当前位置:文档之家› 水中砷形态分析研究进展

水中砷形态分析研究进展

水中砷形态分析研究进展
水中砷形态分析研究进展

第40卷第3期 Vol. 40 No. 3 2019青岛理工大学学报Journal of Qingdao University of Technology

水中碑形态分析研究进展位晨希,马继平*

*,吴阁格,李爽收稿日期:2018-05-22

基金项目:国家自然科学基金资助项目(21547002)

作者简介:位晨希(1994-)女,河北石家庄人.硕士,研究方向为环境分析化学.E-mail : 1786O776O31@https://www.doczj.com/doc/5112306813.html, .* 通信作者(Corresponding author ):马继平,女,博士,教授? E-mail :majiping2012@163. com.(青岛理工大学环境与市政工程学院,青岛266033)

摘要:;是一种自然界中广泛存在的元素,;的毒性与其存在形态密切相关.总结了近年来;形态分析的研 究进展,对水样中;形态的分析方法和应用进行了综述.总结了水中不同形态;的分离方法、光谱分析方法、 液相色谱-光谱在线联用方法,以及对于不同形态痕量;的样品预处理技术.关键词:;;形态分析;样品预处理;水样

中图分类号:X132 文献标志码:A 文章编号:1673-4602(2019)03-0080-08

Advances in speciation analysis of arseni c i n water

WEI Chen-xi , MA Ji-ping * , WU Gege , LI Shuang

(School of Environmental & Municipal Engineering , Qingdao University of Technology, Qingdao 266033, China)Abstract : Arsenic is an element widely found in nature. The toxicity of arsenic is closely re -lated to its form in existence. This paper summarizes the research progress of arsenic specia- tonanalys3s3nrecentyears , andrev3ewstheanalytcalmethodsandapplcatonsofarsen3c speciation in water samples. In this paper , we also summarize the separation methods and spectral analysis methods of different speciation of arsenic in water. For trace arsenic specia- tion0n0lysis #liquidchrom0togr0phycoupledwithspectroscopyon-line0ndthes0mplepre- treatment techniques are also summarized.Key words : arsenic ; speciation analysis ; sample pretreatment ; water samples 碑是一种广泛分布于自然环境中的元素,在土壤、水、矿物、植物甚至人体中都能检测出微量的;.由 于采矿和冶炼等工业活动,未经处理排放出的废渣、废水成为水源地;污染的主要来源.而通过食物链对 碑的富集吸收,或直接饮用;污染的饮用水,成为人体面临;的毒害作用的主要途径?慢性接触饮用水中 低浓度的生物可利用;会导致严重的人类健康问题,包括皮肤损伤、糖尿病和心血管疾病以及肺癌和肝癌 等癌症?国际癌症研究机构和美国环保局已将;指定为“已知”人类致癌物的一组.

碑污染饮用水是全球关注的健康问题,受影响人数超过1亿,其中仅孟加拉国高达5700万人.在一些 受污染地区,地下水中;的浓度达到几百,g/L,地下水受污染的地区有数百万人饮用;浓度大于50 mg/ L 的水,而未受污染的地下水中;的含量通常在1?2 mg/L 之间孔世界卫生组织(WHO )对饮用水中; 的限值浓度已从50 ,g/L 降至10 ,g/L(每日摄入量)'(.美国的现行标准是10 ,g/L,欧盟的目标也是10 ,g/L , —些欧洲其他国家的饮用水的;浓度甚至低于10 ,g/L '(.

砷的处理方法

神的处理方法 砷的处理方法 废水中的三价砷可以用沉淀法进行回收,如硫酸厂中的废水,可用硫化钠在20?40°C下进行处理,所得的硫化砷用硫酸铜在70°C进行处理,冷却后进行分离,分出硫化铜后,再与硫酸铜溶液反应,并在〉70 C通入空气或氧,使砷 成为五价,再分出硫化铜,溶液通入二氧化硫或硫酸厂的尾气,使五价砷还原成三价砷,并结晶,过滤干燥,即可回收三氧化二砷[1]。 在从蒽醌磺酸制备氨基蒽醌过程中,以前曾用过Na2HAsO4作为催化剂, 其废水可以先在90 C加入过氧化氢,再通过一个阳离子交换树脂处理,出水中形成的H3ASO4可以用20%的NR3 (R = C8?16的烷基)在二甲苯中的溶液进行萃取,约有95%以上的砷被回收,其纯度可达97?98%,可以回用于氨基蒽酯的生产。而出水中砷的最终浓度可降至0.005?0.007mg/L[2]。 5.3沉淀及混凝沉降法 砷的主要处理方法有硫化物沉淀法,或与多价重金属如三价铁等络合并与金属氢氧化物进行共沉定。第二种方法是水处理技术中常采用的传统混凝沉降法。此外也可采用活性炭和矶土吸附或离子交换。

5.3.1铁盐法 铁盐法是处理含砷废水主要方法,由于砷(V)酸铁的溶解度极小,所以除 直接用铁盐处理[3][4][5][6][7][8][9][10]外,也可在处理含砷废水时,先进行氧化处理,使废水中的三价砷先氧化成五价砷,使沉淀或混凝沉降法的效果更好。 由于空气对三价砷的氧化速度很慢,所以常用氧化剂进行氧化,常用的氧化剂有氯,臭氧,过氧化氢,漂白粉,次氯酸钠[11][12][13]或高锰酸钾,也可以在亚硫酸钠存在下进行光催化氧化[14][15]。如在活性炭存在下也可以进行空气催化氧化,再与镁,铁,钙或锰等盐作用,脱砷能力可以提高10?30倍[16]。结合 铁盐处理,出水中的砷含量可以降至0.05?0.1mg/L[17]。铁盐法可以用在饮用 水的净化中去[18] 废水中的砷可以用石灰乳、铁盐沉淀、中和,再用PTFE膜过滤,废水中 的砷的去除率可达99.7%,克服了传统的含砷废水处理工艺投资高,占地大, 运行成本高,处理后水质不稳定的弱点,滤清液无色,清澈,透明,可以达标排放或降级回用[19]。 用硫酸铁或其它三价铁盐可以有效地去除废水中的砷化合物。当初始浓 度为0.31?0.35毫克/升时,用硫酸铁处理,砷的去除率可达91?94%,如再经双层滤料过滤,去除率还可增加5?7%,总去除率可达98?99%,出水砷含量可降至0.003?0.006毫克/升[20]。在用硫酸铁作为凝聚剂时,当用量在500毫克/升时,可以使水中的含砷量从25毫克/升降至5毫克/升以下。其机理是共沉淀法,在铁沉淀的同时,将砷也从废水中络合除去。砷酸盐和亚砷酸盐都可以用这种方法处理。如在处理前用氧化的方法进行预处理,使亚砷酸盐先氧化或高锰酸钾氧化成砷酸盐,其去除效果会更好[21][22]。其沉淀的pH值可以控制在>2 在沉降时加入高分子絮凝剂其效果更好[23]。采用石灰-聚合硫酸铁法对硫酸生产中含砷废水进行了处理,实验了pH值、m(Fe)/m(As)(质量比)、石灰加入量等条件对As去除率的影响。结果表明,当p H 值为&8—10.6, m ( Fe) /m (As)不小于5时,处理后的废水中As的质量浓度小于1 mg/L,符合国家排标准[24]。当用漂白粉作为氧化剂,结合铁盐处理,可以得到铁盐沉淀,出水中的砷含量可降至0.3?0.5mg/L,产生的砷酸钙含砷及锑分别为20及22%,可在玻璃工

