当前位置:文档之家› 不同介质中的声速的测量

不同介质中的声速的测量

不同介质中的声速的测量
不同介质中的声速的测量

- 1 -

空气、液体及固体介质中的声速测量

声波是一种在弹性媒质中传播的机械波,频率低于Hz 20的声波称为次声波;频率在kHz 20~Hz 20的声波可以被人听到,称为可闻声波;频率在kHz 20以上的声波称为超声波。超声波在媒质中的传播速度与媒质的特性及状态因素有关。因而通过媒质中声速的测定,可以了解媒质的特性或状态变化。例如,测量氯气(气体)、蔗糖(溶液)的浓度、氯丁橡胶乳液的比重以及输油管中不同油品的分界面,等等,这些问题都可以通过测定这些物质中的声速来解决。可见,声速测定在工业生产上具有一定的实用意义。同时,通过液体中声速的测量,了解水下声纳技术应用的基本概念。

【实验目的】

1.了解压电换能器的功能,加深对驻波及振动合成等理论知识的理解。

2.学习用共振干涉法、相位比较法和时差法测定超声波的传播速度。

3.通过用时差法对多种介质的测量,了解声纳技术的原理及其重要的实用意义。

【实验原理】

在波动过程中波速V 、波长λ和频率f 之间存在着下列关系:λ?=f V ,实验中可通过测定声波的波长λ和频率f 来求得声速V 。常用的方法有共振干涉法与相位比较法。

声波传播的距离L 与传播的时间t 存在下列关系:t V L ?= ,只要测出L 和t 就可测出声波传播的速度V ,这就是时差法测量声速的原理。

1.共振干涉法(驻波法)测量声速的原理:

当二束幅度相同,方向相反的声波相交时,产生干涉现象,出现驻波。对于波束1:)/X 2t cos(A F 1λ?π?ω?=、波束2:()λ?π+ω?=/X 2t cos A F 2,当它们相交会时,

叠加后的波形成波束3:()t cos /X 2cos A 2F 3ω?λ?π?=,

这里ω为声波的角频率,t 为经过的时间,X 为经过的距离。由此可见,叠加后的声波幅度,随距离按()

λ?π/X 2

cos nemo

xatu

2011.11.21

- 2 -

变化。如图1所示。 压电陶瓷换能器1S 作为声波发射器,它由信号源供给频率为数千周的交流电信号,由逆压电效应发出一平面超声波;而换能器2S 则作为声波的接收器,正压电效应将接收到的声压转换成电信号,该信号输入示波器,我们在示波器上可看到一组由声压信号产生的正弦波形。声源1S 发出的声波,经介质传播到2S ,在接收声波信号的同时反射部分声波信号,如果接收面(2S )与发射面(1S )严格平行,入射波即在接收面上垂直反射,入射波与发射波相干涉形成驻波。我们在示波器上观察到的实际上是这两个

相干波合成后在声波接收器2S 处的振动情况。移动2S 位置(即改变1S 与2S 之间的距离)

,你从示波器显示上会发现当2S 在某些位置时振幅有最小值或最大值。

根据波的干涉理论可以知道:任何二相邻的振幅最大值的位置之间(或二相邻的振幅最小值的位置之间)的距离均为2/λ。为测量声波的波长,可以在一边观察示波器上声压振幅值的同时,缓慢的改变1S 和2S 之间的距离。示波器上就可以看到声振动幅值不断地由最大变到最小再变到最大,二相邻的振幅最大之间2S 移动过的距离亦为2/λ。超声换能器2S 至1S 之间的距离的改变可通过转动螺杆的鼓轮来实现,而超声波的频率又可由声波测试仪信号源频率显示窗口直接读出。在连续多次测量相隔半波长的2S 的位置变化及声波频率f 以后,我们可运用测量数据计算出声速,用逐差法处理测量的数据。

2.相位法测量原理:

声源1S 发出声波后,在其周围形成声场,声场在介质中任一点的振动相位是随时间而变化的。但它和声源的振动相位差ΔΦ不随时间变化。

设声源方程为: t cos F F 011ω?=

距声源X 处2S 接收到的振动为:)Y

X t (cos F F 022?ω?=

- 3 -

两处振动的相位差: Y

X ω

=ΔΦ 当把1S 和2S 的信号分别输入到示波器X 轴和Y 轴,那么当λ?=n X 即π=ΔΦn 2时,合振动为一斜率为正的直线,当()2/1n 2X λ+=,即()π+=ΔΦ1n 2时,合振动为

一斜率为负的直线,当X 为其它值时,合成振动为椭圆(如图2)。 3.时差法测量原理:

以上二种方法测声速,都是用示波器观察波谷和波峰,或观察二个波间的相位差,原理是正确,但存在读数误差,较精确测量声速是用时声波差法,时差法在工程中得到了广泛的应用。它是将经脉冲调制的电信号加到发射换能器上,声波在介质中传播,经过t 时间后,到达L 距离处的接收换能器,所以可以用以下公式求出声波在介质中传播的速度。 速度t /L V = 。

【实验仪器】

实验仪器采用杭州精科仪器有限公司生产的5SV (或6SV )型声速测量组合仪及5SV 型声速测定专用信号源各一台。其外形结构见图4。

组合仪主要由储液槽、传动机构、数显标尺、两副压电换能器等组成。储液槽中的压

- 4 - 电换能器供测量液体声速用,另一副换能器供测量空气及固体声速用。作为发射超声波用的换能器 1S 固定在储液槽的左边,另一只接收超声波用的接收换能器2S 装在可移动滑块上。上下两只换能器的相对位移通过传动机构同步行进,并由数显表头显示位移的距离。

1S 发射换能器超声波的正弦电压信号由5SV 声速测定专用信号源供给,换能器2S 把接收到的超声波声压转换成电压信号,用示波器观察;时差法测量时则还要接到专用信号源进行时间测量,测得的时间值具有保持功能。

实验时需自备示波器一台;mm 300游标卡尺一把,用于测量固体棒的长度。

【实验内容】

一.声速测量系统的连接:

声速测量时,专用信号源、测试仪、示波器之间,连接方法见图5。

二.谐振频率的调节:

根据测量要求初步调节好示波器。将专用信号源输出的正弦信号频率调节到换能器的谐振频率,以使换能器发射出较强的超声波,能较好地进行声能与电能的相互转换,以得到较好的实验效果,方法如下:

1.将专用信号源的“发射波形”端接至示波器,调节示波器,能清楚地观察到同步的正弦波信号;

2.专用信号源的上“发射强度”旋钮,使其输出电压在P P V 20?左右,然后将换能器的接

收信号接至示波器,调整信号频率()kHz 45~kHz 25,观察接收波的电压幅度变化,在某一频率点处(kHz 5.39~kHz 5.34之间,因不同的换能器或介质而异)电压幅度最大,此频率即是压电换能器1S 、2S 相匹配频率点,记录此频率i f 。

3.改变1S 、2S 的距离,使示波器的正弦波振幅最大,再次调节正弦信号频率,直至示波器显示的正弦波振幅达到最大值。共测5次取平均频率f 。

三.共振干涉法、相位法、时差法测量声速的步骤:

- 5 -

1.共振干涉法(驻波法)测量波长:

将测试方法设置到连续方式。按前面实验内容二的方法,确定最佳工作频率。观察示波器,找到接收波形的最大值,记录幅度为最大时的距离,由数显尺上直接读出或在机械刻度上读出;记下2S 位置0X 。然后,向着同方向转动距离调节鼓轮,这时波形的幅度会发生变化(同时在示波器上可以观察到来自接收换能器的振动曲线波形发生相移),逐个记下振幅最大的1X ,2X ,…9X 共10个点,单次测量的波长1i i i X X 2???=λ 。用逐差法处理这十个数据,即可得到波长λ 。

2.相位比较法(李萨如图法)测量波长:

