也是运用得最方便的交通工具。汽车制动系统是汽车底盘上的一个重要系统,它是制约汽车运动的装置,而制动器又是制动系中直接作用制约汽车运动的一个关键装置,是汽车上最重要的安全件。汽车的制动性能直接影响汽车的行驶安全性。随着公路业的迅速发展和车流密度的日益增大,人们对安全性、可靠性的要求越来越高,为保证人身和车辆安全,必须为汽车配备十分可靠的制动系统。 车辆在形式过程中要频繁进行制动操作,由于制动性能的好坏直接关系到交通和人身安全,因此制动性能是车辆非常重要的性能之一,改善汽车的制动性能始终是汽车设计制造和使用部门的重要任务。 现代汽车普遍采用的摩擦式制动器的实际工作性能是整个制动系中最复杂、最不稳定的因素,因此改进制动器机构、解决制约其性能的突出问题具有非常重要的意义。 2.汽车制动器的国内外现状及发展趋势 对制动器的早期研究侧重于试验研究其摩擦特性,随着用户对其制动性能和使用寿命要求的不断提高,有关其基础理论与应用方面的研究也在深入进行。 目前,汽车所用的制动器几乎都是摩擦式的,可分为鼓式和盘式两大类。盘式制动器被普遍使用。但由于为了提高其制动效能而必须加制动增力系统,使其造价较高,故低端车一般还是使用前盘后鼓式。汽车制动过程实际上是一个能量转换过程,它把汽车行驶时产生的动能转换为热能。高速行驶的汽车如果频繁使用制动器,制动器因摩擦会产生大量的热量,使制动器温度急剧升高,如果不能及时的为制动器散热,它的效率就会大大降低,影响制动性能,出现所谓的制动效能热衰退现象。 在中高级轿车上前后轮都已经采用了盘式制动器。不过,时下还有不少经济型轿车采用的还不完全是盘式制动器,而是前盘后鼓式混合制动器(即前轮采用盘式制动器、后轮采用鼓式制动器),这主要是出于成本上的考虑,同时也是因为轿车在紧急制动时,负荷前移,对前轮制动的要求比较高,一般来说前轮用盘式制动器就够了。当然,前后轮都使用盘式制动器是一种趋势。在货车上,盘式制动器也有被采用的,但离完全取代鼓式制动器还有相当长的一段距离。 现代汽车制动器的发展起源于原始的机械控制装置,最原始的制动控制只是驾驶员操纵一组简单的机械装置向制动器施加作用力,那时的汽车重量比较小,速度比较低,机械制动已经能够满足汽车制动的需要,但随着汽车自身重量的增加,助力装置对机械制动器来说越来越显得非常重

汽车鼓式制动器开题报告

毕业设计(论文)开题报告 设计(论文)题目:路宝汽车后轮制动器的设计 院系名称: 汽车与交通工程学院 专业班级: 车辆工程 学生姓名: 导师姓名: 开题时间: 指导委员会审查意见: 签字:年月日

一、课题研究目的和意义 制动系统是保证行车安全的极为重要的一个系统,既可以使行驶中的汽车减速,又可保证停车后的汽车能驻留原地不动。对汽车起到制动作用的是作用在汽车上,其方向与汽车行驶方向相反的外力。作用在行驶汽车上的滚动阻力、上坡阻力、空气阻力都能对汽车起到制动作用,但这些外力的大小都是随机的、不可控制的。因此,汽车上必须装设一系列专门装置,以便驾驶员能根据道路和交通等情况,使外界(主要是路面)对汽车某些部分(主要是车轮)施加一定的力,对汽车进行一定程度的强制制动。这种可控制的对汽车进行制动的外力称为制动力,相应的一系列专门的装置即称为制动装置。由此可见,汽车制动系对于汽车行驶的安全性,停车的可靠性和运输经济效益起着重要的保证作用。随着高速公路的迅速发展和车速的提高以及车流密度的日益增大,汽车制动系的工作可靠性显得日益重要。因此,许多制动法规对制动系提出了许多详细而具体的要求。 鼓式制动也叫块式制动,是靠制动块在制动轮上压紧来实现刹车的。鼓式制动是早期设计的制动系统,其刹车鼓的设计1902年就已经使用在马车上了,直到1920年左右才开始在汽车工业广泛应用。现在鼓式制动器的主流是内张式,它的制动块(刹车蹄)位于制动轮内侧,在刹车的时候制动块向外张开,摩擦制动轮的内侧,达到刹车的目的。相对于盘式制动器来说,鼓式制动器的制动效能和散热性都要差许多,鼓式制动器的制动力稳定性差,在不同路面上制动力变化很大,不易于掌控。而由于散热性能差,在制动过程中会聚集大量的热量。制动块和轮鼓在高温影响下较易发生极为复杂的变形,容易产生制动衰退和振抖现象,引起制动效率下降。另外,鼓式制动器在使用一段时间后,要定期调校刹车蹄的空隙,甚至要把整个刹车鼓拆出清理累积在内的刹车粉。当然,鼓式制动器也并非一无是处,它造价便宜,而且符合传统设计。四轮轿车在制动过程中,由于惯性的作用,前轮的负荷通常占汽车全部负荷的70%-80%,前轮制动力要比后轮大,后轮起辅助制动作用,因此轿车生产厂家为了节省成本,就采用前盘后鼓的制动方式。不过对于重型车来说,由于车速一般不是很高,刹车蹄的耐用程度也比盘式制动器高,因此许多重型车至今仍使用四轮鼓式的设计。 二、课题研究现状及分析