砷的处理方法

废水中的三价砷可以用沉淀法进行回收,如硫酸厂中的废水,可用硫化钠在20~40℃下进行处理,所得的硫化砷用硫酸铜在70℃进行处理,冷却后进行分离,分出硫化铜后,再与硫酸铜溶液反应,并在>70℃通入空气或氧,使砷成为五价,再分出硫化铜,溶液通入二氧化硫或硫酸厂的尾气,使五价砷还原成三价砷,并结晶,过滤干燥,即可回收三氧化二砷[1]。 在从蒽醌磺酸制备氨基蒽醌过程中,以前曾用过Na2HAsO4作为催化剂,其废水可以先在90℃加入过氧化氢,再通过一个阳离子交换树脂处理,出水中形成的H3AsO4可以用20%的NR3(R=C8~16的烷基)在二甲苯中的溶液进行萃取,约有95%以上的砷被回收,其纯度可达97~98%,可以回用于氨基蒽酯的生产。而出水中砷的最终浓度可降至~L[2]。 沉淀及混凝沉降法 砷的主要处理方法有硫化物沉淀法, 或与多价重金属如三价铁等络合并与金属氢氧化物进行共沉定。第二种方法是水处理技术中常采用的传统混凝沉降法。此外也可采用活性炭和矾土吸附或离子交换。 铁盐法 铁盐法是处理含砷废水主要方法,由于砷(V)酸铁的溶解度极小,所以除直接用铁盐处理[3][4][5][6][7][8][9][10]外,也可在处理含砷废水时,先进行氧化处理,使废水中的三价砷先氧化成五价砷,使沉淀或混凝沉降法的效果更好。由于空气对三价砷的氧化速度很慢,所以常用氧化剂进行氧化,常用的氧化剂有氯,臭氧,过氧化氢,漂白粉,次氯酸钠[11][12][13]或高锰酸钾,也可以在亚硫酸钠存在下进行光催化氧化[14][15]。如在活性炭存在下也可以进行空气催化氧化,再与镁,铁,钙或锰等盐作用,脱砷能力可以提高10~30倍[16]。结合铁盐处理,出水中的砷含量可以降至~L[17]。铁盐法可以用在饮用水的净化中去[18]。 废水中的砷可以用石灰乳、铁盐沉淀、中和,再用PTFE膜过滤,废水中的

我国地下水污染现状及防治对策知识分享

我国地下水污染现状及防治对策 1.1.前言 地下水是我国经济社会可持续发展不可缺少的物质基础,如今,随着我国人口的迅猛增加和经济的法则发展对水资源的需求量也在日益增加,全国水资源量27940亿,其中地下水水资源量为8840亿,占总水资源量的1/3。在我国当前的用水结构中,地下水雄踞一端,占据了全国总供水量的20%,饮用水供水量的70%,农田灌溉水量的40%,工业用水量的38%,并且这种用水结构短期内不会改变。 然而,我国地下水体的保护.安全情况并不乐观,污染比较严重,并且呈现日益增加的趋势。所以我们有必要了解我国地下水污染概况,熟悉其污染途径和污染成因,从长远利益出发,坚持可持续发展,制定科学的防治对策,让我过的水体结构更加科学,地下水更加安全,能够长远的造福人类。 1.2.我国地下水污染现状 由于人口的增长和社会经济的快速发展,对水资源的需求量也大幅度增长。近30年来,我国地下水的开采量以每年25亿的速度递增,全国有400个城市开采地下水。有些城市基本上是依靠地下水来满足对水资源的需求。根据国土资源部发布的《我国主要城市和地区地下水水情通报(2005年度)》,2005年在具备系统统计数据的171个地下水漏斗中,漏斗面积扩大的就有65个,占到了统计数的38%,面积扩大了6736,仅河北沧州第Ⅲ承压含水层漏斗面积就扩大了2089,最大水位埋深达到10m。由此导致了湿地消失、植被死亡和土地沙漠化等严重的生态灾难,以及地面沉降、岩溶塌陷、海水入侵等自然灾害的频频发生。 目前,我国地下水污染呈现由点到面、由浅到深、由城市到农村的扩展趋势,污染程度日益严重。全国195个城市监测结果表明,97%的城市地下水受到不同程度污染,40%的城市地下水污染趋势加重;北方17个省会城市中16个污染趋势加重,南方14个省会城市中3个污染趋势加重。在一些地区,地下水污染已经造成了严重危害,危及到供水安全。例如,辽宁省海城市污水排放造成大面积地下水污染,附近一个村因长期饮用受污染的地下水,多数人患上当地未曾有过的特殊病症,造成160人因饮用受污染的地下水而亡;淮河安徽段近5000范围内,符合饮用水标准的浅层地下水面积仅占11%;由于地水的严重污染,淄博日供水量51万立方m的大型水源地面临报废,国家大型重点工程——齐鲁石化公司水源告急;在首都北京,浅层地下水中也普遍检测出了具有巨大潜在危害的DDT、六六六等有机农药残留和尚没有列入我国饮用水标准的单环芳烃、多环芳烃等“三致”(致癌、致畸、致突变)有机物。 地下水超采与污染互相影响,形成恶性循环水污染造成的水质性缺水,进一步加剧了对地下水的超采,使地下水漏斗面积不断扩大,地下水水位大幅度下降;地下水位的下降又改变了原有的地下水动力条件,引起地面污水向地下水的倒灌,浅层污水不断向深层流动,地下水水污染向更深层发展,地下水污染的程度不断加重。日益严峻的地下水环境问题已经成为自然、社会、经济可持续发展的制约因素。 1.3.地下水污染的途径 地下水污染途径指污染物从污染地进入地下水中所经过的路径。除了少部分气体,液体污染物,可以直接通过岩石空隙进入地下水外,大部分污染物会随补给地下水的水源一道进