将测试方法设置到连续波方式。确定最佳工作频率,单踪示波器接收波接到“Y ”,发射波接到“EXT ”外触发端;双踪示波器接收波接到“1CH ”,发射波接到“2CH ”,打到“Y X ?” 显示方式,适当调节示波器,出现李萨如图形。转动距离调节鼓轮,观察波形为一定角度的斜线,记下2S 的位置0X ,再向前或者向后(必须是一个方向)移动距离,使观察到的波形又回到前面所说的特定角度的斜线,这时来自接收换能器2S 的振动波形发生了π2相移。依次记下示波器屏上斜率负、正变化的直线出现的对应位置1X ,2X ,…9X 。单次波长1i i i X X 2???=λ 。多次测定用逐差法处理数据,即可得到波长λ。

3.干涉法、相位法的声速计算:

已知波长λ和平均频率f (频率由声速测试仪信号源频率显示窗口直接读出),则声速

λ?=f V

由于声速还与介质温度有关,故请记下介质温度)C ( t ° 。

4.时差法测量声速:

(1)空气介质:

测量空气声速时,将专用信号源上“声速传播介质”置于“空气”位置,发射换能器(带有转轴)用紧定螺钉固定,然后将话筒插头插入接线盒中的插座中。

将测试方法设置到脉冲波方式。将1S 和2S 之间的距离调到一定距离(≥mm 50)

。开启数显表头电源,并置0,再调节接收增益,使示波器上显示的接收波信号幅度在mV 400~300左右(峰-峰值),以使计时器工作在最佳状态。然后记录此时的距离值和显示的时间值1i L ?、1i t ? (时间由声速测试仪信号源时间显示窗口直接读出);移动2S ,记录下这时的距离值和显示的时间值i L 、i t 。则声速)t t /()L L (V 1i i 1i i 1????= 。

- 6 -

记录介质温度)C ( t °。

需要说明的是,由于声波的衰减,移动换能器使测量距离变大(这时时间也变大)时,如果测量时间值出现跳变,则应顺时针方向微调“接收放大”旋钮,以补偿信号的衰减;反之测量距离变小时,如果测量时间值出现跳变,则应逆时针方向微调“接收放大”旋钮,以使计时器能正确计时。

(2)液体介质:

当使用液体为介质测试声速时,先小心将金属测试架从储液槽中取出,取出时应用手指稍稍抵住储液槽,再向上取出金属测试架。然后向储液槽注入液体,直至液面线处,但不要超过液面线。注意:在注入液体时,不能将液体淋在数显表头上,然后将金属测试架装回储液槽。

专用信号源上“声速传播介质”置于“液体”位置,换能器的连接线接至测试架上的“液体”专用插座上,即可进行测试,步骤与1相同。

记录介质温度)C ( t ° 。

3)固体介质:

测量非金属(有机玻璃棒)、金属(黄铜棒)固体介质时,可按以下步骤进行实验: ① 将专用信号源上的“测试方法”置于“脉冲波”位置,“声速传播介质”按测试材质的不同,置于“非金属”或“金属”位置。

② 先拔出发射换能器尾部的连接插头,再将待测的测试棒的一端面小螺柱旋入接收换能器中心螺孔内,再将另一端面的小螺柱旋入能旋转的发射换能器上,使固体棒的两端面与两换能器的平面可靠、紧密接触,注意:旋紧时,应用力均匀,不要用力过猛,以免损坏螺纹,拧紧程度要求两只换能器端面与被测棒两端紧密接触即可。调换测试棒时,应先拔出发射换能器尾部的连接插头,然后旋出发射换能器的一端,再旋出接收换能器的一端。

③ 把发射换能器尾部的连接插头插入接线盒的插座中,按图)b (5接线,即可开始测量。

④ 记录信号源的时间读数,单位为s μ。测试棒的长度可用游标卡尺测量得到并记录。 ⑤ 用以上方法调换第二长度及第三长度被测棒,重新测量并记录数据。

⑥ 用逐差法处理数据,根据不同被测棒的长度差和测得的时间差计算出被测棒的声速。 【数据处理】

1.自拟表格记录所有的实验数据,表格要便于用逐差法求相应位置的差值和计算λ。

2.以空气介质为例,计算出共振干涉法和相位法测得的波长平均值λ,及其标准偏差λS ,同时考虑仪器的示值读数误差为mm 01.0。经计算可得波长的测量结果λΔ±λ=λ。 3.按理论值公式0

0S T T V V ?= ,算出理论值S V 。 式中s /m 45.331V 0=为K 15.273T 0=时的声速,()K 15.273t T +=。

4.计算出通过二种方法测量的V 以及V Δ值,其中S V V V ?=Δ 。

- 7 -

将实验结果与理论值比较,计算百分比误差。分析误差产生的原因。可写为在室温 为 C °时,用共振干涉法(相位法)测得超声波在空气中的传播速度为:

=V ± s /m ,S

V V Δ=δ= % 5.列表记录用时差法测量非金属棒及金属棒的实验数据。

(1) 三根相同材质,但不同长度待测棒的长度。

(2) 每根待测棒所测得相对应的声速。

(3) 用逐差法求相应的差值,然后通过计算与理论声速传播测量参数进行比较,并计算百分误差。

【思考题】

1.声速测量中共振干涉法、相位法、时差法有何异同?

2.为什么要在谐振频率条件下进行声速测量?如何调节和判断测量系统是否处于谐振状态?

3.为什么发射换能器的发射面与接收换能器的接收面要保持互相平行?

4.声音在不同介质中传播有何区别?声速为什么会不同?

【附录一】超声波的发射与接收—压电换能器

压电陶瓷超声换能器能实现声

压和电压之间的转换。压电换能器

做波源具有平面性、单色性好以及

方向性强的特点。同时,由于频率

在超声范围内,一般的音频对它没

有干扰。频率提高,波长λ就短,

在不长的距离中可测到许多个λ,

取其平均值,λ的测定就比较准确。

这些都可使实验的精度大大提高。

压电换能器的结构示意图见图6。

压电换能器由压电陶瓷片和轻、重两种金属组成。压电陶瓷片(如钛酸钡,锆钛酸铅等)是由一种多晶结构的压电材料做成,在一定的温度下经极化处理后,具有压电效应。在简单情况下,压电材料受到与极化方向一致的应力T 时,在极化方向上产生一定的电场

强度E ,

它们之间有一简单的线性关系T g E ?=;反之,当与极化方向一致的外加电压U 加在压电材料上时,材料的伸缩形变S 与电压U 也有线性关系dU S =。比例常数d ,g 称为压电常数,与材料性质有关。由于U ,S ,T ,E 之间具有简单的线性关系,因此我们可以将正弦交流电信号转变成压电材料纵向长度的伸缩,成为声波的声源,同样也可以使声压变化转变为电压的变化,用来接收声信号。在压电陶瓷片的头尾两端胶粘两块金属,组成夹心形振子。头部用轻金属做成喇叭型,尾部用重金属做成柱型,中部为压电陶瓷圆环,紧固螺钉穿过环中心。这种结构增大了幅射面积,增强了振子与介质的耦合作用,由于振子是以纵向长度的伸缩直接影响头部轻金属作同样的纵向长度伸缩(对尾部重金属作用小)

,这样所发射的波方向性强,平面性好。

- 8 - 压电换能器谐振频率kHz 335±,功率不小于W 10。

【附录2】 数显表头的使用方法及维护

声速测量组合仪储液槽上方的测量显示两换能器移动距离的数显表头使用方法:

1.mm /inch 按钮为英制/公制转换用,测量声速时一般只用“mm ”

; 2.“OFF ”、“ON ”按钮为数显表头电源开关

3.“ZERO ”按钮为表头数字回零用。

4.数显表头在标尺范围内,接收换能器处于任意位置都可设置“0”位。摇动丝杆,接

收换能器移动的距离为数显表头显示的数字。

5.数显表头右下方有“▼”处,可打开更换表头内扣式电池。

6.使用时严禁将数显表头淋湿,如表头不慎受潮不能正常显示,可用电吹风吹干(用电

吹风低温档,温度不超过C 60°)或把标尺卸下放在太阳光下洒干驱潮即可恢复功能)

。 7.数显表头与数显杆尺的配合极其精密,应避免剧烈的撞击和重压。

8.仪器使用完毕后,应关掉数显表头的电源,以免无谓消耗钮扣电池。

9.6SV 的数显温度表电源不能关闭,必要时可取出钮扣电池。

10.当数显表头的电池能量使用完时,应及时更换新电池。但在数显表暂时不能使用的情况下,可以直接用游标卡尺进行读数,不会影响测量结果!!!

