当前位置:文档之家› 2气体分子运动论练习题与答案

2气体分子运动论练习题与答案

2气体分子运动论练习题与答案
2气体分子运动论练习题与答案

第二次 气体分子运动论练习与答案

班 级 ___________________ 姓 名 ___________________ 班内序号 ___________________ 一、选择题

1.关于分子热运动的微观图象,下列说法中 错误..

的是: [ ] A .分子很小,其线度约为 1010 m ;

B .分子的数密度很大,数量级约为 2510个/m 3;

C .分子的平均速度很快,数量级约为 210米/秒;

D .分子的碰撞频率很高,数量级约为 910次/秒;

E .以上说法均不对。 2.速率分布函数 f(v) 的物理意义为: [ ]

A .具有速率 v 的分子占总分子数的百分比;

B .速率分布在 v 附近的单位速率间隔中的分子数占总分子数的百分比;

C .具有速率 v 的分子数;

D .速率分布在 v 附近的单位速率间隔中的分子数。 3.下面关于最可几速率的说法中正确的是: [ ]

A .最可几速率是分子运动的最大速率;

B .速率在最可几速率附近单位速率区间中的分子数所占的比率最大;

C .分子运动速率等于最可几速率的的分子数最多;

D .分子平均速率等于最可几速率。 4.对温度和体积相同的不同类理想气体,下列说法中 错误..

的是: [ ] A .总内能一定相同; B .总动能有可能相同;

C .分子平均平动动能相等;

D .分子每个自由度的平均动能相等。 5.对于“温度为 T ,处于平衡状态、自由度为 i 的刚性分子理想气体”,

下列哪个说法是正确的: [ ] A .每个分子具有的 动能 为kT i 2

B .每个分子具有的 平动动能 为kT i 2

C .每个分子具有的 平均动能 为kT i 2

D .每个分子具有的 平均平动动能 为kT i 2

6.下列关于平均碰撞频率和平均自由程的说法中 错误.. 的 [ ] A .一定量的恒温理想气体,平均碰撞频率与分子数密度成正比; B .一定量的恒温理想气体,平均自由程与压强成反比; C .一定量的恒压理想气体,平均自由程与温度成正比;

D .一定量的理想气体,平均自由程与分子数密度无关。

二、填空题

1.室内打开空调后,温度由C ? 27 降到C ? 15 ,如果室内空气压强保持不变, 此时室内分子数增加了 。

2. 已知)(v f 为分子速率分布函数,N 为总分子数,则下列各式的含义是:

)( dv v f :_____________________________________________________;

)( 0

?∞

v dv v f : ;

)( 0

?∞

v dv v f N :__________________________________________________;

?

?21

2

1

)(

)( v v v v dv v f N dv v f v N :__________________________________________________。

3.某种理想气体处于温度为 1 T 的平衡态的最可几速率,与处于温度为 2 T 的 平衡态的方均根速率相等,则 1 T : 2 T = : 。

4.一瓶质量为 )( kg m 的氢气,其温度为 (K)T ,则氢分子的 平均平动动能 为: ,氢分子的平均动能为 ,该瓶氢气的内能为 。

5. 压强和分子数密度以及分子 平均平动动能 的关系为 , 平均平动动能 和温度的关系为 ;在两个式子中,宏观量是: ,微观量是 ,宏观量和微观量之间通过 来联系。

6. 理想气体绝热地...向真空自由..膨胀,体积增大为原来的两倍,则始末两态的 温度2 1 ,T T 的关系为21 _____T T =,平均自由程 2 1 ,λλ的关系为21_____λλ=。

7.容器内储有 1 mol 气体,当外界输入J 210 热量后,其温度升高K 10 , 则该气体分子的 自由度 为 。

三、计算题

1.质量为 14102.6-?g 的粒子悬浮于27C o 的液体中,观测到它的方均根速率 为 s cm / 4.1 ,设粒子遵从麦克斯韦速率分布律。 (1)由已知 31.8 11--??=K mol J R ,计算阿伏加德罗常数; (2)求该粒子的平均速率。

2.设 mol a 的刚性多原子分子理想气体的体积为 b 升,内能为 E 焦耳,

计算该气体的压强和温度。

3.绝热容器中有一层隔膜,隔膜两边都有理想气体,且它们的自由度相同。 已知两边气体的状态参量分别为 , , 1 1 1 T V P 和 , , 2 2 2 T V P ,如果由于 隔膜破裂使气体贯通,求贯通后达到平衡时的压强和温度。

4.设给定的 N 个粒子的速率分布函数为 )( v f ,已知: 0 0v v ≤≤ 时:)( 3 )( 2

为正常数A v A v f = ; 004v v v ≤≤ 时:2

04)(v A v Av v f -?= ; 0 4 v v > 时: 0 )( =v f 。 (1) 作出速率分布曲线 v v f ~)( ; (2) 由 0v 求常数 A ;

(3) 求这 N 个粒子的 最可几速率 p v ,和 平均速率 v 。

第二次 气体分子运动论答案

一、选择题:⒈ E ⒉ B ⒊ B ⒋ A ⒌ C ⒍ D 二、填空题:

⒈ 原来分子数的 %)17.4( 24

1≈

⒉ 速率处于 dv v v +~ 间隔内分子数与总分子数的比 ; 速率 0v v ≥ 的分子数与总分子数的比; 速率 0v v ≥ 的分子个数 , 速率处于 21~v v 间隔的分子的平均速率。

⒊ 3:2 ⒋ mRT kT kT

3104

5 , 2 5 , 2 3 ?

⒌ k n T p kT n

p t t t ; ; ,, ;2

3 ;3

2

εεε== 。 ⒍ 1

;0.5 ⒎ 5 三、计算题: ⒈ (1) 3 3 2μ?==

A mol N RT

M RT v , 1232 1015.6

3 -?≈?=

∴mol v RT N A μ (2) v ∶π

82

=

v ∶3 , 12 29.138 -?≈?=

∴s cm v v π

⒉ RT i a E aRT pV 2

, ?==

∴ (1) )( 10 3 3 3Pa b E V E p ?== (2))(

3 K aR E T = ⒊ 2

1 2 2 1 1

V V V p V p p ++=

, 1222112122112

221112211 ) ( T V p T V p T T V p V p T V p T V p V p V p T +?+=++=

⒋(1) 图略。由题意可知:0v v =时,2

003)( Av v f =;04v v =时,0)4( 0=v f ;)

(v f 是单峰函数。

(2) 根据“归一化”条件可得:1])4([

)3(

4 0

20 0

2

=?-?+?