石灰沉淀法是一种常用的含砷废水处理方法

石灰沉淀法是一种常用的含砷废水处理方法,其基本原理是向含砷废水中加入氧化钙、氢氧化钙等沉淀剂,利用可溶性砷与钙离子形成难溶的化合物,如各种亚砷酸钙和砷酸钙盐沉淀,从而达到从废水中去除砷的目的。但石灰沉淀法除砷过程中形成的砷酸钙盐在堆放过程中如果与空气中的CO2接触,会影响其溶解度和稳定性。Robins(1981,1983)的研究结果表明,砷酸钙与空气中的CO2接触会分解成碳酸钙和砷酸,砷会从砷酸钙盐沉淀中析出,重新进入环境中[1,2];张昭和、彭少方(1995)研究了大气中CO2对Ca3(AsO4)2溶解度的影响,结果表明在砷渣露天堆放的开放体系中由于CO2的作用,砷酸钙向碳酸钙转化,砷又进入水中从而造成二次污染,应引起足够的重视[3]。石灰沉淀法除砷过程中,随着Ca/As摩尔比和pH值的不同,除生成Ca3(AsO4)2外,还可以生成一系列其他的砷酸钙盐,而这些砷酸钙盐因组成和结构的不同,在水环境中的稳定性与溶解度也存在一定的差异,其受CO2影响的程度也未见报道。本文通过前期砷酸钙盐沉淀和溶解实验所得到的热力学数据,对平衡系统中的Ca3(AsO4)2·xH2O、Ca5(AsO4)3(OH)和Ca4(OH)2(AsO4)2·4H2O三种砷酸钙盐进行不同CO2分压条件下的化学模拟计算和热力学分析,预测CO2对砷酸钙盐在水中稳定性和溶解度的影响,研究结果为含砷酸钙盐废弃物的最终处置场所与方法的选择,避免砷被天然水体浸取

具有实际的指导意义。 1含砷废水中和沉淀过程中形成的砷酸钙的类型 石灰沉淀法除砷一直以来被认为是一种有效的含砷废水处理方法并得到普遍应用,所以其沉淀产物砷酸钙盐在自然条件下的稳定性一直受到人们的关注。Nishimura等(1985)曾用Ca3(AsO4)2·Ca(OH)2表示石灰沉淀法去除五价砷形成的砷酸钙盐的物质结构[4];Swash和Monhemius(1995)在常温条件下进行实验,结果说明沉淀物的组成很可能是CaHAsO4·xH、Ca5H2(AsO4)4和Ca3(AsO4)2结构的化合物[5];Bothe和Brown(1999)通过实验确定,在向含砷(V)的废水中投加石灰时,会形成Ca4(OH)2(AsO4)2·4H2O、Ca5(AsO4)3OH和Ca3(AsO4)2·3H2O等[6];Donahue 和Hendry(2003)在高Ca/As比条件下,确定含砷尾矿废水中和产生的沉淀主要是Ca4(OH)2(AsO4)2·4H2O[7]。 混合沉淀过程中生成的砷酸钙化合物的组成与结构主要取决于溶液的Ca/As摩尔比和pH值。在我们实验的Ca/As 摩尔比(10、125、15、167、20和40)和pH值(1~14)条件下,生成的砷酸钙盐利用X射线衍射(XRD, Brucker D8Advance)、扫描电镜(SEM, Joel JSM-5610LV)和热重分析(TGA,TA Instruments Model 2050)对其性质进行研究,发现主要存在三种类型的砷酸钙盐,即Ca3(AsO4)2·xH2O、

水中砷形态分析研究进展

第40卷第3期 Vol. 40 No. 3 2019青岛理工大学学报Journal of Qingdao University of Technology 水中碑形态分析研究进展位晨希,马继平* *,吴阁格,李爽收稿日期:2018-05-22 基金项目:国家自然科学基金资助项目(21547002) 作者简介:位晨希(1994-)女,河北石家庄人.硕士,研究方向为环境分析化学.E-mail : 1786O776O31@https://www.doczj.com/doc/5112306813.html, .* 通信作者(Corresponding author ):马继平,女,博士,教授? E-mail :majiping2012@163. com.(青岛理工大学环境与市政工程学院,青岛266033) 摘要:;是一种自然界中广泛存在的元素,;的毒性与其存在形态密切相关.总结了近年来;形态分析的研 究进展,对水样中;形态的分析方法和应用进行了综述.总结了水中不同形态;的分离方法、光谱分析方法、 液相色谱-光谱在线联用方法,以及对于不同形态痕量;的样品预处理技术.关键词:;;形态分析;样品预处理;水样 中图分类号:X132 文献标志码:A 文章编号:1673-4602(2019)03-0080-08 Advances in speciation analysis of arseni c i n water WEI Chen-xi , MA Ji-ping * , WU Gege , LI Shuang (School of Environmental & Municipal Engineering , Qingdao University of Technology, Qingdao 266033, China)Abstract : Arsenic is an element widely found in nature. The toxicity of arsenic is closely re -lated to its form in existence. This paper summarizes the research progress of arsenic specia- tonanalys3s3nrecentyears , andrev3ewstheanalytcalmethodsandapplcatonsofarsen3c speciation in water samples. In this paper , we also summarize the separation methods and spectral analysis methods of different speciation of arsenic in water. For trace arsenic specia- tion0n0lysis #liquidchrom0togr0phycoupledwithspectroscopyon-line0ndthes0mplepre- treatment techniques are also summarized.Key words : arsenic ; speciation analysis ; sample pretreatment ; water samples 碑是一种广泛分布于自然环境中的元素,在土壤、水、矿物、植物甚至人体中都能检测出微量的;.由 于采矿和冶炼等工业活动,未经处理排放出的废渣、废水成为水源地;污染的主要来源.而通过食物链对 碑的富集吸收,或直接饮用;污染的饮用水,成为人体面临;的毒害作用的主要途径?慢性接触饮用水中 低浓度的生物可利用;会导致严重的人类健康问题,包括皮肤损伤、糖尿病和心血管疾病以及肺癌和肝癌 等癌症?国际癌症研究机构和美国环保局已将;指定为“已知”人类致癌物的一组. 碑污染饮用水是全球关注的健康问题,受影响人数超过1亿,其中仅孟加拉国高达5700万人.在一些 受污染地区,地下水中;的浓度达到几百,g/L,地下水受污染的地区有数百万人饮用;浓度大于50 mg/ L 的水,而未受污染的地下水中;的含量通常在1?2 mg/L 之间孔世界卫生组织(WHO )对饮用水中; 的限值浓度已从50 ,g/L 降至10 ,g/L(每日摄入量)'(.美国的现行标准是10 ,g/L,欧盟的目标也是10 ,g/L , —些欧洲其他国家的饮用水的;浓度甚至低于10 ,g/L '(.