【附录3】 不同介质声速传播测量参数(供参考)

一.空气介质(标准大气压下):

()s /m t 61.045.331V +=

二.液体介质:

1.淡水 1480 s /m

2.甘油 1920 s /m

3.变压器油 1425 s /m

4.蓖麻油 1540 s /m

三.固体介质:

1.有机玻璃 2250~1800 s /m

2.尼龙 2200~1800 s /m

3.聚胺脂 1850~1600 s /m

4.黄铜 3650~3100 s /m

5.金 2030 s /m

6.银 2670 s /m

注:固体材料由于其材质、密度、测试的方法各有差异,故声速测量参数仅供参考。

【附录4】

1.5SV 型声速测量组合仪适用于空气、液体、固体介质声速测定使用;

2.6SV 型声速测量组合仪适用于空气、液体、固体介质声速测定使用,加装有数显式温

度表,用来指示实验时的环境温度。

声速测定以及声速数据处理

【实验目的】 1.了解压电换能器的功能,加深对驻波及振动合成等理论知识的理解。 2.学习用共振干涉法、相位比较法和时差法测定超声波的传播速度。 3.通过用时差法对多种介质的测量,了解声纳技术的原理及其重要的实用意义。 【实验原理】 在波动过程中波速V 、波长λ和频率f 之间存在着下列关系:λ?=f V ,实验中可通过测定声波的波长λ和频率f 来求得声速V 。常用的方法有共振干涉法与相位比较法。 声波传播的距离L 与传播的时间t 存在下列关系:t V L ?= ,只要测出L 和t 就可测出声波传播的速度V ,这就是时差法测量声速的原理。 1.共振干涉法(驻波法)测量声速的原理: 当二束幅度相同,方向相反的声波相交时,产生干涉现象,出现驻波。对于波束1:)/X 2t cos(A F 1λ?π-ω?=、波束2:()λ?π+ω?=/X 2t cos A F 2,当它们相交会时,叠加后的波形成波束3:()t cos /X 2cos A 2F 3ω?λ?π?=,这里ω为声波的角频率,t 为经过的时间,X 为经过的距离。由此可见,叠加后的声波幅度,随距离按()λ?π/X 2cos 变化。如图28.1所示。 压电陶瓷换能器1S 作为声波发射器,它由信号源供给频率为数千周的交流电信号,由逆压电效应发出一平面超声波;而换能器2S 则作为声波的接收器,正压电效应将接收到的声压转换成电信号,该信号输入示波器,我们在示波器上可看到一组由声压信号产生的正弦波形。声源1S 发出的声波,经介质传播到2S ,在接收声波信号的同时反射部分声波信号,如果接收面(2S )与发射面(1S )严格平行,入射波即在接收面上垂直反射,入射波与发射波相干涉形成驻波。我们在示波器上观察到的实际上是这两个相干波合成后在声波接收器2S 处的振动情况。移动2S 位置(即改变1S 与2S 之间的距离),你从示波器显示上会发现当2S 在某些位置时振幅有最小值或最大值。根据波的干涉理论可以知道:任何二相邻的振幅最

声速的测定实验报告

声速的测定实验报告 1、实验目的 (1)学会用驻波法和相位法测量声波在空气中传播速度。 (2)进一步掌握示波器、低频信号发生器的使用方法。 (3)学会用逐差法处理数据。 2、实验仪器 超声声速测定仪、低频信号发生器DF1027B 、示波器ST16B 。 3、实验原理 3.1 实验原理 声速V 、频率f 和波长λ之间的关系式为λf V =。如果能用实验方法测量声波的频率f 和波长λ,即可求得声速V 。常用的测量声速的方法有以下两种。 3.2 实验方法 3.2.1 驻波共振法(简称驻波法) S 1发出的超声波和S 2反射的超声波在它们之间的区域内相干涉而形成驻波。当波源的 频率和驻波系统的固有频率相等时,此驻波的振幅才达到最大值,此时的频率为共振频率。 驻波系统的固有频率不仅与系统的固有性质有关,还取决于边界条件,在声速实验中, S 1、S 2即为两边界,且必定是波节,其间可以有任意个波节,所以驻波的共振条件为: Λ Λ3,2,1,2 ==n n L λ (1) 即当S 1和S 2之间的距离L 等于声波半波长的整数倍时,驻波系统处于共振状态,驻波振幅最大。在示波器上得到的信号幅度最大。当L 不满足(1)式时,驻波系统偏离共振状态,驻波振幅随之减小。 移动S 2,可以连续地改变L 的大小。由式(1)可知,任意两个相邻共振状态之间,即 S 2所移过的距离为: () 22 2 11λ λ λ = ? -+=-=?+n n L L L n n (2) 可见,示波器上信号幅度每一次周期性变化,相当于L 改变了2λ。此距离2λ 可由超声声速测定仪上的游标卡尺测得,频率可由低频信号发生器上的频率计读得,根据f V ?=λ,就 可求出声速。 3.2.2 两个相互垂直谐振动的合成法(简称相位法) 在示波器荧光屏上就出现两个相互垂直的同频率的谐振动的合成图形——称为李沙如图形。其轨迹方程为: ()()φφφφ122122122 12 2-=-- ???? ??+???? ??Sin Cos A A XY A Y A X (5) 在一般情况下,此李沙如图形为椭圆。当相位差 12=-=?φφφ时,由(5)式,得 x A A y 12=,即轨迹为一条处在于第一和第三象限的直线[参见图16—2(a)]。

声速测量实验报告

大学物理实验课教案 俸永格(136********) 教学题目:声速的测量 教学对象:10级电子信息班、10动医学班、10级农机班、10级植保班。授课地点:海南大学基础实验楼2610室。 教学重点:让学生了解测量超声波在媒介中传播速度的实验设计思想和实验方法。 教学难点:让学生熟练掌握双踪示波器、SV5/7测试仪、SV8信号源的协调使用并完成两正交信号相位差的多次测量。 一实验目的: (1)加深对驻波及振动合成等理论知识的理解, (2)掌握用驻波法、相位法测定超声波在媒介中的传播速度, (3)了解压电换能器的工作原理,进一步熟悉示波器的使用方法提高运用示波器观测物理参数的综合运用能力。 二实验仪器: GW-680双踪示波器一台,SV8信号发生器一台,SV7测试仪一台,同轴电缆若干。 三实验原理 声波是一种在弹性媒质中传播的纵波。对超声波(频率超过2×104Hz的声波)传播速度的测量在国防工业、工业生产、军事科学与医疗卫生各领域都具有重大的现实意义。实验室常用驻波法和相位法进行测量。 (一)驻波法测量声速基本原理 如图所示为两列同频率、同振幅、振动方向平行且相向传波的机械波在媒介中形成的驻波波形,其波腹间距与波节间距均为半个波长。通过对波腹(节)

间距X的测量便可实现对波长λ的间接测量,结合对驻波谐振频率f的测量便可间接求算声波的传播速度v。 v = λ×f λ=2X v = 2X×f 原理图示1(驻波法原理图) (二)相位法测量声速基本原理 请同学们自行完成!要求体现以下两个方面的内容! (1)简谐振动正交合成的基本原理, (2)利用李萨如图形的相位差特点间接测量声速的基本原理。 四实验内容与步骤 (一)驻波法测声速 实验连线图示1(驻波法) (1)了解测试仪的基本结构,调节两个换能器的间距5cm左右。 (2)初始化示波器面板获得扫描线。 (3)按图示1正确连线,将示波器的扫描灵敏度与通道1垂直灵敏度旋钮分别调至适当档位,缓慢顺时针方向转动换能器平移鼓轮至驻波波腹位置