?

v v dv Av v Av dv Av

即:

10 1

10)3

2643162(13

03

030303020030v A Av v A Av v A v Av Av =

∴=?+-?-?+= (3) 00 00 ()

[ , 4] ,

42 , 2 () d f v v v Av Av v v f v dv

=-=在区域即当时为最大值

02

05 24v Av =

02

v v p =∴ []

4 430404 3

2

00

3

434 43)4(3)(v

v

v v v

v A v Av Av dv Av v Av dv Av dv v f v v ?-?+=?-?+

=

?=?

?

?

04030 1.2

10 1)]413442566434(43 [v v v =??+--?+=

分子生物学实验思考题答案

分子生物学实验思考题答案 实验一、基因组DNA的提取 1、为什么构建DNA文库时,一定要用大分子DNA 答、的大小(即数目)取决于基因组的大小和片段的大小,片段大则文库数目小一些也可以包含99%甚至以上的基因组。而文库数目小则方便研究人员操作和文库的保存。所以构建文库要用携带能力大的载体尽量大的DNA片段. 2、如何检测和保证DNA的质量? 答、用看,有没有质白质和RNA等物质的污染,还可以测OD,用OD260/280来判断,当OD260/OD280< ,表示蛋白质含量较高当OD260/OD280> ,表示RNA含量较高当OD260/OD280=~,表示DNA较纯。 实验二、植物总RNA的提取 1、RNA酶的变性和失活剂有哪些?其中在总RNA的抽提中主要可用哪几种? 答、有DEPC,Trizol,氧钒核糖核苷复合物,RNA酶的蛋白抑制剂以及SDS,尿素,硅藻土等;在总RNA提取中用PEPC,Trizol 2、怎样从总RNA中进行mRNA的分离和纯化。 答、、利用成熟的mRNA的末端具有polyA尾的特点合成一段oligo(dT)的引物,根据碱基互补配对原则,可将mRNA从总RNA中分离出来 实验四、大肠杆菌感受态细胞的制备 1、感受态细胞制备过程中应该注意什么? 答、A)细菌的生长状态:不要用经过多次转接或储于4℃的培养菌,最好从-80℃甘油保存的菌种中直接转接用于制备的菌液。细胞生长密度以刚进入时为宜,可通过监测培养液的OD600 来控制。DH5α菌株的OD600为时,细胞密度在5×107 个/mL左右,这时比较合适。密度过高或不足均会影响转化效率。 B)所有操作均应在无菌条件和冰上进行;实验操作时要格外小心,悬浮细胞时要轻柔,以免造成菌体破裂,影响转化。 C)经CaCl2处理的细胞,在低温条件下,一定的时间内转化率随时间的推移而增加,24小时达到最高,之后转化率再下降(这是由于总的活菌数随时间延长而减少造成的);D)化合物及的影响:在Ca2+的基础上联合其他二价金属离子(如Mn2+或Co2+)、DMSO或等物质处理细菌,可使转化效率大大提高(100-1000倍); E)所使用的器皿必须干净。少量的或其它化学物质的存在可能大大降低细菌的转化效率; 2、感受态细胞制备可用在哪些研究和应用领域? 答、在中将导入受体细胞是如果受体细胞是细菌则将它用Ca2+处理变为质粒进入。 实验五、质粒在大肠杆菌中的转化和鉴定 1、在热激以后进行活化培养,这时的培养基中为什么不加入抗生素? 答、活化培养用的一般是SOC培养基,这种培养基比LB培养基营养,此时进行的活化培养只是为了让迅速复苏,恢复分裂活性,此时的细胞还不具抗性,加入会细胞会死亡。 2、什么是质粒?根据在细菌中的复制,质粒有几种类型?用于基因重组的主要用到哪些质粒? 答、是细菌体内的环状。

高中物理竞赛教程15-温度和气体分子运动论

高中物理竞赛热学教程 第五讲机械振动和机械波 第一讲 温度和气体分子运动论 第一讲 温度和气体分子运动论 §1。1 温度 1.1.1、平衡态、状态参量 温度是表示物体冷热程度的物理量。凡是跟温度有关的现象均称为热现象。热现象是自然界中的一种普遍现象。 热学是研究热现象规律的科学。热学研究的对象都是由大量分子组成的宏观物体,称为热力学系统或简称系统。在不受外界影响的条件下,系统的宏观性质不再随时间变化的状态称为平衡态,否则就称为非平衡态。可见系统平衡态的改变依赖于外界影响(作功、传热)。 系统处于平衡态,所有宏观物理都具有确定的值,我们就可以选择其中几个物理量来描述平衡态,这几个量称为状态参量。P 、V 、T 就是气体的状态参量。 气体的体积V 是指盛放气体的容器的容积,国际单位制中,体积的单位是m 3 。 1m 3 =103L=106 cm 3 气体的压强P 是气体作用在容器的单位面积器壁上的平均压力,单位是p a 。 1atm=76cmHg=1.013?105 p a 1mmHg=133.3p a 1.1.2、 温标 温度的数值表示法称为温标。建立温标的三要素是: 1、选择某种物质的一个随温度改变发生单调显著变化的属性来标志温度,制作温度计。例如液体温度计T(V)、电阻温度计T(R)、气体温度计T(P)、T(V)等等。这种选用某种测温物质的某一测温属性建立的温标称为经验温标。 2、规定固定点,即选定某一易于复现的特定平衡态指定其温度值。1954年以前,规定冰点为0℃,汽点为100℃,其间等分100份,从而构成旧摄氏温标。1954年以后,国际上选定水的三相点为基本固定点,温度值规定为273.16K 。这样0℃与冰点,100℃与汽点不再严格相等,百分温标的概念已被废弃。 3、规定测温属性随温度变化的函数关系。如果某种温标(例如气体温度计)选定为线性关系,由于不同物质的同一属性或者同一物质的不同属性随温度变化的函数关系不会相同,因而其它的温标就会出现非线性的函数关系。 1.1.3、理想气体温标 定容气体温度计是利用其测温泡内气体压强的大小来标志温度的高低的。 T(P)=αP α是比例系数,对水的三相点有 T 3= αP 3=273.16K P 3是273.16K 时定容测温泡内气体的压强。于是 T(P)=273.16K 3P P (1) 同样,对于定压气体温度计有 T(V)=273.16K 3V V (2) 3V 是273.16K 时定压测温泡内气体的体积。 用不同温度计测量同一物体的温度,除固定点外,其值并不相等。对于气体温度计也有)()(V T P T ≠。但是当测温泡内气体的压强趋于零时,所有气体温度计,无论用什么气体,无论是定容式的还是定压式的,所测温度值的差别消失而趋于一个共同的极限值,这个极限值就是理想气体温标的值,单位为K ,定义式为 T=lim 0 →p T(V)=lim 0 →p T(P) =273.16K lim →p 3V V =273.16K lim 0→p 3P P (3) 1.1.4、热力学温标 理想气体温标虽与气体个性无关,但它依赖于气体共性即理想气体的性质。利用气体温度计通过实验与外推相结合的方法可以实现理想气体温标。但其测温范围有限(1K ~1000℃),T <1K ,气体早都已液化,理想气体温标也就失去意义。 国际上规定热力学温标为基本温标,它完全不依赖于任何测温物质的性质,能在整个测温范围内采用,具有“绝对”的意义,有时称它为绝对温度。在理想气体温标适用的范围内,热力学温标与理想气体温标是一致的,因而可以不去区分它们,统一用T(K)表示。 国际上还规定摄氏温标由热力学温标导出。其关系式是: t=T-273.15o (4) 这样,新摄氏温标也与测温物质性质无关,能在整个测温范围内使用。目前已达到的最低温度为5?108 -K , 但是绝对零度是不可能达到的。 例1、定义温标t *与测温参量X 之间的关系式为t * =ln(kX),k 为常数 试求:(1)设X 为定容稀薄气体的压强,并假定水的三相点 16.273*3=T ,试确定t *与热力学温标之间的关系。(2)在温标t * 中,冰点和汽点各为多少度;(3)在温标t * 中,是否存在零度? 解:(1)设在水三相点时,X 之值是3X ,则有273.16o =In(kX 3)将K 值代入温标t * 定义式,有 3316.273*16.273X X In X X e In t +=? ???? ?= (2) 热力学温标可采用理想气体温标定义式,X 是定容气体温度计测温泡中稀薄气体压强。故有 30 lim 16.273X X K T x →= (3) 因测温物质是定容稀薄气体,故满足X →0的要求,因而(2)式可写成 ) lim ln(16.273lim 30 *X X t x x →→+= (4) 16.27316.273*T In t += 这是温标* t 与温标T 之间关系式。 (2)在热力学温标中,冰点K T i 15.273=,汽点K T s 15.373=。在温标* t 中其值分别为 16.27316.27315 .27316.273*=+=In t 47.27315.27315 .37316.273*=+=In t (3)在温标*t 中是否存在零度?令* t =0,有 K e T 116.27316.273<<=- 低于1K 任何气体都早已液化了,这种温标中* t =0的温度是没有物理意义的。 §1-2 气体实验定律 1.2.1、玻意耳定律