国内外除砷技术研究现状_1

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 国内外除砷技术研究现状 国内外除砷技术研究现状康雅,李涛,高红涛 (郑州市自来水总公司,河南郑州 450007) 摘要: 本文介绍了砷对人体的危害,饮用水去除砷的重要性,着重介绍了目前国内外应对饮用水砷超标问题的策略以及常用除砷技术及其优缺点,最后展望了除砷技术今后的发展趋势。 关键词: 饮用水;除砷; MCL 标准;零处理策略根据联合国世界卫生署的报道,自 1990 年起,全世界总人口净增了六亿,而人们赖以生存的水资源却日益枯竭。 水资源的枯竭大部分的原因直接来自水的资源污染,这引起全世界的高度关注。 目前,全世界 43% 的人口其饮用水没有达到足够的卫生标准,而有 22 %的人口其饮用水的情况非常糟糕[1]。 随着人口的增加和用水量的增加,地表水的供应已常常满足不了需要。 人们不得不转向地下,寻找地下水资源。 然而地下水的过度开发,又引起一系列新的问题。 P. Bagla 在《科学》期刊中披露[2],印度和孟加拉国由于地下水的污染,产生了种种新的疾病,严重地威协人类的健康。 在孟加拉湾三角州地区,大约 3600 万的居民喝了被砷污染的 1 / 10

水而导致中毒。 最新一期美国《化学与工程新闻》[3],又专门报道了孟加拉国砷污染的严重情况,并且有科学家义务前往该地,进行调查研究。 世界各地不断有关于饮用被砷污染的水而导致中毒的报道。 这其中有亚洲的印度、孟加拉国、越南、泰国、中国的台湾、新疆、陕西、内蒙古,南美的阿根挺、智利、巴西、墨西哥,欧洲的德国、西班牙、英国,以及北美的加拿大和美国。 砷是一种有毒元素,其化合物有三价和五价两种,三价砷的毒性更大。 五价砷对大鼠、小鼠径口半数致死量为 100mg/kg,三价则为10mg/kg,相差 10 倍。 天然地下水和地表水都可能含有砷,除来源于地壳外,砷污染也来自农药厂、玻璃厂和矿山排水。 地下水含砷量高于地表水,砷可通过呼吸道、食物或皮肤接触进入人体,在肝肾、骨胳、毛发等器官或组织内蓄积,破坏消化系统和神经系统,从而具有致癌作用[4] [5]。 欧洲、美国、日本等西方国家实行饮用水的最高允许含砷质量浓度 10 g/L 的标准,美国环境保护协会(EPA)规定: 2006 年 1 月 23 日,美国所有地区均强制实行饮用水的最高允许含砷质量浓度 10 g/L 的标准[6]。 我国目前实行的饮用水最高允许含砷质量浓度 50 g/L 的标准,随着经济实力的不断增强和全民健康意识的普遍提高,最近建设部

某半导体芯片生产项目含砷废水处理方案

某半导体芯片生产项目含砷废水处理方案浅析 摘要:随着半导体行业的高速发展,半导体芯片生产将产生大量的含砷废水。同时,日趋严格的废 水排放标准对含砷废水处理提出了更高的要求。本文针对半导体集成电路芯片生产产生的含砷废水,结合 工程实际情况,分析了袋滤-氢氧化钙-氯化铁混凝沉淀的处理方法,并采用膜分离技术及离子交换技术对 废水进行深度处理,取得了良好的除砷效果,将出水总砷稳定地控制在0.1mg/L以下,达到污染排放标准, 降低了对环境的影响。 关键词:半导体;砷化镓;含砷废水;共沉淀;超滤;离子交换 随着信息技术和通讯产业的高速发展,化合物半导体材料在微电子和光电子领域发挥越来越重要的作用。在半导体材料发展过程中,半导体材料主要经历了以硅(Si)、锗(Ge)为代表的第一代元素半导体,以砷化镓(GaAs)、磷化铟(InP)为 代表的第二代化合物半导体,以及以氮化镓(GaN)、碳化硅(SiC)为代表的第三代宽禁带半导体材料三大阶段[1]。作为第二代半导体材料,砷化镓是除硅之外研究最深入、应用最广泛的半导体材料。相对于硅,砷化镓具有较大的禁带宽度,更高的电子迁移率和饱和迁移速率[2],其不仅可直接研制光电子器件,以砷化镓为衬底制备的集成电路芯片是实现高速率光线通信及高频移动通信必不可少的关 键部件[3],在光电子、微电子及移动通信中应用愈加广泛。近年来,砷化镓半导体材料市场需求迅速增长。我国的砷化镓产业也在不断发展,近几年成立了多家砷化镓芯片生产企业。 基于自身材料和生产工艺,在砷化镓芯片的生产过程中排放的废气和废水中均含有砷化合物,其含砷废水的处理也成为砷化镓生产项目亟待解决的问题之一。砷及其化合物对人体及其他生物体均有广泛的毒害作用,已被国际防癌研究机构和美国疾病控制中心确定为第一类致癌物[4]。由于砷的高毒性和致癌性,在 GB8978-1996《污水综合排放标准》[5]中总砷被列于第一类污染物,最高允许排放浓度为0.5mg/L。而一些经济较为发达的城市和地区针对废水中总砷制定了更为严格的地方标准。DB31/374-2006《上海市地方标准——半导体行业污染物排放标准》[6]中,砷化镓工艺的总砷最高允许排放浓度为0.3mg/L。DB11/307-2013《北京市地方标准——水污染物综合排放标准》[7]中,排入公共污水处理系统的砷排放限值为0.1 mg/L,均高于国家标准。半导体行业排放监管的日趋严格,对含砷废水的处理工艺也提出了更高的要求。本文以某半导体芯片生产项目为例,浅析其含砷废水综合处理方案,以期为含砷废水处理达标排放提供思路。 1 含砷废水来源 半导体集成电路芯片制造是采用半导体平面工艺在衬底上形成电路并具备 电学功能的生产过程,其生产工艺十分复杂,包括外延片清洗、光刻、湿法蚀刻、