超声波声速测量实验中的误差分析之欧阳家百创编

误差理论与数据处理 欧阳家百(2021.03.07) 研究性教学 课程名称:误差理论与数据处理 设计题目:超声波声速测量的误差分析 院系:机械与电子控制工程学院 班级:测控1103班 设计者:晏雯秀(11222086)赵璐(11222079) 郑海冰(11222081)朱崇巧(11222084) 周杏芳(11222083) 指导教师:孙艳华 超声波声速测量的误差分析 摘要 : 针对学生在超声波声速测量实验中存在的测量数据误差的问题 , 分析了实验中各种可能的误差来源 , 同时也指出了减小误差的相应措施 , 使学生对该实验的误差来源更清楚。 关键词: 超声波; 谐振频率; 共振干涉频率; 误差 声波是在弹性媒质中传播的一种机械波。对声波特性如频率、声速、波长、声压衰减等的测量是声学应用技术中的主要内容之一。在物理实验中,进行声速测量一般采用的是频率大于20 kHz

以上的超声波。由于其频率高、波长短, 所以超声波具有定向好、功率大、穿透力强、信息携带量大、能引起空化作用以及引起许多特殊效应(如凝聚效应和分离效应) 的优点。在工业、农业、国防、生物医学和科学研究等各个领域存着广泛的应用 ,如超声无损检测、超声波测距和定位、测量气体温度瞬间变化、测液体流速、测材料弹性模量等等。对声速进行测量, 在声波定位、探伤、测距等应用中具有重要意义。超声波声速的测量方法一般有共振干涉法和相位比较法两种 , 本文主要对共振干涉法中的实验误差作简要分析。 一、共振干涉法原理 超声波声速的测量公式是v = fλ, 其中 , f为超声波频率 , 等于发射换能器的谐振频率, 可由频率计直接读出; λ 为本实验所要测量的量 , 为超声波波长。基本原理是利用频率计输入电压的激发 ,通过逆压电效应 , 使压电陶瓷片处在共振状态 , 使陶瓷体产生机械简谐振动, 从而发射出简谐超声波。超声波在空气中传播遇到接收换能器反射面发生反射 , 反射波与入射波叠加形成驻波 , 利用接收换能器对超声波进行接收。又通过正压电效应 , 将机械振动 (声信号 ) 转化成电信号 , 从示波器上观察到相应的电信号波形 , 两相邻极大值之间的间距为12λ。由此得到波长值λ, 利用公式计算出超声波的声速 v。 二、误差来源 在超声波声速测定的实验教学中 , 学生所计算出的超声波声速与该温度下的理论值之间的相对误差往往存在一定的偏离 , 针对这

声速的测量实验报告

声速的测量实验报告 声速的测量实验报告 1 实验目的:测量声音在空气中的传播速度。 实验器材:温度计、卷尺、秒表。 实验地点:平遥县状元桥东。 实验人员:爱物学理小组 实验分工:张灏、成立敬测量时间 张海涛发声 贾兴藩测温 实验过程: 1 测量一段开阔地长; 2 测量人在两端准备; 3 计时员挥手致意,发声人准备发声; 4 发生人向上举手,同时发声,计时员计时(看到举手始,听到声音止) 5 多测几次,记录数据。 实验结果: 时间 17∶30 温度 21℃ 发声时间 0.26 发声距离 93m 实验结论:在21℃空气中,声音传播速度为357.69m/s. 实验反思:有一定误差,卡表不够准确。

声速的测量实验报告2 实验目的: 1)探究影响声速的因素,超声波产生和接收的原理。 2)学习、掌握空气中声速的测量方法 3)了解、实践液体、固体中的声速测量方法。 4)三种声速测量方法作初步的比较研究。 实验仪器: 1)超声波发射器 2)超声波探测器 3)平移与位置显示部件。 4)信号发生器: 5)示波器 实验原理: 1)空气中: a.在理想气体中声波的传播速度为 v88 (式中8088cp cV (1) 称为质量热容比,也称比热[容]比,它是气体的质 量定压热容cp与质量定容热容cV的比值;M 是气体的摩尔质量,T是绝对温度,R=8.314472(11.710-6)Jmol-1K-1为摩尔气体常量。) 标准干燥空气的平均摩尔质量为Mst =28.9668710-3kg/mol b.在标准状态下(T088273.15 K,p88101.388kPa),干燥空气中的声速 为v0=331.5m/s。在室温t℃下,干燥空气中的声速为 v88v0 (2)

大学物理实验报告-声速的测量

实 验 报 告 声速的测量 【实验目的】 1.学会用共振干涉法、相位比较法以及时差法测量介质中的声速 2.学会用逐差法进行数据处理; 3.了解声速与介质参数的关系。 【实验原理】 由于超声波具有波长短,易于定向发射、易被反射等优点。在超声波段进行 声速测量的优点还在于超声波的波长短,可以在短距离较精确的测出声速。 超声波的发射和接收一般通过电磁振动与机械振动的相互转换来实现,最常 见的方法是利用压电效应和磁致伸缩效应来实现的。本实验采用的是压电陶瓷制 成的换能器(探头),这种压电陶瓷可以在机械振动与交流电压之间双向换能。 声波的传播速度与其频率和波长的关系为:v f λ=? (1) 由(1)式可知,测得声波的频率和波长,就可以得到声速。同样,传播速度亦可用 /v L t = (2) 表 示,若测得声波传播所经过的距离L 和传播时间t ,也可获得声速。 1. 共振干涉法 实验装置如图1所示,图中和为压电晶体换能器,作为声波源,它被低频信号发生器输出的交流电信号激励后,由于逆压电效应发生受迫振动,并向空气中定向发出以近似的平面声波;为超声波接收器,声波传至它的接收面上时,再被反射。当和的表面近似平行时,声波就在两个平面间来回反射,当两个平面间距L 为半波长的整倍数,即 (3) 时,发出的声波与其反射声波的相位在处差(n=1,2 ……),因此形成共振。 因为接收器的表面振动位移可以忽略,所以对位移来说是波节,对声压来说是波腹。本实验测量的是声压,所以当形成共振时,接收器的输出会出现明显增大。从示波器上观察到的电信号幅值也是极大值(参见图2)。 图中各极大之间的距离均为,由于散射和其他损耗,各级大致幅值随距离增大而逐渐减小。我们只要测出各极大值对应的接收器的位置,就可测出波长。由信号源读出超声波的频率值后,即可由公式(1)求得声速。

声速测量实验报告

声速测量实验报告 【实验目的】 1.学会测量超声波在空气中的传播速度的方法。 2.理解驻波和振动合成理论。 3.学会用逐差法进行数据处理。 4.了解压电换能器的功能和培养综合使用仪器的能力。 【实验仪器】 信号发生器、双踪示波器、声速测定仪。 【实验原理】 声波的传播速度v与声波频率f和波长的关系为: 可见,只要测出声波的频率f和波长 ,即可求出声速。f可由声源的振动频率得到,因此,实验的关键就是如何测定声波波长。 根据超声波的特点,实验中可以采用驻波法和相位法测出超声波的波长。 1. 驻波法(共振干涉法) 如右图所示,实验时将信号发生器输出的 正弦电压信号接到发射超声换能器上,超声发 射换能器通过电声转换,将电压信号变为超声 波,以超声波形式发射出去。接收换能器通过 声电转换,将声波信号变为电压信号后,送入示波器观察。 由声波传播理论可知,从发射换能器发出一定频率的平面声波,经过空气传播,到达接收换能器。如果接收面和发射面严格平行,即入射波在接收面上垂直反射,入射波与反射波相互干涉形成驻波。此时,两换能器之间的距离恰好等于其声波半波长的整数倍。在声驻波中,波腹处声压(空气中由于声扰动而引起的超出静态大气压强的那部分压强)最小,而波节处声压最大。当接收换能器的反射界面处为波节时,声压效应最大,经接收器转换成电信号后从示波器上观察到的电压信号幅值也是极大值,所以可从接收换能器端面声压的变化来判断超声波驻波是否形成。 移动卡尺游标,改变两只换能器端面的距离,在一系列特定的距离上,媒质中将出现稳定的驻波共振现象,此时,两换能器间的距离等于半波长的整数倍,只要我们监测接收换能器输出电压幅度的变化,记录下相邻两次出现最大电压数值时(即接收器位于