第二章气体分子运动论的基本概念汇总

第二章?????气体分子运动论的基本概念2013-7-22崎山苑工作室1 2.1物质的微观模型分子运动论是从物质的微观结构出发来阐明热现象的规律的。 一、宏观物体是由大量微粒--分子(或原子)组成的宏观物体是由分子组成的,在分子之间存在着一定的空隙。例如气体很容易被压缩,又如水和酒精混合后的体积小于两者原有体积之和,这都说明分子间有空隙。用20000atm的压强压缩钢筒中的油,结果发现油可以透过筒壁渗出,这说明钢的分子间也有空隙。目前用高分辨率的扫描隧道显微镜已能观察晶体横截面内原子结构的图像,并且能够操纵原子和分子。2013-7-22崎山苑工作室2 2013-7-22崎山苑工作室

二、物体内的分子在不停地运动着,这种运动是无规则的,其剧烈程度与物体的温度有关扩散现象说明:一切物体(气体、液体、固体)的分子都在不停地运动着 在显微镜下观 察到悬浮在液 体中的小颗粒 都在不停地作 无规则运动,

该运动由布朗 最早发现,称 为布朗运动。 2013-7-22崎山苑工作室4 布朗运动的无规则性,实际上反映了液体内部分子运动的无规则性。 所谓“无规则”指的是: 1。由于分子间的相互碰撞,每个分子的运动方向和速率都在不断地改变; 2。任何时刻,在液体或气体内部,沿各个方向运动的分子都有,而且分子运动的速率有大有小。 实验结果:扩散的快慢和布朗运动的剧烈程度都与温度的高低有显著的关系。随着温度的升高,扩散过程加快,悬浮颗粒的运动加剧。 结论:分子无规则运动的剧烈程度与温度有关,温度越高,分子的无规则运动就越剧烈。通常把分子的这种运动称为热运动。 2013-7-22崎山苑工作室5 三、分子之间有相互作用力吸引力:由于固体与液体的分子之间存在着相互的吸引力使固体能够保持一定的形状与体积而液体能保持一定的体积。 右图演示实验说明分子之间存在着相互的吸引力 排斥力:固体和液体的很难压缩说明分子之间存在着斥力结论:一切宏观物体都是由大量分子(或原子)组成的;所有的分子都处在不停的、无规则热运动中;分子之间有相互作用力。 2013-7-22崎山苑工作室6 三、分子之间有相互作用力吸引力:由于固体与液体的分子之间存在着相互的吸引力使固体能够保持一定的形状与体积而液体能保持一定的体积。 右图演示实验说明分子之间存在着相互的吸引力

高分子物理何曼君版课后思考题答案

高分子物理何曼君版课后思考题答案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第二章 1、假若聚丙烯的等规度不高,能不能用改变构象的办法提高等规度?说明理由。不能。全同立构和间同立构是两种不同的立体构型。构型是分子中由化学键解:所固定的原子在空间的几何排列。这种排列是稳定的,要改变构型必须经过化学键的断裂和重组。构象是围绕单键内旋转所引起的排列变化,改变构象只需克服单键内旋转位垒即可实现。 2、末端距是高分子链的一端到另一端达到的直线距离, 解:因为柔性的高分子链在不断的热运动,它的形态是瞬息万变的,所以只能用它们的平均值来表示,又因为末端距和高分子链的质心到第i个链单元的距离是矢量。它们是矢量,其平均值趋近于零。因此,要取均方末端距和均方回转半径;轮廓长度是高分子链的伸直长度,高分子链有柔顺性,不是刚性链,因此,用轮廓长度描述高分子尺度不能体现其蜷曲的特点。 5、解:无论是均方末端距还是均方回转半径,都只是平均量,获得的只是高分子链的平均尺寸信息。要确切知道高分子的具体形态尺寸,从原则上来说,只知道一个均值往往是不够的。最好的办法是知道末端距的分布函数,也就是处在不同末端距时所对应的高分子构象实现概率大小或构象数比例,这样任何与链尺寸有关的平均物理量和链的具体形状都可由这个分布函数求出。所以需要推导高斯链的构象统计理论。 第三章 1、高分子与溶剂分子的尺寸相差悬殊,两者的分子运动速度差别很大,溶剂分子能较快渗入聚合物,而高分子向溶剂的扩散缓慢。 (1)聚合物的溶解过程要经过两个阶段,先是溶剂分子渗入聚合物内部,使聚合物体积膨胀,称为溶胀;然后才是高分子均匀分散在溶剂中,形成完全溶解的分子分散的均相体系。对于交联的聚合物,在与溶剂接触时也会发生溶胀,但因有交联的化学键束缚,不能再进一步使交联的分子拆散,只能停留在溶胀阶段,不会溶解。 (2)溶解度与聚合物分子量有关,分子量越大,溶解度越大。对交联聚合物来说,交联度大的溶胀度小,交联度小的溶胀度大。 (3)非晶态聚合物的分子堆砌比较松散,分子间的相互作用较弱,因此溶剂分子比较容易渗入聚合物内部使之溶胀和溶解。晶态聚合物由于分子排列规整,堆砌紧密,分子间相互作用力很强,以致溶剂分子渗入聚合物内部非常困难,因此晶态化合物的溶解比非晶态聚合物要困难得多。