环境中砷污染治理的研究现状

环境中砷污染治理的研究现状 发表时间:2014-12-29T14:09:49.810Z 来源:《价值工程》2014年第7月中旬供稿作者:邹小丽 [导读] 环境中的砷污染给人类造成了很大的危害。本文阐述了国内外砷污染的状况,总结了水体和土壤的砷污染治理的研究现状。邹小丽ZOU Xiao-li曰杨智末YANG Zhi-mo曰林鹏LIN Peng曰黄叔贤HUANG Shu-xian (广东工业大学华立学院,广州511325) (Huali College,Guangdong University of Technology,Guangzhou 511325,China) 摘要:环境中的砷污染给人类造成了很大的危害。本文阐述了国内外砷污染的状况,总结了水体和土壤的砷污染治理的研究现状。 Abstract: Arsenic pollution has caused great damage to human. In this article, the situation of arsenic pollution is expounded, theresearch status on treatment of water and soil which has arsenic contaminant is summarized. 关键词:砷;污染;水体;土壤 Key words: arsenic;pollution;water;soil 中图分类号:X5 文献标识码:A 文章编号:1006-4311(2014)20-0290-02 0 引言 砷是一类有毒且具有致癌、致畸性的物质[1],环境中过量的砷和微量的砷长期暴露会对人体和动物产生危害[2]。近年来,地下水砷污染和土壤砷污染问题越来越受到大家的关注,受砷污染的水体和土壤的治理工作迫在眉睫。孟加拉、泰国、印度、越南以及中国等一些亚洲国家出现了严重的水体和土壤的砷污染状况。如:1991 年广东省某市357 人因饮用自来水,陆续发生急性中毒;2010 年8 月麻城市宋埠镇长塘村老河湾1 号帝主庙发生了十余人群体砷中毒事件等。 1 水体和土壤中砷污染的治理 国内外,含砷污染物或被砷污染的地区的治理和修复方法主要有物理法、化学法、生物法等。依据砷污染物的类别、性质、状态和所处的环境不同,采用的处理方法和治理技术也不相同。从所处环境来讲,一般分为水体砷污染治理和土壤砷污染的修复。 1.1 水体系中砷的去除随着社会的快速发展,排放到水体中的砷也随之增加,水环境中砷的污染日益严重。根据这些污染物的形态、性质,污染的程度的差异可采取不同的处理处置方法。 工农业生产和生活产生的砷废水,这类废水易于收集,可以集中处理。处理此类污废水的主要方法有物理法、化学法、生物法,或者是物理化学生物的结合方法。如:沉淀法、浮选法、膜分离技术、离子交换法、吸附法、催化氧化法等。 大面积且难于收集的废水或已受污染的自然水体,此类水的面积比较广,涉及到环境中其他的事物,用物理或者化学的方法来治理比较难以实现。对于这类污废水最常用的是生物技术法和植物修复法。生物技术法主要是利用微生物菌种培养产生的物质,与砷结合,产生絮凝、沉淀,再分离,去除砷污染。植物修复法主要是利用植物对水体中的污染物的吸附、吸收等作用,达到环境修复的目的。 1.2 土壤砷污染的治理与修复性质不同、用途不同、污染程度不同的土壤,其修复的技术和方法也不相同。常用土壤砷污染治理修复技术有以下几种[3,4]:固定、稳定化技术、土壤淋洗技术、原位电动修复技术、和生物修复技术等。固定、稳定化技术成本低,但是材料固化剂的大量使用会破坏土壤的结构,因此,该技术不适用于大面积的土壤修复。土壤淋洗技术用淋洗液淋洗,此方法容易引起某些营养元素的淋失和沉淀,因此,该方法适用于面积小的重金属污染的土壤治理。 上述的土壤砷修复技术各有优点,但使用这些方法后均会对土壤环境照成不同程度的破坏。微生物和植物本身就是来源于大自然中,能与大自然和谐发展。近年来,国内外的环境工作者发现了这一有利优势,在生物修复和植物修复方面做了大量的研究和实践工作,取得了一定的成果。生物修复主要是以微生物为材料来净化环境。植物修复是利用植物对土壤中重金属等污染物的吸收、累积作用,来移除土壤环境中的污染物,是一种经济环保的环境污染修复方式。 2 植物修复 与环境处理方式、方法、技术相比,无二次污染是植物修复的最显著也是最重要的特点,且植物修复的操作容易、简单,成本费用低,还有美化环境和保护环境的功能,是环境友好型污染物修复技术。具体的有:淤它在去除环境污染物的同时,不仅能维持微生物的活性,保持土壤结构,不破坏生态环境,还可以改善和改良土壤的结构和性质,增大土壤中有机质含量,提高土地本身的生产能力,此外,还具有防止水土流失、扩大绿化面积、美化生活环境的作用。于投入成本低。植物修复不需要昂贵的仪器设备,易于管理,所需财力、人力、物力投入相对较少,可以提取回收贵重金属,植物也可以资源利用,有较好的经济效益。盂适用范围广。用于减少和去除土壤中重金属污染物的同时,还可以净化和美化被重金属污染的土壤周围受污染的大气和水体。 20 世纪90 年代,中国在重金属污染的植物修复的理论研究方面就取得了的进展。目前,我国已经拥有了一些重金属方面的植物修复技术,如砷、铜、镉、锌等污染物的植物修复技术。尤其是建立了多个污染物的植物修复示范点,这推动了我国植物修复事业的发展。已有一些植物修复技术上的成功案例,使我国的植物修复取得了巨大的发展。 3 砷的植物修复 植物体能够吸收砷,并且在体内积累,土壤环境和水体环境中的含砷量的多少会直接影响到植物对砷的吸收和积累[5]。近年来,关于植物修复砷的研究越来越多,在美国、中国和泰国等国家还发现了一些能超富集砷的植物。超积累植物是指植物修复过程中所利用的能超量吸收和累积重金属并将其转移到地上部分的特殊植物[6]。它对重金属的富集能力比普通植物高出几十倍甚至几百倍,一般情况下,植物中砷含量变动范围为0.01耀5mg·kg-1,但关于砷的超累积植物,其地上部分的砷含量可超过1000mg·kg-1[7]。Ma 等[8]在美国佛罗里达州中部发现了一种植物-蜈蚣蕨,能超富集砷。他们在实验室栽种蜈蚣蕨,培养6 周,其羽片中砷的含量达到了22630伊10-6。陈同斌等、韦朝阳等[9]在中国湖南也发现了砷的超富集植物-蜈蚣蕨和大叶井口边草。目前,还发现了很多植物能够很好的富集砷,比如:匍茎翦股颖、蒙塔那菊、蓼车、狗牙草等[10]。砷的植物修复为环境中砷的去除提供了另一种绿色可行的方法和技术。 参考文献: [1]Tseng W P, Chu H M, How S W, et al. Precalence of skincancer in an endemic area of chronic arsenicism in Taiwan [J]. NatlCancer Inst, 1968, 40(3):453-463. [2]Golub M S, Macintosh MS, Baumtind N. Developmental andreproductive toxicity of inorganic arsenic:Animal studies and