鼓式制动器设计(设计说明书)

毕业设计设计说明书 题目 SC6408V 商用车 鼓式制动器总成设计专业车辆工程(汽车工程)班级 2006级汽车一班 学生 ___ 廖械兵 指导老师 ___ 文孝霞 重庆交通大学2010年

前言 1 本课题的目的和意义 近年来,国内、外对汽车制动系统的研究与改进的大部分工作集中在通过对汽车制动过程的有效控制来提高车辆的制动性能及其稳定性,如ABS 技术等,而对制动器本身的研究改进较少。然而,对汽车制动过程的控制效果最终都须通过制动器来实现,现代汽车普遍采用的摩擦式制动器的实际工作性能是整个制动系中最复杂、最不稳定的因素,因此改进制动器机构、解决制约其性能的突出问题具有非常重要的意义。 对于蹄-鼓式制动器,其突出优点是可利用制动蹄的增势效应而达到很高的制动效能因数,并具有多种不同性能的可选结构型式,以及其制动性能的可设计性强、制动效能因数的选择范围很宽、对各种汽车的制动性能要求的适应面广,至今仍然在除部分轿车以外的各种车辆的制动器中占主导地位。但是,传统的蹄-鼓式制动器存在本身无法克服的缺点,主要表现于:其制动效能的稳定性较差,其摩擦副的压力分布均匀性也较差,衬片磨损不均匀;另外,在摩擦副局部接触的情况下容易使制动器制动力矩发生较大的变化,因此容易使左右车轮的制动力产生较大差值,从而导致汽车制动跑偏。 对于钳-盘式制动器,其优点在于:制动效能稳定性和散热性好,对摩擦材料的热衰退较不敏感,摩擦副的压力分布较均匀,而且结构较简单、维修较简便。但是,钳-盘式制动器的缺点在于:其制动效能因数很低(只有0.7 左右),因此要求很大的促动力,导致制动管路内液体压力高,而且其摩擦副的工作压强和温度高;制动盘易被污染和锈蚀;当用作后轮制动器时不易加装驻车制动机构等。 因此,现代车辆上迫切需要一种可克服已有技术不足之处的先进制动器,它可充分发挥蹄-鼓式制动器制动效能因数高的优点,同时具有摩擦副压力分布均匀、制动效能稳定以及制动器间隙自动调节机构较理想等优点。 2 商用车制动系概述 汽车制动系是用以强制行驶中的汽车减速或停车、使下坡行驶的汽车车速保持稳定以及使已停驶的汽车在原地(包括在斜坡上)驻留不动的机构。从汽车诞生时起,车辆制动系统在车辆的安全方面就扮演着至关重要的角色。近年来,随着车辆技术的进步和汽车行驶速度的提高,这种重要性表现得越来越明显。也只有制动性能良好、制

盘式制动器毕业设计

毕业设计(论文、作业)毕业设计(论文、作业)题目: 盘式制动器设计 分校(点):浦东分校 年级、专业:12 机电一体化 教育层次:大学专科 学生姓名:乔倪杰 学号:128041103 指导教师:诸杭 完成日期: 目录

Abstract ............................................................. II 1 绪论. (1) 1.1 制动器的作用 (1) 1.2 制动器的种类 (1) 1.3 制动器的组成 (1) 1.4 对制动器的要求 (3) 1.5 制动器的新发展 (4) 2 制动器的结构形式及选择 (5) 2.1 制动器的种类 (5) 2.2 盘式制动器的结构型式及选择 (6) 3 盘式制动器的设计 (7) 3.1 盘式制动器的结构参数与摩擦系数的确定 (8) 3.2 制动衬块的设计计算 (9) 3.3 摩擦衬块磨损特性的计算 (10) 3.4 制动器主要零件的结构设计 (11) 4 制动驱动机构的结构型式选择与设计计算 (12) 4.1 制动驱动机构的结构型式选择 (13) 4.2制动管路的选择 (14) 4.3 液压制动驱动机构的设计计算 (15) 5 盘式制动器的优化设计 (17) 5.1 优化设计概述 (17) 5.2 解决优化设计问题的一般步骤及几何解释 (17) 5.3 常用优化方法 (18) 5.4 制动系参数的优化 (18) 6 结论 (19) 致谢 (21) 参考文献 (22) 附录................................................. 错误!未定义书签。

相关主题
文本预览
相关文档 最新文档