(完整版)分子生物学复习题及其答案

一、名词解释 1、广义分子生物学:在分子水平上研究生命本质的科学,其研究对象是生物大分子的结构和功能。2 2、狭义分子生物学:即核酸(基因)的分子生物学,研究基因的结构和功能、复制、转录、翻译、表达调控、重组、修复等过程,以及其中涉及到与过程相关的蛋白质和酶的结构与功能 3、基因:遗传信息的基本单位。编码蛋白质或RNA等具有特定功能产物的遗传信息的基本单位,是染色体或基因组的一段DNA序列(对以RNA作为遗传信息载体的RNA病毒而言则是RNA序列)。 4、基因:基因是含有特定遗传信息的一段核苷酸序列,包含产生一条多肽链或功能RNA 所必需的全部核苷酸序列。 5、功能基因组学:是依附于对DNA序列的了解,应用基因组学的知识和工具去了解影响发育和整个生物体的特定序列表达谱。 6、蛋白质组学:是以蛋白质组为研究对象,研究细胞内所有蛋白质及其动态变化规律的科学。 7、生物信息学:对DNA和蛋白质序列资料中各种类型信息进行识别、存储、分析、模拟和转输 8、蛋白质组:指的是由一个基因组表达的全部蛋白质 9、功能蛋白质组学:是指研究在特定时间、特定环境和实验条件下细胞内表达的全部蛋白质。 10、单细胞蛋白:也叫微生物蛋白,它是用许多工农业废料及石油废料人工培养的微生物菌体。因而,单细胞蛋白不是一种纯蛋白质,而是由蛋白质、脂肪、碳水化合物、核酸及不是蛋白质的含氮化合物、维生素和无机化合物等混合物组成的细胞质团。 11、基因组:指生物体或细胞一套完整单倍体的遗传物质总和。 12、C值:指生物单倍体基因组的全部DNA的含量,单位以pg或Mb表示。 13、C值矛盾:C值和生物结构或组成的复杂性不一致的现象。 14、重叠基因:共有同一段DNA序列的两个或多个基因。 15、基因重叠:同一段核酸序列参与了不同基因编码的现象。 16、单拷贝序列:单拷贝顺序在单倍体基因组中只出现一次,因而复性速度很慢。单拷贝顺序中储存了巨大的遗传信息,编码各种不同功能的蛋白质。 17、低度重复序列:低度重复序列是指在基因组中含有2~10个拷贝的序列 18、中度重复序列:中度重复序列大致指在真核基因组中重复数十至数万(<105)次的重复顺序。其复性速度快于单拷贝顺序,但慢于高度重复顺序。 19、高度重复序列:基因组中有数千个到几百万个拷贝的DNA序列。这些重复序列的长度为6~200碱基对。 20、基因家族:真核生物基因组中来源相同、结构相似、功能相关的一组基因,可能由某一共同祖先基因经重复和突变产生。 21、基因簇:基因家族的各成员紧密成簇排列成大段的串联重复单位,定位于染色体的特殊区域。 22、超基因家族:由基因家族和单基因组成的大基因家族,各成员序列同源性低,但编码的产物功能相似。如免疫球蛋白家族。 23、假基因:一种类似于基因序列,其核苷酸序列同其相应的正常功能基因基本相同、但却不能合成功能蛋白的失活基因。 24、复制:是指以原来DNA(母链)为模板合成新DNA(子链)的过程。或生物体以DNA/RNA

《气体分子运动论》答案

第10章 气体分子运动论 一、选择题 1(B),2(C),3(C),4(B),5(D),6(E),7(B),8(B),9(A),10(C) 二、填空题 (1). 23kT ,25kT ,2 5 MRT /M mol .; (2). 1.2×10-24 kg m / s ,3 1×1028 m -2s-1 ,4×103 Pa . (3). 分布在v p ~∞速率区间的分子数在总分子数中占的百分率, 分子平动动能的平均值. (4). v v v d )(0 ? ∞ Nf , v v v/v v v v d )(d )(0 ?? ∞ ∞ f f , v v v d )(0 ? ∞ f . (5). 氢,1.58×103.; (6). 保持不变. 参考解答:令,2,m kT x p p == v v v 麦克斯韦速率分布函数可以写作: x e x N N x d 4d 22-=π 又,8πm kT =v .2π =p v v 所以有 .d 4π2 1 22x e x N N x ?-=?-πv v p 这个积分显然与温度无关! (7). 理想气体处于热平衡状态 , A N iPV /21或R ikPV /2 1 .; (8). B A B B A A N N f N f N ++) ()(v v . (9). 2; (10). 1 . 三、计算题 1. 一超声波源发射超声波的功率为10 W .假设它工作10 s ,并且全部波动能量都被1 mol 氧气吸收而用于增加其内能,则氧气的温度升高了多少? (氧气分子视为刚性分子,普适气体常量R =8.31 J ·mol -1·K -1 ) 解: A = Pt = T iR v ?2 1 , ∴ ?T = 2Pt /(v iR )=4.81 K . 2. 储有1 mol 氧气,容积为1 m 3的容器以v =10 m ·s -1 的速度运动.设容器突然停止,其中氧气的80%的机械运动动能转化为气体分子热运动动能,问气体的温度及压强各升高了多少? (氧气分子视为刚性分子,普适气体常量R =8.31 J ·mol -1·K -1 ) 解: 0.8× 221v M =(M / M mol )T R ?2 5 , ∴ T =0.8 M mol v 2 / (5R )=0.062 K