水体中八类污染物

●病原体污染物 生活污水、畜禽饲养场污水以及制革、洗毛、屠宰业和医院等排出的废水,常含有各种病原体,如病毒、病菌、寄生虫。水体受到病原体的污染会传播疾病,如血吸虫病、霍乱、伤寒、痢疾、病毒性肝炎等。 受病原体污染后的水体,微生物激增,其中许多是致病菌、病虫卵和病毒,它们往往与其他细菌和大肠杆菌共存,所以通常规定用细菌总数和大肠杆菌指数及菌值数为病原体污染的直接指标。病原体污染的特点是:(1)数量大;(2)分布广;(3)存活时间较长;(4)繁殖速度快;(5)易产生抗药性,很难绝灭;(6)传统的二级生化污水处理及加氯消毒后,某些病原微生物、病毒仍能大量存活。 ●耗氧污染物 在生活污水、食品加工和造纸等工业废水中,含有碳水化合物、蛋白质、油脂、木质素等有机物质。这些物质以悬浮或溶解状态存在于污水中,可通过微生物的生物化学作用而分解。在其分解过程中需要消耗氧气,因而被称为耗氧污染物。这种污染物可造成水中溶解氧减少,影响鱼类和其他水生生物的生长。水中溶解氧耗尽后,有机物进行厌氧分解,产生硫化氢、氨和硫醇等难闻气味,使水质进一步恶化。水体中有机物成分非常复杂,耗氧有机物浓度常用单位体积水中耗氧物质生化分解过程中所消耗的氧量表示,即以生化需氧量(BOD)表示。一般用20℃时,五天生化需氧量(BOD5)表示。 ●植物营养物 植物营养物主要指氮、磷等能刺激藻类及水草生长、干扰水质净化,使BOD5升高的物质。水体中营养物质过量所造成的"富营养化"对于湖泊及流动缓慢的水体所造成的危害已成为水源保护的严重问题。 富营养化(eutrophication)是指在人类活动的影响下,生物所需的氮、磷等营养物质大量进入湖泊、河口、海湾等缓流水体,引起藻类及其他浮游生物迅速繁殖,水体溶解氧量下降,水质恶化,鱼类及其他生物大量死亡的现象。在自然条件下,湖泊也会从贫营养状态过渡到富营养状态,沉积物不断增多,先变为沼泽,后变为陆地。这种自然过程非常缓慢,常需几千年甚至上万年。而人为排放含营养物质的工业废水和生活污水所引起的水体富营养化现象,可以在短期内出现。 植物营养物质的来源广、数量大,有生活污水(有机质、洗涤剂)、农业(化肥、农家肥)、工业废水、垃圾等。生活污水中的磷主要来源于洗涤废水,而施入农田的化肥有50%~80%流入江河、湖海和地下水体中。天然水体中磷和氮(特别是磷)的含量在一定程度上是浮游生物生长的控制因素。当大量氮、磷植物营养物质排入水体后,促使某些生物(如藻类)急剧繁殖生长,生长周期变短。藻类及其他浮游生物死亡后被需氧生物分解,不断消耗水中的溶解氧,或被厌氧微生物所分解,不断产生硫化氢等气体,使水质恶化,造成鱼类和其他水生生物的大量死亡。

砷的形态分析技术

砷的形态分析技术 摘要:砷的毒性与其形态有着直接的关系,对砷的形态的进行分析十分必要。本文阐述对不同含砷的环境样品中的形态,包括砷的分离技术与检测技术以及其联用技术。同时,对砷的形态分析技术的发展进行了展望。 关键词:砷,形态分析,联用技术 0 引言 砷是自然界中常见的有毒致癌性元素之一,其原子序数为33。砷的生物毒性不仅与其含量有关,更大程度上还与其存在形态有关。不同形态的砷化合物性质往往不同,毒性差异很大。因此在评价环境、食品安全时只检测总砷量而不探明其形态是不科学的,砷形态分析是现代生命分析化学的一个重要研究课题。 常见的砷化合物有:亚砷酸(As(Ⅲ) )、砷酸( As(Ⅴ) )、一甲基砷酸( MMA )、二甲基砷酸(DMA)、砷甜菜碱和砷胆碱,此外还有砷糖、砷酯类化合物等。其中,无机砷的毒性大于有机砷,砷与有机基团结合越多,毒性越小。它们的毒性排序为:As(Ⅲ) > As(Ⅴ) > MMA > DMA,而砷胆碱和砷甜菜碱普遍认为是无毒的。 由于砷的毒性、致癌性、迁移性质和生物效应均取决于它的化学形态,并且各砷形态随着所处环境的不同处于动态互变之中,所以测定总砷含量无法准确表示出砷的暴露水平及砷对环境、生态的影响。因此,对砷的各种存在形态分别进行分析测定十分必要。所谓砷的形态分析是指分离、富集、鉴定和测定各种砷化合物的分析方法。对环境样品中的砷含量进行细致的分析,不同化合价态和化合物质进行检测,计量出其在样品中的所占比例。 1 样品前处理技术 环境样品中有多种不同形态的砷化合物, 由于基体复杂、含量低,一般的检测器难以同时进行识别,所以需要在样品分析之前对不同形态砷化合物进行有效的分离。目前对于砷的分离方法主要有氢化物发生法(HG)、色谱法、毛细管电泳法(CE)、溶剂萃取法、离子交换法等。 1.1 氢化物发生法(HG) 氢化物发生法是利用As(Ⅲ)容易生成易挥发的AsH3来测定As(Ⅲ)的含量,它可以大大降低基体的背景干扰,该法在砷形态分离中应用较多。近年来,常将

含砷废水处理研究进展

含砷废水处理研究进展 各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢 摘要:含砷废水的传统处理方法,如物理法和化学法的不足之处在于费用高,二次污染大,工程化程度小。微生物法在含砷废水处理方面的研究取得了显著进展,研究成果已投入工程应用。本文认为活性污泥法对含砷废水的处理有着广阔的应用前景。 随着冶金和化工等行业发展以及贫矿的开发,砷伴随主要元素被开发出来,进入废水中的砷数量相当大[1]。据1995年中国环境状况公报报道,95年砷排放量达到1084吨,比94年增长%,1996年中国环境状况公报报道,96年砷排放量达到1132吨,比95年增长%。含砷废水有酸性和碱性,当中一般也含有其它重金属离子。砷与铅等共同作用会使废水的毒性更大,国内外都曾发现废水中