声速的测量

超声声速测量预习提纲 1、实验任务: (1)用相位法、共振法测空气中的声速;(必做) (2)用时差法测空气中的声速; (选做) 2、实验原理: (1)压电陶瓷换能器如何进行工作的? (2)驻波如何形成? (3)三种测量方法的主要实验原理如何? (4)i x ?是半个波长还是一个波长? (5)如何利用逐差法计算波长?(2 5 x λ=?,测10个数据用逐差法进行处 理) 3、操作规范: (1)为什么要进行谐振频率调节?如何调? (2)如何理解示波器上的的直线、椭圆图形? (3)如何避免回程差? (4)时差法中如何调节使接收波信号幅度始终保持一致? (5)如何正确使用示波器? 4、数据处理: (1)逐差法是采用逐项逐差还是隔项逐差; (2)如何设计表格及必要数据的具体计算过程; (3)为什么时差法中延迟时间1i i t t --必需是三位有效数? 5、结果讨论和误差分析:(本次实验项目的重点)。 (1)二种或三种测量方法的优劣比较,定量分析引起误差的原因; (2)百分差一般控制在5%以内。

超声声速测量数据记录表格设计提示 实验数据及结果: 1、共振干涉法: 温度:t= ± 0C 谐振频率:f = ± H 2、相位比较法:(参照共振干涉法) 数据处理: 1、 共振干涉法: 5,i i i x x +?=- ()5i i i x x x +?-?=?===仪 x S m ?= =--- x m ??==--- 2 5x m λ??=??=--- 15 i x x m ?=?∑?=--

2 5 x m λ=?=-- 2 5 x m λ??=??=-- m V f S ==--V m f S λ?=?=-- () V m V V S =±?=--±-- () 331.45S m m V V S S ===-- 100%%V V V E ??=--= 100%%S S V V V E P -?=--= 2、相位比较法: 计算过程同上 3、时差法: 3 0.01510L m -??==? 同理:6 0.510t s -??=? L m V S t ?==--? V m V S ?==-- () V m V V S =±?=--±-- 100%V V E V ?=? 100%S P S V V E V -=? 误 差 分 析 举 例 结果讨论及定性分析: 1、从百分差中可知,共振干涉法的误差最大,其次是相位比较法,最小是时差法。共振干涉法的误差最大原因:主要是每次观察正弦波波峰最大时容易出现误差,而相位比较法用里萨尔图形的斜率正、负直线观察出现误差较小,而时差法误差最小,其实验原理决定了该实验方法的误差。 2、在调节谐振频率时,由于信号源稳定性较差,开始时的谐振频率跟实验结束时的谐振频率有变化,变小,存在系统误差。

大学物理实验报告-声速的测量

声速的测量 【实验目的】 1.学会用共振干涉法、相位比较法以及时差法测量介质中的声速 2.学会用逐差法进行数据处理; 3.了解声速与介质参数的关系。 【实验原理】 由于超声波具有波长短,易于定向发射、易被反射等优点。在超声波段进行 声速测量的优点还在于超声波的波长短,可以在短距离较精确的测出声速。 超声波的发射和接收一般通过电磁振动与机械振动的相互转换来实现,最常 见的方法是利用压电效应和磁致伸缩效应来实现的。本实验采用的是压电陶瓷制 成的换能器(探头),这种压电陶瓷可以在机械振动与交流电压之间双向换能。 声波的传播速度与其频率和波长的关系为: v f λ=? (1) 由(1)式可知, 测得声波的频率和波长,就可以得到声速。同样,传播速度亦可用 /v L t = (2) 表 示,若测得声波传播所经过的距离L 和传播时间t ,也可获得声速。 1. 共振干涉法 实验装置如图1所示,图中和为压电晶体换能器,作为声波源,它被低频信号发生器输出的交流电信号激励后,由于逆压电效应发生受迫振动,并向空气中定向发出以近似的平面声波;为超声波接收器,声波传至它的接收面上时,再被反射。当和的表面近似平行时,声波就在两个平面间来回反射,当两个平面间距L 为半波长的整倍数,即 (3) 时,发出的声波与其反射声波的相位在处差(n=1,2 ……),因此形成 共振。 因为接收器的表面振动位移可以忽略,所以对位移来说是波节,对声压来说是波腹。本实验测量的是声压,所以当形成共振时,接收器的输出会出现明显

增大。从示波器上观察到的电信号幅值也是极大值(参见图2)。 图中各极大之间的距离均为,由于散射和其他损耗,各级大致幅值随距离增大而逐渐减小。我们只要测出各极大值对应的接收器的位置,就可测出波长。由信号源读出超声波的频率值后,即可由公式(1)求得声速。 2.相位比较法 波是振动状态的传播,也可以说是位相的传播。沿波传播方向的任何两点同相位时,这两点间的距离就是波长的整数倍。利用这个原理,可以精确的测量波 长。实验装置如图1所示,沿波的传播方向移动接收器,接收到的信号再次与 发射器的位相相同时,一国的距离等于与声波的波长。 同样也可以利用李萨如图形来判断位相差。实验中输入示波器的是来自同一信号源的信号,它们的频率严格一致,所以李萨如图是椭圆,椭圆的倾斜与两信 号的位相差有关,当两信号之间的位相差为0或时,椭圆变成倾斜的直线。 3.时差法 用时差法测量声速的实验装置仍采用上述仪器。由信号源提供一个脉冲信号经发出一个脉冲波,经过一段距离的传播后,该脉冲信号被接收,再将该信号返回信号源,经信号源内部线路分析、比较处理后输出脉冲信号在、之间 的传播时间t,传播距离L可以从游标卡尺上读出,采用公式(2)即可计算出声速。 4.逐差法处理数据 在本实验中,若用游标卡尺测出个极大值的位置,并依次算出每经过个 的距离为 这样就很容易计算出。如测不到20个极大值,则可少测几个(一定是偶数),用类似方法计算即可。

声速的测量实验报告.doc

声速的测量实验报告 不会写声速的测量实验报告的朋友,下面请看我给大家整理收集的声速的测量实验报告,仅供参考。 声速的测量实验报告1 实验目的:测量声音在空气中的传播速度。 实验器材:温度计、卷尺、秒表。 实验地点:平遥县状元桥东。 实验人员:爱物学理小组 实验分工:张灏、成立敬——测量时间 张海涛——发声 贾兴藩——测温 实验过程: 1 测量一段开阔地长; 2 测量人在两端准备; 3 计时员挥手致意,发声人准备发声; 4 发生人向上举手,同时发声,计时员计时(看到举手始,听到声音止) 5 多测几次,记录数据。 实验结果: 时间17∶30 温度21℃

发声时间 0.26″ 发声距离 93m 实验结论:在21℃空气中,声音传播速度为357.69m/s. 实验反思:有一定误差,卡表不够准确。 声速的测量实验报告2 实验目的: 1)探究影响声速的因素,超声波产生和接收的原理。 2)学习、掌握空气中声速的测量方法 3)了解、实践液体、固体中的声速测量方法。 4)三种声速测量方法作初步的比较研究。 实验仪器: 1)超声波发射器 2)超声波探测器 3)平移与位置显示部件。 4)信号发生器: 5)示波器 实验原理: 1)空气中: a.在理想气体中声波的传播速度为 v88 (式中8088cp cV (1) 称为质量热容比,也称"比热[容]比",它是气体的质 量定压热容cp与质量定容热容cV的比值;M 是气体的摩尔质量,T 是绝对温度,R=8.314472(1±1.7×10-6)Jmol-1K-1为摩尔气体常量。)