药用高分子材料练习测试题C参考答案

精心整理 药用高分子材料练习题C答案 一、名词解释 1.Polymersforpharmaceuticals :高分子材料是具有生物相容性、经过安全评价且应用于药物制剂的一类高分子辅料。 2.有机高分子:该类大分子的主链结构由碳原子或由碳、氧、氮、硫、磷等在有机化合物中常见的原子组成。 3.加聚反应:单体通过加成聚合反应,聚合成高分子的反应;加聚物的分子量是单体的整数倍。 4.引发剂的引发效率:引发单体聚合的自由基数与分解的自由基数的比值。 5.6 789、%为泊101.答:2.答:3.水。 1.药用包装用塑料和橡胶的常用助剂 答:(一)增塑剂(小分子物质,不应挥发、有毒) (二)稳定剂(稳定自由基、离子、双键等) (三)抗氧剂(首先被氧化分解) (四)填充剂(炭黑) (五)硫化剂(橡胶的化学交联过程必须的) (六)抗静电剂(形成抗静电的平滑层,中和电荷) (七)润滑剂(利于颗粒的流动,提高制品的光洁度) 2.范德华力和氢键的能量≤41.86kj/mol ,而共价键的键能(C-C 键能=247.50kj/mol ,C-H 键能=414.93kj/mol ,O-H 键能=464.73kj/mol )均较大,为什么高分子化合物不能气化? 答:虽然范德华力和氢键的能量较小,但高分子化合物中存在成千上万个范德华力和氢键,这样总

精心整理 共的键能,远远大于共价键的键能,因此高分子化合物不能气化。 3、.什么是高分子间作用力,为什么说高分子间的作用力影响高分子化合物的性质? 答:①高分子间相互作用力是非键合原子间、基团之间和分子之间的内聚力,包括范德华力和氢键。范德华力分为定向力、诱导力和色散力。②虽然高分子中单一原子或基团之间的内聚力较小,但由于高分子化合物的链较长,含有大量的原子或基团之间的内聚力,其总和是相当大的,因此,影响高分子化合物的性质。 4、简述高分子水分散体特点?与有机溶剂或水溶液包衣区别? 答:是指以水为分散剂,聚合物以直径约50纳米—1.2微米的胶状颗粒悬浮的具有良好的物理稳定性的非均相系统,其外观呈不透明的乳白色,故又称乳胶。水分散体显示出低粘度性质,完全消除了有机溶剂,又有效地提高了包衣液浓度,缩短了包衣时间,同时适用于所有薄膜包衣设备,

气体分子运动理论

学科:物理 教学内容:气体分子运动理论 【基础知识精讲】 1.气体分子运动的特点 (1)气体分子之间的距离很大,距离大约是分子直径的10倍,因此除了相互碰撞或者跟器壁碰撞外,气体分子不受力的作用,在空间自由移动. 气体能充满它们所能达到的空间,没有一定的体积和形状. (2)每个气体分子都在做永不停息的运动,大量气体分子频繁地发生碰撞使每个气体分子都在做杂乱无章的运动. (3)大量气体分子的杂乱无章的热运动,在宏观上表现出一定的规律性. ①气体分子沿各个方向运动的数目是相等的. ②对于任一温度下的任何气体来说,多数气体分子的速率都在某一数值范围之内,比这一数值范围速率大的分子数和比这一数值范围速率小的分子数依次递减.速率很大和速率很小的分子数都很少.在确定温度下的某种气体的速率分布情况是确定的. 在温度升高时,多数气体分子所在的速率范围升高,而且在这一速度范围的分子数增多. 2.气体压强的产生 (1)气体压强的定义 气体作用在器壁单位面积上的压力就是气体的压强,即P=F/S. (2)气体压强的形成原因 气体作用在器壁上的压力是由碰撞产生的,一个气体分子和器壁的碰撞时间是极其短暂的.它施于器壁的作用力是不连续的,但大量分子频繁地碰撞器壁,从宏观上看,可以认为气体对器壁的作用力是持续的、均匀的. (3)气体压强的决定因素 ①分子的平均动能与密集程度 从微观角度来看,气体分子的质量越大,速度越大,即分子的平均动能越大,每个气体分子撞一次器壁对器壁的作用力越大,而单位时间内气体分子撞击器壁的次数越多,对器壁的总压力也越大,而撞击次数又取决于单位体积内分子数(分子的密集程度)和平均动能(分子在容器中往返运动着,其平均动能越大,分子平均速率也越大,连续两次碰撞某器壁的时间间隔越短,即单位时间内撞击次数越多),所以从微观角度看,气体的压强决定于气体的平均动能和密集程度. ②气体的温度与体积 从宏观角度看,一定质量的气体的压强跟气体的体积和温度有关.对于一定质量的气体,体积的大小决定分子的密集程度,而温度的高低是分子平均动能的标志. (4)几个问题的说明 ①在一个不太高的容器中,我们可以认为各点气体的压强相等的. ②气体的压强经常通过液体的压强来反映. ③容器内气体压强的大小与气体的重力无关,这一点与液体的压强不同(液体的压强是由液体的重力造成的).这是因为一般容器内气体质量很小,且容器高度有限,所以不同高度

高分子材料改性书中部分思考题参考答案

书中部分思考题参考答案 第二章高分子材料共混改性 1.什么是相容性,以什么作为判断依据? 是指共混无各组分彼此相互容纳,形成宏观均匀材料的能力,其一般以是否能够产生热力学相互溶解为判据。 2.反应性共混体系的概念以及反应机理是什么? 是指在不相容或相容性较差的共混体系中加入(或就地形成)反应性高分子材料,在混合过程中(例如挤出过程)与共混高分子材料的官能团之间在相界面上发生反应,使体系相容性得到改善,起到增容剂的作用。 3.高分子材料体系其相态行为有哪几种形式,各自有什么特点,并举例加以说明。 (1)具有上临界混溶温度UCST,超过此温度,体系完全相容,为热力学稳定的均相体系;低于此温度为部分相容,在一定的组成范围内产生相分离。如:天然橡胶-丁苯橡胶。 (2)具有下临界混溶温度LCST,低于此温度,体系完全相容,高于此温度为部分相容。如:聚苯乙烯-聚甲基乙烯基醚、聚己内酯-苯乙烯/丙烯腈共聚物。 (3)同时出现上临界混溶温度UCST和下临界混溶温度LCST,如苯乙烯/丙烯腈共聚物-丁腈橡胶等共混体系。 (4)UCST和LCST相互交叠,形成封闭的两相区 (5)多重UCST和LCST 4.什么是相逆转,它与旋节分离的区别表现在哪些方面? 相逆转(高分子材料A或高分子材料B从分散相到连续相的转变称为相逆转)也可产生两相并连续的形态结构。 (1)SD起始于均相的、混溶的体系,经过冷却而进入旋节区而产生相分离,相逆转主要是在不混溶共混物体系中形态结构的变化。 (2)SD可发生于任意浓度,而相逆转仅限于较高的浓度范围 (3)SD产生的相畴尺寸微细,而相逆转导致较粗大的相畴,