砷的中毒事件[2]。 含砷废水中砷的存在形态受pH的影响很大,在中性条件下,可溶砷的数量达到最大,随着pH的升高或降低其溶解的数量都将降低。pH为时,溶液中砷主要以无机砷的形态存在,当pH为时,有机砷为其主要存在形态[3]。但由于含砷废水的来源并不单一,其成分也是复杂多变的。 含砷废水的处理在六十年代就已得到世人的关注。如能回收利用则不仅可解决了砷对环境的污染问题,而且经济效益显著,节约资源。目前,比较系统的处理方法有化学沉淀法、物理法以及新兴的、最具发展前途的微生物法。 本文通过对含砷废水的传统处理方法如物化法和化学法进行系统论述,找出其存在的问题,详细考察微生物法处理含砷废水的研究进展,旨在为进一步发展活性污泥法处理含砷废水的处理技术提供重要的参考依据。 1化学法处理含砷废水处理含砷废

水,目前国内外主要有中和沉淀法、絮凝沉淀法、铁氧体法、硫化物沉淀法等,适用于高浓度含砷废水,生成的污泥易造成二次污染。在化学法方面的研究已经比较成熟,很多人曾在这方面做了深入的研究。 中和沉淀法作为工程上应用较广的一种方法,很多人在这方面作了深入的研究,机理主要是往废水中添加碱(一般是氢氧化钙)提高其pH,这时可生成亚砷酸钙、砷酸钙和氟化钙沉淀。这种方法能除去大部分砷和氟,且方法简单,但泥渣沉淀缓慢,难以将废水净化到符合排放标准[4]。 絮凝共沉淀法,这是目前处理含砷废水用得最多的方法。它是借助加入(或废水中原有)Fe3+、Fe2+、Al3+和Mg2+等离子,并用碱(一般是氢氧化钙)调到适当pH,使其形成氢氧化物胶体吸附并与废水中的砷反应,生成难溶盐沉淀而将其除去。其具体方法有,石灰-铝盐法、石灰-高铁法、石灰-亚铁法等[4]。

地下水砷污染与修复

地下水砷污染分析及修复 摘要 地下水砷污染是全球饮用水的主要威胁之一,目前全世界有超过一亿人受砷污染地下水问题的困扰。深入研究地下水砷污染的形成机制,对预测地下水中砷的分布及解决地下水砷污染问题具有重要意义。传统和改良的物理化学修复方法以及现在生物学基础上兴起的生物修复方法都为砷污染地下水的修复提供了良好的途径。 关键词:地下水;砷污染;修复 第一章地下水砷污染分析 1.地下水砷污染状况 目前, 由于各国的生活水平和技术的差异, 饮用水中砷的安全标准也就有所不同。世界卫生组织(WHO)在1993年将饮用水中砷的标准降低为10ug/ L 。美国环境保护署(USEPA) 在2006年 1 月将饮用水砷的标准从50 ug/ L 降低到10 ug / L, 欧盟将饮用水中砷的标准确定为20ug/ L, 而发展中国家饮用水中砷的标准一般为50 ug/ L。但是, 在全球地方性砷中毒地区, 地下水砷的含量远远超过该地区饮用水中砷的标准。据英国地质调查局报道,孟加拉国地下水砷污染面积达150000km2,该地区人口为3000万,地下水质量浓度为015~2500 ug/L,最高砷含量是该国饮用水砷标准(50 ug/L)的50倍。印度中心地下水部调查,印度孟加拉邦地下水砷的质量浓度为10~3200 ug/L,污染区面积为23000km2,总人口为600万。Welch等研究美国内华达州南部卡尔森沙漠地带地下水时,发现该地区地下水砷质量浓度达到2600 ug/L。Smedley等对阿根廷Chaco-Pampean 平原地下水进行研究时发现该地区地下水砷质量浓度为110~5300 ug/L,同时测得有些沉积物孔隙水的砷质量浓度高达7500 ug/L。在中国,地下水受到砷污染的地区有台湾、山西、新疆、内蒙古等。20世纪60年代台湾地区出现黑脚病,Kuo等对该地区地下水水样进行测试,得出地下水砷质量浓度为10~1800 ug/L。20世纪80年代在新疆发现了砷中毒问题。研究表明,该地区地下水砷质量浓度达1200 ug/L。Smedley等对内蒙古呼和浩特盆地地下水环境进行调查,该地区地下水处于强烈的还原环境,砷的质量浓度达1500 ug/L,同时所采地下水水样大部分(60%~90%)砷为三价As(Ⅲ)。在山西地下水污染最严重的是山阴县,研究表明,该地区地下水硫化氢气味较浓,砷质量浓度最高可达1530 ug/L。该地区的饮用水多取自地下水,地下水中砷的含量已远远大于国家规定的饮用水砷标准(<50 ug/L) [1]。

3.1.3水中污染物的分布和存在形态

第三章:水环境化学——污染物存在形态 一、水和水分子结构的特异性 二、天然水的基本特征 1、天然水的组成(离子、溶解气体、水生生物) 2、天然水的化学特征 3、天然水的性质 4、天然水指标 三、水中污染物的分布和存在形态 1、20世纪60年代美国学者曾把水中污染物大体划分为八类: ?①耗氧污染物(一些能够较快被微生物降解成为二氧化碳和水的有机物); ?②致病污染物(一些可使人类和动物患病的病原微生物与细菌); ?③合成有机物; ?④植物营养物; ?⑤无机物及矿物质; ?⑥由土壤、岩石等冲刷下来的沉积物; ?⑦放射性物质; ?⑧热污染。 2、污染物毒性取决于形态 ●其在水体中的迁移转化及生物 可利用性均直接与污染物存在形态相关。例如,水俣病就是食用了含有甲基汞的鱼 Cd2+浓度,对铜则取决于游离Cu2+及其氢氧化物。而大部分稳定配合物及其与胶体颗粒结合的形态则是低毒 大的破坏作用。 ●近年来的研究表明, 本明确了水体固相中金属结合形态通过吸附、沉淀、共沉淀等的化学转化过程及某

些生物、物理因素的影响。由于金属污染源依然存在,水体中金属形态多变,转化过程及其生态效应复杂,因此金属形态及其转化过程的生物可利用性研究仍是环境化学的一个研究热点。 3、难降解有机物和金属污染物 环境中有机污染物的种类繁多,其环境化学行为至今还知之甚少。一些全球性污染物如多环芳烃、有机氯等,一直受到各国学者的高度重视。特别是一些有毒、难降解的有机物,通过迁移、转化、富集或食物链循环,危及水生生物及人体健康。这些有机物往往含量低,毒性大,异构体多,毒性大小差别悬殊。 下面简要叙述难降解有机物和金属污染物在水环境中的分布和存在形态。 ●有机污染物(摘要介绍) (1)农药 药。它们通过喷施农药、地表径流及农药工厂的废水排入水体中。 ? 生物脂肪中。在世界各地区土壤、沉积物和水生生物中都已发现这类污染物,并有相当高的浓度。与沉积物和生物体中的浓度相比,水中农药的浓度是很低的。目前,有机氯农药如DDT由于它的持久性和通过食物链的累积性,已被许多国家禁用。 例美国密执安湖中DDT富集过程的含量变化 滞留时间较短,在土壤和地表水中降解速率较快,杀虫力较高,常用来消灭那 然而在水中浓度较高时,有机质含量高的沉积物和脂类含量高的水生生物也会

砷的处理方法.