标准干燥空气的平均摩尔质量为Mst =28.966�8�710-3kg/mol b.在标准状态下 (T0�8�8273.15 K,p�8�8101.3�8�8kPa),干燥空气中的声速 为v0=331.5m/s。在室温t℃下,干燥空气中的声速为 v88v0 (2) (T0=273.15K) c.然而实际空气总会有一些水蒸气。当空气中的相对湿度为r时,若气温为t℃时饱和蒸气压为pS,则水汽分压为rps。经过对空气平均摩尔质量 M 和质量热容比8�0 的修正,在温度为t、相对湿度为r 的空气中,声速为 (在北京大气压可近似取p�8�4 101kPa;相对湿度r 可从干湿温度计上读出。温度t℃时的饱和水汽压ps可用 lgps�8�810.286�8�2 d.式(3)的计算结果与实际的超声声速真值可能有一定偏差。 引起偏差的原因有: ~状态参量的测量误差 ~理想气体理论公式的近似性 实验方法: A. 脉冲法:利用声波传播时间与传播距离计算声速 实验中用脉冲法测量,具体测量从脉冲声源(声发射器)到声探测器

测定空气中的声速

【实验名称】用闪光法测不良导体的热导率 【目的要求】 1、 测定不良导体的热导率 2、 了解一种测定材料热物性参数的方法 3、 了解热物性参数测量中的基本问题 4、 学习正确使用高压脉冲光源和光路调节技术以及用微机控制实验 和采集处理数据 【仪器用具】 闪光法热导仪(包括高压脉冲氙灯和电源,光学调节系统) ,待测样 系别— 实验报告 班号 _______________ 姓名 ____________________ 第1页

品(酚醛胶木板、大理石各一片),PN结温度传感器,放大电路, AD/DA卡,计算机及相关软件 【实验原理】 1、傅里叶导热定律和热导率 热传导是指发生在固体内部或静止流体内部的热量交换过程。其微观机制是由自由电子或晶格振动波作为载体进行热量交换的过程。宏观上是由于物体内部存在温度梯度,发生从高温区向低温区传输能量的过程。 傅里叶导热定律: 其中q为热流密度矢量,表示在单位等温面上沿温度降低方向单位时间内传递的能量。入是热导率,是反映物质导热能力的重要物性参数,表示每单位时间内,在每单位长度上温度降低1K时,每单位面积上通过的热量,单位为W/(m ? K)。 2、材料热导率的测量方法

测固体材料热导率的方法有两大类,一类是稳态法,另一类是非稳态法。本次实验采用闪光法,属于非稳态法。实验中采用圆形薄试样,一面用一个脉冲型热源(氙灯)加热,测量另一面温度随时间的变化关系,利用非稳态导热微分方程,得到热扩散率a。 热导率入和热扩散率a有如下关系: ■ - :- :?c 其中C为材料的比热容,p为材料的密度 实验原理示意图: 假设脉冲光在t=0时刻垂直均匀照射在圆形薄试样表面,且被试

声速测量实验报告

一、实验项目名称:声速测量 二、实验目的: 1.学会测量超声波在空气中传播速度的方法。 2.理解驻波和振动合成理论。 3.学会逐差法进行数据整理。 4.了解压电换能器的功能和培养综合使用仪器的能力。 三、实验原理: 1. 声波在空气中的传播速度: 在标况下,干燥空气中的声速为v=331.5m/s,T=273.15K。室温t℃时,干燥空气的声速为v=v。(1+t/T。)^(1/2) 2. 测量声速的实验方法:v=fλ式中,v声速,f声源震动频率,波长。 I.相位法 波是震动状态的传播,即相位的传播。若超声波发生器发出的声波是平面波,当接受器端面垂直于波的传播方向时,其端面上各点都具有相同的相位。沿传播方向移动接收器时,总可以找到一个位置使得接受到的信号与发射器的激励电信号同相。继续移动接受器,直到找到的信号再一次与发射器的激励电信号同相时,移过的这段距离就等于声波的波长。 需要说明的是,在实际操作中,用示波器测定电信号时,由于换能器振动的传递或放大电路的相移,接受器端面处的声波与声源并不同相,总是有一定的相位差。为了判断相位差并测量波

长,可以利用双踪示波器直接比较发射器的信号和接收器的信号,进而沿声波传播方向移动接收器寻找同相点来测量波长;也可以利用李萨如图形寻找同相或反相时椭圆退化成直线的点。 II.驻波法 按照波动理论,超声波发生器发出的平面声波经介质到接收器,若接收面与发射面平行,声波在接收面处就会被垂直反射,于是平面声波在两端面间来回反射并叠加。当接收端面与当接受端面与发射头间的距离恰好等于半波长的整数倍时,叠加后的波就形成驻波。此时相邻两波节(或波腹)间的距离等于半个波长(即)。当发生器的激励频率等于驻波系统的固有频率(本实验中压电陶瓷的固有频率)时,会产生驻波共振,波腹处的振幅达到最大值。 声波是一种纵波。由纵波的性质可以证明,驻波波节处的声压最大。当发生共振时,接收端面处为一波节,接收到的声压最大,转换成的电信号也最强。移动接收器到某个共振位置时,示波器上又会出现了最强的信号,继续移动接收器到某个共振位置,再次出现最强的信号,则两次共振位置之间距离为λ/2。四、实验仪器: 声速测试仪、信号发生器、示波器。 五、实验内容及步骤: 用驻波法测声速 (1)按图连接电路,将信号发生器的输出端与声速仪的输出

声速测量实验报告.doc

声速测量实验报告 只有通过实验才能知道结果,那么,下面是我给大家整理收集的声速测量实验报告,供大家阅读参考。 声速测量实验报告1 实验目的:测量声音在空气中的传播速度。 实验器材:温度计、卷尺、秒表。 实验地点:平遥县状元桥东。 实验人员:爱物学理小组 实验分工:张x——测量时间 张x——发声 贾x——测温 实验过程: 1 测量一段开阔地长; 2 测量人在两端准备; 3 计时员挥手致意,发声人准备发声; 4 发生人向上举手,同时发声,计时员计时(看到举手始,听到声音止) 5 多测几次,记录数据。 实验结果: 时间17∶30 温度21℃

发声时间 0.26″ 发声距离 93m 实验结论:在21℃空气中,声音传播速度为357.69m/s. 实验反思:有一定误差,卡表不够准确。 声速测量实验报告2 一实验目的: (1)加深对驻波及振动合成等理论知识的理解, (2)掌握用驻波法、相位法测定超声波在媒介中的传播速度, (3)了解压电换能器的工作原理,进一步熟悉示波器的使用方法提高运用示波器观测物理参数的综合运用能力。 二实验仪器: 双踪示波器一台,信号发生器一台,测试仪一台,同轴电缆若干。 三实验原理 声波是一种在弹性媒质中传播的纵波。对超声波(频率超过2×10Hz 的声波)传播速度的测量在国防工业、工业生产、军事科学与医疗卫生各领域都具有重大的现实意义。实验室常用驻波法和相位法进行测量。 (一)驻波法测量声速基本原理 如图所示为两列同频率、同振幅、振动方向平行且相向传波的机械波在媒介中形成的驻波波形,其波腹间距与波节间距均为半个波长。通过对波腹(节)间距X的测量便可实现对波长λ的间接测量,结合对驻波谐振频率f的测量便可间接求算声波的传播速度v。 v = λ × f λ=2X v = 2X × f