5.相容性的表征方法有哪些,试举例加以说明。 玻璃化转变法、红外光谱法、差热分析(DTA)、差示扫描量热法(DSC) 膨胀计法、介电松弛法、热重分析、热裂解气相色谱等。 玻璃化转变法:若两种高分子材料组分相容,共混物为均相体系就只有一个玻璃化温度,完全不溶,就有两个玻璃化温度,部分相容介于前两者之间。 差示扫描量热法(DSC):DSC测量试样按升温△T所需热量与参比材料同样升温△T所需热量之差,从而定出试样的玻璃化转变T g。 红外光谱法:对于相容的高分子材料共混体系,由于不同高分子材料分子之间有强的相互作用,其所产生的光谱相对两高分子材料组分的光谱谱带产生较大的偏离(谱带频率的移动和峰形的不对称加宽等),由此而表征相容性的大小。 6.提高相容性的方法有哪些?举例加以解释。 (1)加强基团间的相互作用,例如苯乙烯和含强极性-CN基团的丙烯腈共聚后,就能和许多高分子材料如聚碳酸酯、聚氯乙烯等形成相容体系。 (2)接枝嵌段共聚共混如嵌段共聚共混制取乙丙橡胶与聚丙烯的共混物。 (3)添加第三组份增容剂LDPE/PP共混物中加入含PP和PE嵌段-EPCAR,提高强度。 (4)形成互穿高分子材料网络(IPN) 7.简述增容剂的作用机理,对比反应型增容剂和非反应型增容剂的优劣。 按增容剂与不基体的作用形式可增容剂将分为非反应型和反应型两大类,反应型增容剂是指共混时伴随着化学反应,与共混组分能生成化学键。而非反应型增容剂只起到“乳化剂”的分散作用,降低其相界面间的张力,从而达到增容的目的。 与非反应型增容剂相比,反应型增容剂具有制造成本低、添加量少、增容效果好、增容效率高等特点, 8.试说明高分子材料共混物有哪几种形态结构? 高分子材料共混物可分为均相和两相结构。 两相结构中又分为:单向连续结构,两相互锁或交错结构,相互贯穿的两相连续结构。 9.以具体实例说明弹性体增韧,非弹性体增韧、无机粒子的增韧机理。

分子生物学课后习题答案

第一章绪论 □ DNA重组技术和基因工程技术。 DNA重组技术又称基因工程技术,目的是将不同DNA片段(基因或基因的一部分)按照人们的设计定向连接起来,在特左的受体细胞中与载体同时复制并得到表达,产生影响受体细胞的新的遗传性状。 DNA重组技术是核酸化学、蛋白质化学、酶工程及微生物学、遗传学、细胞学长期深入研究的结晶,而限制性内切酶DNA连接酶及苴他工具酶的发现与应用则是这一技术得以建立的关键。DNA重组技术有着广泛的应用前景。首先,DNA重组技术可以用于大量生产某些在正常细胞代谢中产量很低的多肽,如激素、抗生素、酶类及抗体,提髙产量,降低成本。苴次, DNA重组技术可以用于左向改造某些生物的基因结构,使他们所具有的特殊经济价值或功能成百上千倍的提高。 □请简述现代分子生物学的研究内容。 1、DNA重组技术(基因工程) 2、基因表达调控(核酸生物学) 3、生物大分子结构功能(结构分子生物学) 4、基因组、功能基因组与生物信息学研究 第二章遗传的物质基础及基因与基因组结构 □核小体、DNA的半保留复制、转座子。 核小体是染色质的基本结构单位。是由H2A、H2B、H3、H4各两分子生成八聚体和由大约200bp 的DNA构成的。核小体的形成是染色体中DNA压缩的第一步。 DNA在复制过程中,每条链分别作为模板合成新链,产生互补的两条链。这样新形成的两个DNA 分子与原来DNA分子的碱基顺序完全一样。因此,每个子代分子的一条链来自亲代DNA,另一条链则是新合成的,这种复制方式被称为DNA的半保留复制。 转座子是存在染色体DNA上的可自主复制和移位的基本单位。转座子分为两大类:插入序列和复合型转座子。 □DNA的一、二、三级结构特征。 DNA的一级结构是指4种脱氧核昔酸的连接及其排列顺序,表示了该DNA分子的化学构成。DNA 的二级结构是指两条多核昔酸链反向平行盘绕所生成的双螺旋结构。分为左手螺旋和右手螺旋。DNA的髙级结构是指DNA双螺旋进一步扭曲盘绕所形成的特定空间结构。超螺旋结构是DNA 高级结构的主要形式,可分为正超螺旋与负超螺旋两大类。 □DNA复制通常采取哪些方式? 仁线性DNA双链的复制:复制经过起始、延伸、终止和分离三个阶段。复制是从5,端向3, 端移动,前导链的合成是连续的,后随链通过冈崎片段连接成完整链。 2、环状DNA双链的复制 (1)0型:是一种双向复制方式。复制的起始点涉及DNA的结旋和松开,形成两个方向相反的复制叉,复制从定点开始双向等速进行。 (2)滚环型:是单向复制的一种特殊方式,发生在噬菌体DNA和细菌质粒上,首先对正链原点进行专一性的切割,形成的5,端被单链结合蛋白所覆盖,3,端在DNA聚合酶的作用下不断延伸。

热学(李椿+章立源+钱尚武)习题解答_第二章 气体分子运动论的基本概念

第二章 气体分子运动论的基本概念 2-1 目前可获得的极限真空度为10-13 mmHg 的数量级,问在此真空度下每立方厘米内有多少空气分子,设空气的温度为27℃。 解: 由P=n K T 可知 n =P/KT=) 27327(1038.11033.1101023 213+?????-- =3.21×109(m –3 ) 注:1mmHg=1.33×102 N/m 2 2-2 钠黄光的波长为5893埃,即5.893×10-7 m ,设想一立方体长5.893×10-7 m , 试问在标准状态下,其中有多少个空气分子。 解:∵P=nKT ∴PV=NKT 其中T=273K P=1.013×105 N/m 2 ∴N=6 23375105.5273 1038.1)10893.5(10013.1?=?????=--KT PV 个 2-3 一容积为11.2L 的真空系统已被抽到1.0×10-5 mmHg 的真空。为了提高其真空度, 将它放在300℃的烘箱内烘烤,使器壁释放出吸附的气体。若烘烤后压强增为1.0×10-2 mmHg ,问器壁原来吸附了多少个气体分子。 解:设烘烤前容器内分子数为N 。,烘烤后的分子数为N 。根据上题导出的公式PV = NKT 则有: )(0 110011101T P T P K V KT V P KT V P N N N -=-= -=? 因为P 0与P 1相比差103 数量,而烘烤前后温度差与压强差相比可以忽略,因此 T P 与 1 1 T P 相比可以忽略 1823 2 23111088.1) 300273(1038.11033.1100.1102.11??+???????=?=?---T P K N N 个 2-4 容积为2500cm 3 的烧瓶内有1.0×1015 个氧分子,有4.0×1015 个氮分子和3.3×10-7 g