砷的处理方法 废水中的三价砷可以用沉淀法进行回收,如硫酸厂中的废水,可用硫化钠在20~40℃下进行处理,所得的硫化砷用硫酸铜在70℃进行处理,冷却后进行分离,分出硫化铜后,再与硫酸铜溶液反应,并在>70℃通入空气或氧,使砷成为五价,再分出硫化铜,溶液通入二氧化硫或硫酸厂的尾气,使五价砷还原成三价砷,并结晶,过滤干燥,即可回收三氧化二砷[1]。 在从蒽醌磺酸制备氨基蒽醌过程中,以前曾用过Na2HAsO4作为催化剂,其废水可以先在90℃加入过氧化氢,再通过一个阳离子交换树脂处理,出水中形成的H3AsO4可以用20%的NR3(R=C8~16的烷基)在二甲苯中的溶液进行萃取,约有95%以上的砷被回收,其纯度可达97~98%,可以回用于氨基蒽酯的生产。而出水中砷的最终浓度可降至0.005~0.007mg/L[2]。 5.3沉淀及混凝沉降法 砷的主要处理方法有硫化物沉淀法, 或与多价重金属如三价铁等络合并与金属氢氧化物进行共沉定。第二种方法是水处理技术中常采用的传统混凝沉降法。此外也可采用活性炭和矾土吸附或离子交换。 5.3.1 铁盐法 铁盐法是处理含砷废水主要方法,由于砷(V)酸铁的溶解度极小,所以除直接用铁盐处理[3][4][5][6][7][8][9][10]外,也可在处理含砷废水时,先进行氧化处理,使废水中的三价砷先氧化成五价砷,使沉淀或混凝沉降法的效果更好。由于空气对三价砷的氧化速度很慢,所以常用氧化剂进行氧化,常用的氧化剂有氯,臭氧,过氧化氢,漂白粉,次氯酸钠[11][12][13]或高锰酸钾,也可以在亚硫酸钠存在下进行光催化氧化[14][15]。如在活性炭存在下也可以进行空气催化氧化,再与镁,铁,钙或锰等盐作用,脱砷能力可以提高10~30倍[16]。结合铁盐处理,出水中的砷含量可以降至0.05~0.1mg/L[17]。铁盐法可以用在饮用水的净化

—以尿液中砷形态分析为例

利用在线稀释的方法消除LC-ICP-MS测试过程形态转化问题 —以尿液中砷形态分析为例 C. Derrick Quarles, Jr, * Patrick Sullivan, M. Paul Field, Scott Smith and Daniel R. Wiederin 摘要 尿液中砷形态分析能为临床和病理学诊断提供重要的支持信息。许多学者通过多种方式研究砷形态转化过程,并试图提升样品保存时间,但没有人将在线稀释作为砷形态分析中样品稳定的解决方案。本工作建立了在线稀释测定尿液中AsB,DMA,MMA,As III和As V 的方法。通过在线稀释标准储备液,建立标准曲线,获得了很好的线性相关性,检出限在ppt 级别。将样品在线稀释30、50、100倍,导致0.1到1.1s的保留时间变化。同时本工作还对比了人工处理样品和在线稀释方法对于As III回收率的影响,人工的处理样品由于As III转化为As V,在24内测定As III的回收率仅有61%,而在线稀释的方法As III回收率为101%,As III到As V的转化率降为1%。利用本方法测定了尿液标准物质NIST SRM 2669,对于五种砷形态测定值与文献参考值具有一致性。 关键词:LC-ICP-MS;PrepFAST;价态转化;在线稀释;砷形态分析;尿液分析 前言 痕量元素分析对于工业生产、医疗健康和科学研究具有重要意义。元素的总量信息固然重要,但不能提供样品里的元素形态信息。元素的化学形态直接影响了其生物活性和毒性,例如无机砷的毒性远大于有机砷,而有机汞的毒性远大于有机汞。 砷污染来源于地质过程、工业排放和矿山开采。在污染的饮用水或稻米中主要存在的是As III和As V,而这两种形态也是毒性最强的。另外,人体对于砷的摄入还来源于海鲜,海鲜中的砷主要是有机砷,包括一甲基砷(MMA),二甲基砷(MMA)和甜菜碱。有机砷被认为是低生物活性,因此毒性低于无机砷砷(As III (LD50 = 14 mg kg-1 ) or As V (LD50 = 20 mg kg-1 )。砷暴露下会对人类健康造成不利影响,比如导致呼吸疾病,肺癌和肾脏、肝脏损伤。砷通过尿液排出,因此检测人类尿液可以反映其2天内砷的摄入情况。 一般的形态分析是利用形态分离设备和元素检测器的联用来完成。常见的是液相色谱(LC)和电感耦合等离子体质谱仪(ICP-MS)联用。在过去的几十年里已有大量的基于LC-ICP-MS进行形态分析的报道。大型的商业化实验室配备了专门的仪器进行形态分析,而一些小的实验室只有一两台ICP-MS用于所有测试的测试任务,LC系统需要经常与ICP-MS 系统进行联用和拆换,这些过程耗时费力,因此渴求一个可以同时胜任总量分析和形态分析两种任务的仪器设备。 形态在样品中的稳定性是形态分析中另一个关注的重点。我们希望目标形态在溶液中是最初的状态,不发生任何转化。样品的采集和处理过程是引起价态转化的主要影响因素,比如,改变温度,酸度或添加氧化剂都会使价态发生转变。离子交换色谱是进行砷形态的分析的首选方法,它可以根据不同的电荷数分离不同形态,同时除去可能造成干扰的氯离子。然而,大部分色谱柱的样品容量很小,样品只能以小体积载入或稀释至更低浓度。 本工作评价了注射泵驱动-阴离子交换色谱结合ICP-MS进行砷形态分析的方法。PrepFAST IC是一台可以同时实现形态分析和总量分析的先进的技术设备。通过柱子的重现性、方法的稳健性,精确度、准确度和检出限这几方面对该仪器的砷形态分析能力进行了评价。同时对比了人工稀释和在线稀释样品处理过程对于形态稳定性的影响。

相关主题
文本预览
相关文档 最新文档