超声波声速测量实验中的误差分析

误差理论与数据处理 研究性教学 课程名称:误差理论与数据处理 设计题目:超声波声速测量的误差分析 院系:机械与电子控制工程学院 班级:测控1103班 设计者:晏雯秀(11222086)赵璐(11222079) 郑海冰(11222081)朱崇巧(11222084) 周杏芳(11222083) 指导教师:孙艳华

超声波声速测量的误差分析 摘要: 针对学生在超声波声速测量实验中存在的测量数据误差的问题, 分析了实验中各种可能的误差来源, 同时也指出了减小误差的相应措施, 使学生对该实验的误差来源更清楚。 关键词: 超声波; 谐振频率; 共振干涉频率; 误差 声波是在弹性媒质中传播的一种机械波。对声波特性如频率、声速、波长、声压衰减等的测量是声学应用技术中的主要内容之一。在物理实验中,进行声速测量一般采用的是频率大于20 kHz以上的超声波。由于其频率高、波长短, 所以超声波具有定向好、功率大、穿透力强、信息携带量大、能引起空化作用以及引起许多特殊效应(如凝聚效应和分离效应) 的优点。在工业、农业、国防、生物医学和科学研究等各个领域存着广泛的应用,如超声无损检测、超声波测距和定位、测量气体温度瞬间变化、测液体流速、测材料弹性模量等等。对声速进行测量, 在声波定位、探伤、测距等应用中具有重要意义。超声波声速的测量方法一般有共振干涉法和相位比较法两种, 本文主要对共振干涉法中的实验误差作简要分析。 一、共振干涉法原理 超声波声速的测量公式是v = fλ, 其中, f为超声波频率, 等于发射换能器的谐振频率, 可由频率计直接读出; λ 为本实验所要测量的量, 为超声波波长。基本原理是利用频率计输入电压的激发,通过逆压电效应, 使压电陶瓷片处在共振状态, 使陶瓷体产生机械简谐振动, 从而发射出简谐超声波。超声波在空气中传播遇到接收换能器反射面发生反射, 反射波与入射波叠加形成驻波, 利用接收换能器对超声波进行接收。又通过正压电效应, 将机械振动(声信号) 转化成电信号, 从示波器上观察到相应的电信号波形, 两相邻极大值之间的间距为12λ。由此得到波长值λ, 利用公式计算出超声波的声速v。

实验数据误差分析与数据处理

第一章实验数据误差分析与数据处理 第一节实验数据误差分析 一、概述 由于实验方法和实验设备的不完善,周围环境的影响,以及人的观察力,测量程序等限制,实 验测量值和真值之间,总是存在一定的差异,在数值上即表现为误差。为了提高实验的精度, 缩小实验观测值和真值之间的差值,需要对实验数据误差进行分析和讨论。 实验数据误差分析并不是即成事实的消极措施,而是给研究人员提供参与科学实验的积极武器, 通过误差分析,可以认清误差的来源及影响,使我们有可能预先确定导致实验总误差的最大组 成因素,并设法排除数据中所包含的无效成分,进一步改进实验方案。实验误差分析也提醒我 们注意主要误差来源,精心操作,使研究的准确度得以提高。 二、实验误差的来源 实验误差从总体上讲有实验装置(包括标准器具、仪器仪表等)、实验方法、实验环境、实验人员和被测量五个来源。 1. 实验装置误差 测量装置是标准器具、仪器仪表和辅助设备的总体。实验装置误差是指由测量装置产生的测量 误差。它来源于: (1))标准器具误差 标准器具是指用以复现量值的计量器具。由于加工的限制,标准器复现的量值单位是有误差的。例如,标准刻线米尺的0 刻线和1 000 mm 刻线之间的实际长度与 1 000 mm 单位是有差异的。又如,标称值为1kg 的砝码的实际质量(真值)并不等于1kg 等等。 (2))仪器仪表误差 凡是用于被测量和复现计量单位的标准量进行比较的设备,称为仪器或仪表.它们将被测量转 换成可直接观察的指示值。例如,温度计、电流表、压力表、干涉仪、天平,等等。 由于仪器仪表在加工、装配和调试中,不可避免地存在误差,以致仪器仪表的指示值不等于被 测量的真值,造成测量误差。例如,天平的两臂不可能加工、调整到绝对相等,称量时,按天 平工作原理,天平平衡被认为两边的质量相等。但是,由于天平的不等臂,虽然天平达到平衡, 但两边的质量并不等,即造成测量误差。 (3))附件误差 为测量创造必要条件或使测量方便地进行而采用的各种辅助设备或附件,均属测量附件。如电 测量中的转换开关及移动测点、电源、热源和连接导线等均为测量附件,且均产生测量误差。 又如,热工计量用的水槽,作为温度测量附件,提供测量水银温度计所需要的温场,由于水槽 内各处温度的不均匀,便引起测量误差,等等。 按装置误差具体形成原因,可分为结构性的装置误差、调整性的装置误差和变化性的装置误差。结 构性的装置误差如:天平的不等臂,线纹尺刻线不均匀,量块工作面的不平行性,光学零件

声速的测量 (2)

声速测量 一、实验目的: 1、了解压电晶体换能器的工作原理; 2、理解共振干涉法和相位比较法测量声速的基本原理; 3、掌握用共振干涉法和相位比较法测量声波在空气中以及水中传播速度的方法; 4、熟悉各种测量仪器和示波器的调节和使用。 二、实验仪器: 声速测定仪、信号发生器、示波器、屏蔽馈线。 三、实验原理 声速是描述波在媒质中传播特性的物理量,它与媒质的性质及状态有关,频率在20—20000赫兹范围内为可闻声,大于20000赫兹为超声波,由于超声波具有波长短,方向性好,抗干扰强等特点,在传播的过程中入射波与反射波容易产生干涉并形成驻波,而可闻声只能在驻波管内产生干涉形成驻波。本实验是通过测量波长λ和频率f ,由公式V f λ=算出声速。 压电陶瓷: 压电陶瓷(如:钛酸钡、锆钡酸铅)具有正压电效应和逆压电效应,当它受到压力时,表面产生电荷,形成电场,为正压电效应。在外加电场的作用下可产生形变,为逆压电效应,当交流电压作用于压电陶瓷时,它将作周期性的形变即振动从而发出声波。 利用压电陶瓷在外来振动的作用下产生变化电场的正压电效应可用来接收声波信号。 1、共振干涉法(驻波法) 如图(一)所示,超声波发射换能器与超声波接收换能器平行正对,超声波发射换能器发出超声波向右传播,遇到接收换能器后发生反射,此时发射换能器与接收换能器之间的入射波与反射波传播方向相反并且满足相干条件,因此两列波叠加干涉形成驻波,相邻波腹和波节间距离都为 2 λ ,当接收换能器移至波腹处接收信号最强,实验中通过移动接收换能器依次记下波腹位置,它满足: l k λ=,,1,2,k i i i =++L 发射换 能器 图(一)

大物实验报告声速测定(DOC)

声速测定 引言:本实验使用了超声声速测定仪、低频信号发生器(DF1027B)、示波器 (ST16B)设计了共振干涉法、相位比较法、时差法来进行超声速的测定,并对实验数据进行处理、分析,最终得出声速,并与理论值进行比较。 关键词:声速测定。 Abstract:This experiment uses the ultrasonic velocity measurement instrument (DF1027B), low frequency signal generator, oscilloscope (ST16B) design the resonance interferometry, phase comparison method, the time difference method for supersonic were measured, and the experimental data processing and analysis, finally obtains the speed of sound, and compared with the theoretical value. 一、实验目的 1、了解超声波换能器的工作原理和功能; 2、学习不同方法测定声速的原理和技术; 3、熟悉测定仪和示波器的调节和使用; 4、测定声速在空气中的传播速度。 二、仪器设备 ZKY_SS超声声速测定仪、低频信号发生器、示波器。 三、实验原理 由波动理论得知,声波的传播速度v与声波频率和波长之间的关系为。所以只要测出声波的频率和波长,就可以求出声速。其中声波频率可由产生声波的电信号发生器的振荡频率读出,波长则可用共振法和相位比较法进行测量。时差法可通过测量某一定间隔距离声音传播的时间来测量声波的传播速度。 压电陶瓷换能器 本实验采用压电陶瓷换能器来实现声压和电压之间的转换。它主要由压电陶瓷环片、轻金属铅(做成喇叭形状,增加辐射面积)和重金属(如铁)组成。压电陶瓷片由多晶体结构的压电材料锆钛酸铅制成。在压电陶瓷片的两个底面加上正弦交变电压,它就会按正弦规律发生纵向伸缩,从而发出超声波。同样压电陶瓷可以在声压的作用下把声波信号转化为电信号。压电陶瓷换能器在声—电转化过程中信号频率保持不变。 如图1所示,S1作为声波发射器,它把电信号转化为声波信号向空间发射。S2是信号接收器,它把接收到的声波信号转化为电信号供观察。其中S1是固定的,而S2可以左右移动。