高分子材料思考题答案讲课稿

《高分子材料导论》思考题 第一章材料科学概述 1.试从不同角度把材料进行分类,并阐述三大材料的特性。 按化学组成分类:金属材料无机材料.有机材料(高分子材料) 按状态分类:气态。固态:单晶.多晶.非晶.复合材料.液态 按材料作用分类:结构材料,功能材料 按使用领域分类:电子材料。耐火材料。医用材料。耐蚀材料。建筑材料 三大材料:(1)金属材料富于展性和延性,有良好的导电及导热性、较高的强度及耐冲击性。(2)无机材料一般硬度大、性脆、强度高、抗化学腐蚀、对电和热的绝缘性好。 (3)高分子材料的一般特点是质轻、耐腐蚀、绝缘性好、易于成型加工,但强度、耐磨性及使用寿命较差。 2.说出材料、材料工艺过程的定义。 材料——具有满足指定工作条件下使用要求的形态和物理性状的物质。 由化学物质或原料转变成适用于一定用场的材料,其转变过程称为材料化过程或材料工艺过程。 3.原子之间或分子之间的结合键一般有哪些形式?试论述各种结合键的特点。 离子键:无方向性,键能较大。由离子键构成的材料具有结构稳定、熔点高、硬度大、膨胀系数小的特点。共价键:具有方向性和饱和性两个基本特点。键能较大,由共价结合而形成的材料一般都是绝缘体。金属键:无饱和性和方向性。具有良好的延展性,并且由于自由电子的存在,金属一般都具有良好的导电、导热性能。 4.何为非晶态结构?非晶态结构材料有何共同特点? 原子排列近程有序而远程无序的结构称为非晶态结构或无定形结构,非晶态结构又称玻璃态结构。共同特点是:结构长程无序,物理性质一般是各向同性的;没有固定的熔点,而是一个依冷却速度而改变的转变温度范围;塑性形变一般较大,导热率和热膨胀性都比较小。 5.材料的特征性能主要哪些方面? 热学、力学、电学、磁学、光学、化学等性能 6.什么是材料的功能物性?材料的功能物性包括哪些方面? 功能物性,是指在一定条件下和一定限度内对材料施加某种作用时,通过材料将这种作用转换为另一形式功能的性质。包括:1热电转换性能2光-热转换性能3光-电转换性能

分子生物学课后习题答案

第一章绪论 ?DNA重组技术和基因工程技术。 DNA重组技术又称基因工程技术,目的是将不同DNA片段(基因或基因的一部分)按照人们的设计定向连接起来,在特定的受体细胞中与载体同时复制并得到表达,产生影响受体细胞的新的遗传性状。 DNA重组技术是核酸化学、蛋白质化学、酶工程及微生物学、遗传学、细胞学长期深入研究的结晶,而限制性内切酶DNA连接酶及其他工具酶的发现与应用则是这一技术得以建立的关键。 DNA重组技术有着广泛的应用前景。首先,DNA重组技术可以用于大量生产某些在正常细胞代谢中产量很低的多肽,如激素、抗生素、酶类及抗体,提高产量,降低成本。其次,DNA重组技术可以用于定向改造某些生物的基因结构,使他们所具有的特殊经济价值或功能成百上千倍的提高。 ?请简述现代分子生物学的研究内容。 1、DNA重组技术(基因工程) 2、基因表达调控(核酸生物学) 3、生物大分子结构功能(结构分子生物学) 4、基因组、功能基因组与生物信息学研究 第二章遗传的物质基础及基因与基因组结构 ?核小体、DNA的半保留复制、转座子。 核小体是染色质的基本结构单位。是由H2A、H2B、H3、H4各两分子生成八聚体和由大约200bp的DNA构成的。核小体的形成是染色体中DNA压缩的第一步。 DNA在复制过程中,每条链分别作为模板合成新链,产生互补的两条链。这样新形成的两个DNA分子与原来DNA分子的碱基顺序完全一样。因此,每个子代分子的一条链来自亲代DNA,另一条链则是新合成的,这种复制方式被称为DNA的半保留复制。 转座子是存在染色体DNA上的可自主复制和移位的基本单位。转座子分为两大类:插入序列和复合型转座子。 ?DNA的一、二、三级结构特征。 DNA的一级结构是指4种脱氧核苷酸的连接及其排列顺序,表示了该DNA分子的化学构成。DNA的二级结构是指两条多核苷酸链反向平行盘绕所生成的双螺旋结构。分为左手螺旋和右手螺旋。 DNA的高级结构是指DNA双螺旋进一步扭曲盘绕所形成的特定空间结构。超螺旋结构是DNA 高级结构的主要形式,可分为正超螺旋与负超螺旋两大类。 ?DNA复制通常采取哪些方式? 1、线性DNA双链的复制:复制经过起始、延伸、终止和分离三个阶段。复制是从5’端向3’端移动,前导链的合成是连续的,后随链通过冈崎片段连接成完整链。 2、环状DNA双链的复制 (1)θ型:是一种双向复制方式。复制的起始点涉及DNA的结旋和松开,形成两个方向相反的复制叉,复制从定点开始双向等速进行。 (2) 滚环型:是单向复制的一种特殊方式,发生在噬菌体DNA和细菌质粒上,首先对正链原点进行专一性的切割,形成的5’端被单链结合蛋白所覆盖,3’端在DNA聚合酶的作用下不断延伸。

气体分子运动论的基本概念

第二章气体分子运动论的基本概念 §1 物质的微观模型 一、物质微观模型: 1、宏观物体是由大量微粒—分子(或原子)组成的, 2、物体内的分子在不停地运动着,这种运动是无规则的剧烈程度与物体的温度有关。 3、分子之间有相互作用。 二、物质三种聚集态的成因 分子力的作用将使分子聚集在一起,在空间形成某种规则的分布(有序排列),而分子的无规则运动将破坏这种有序排列,使分子分散开来。事实上,物质分子在不同的温度下所以会表现为三种不同的聚集态,正是由这两种相互对立的作用所决定的。 §2 理想气体的压强 一、理想气体的微观模型: 1、分子本身的形成比起分子之间的平均距离来可以忽略不计。 2、除碰撞的瞬间外,分子之间以及分子与容器器壁之间都无相互作用。 3、分子之间以及分子与容器器壁之间的碰撞是完全弹性的,即气体分子的动能不因碰撞而损失。 二、压强公式 1、压强产生的微观实质:是大量气体分子对器壁不断碰撞的结果。(举例说明)。 2、理想气体压强公式的推导过程:思路:欲求分子施于器壁的压强P,应先求出大量分子施于器壁的力F。这个力除以器壁的面积,就得到分子施于器壁的压强。设:有一个边长分别为L1、L2、L3的长方体容器,在平衡态下,共有N个Array分子,分子的质量为m,分子数密度为n=N/V。 ①单个分子在一次碰撞中施于A1面的冲 量,(A1面垂直于x轴) 设某一分子的速度为V i,速度三个分量分别为: V ix、V iy、V iz由于碰撞是完全弹性的,所以碰 撞前后分子在y、z两方向上的速度分量不变, 在x方向上的速度分量由V ix变为-V ix, 大小不变方向反向。这样,分子在碰撞过程中 的动量改变为:-m V ix -m V ix =-2m V ix.按动量定理,这就等于A1面施于分子的冲量,而根据牛顿第三定律,分子施于A1面的冲量为:+2m V ix ②dt时间内分子之施于A1面的冲量:它应等于2m V ix乘以dt时间内分子之于A1面碰 撞的次数,即:

高分子材料第二版黄丽思考题答案

1、LDPE、LLDPE、HDPE的分子结构和物理机械性能有何不同?P24表2-1 高密度聚乙烯(HDPE),又称低压聚乙烯,因为在低压下生产,含有较多长键,因此密度高。低密度聚乙烯(LDPE),用高压法(147.17—196.2MPa)生产,支链较多,强度低。线性低密度聚乙烯(LLDPE)是通过在聚乙烯的主链上共聚一些具有短支链的共聚物生成的。 热导率,HDPE(高)>LLDPE (线)>LDPE(低); 线膨胀系数,LDPE>LLDPE >HDPE 2、聚丙烯有三种不同的立构体。试分析一下哪种结构能结晶,为什么? 聚丙烯存在等规、间规、无规三种立体结构。P40 聚合物结晶的必要条件是分子结构的对称性和规整性,这也是影响其结晶能力、结晶速度的主要结构因素。分子链的对称性越高,规整性越好,越容易规则排列形成高度有序的晶格。等规聚丙烯的结构规整性好,具有高度的结晶性;无规聚丙烯为无定形材料,结构的对称性和规整性差,因此不结晶;间规聚丙烯的结构对称性和规整性介于两者之间,结晶能力较差。 3、热固性酚醛树脂与热塑性酚醛树脂的合成条件及分子结构有何不同,热固性酚醛树脂的固化历程如何? (1)热塑性酚醛树脂:合成条件:甲醛:苯酚摩尔比<1

(0.8~0.86),酸催化(pH<7);分子结构:线型结构; 热固性酚醛树脂:合成条件:甲醛:苯酚摩尔比>1(1.1~1.5),碱催化(pH=8~11);分子结构:体型结构。 (2)热固性酚醛树脂是体型缩聚控制在一定反应程度的产物。因此,在合适的条件下可使体型缩聚继续进行,固化成体型缩聚物。 固化机理P67-68 热固性酚醛树脂是多元酚醇的缩聚物。 (因为加成反应结果:单元酚醇与多元酚醇的混合物) 酚醇之间的反应与温度有关,以170℃为分界线。 低于170℃主要是分子链的增长,主要发生两类反应。 a .酚核上的羟甲基与其他酚核上的邻、对位的—H 发生反应,生成亚甲基键: b .两个酚核上的羟甲基相互反应,生成二苄基醚 苄基醚不稳定,能否形成与体系的酸碱性有很大关系 OH CH 2 OH OH CH 2OH CH 2OH HO HOH 2C CH 2 CH 2OH OH H 2 O OH CH 2 OH OH CH 2OH CH 2OH OH CH 2OCH 2 OH CH 2OH H 2O

分子生物学思考题答案

1、原核生物DNA具有哪些不同于真核生物DNA得特征? 真核生物:①真核基因组庞大.②存在大量得重复序列。③大部分为非编码序列(>90%).④转录产物为单顺反子.⑤就是断裂基因,有内含子结构。⑥存在大量得顺式作用 元件(启动子、增强子、沉默子)。⑦存在大量得DNA多态性。⑧具有端粒(telomer e)结构 原核生物:①基因组很小,大多只有一条染色体,且DNA含量少. ②主要就是单拷贝基因,只有很少数基因〔如rRNA基因〕以多拷贝形式存在。 ③整个染色体DNA几乎全部由功能基因与调控序列所组成; ④几乎每个基因序列都与它所编码得蛋白质序列呈线性对应状态 1、试述基因克隆载体进化过程. ①pSC101质粒载体,第一个基因克隆载体 ②ColE1质粒载体,松弛型复制控制得多拷贝质粒 ③pBR322质粒载体,具有较小得分子量(4363bp)。能携带6-8kb得外源DNA片段,操作较为便利 ④pUC质粒载体,具有更小得分子量与更高得拷贝数 ⑤pGEM-3Z质粒,编码有一个氨苄青霉素抗性基因与一个lacZ’基因 ⑥穿梭质粒载体,由人工构建得具有原核与真核两种不同复制起点与选择标记,可在不同得寄主细胞内存活与复制得质粒载体 ⑦pBluescript噬菌粒载体,一类从pUC载体派生而来得噬菌粒载体 2、试述PCR扩增得原理与步骤。对比DNA体内复制得差异. 原理:首先将双链DNA分子在临近沸点得温度下加热分离成两条单链DNA分子,DNA聚合酶以单链DNA为模板并利用反应混合物中得四种脱氧核苷三磷酸、合适得Mg2+浓度与实验中提供得引物序列合成新生得DNA分子. 步骤:①将含有待扩增DNA样品得反应混合物放置在高温(〉94℃)环境下加热1分钟,使双链DNA变性,形成单链模板DNA ②降低反应温度(退火,约50℃),约1分钟,使寡核苷酸引物与两条单链模板DNA结 合在靶DNA区段两端得互补序列位置上 ③将反应混合物得温度上升到72℃左右保温1-数分钟,在DNA聚合酶得作用下,从 引物得3'-端加入脱氧核苷三磷酸,并沿着模板分子按5’→3'方向延伸,合成新生DN A互补链 与体内复制得差别:①PCR不产生冈崎片段②在高温条件下反应,不需要DNA解旋酶③PCR可经过多个循环④在体外进行,可调控 第六章 1、基因敲除 原理:又称基因打靶,通过外源DNA与染色体DNA之间得同源重组,进行精确得定点修饰与基因改造,具有专一性强、染色体DNA可与目得片段共同稳定遗传等特点 方法:高等动物基因敲除技术,植物基因敲除技术 2、完全基因敲除与条件型基因敲除 完全基因敲除就是指通过同源重组法完全消除细胞或者动植物个体中得靶基因活性,条件型基因敲除就是指通过定位重组系统实现特定时间与空间得基因敲除 3、基因定点突变 原理:通过改变基因特定位点核苷酸序列来改变所编码得氨基酸序列,用于研究某个(些)氨基酸残基对蛋白质得结构、催化活性以及结合配体能力得影响,也可用于改造DNA 调控元件特征序列、修饰表达载体、引入新得酶切位点等

相关主题
文本预览
相关文档 最新文档