空气中声速的测定

实验3-12空气中声速的测定 一、画出实验原理图 二、测量公式及式中各量的物理意义 三、预习自测题 1.超声波是指频率kHz的声波。 2.本实验用两个压电元件作换能器,一个换能器由高频电信号激振而产生,另一个作为接收器将高频变化的声压转换为。 3.两个换能器相对放置且端面平行时,在它们间形成驻波,当接收器位于驻波场中的处时声压最大,此时示波器显示的幅值。 4.实验中,为了使发射换能器谐振,要调节信号源的输出频率,判断其谐振与否的标志为(1);(2) 。 5.相位法测声速时,将发射器与接收器的正弦信号分别输入示波器的x轴与y轴,两个信号的合成在屏幕上形成李萨如图。当接收器移动时,图象将作周期性变化,每改变一个

周期,换能器移动的距离为 ,相位改变 。 四、原始数据记录与处理 1.驻波法实验数据 频率f = (Hz ) 室温t = (℃) 对测量量L ,其平均值的 A 类不确定度 =--=∑=25 1 )()15(51 14.1L L S i i L B 类不确定度 =? = C u 则L 不确定度 =+=22 u S u L L 这样 == L 52 λ ==L u u 5 2λ 则 ==λf V ==λfu u V 速度V 的完整表示为 当温度为t 时,空气中声速 =+ =15 .27310t V V t 则实验测量值与理论计算值的相对百分误差为 =?-= '%100t t V V V E 2.相位法实验数据(每隔2π测一次) 频率 f = (Hz ) 室温t = (℃)

对测量量L ,其平均值的 A 类不确定度 =L S B 类不确定度 =?= C u 则L 不确定度 =+=22 u S u L L 这样 =λ =λu 则 ==λf V ==λfu u V 速度V 的完整表示为 当温度为t 时,空气中声速 =+ =15 .27310t V V t 则实验测量值与理论计算值的相对百分误差为 =?-= '%100t t V V V E 3.双踪显示法实验数据(选作) 频率 f = (Hz ) 室温t = (℃)

测量密度实验中的误差分析

测量密度实验中的误差分析 在初中物理学习中,“密度”这一知识点既是重点也是难点,在社会生活及现代科学技术中密度知识的应用也十分普遍,对未知物质密度的测定具有十分重要的现实意义,特别是为物理的探究式教学,自主参与式学习提供了很好的素材,值得我们认真地探索和挖掘。 在“测量物质密度”的实验教学过程中初中物理只要求学生掌握测量固体和液体密度的方法,下面就从误差的分类和来源两各方面来分析常见的几种实验方法中的误差产生原因和减小误差的方法。 一、误差及其种类和产生原因: 每一个物理量都是客观存在,在一定的条件下具有不依人的意志为转移的客观大小,人们将它称为该物理量的真值。进行测量是想要获得待测量的真值。然而测量要依据一定的理论或方法,使用一定的仪器,在一定的环境中,由具体的人进行。由于实验理论上存在着近似性,方法上难以很完善,实验仪器灵敏度和分辨能力有局限性,周围环境不稳定等因素的影响,待测量的真值是不可能准确测得的,测量结果和被测量真值之间总会存在或多或少的偏差,这种偏差就叫做测量值的误差。 测量误差主要分为两大类:系统误差、随机误差。 (一)系统误差产生的原因:1、测量仪器灵敏度和分辨能力较低;2、实验原理和方法不完善等。 (二)随机误差产生的原因:1、环境因素的影响;2、实验者自身条件等。 二、减小误差的方法 1、选用精密的测量仪器; 2、完善实验原理和方法; 3、多次测量取平均值。 三、测量固体密度 (一)测量规则固体的密度: 原理:ρ=m/V 实验器材:天平(带砝码)、刻度尺、圆柱体铝块。 实验步骤:1、用天平测出圆柱体铝块的质量m; 2、根据固体的形状测出相关长度(横截面圆的直径:D、高:h), 由相应公式(V=Sh=πD2h/4)计算出体积V。 3、根据公式ρ=m/V计算出铝块密度。 误差分析: 1、产生原因:(1)测量仪器天平和刻度尺的选取不够精确; (2)实验方法不完善; (3)环境温度和湿度因素的影响; (4)测量长度时估读和测量方法环节; (5)计算时常数“π”的取值等。 2、减小误差的方法:(1)选用分度值较小的天平和刻度尺进行测量; (2)如果可以选择其他测量工具,则在测量体积时可以选 择量筒来测量体积。 (3)测量体积时应当考虑环境温度和湿度等因素,如“热 胀冷缩”对不同材料的体积影响。 (4)对于同一长度的测量,要选择正确的测量方法,读数

声速的测定实验报告

移动S2,可以连续地改变 L 的大小。由式 1)可知,任意两个相邻共振状态之间,即 (2) 声速的测定实验报告 1、 实验目的 (1) 学会用驻波法和相位法测量声波在空气中传播速度。 (2) 进一步掌握示波器、低频信号发生器的使用方法。 (3) 学会用逐差法处理数据。 2、 实验仪器 超声声速测定仪、低频信号发生器 DF1027B 示波器ST16B 3、 实验原理 3. 1 实验原理 声速V 频率f 和波长入之间的关系式为 V = f '。如果能用实验方法测量声波的频率 f 和波长入,即可求得声速 V 。常用的测量声速的方法有以下两种。 3. 2 实验方法 3. 2. 1驻波共振法(简称驻波法) S1 发出的超声波和 S 2反射的超声波在它们之间的区域内相干涉而形成驻波。当波源的 频率和驻波 系统的固有频率相等时,此驻波的振幅才达到最大值,此时的频率为共振频率。 驻波系统的固有频率不仅与系统的固有性质有关,还取决于边界条件,在声速实验中, $、S2 即为两边界,且必定是波节,其间可以有任意个波节,所以驻波的共振条件为: 丸 L = n ,n =1,2,3 ... 2 (1) 即当S1 和S 2之间的距离L 等于声波半波长的整数倍时,驻波系统处于共振状态,驻波振幅 最大。在示波器上得到的信号幅度最大。当 L 不满足(1)式时,驻波系统偏离共振状态, 驻波振幅随之减小。 S 2 所移过的距离为: L = L n 1 一 L n 可见,示波器上信号幅度每一次周期性变化,相当于 L 改变了 2。此距离2可由超声声速 测定仪上的游标卡尺测得,频率可由低频信号发生器上的频率计读得,根据 V ='十,就 可求出声速。 3. 2. 2两个相互垂直谐振动的合成法(简称相位法) 在示波器荧光屏上就出现两个相互垂直的同频率的谐振动的合成图形一一称为李沙如 图形。其轨迹方程为: ‘X 弓亠、2XY 厂皿 i 2M A i — + — I --------- 。0朋2-电)=sin 伸2-%) IA 1 丿 1A 2 丿 A 1A 2 ( 5) 在一般情况下,此李沙如图形为椭圆。当相位差 八y 2 一 ‘广。时,由(5)式,得

相关主题
文本预览
相关文档 最新文档