当前位置:文档之家› 实验六数字滤波器设计

实验六数字滤波器设计

实验六数字滤波器设计
实验六数字滤波器设计

实验六数字滤波器设计

13通信工程方鹏豪134173708

1)基于Butterworth 模拟滤波器原型,使用双线性变换法分别设计IIR 数字低通滤波器,参数指标:通带截止频率Wp=0.2 π,通带波动值Rp=1dB,阻带截止频率Ws=0.3 π,阻带最小衰减Rs=20dB。滤波器采样频率Fs=2000 Hz。

要求:绘出幅频特性、相频特性图并比较结果,绘出滤波器零极点图,写出滤波器的系统函数。

代码:

%数字滤波器指标

Wp=0.2*pi; Ws=0.3*pi;

Rp=1; Rs=20;

%转换为模拟滤波器指标

Fs=2000; T=1/Fs;

Omgp=(2/T)*tan(Wp/2); %双线性变换法中频率预畸变

Omgs=(2/T)*tan(Ws/2);

%模拟原型滤波器计算

[N, Omgc]=buttord(Omgp, Omgs, Rp, Rs, 's') %计算阶数和截止频率

[z0, p0, k0]=buttap(N); %归一化原型设计

b0=k0*real(poly(z0)) %求原型滤波器分子分母系数

a0=real(poly(p0));

[b, a]=lp2lp(b0, a0, Omgc) %变换为模拟滤波器分子分母系数

%用双线性变换法计算数字滤波器系数

[num, den]=bilinear(b, a, Fs) %数字滤波器设计结果

%方法2:直接求模拟滤波器系数

[b, a]=butter(N, Omgc, 's');

[num, den]=bilinear(b, a, Fs);

%方法3:直接求数字滤波器系数

[N, Wc]=buttord(Wp/pi, Ws/pi, Rp, Rs);

[num, den]=butter(N, Wc);

%求数字滤波器的频率特性

[H, w]=freqz(num, den);

db_H=20*log10((abs(H)+eps)/max(abs(H))); %转换为分贝值

subplot(2, 2, 1); plot(w/pi, abs(H));

ylabel('幅度'); xlabel('频率'); title('幅度响应');axis([0, 1, 0, 1.1]);

set(gca, 'XTickMode', 'manual', 'XTick', [0, 0.2, 0.3, 1]);

ripple=10^(-Rp/20); rs=10^(-Rs/20);

set(gca, 'YTickMode', 'manual', 'YTick', [0, rs, ripple, 1]); grid

subplot(2, 2, 2); plot(w/pi, angle(H)/pi);

ylabel('相位'); xlabel('频率'); title('相位响应');axis([0, 1, -1, 1]);

set(gca, 'XTickMode', 'manual', 'XTick', [0, 0.2, 0.3, 1]);

set(gca, 'YTickMode', 'manual', 'YTick', [-1, 0, 1]); grid

subplot(2, 2, 3); plot(w/pi, db_H);

ylabel('幅度(dB)'); xlabel('频率'); title('幅度响应(dB)'); axis([0, 1, -50, 5]); set(gca, 'XTickMode', 'manual', 'XTick', [0, 0.2, 0.3, 1]);

set(gca, 'YTickMode', 'manual', 'YTick', [-50, -20, -1, 0]); grid

subplot(2, 2, 4); zplane(num, den);

axis([-1.1, 1.1, -1.1, 1.1]); title('零极点图');

运算图形结果:

2)基于切比雪夫I 型模拟滤波器原型设计,使用脉冲响应不变法设计一个IIR 数字带通滤波器,参数指标:下通带截止频率Wp1=0.3 π,上通带截止频率Wp2=0.7 π,通带最大衰减Rp=1dB;下阻带截止频率Ws1=0.2 π,上阻带截止频率Ws2=0.8 π,阻带最小衰减Rs=20dB。滤波器采样频率Fs=2000 Hz。

要求:绘出幅频特性、相频特性图并比较结果,绘出滤波器零极点图,写出滤波器的系统函数。

代码:

%数字滤波器指标

Wp1=0.3*pi; Wp2=0.7*pi; Ws1=0.2*pi; Ws2=0.8*pi;

Rp=1; Rs=20;

%转换为模拟滤波器指标

Fs=2000; T=1/Fs;

Omgp1=Wp1*Fs; Omgp2=Wp2*Fs;

Omgs1=Ws1*Fs; Omgs2=Ws2*Fs;

Omgp=[Omgp1, Omgp2];

Omgs=[Omgs1, Omgs2];

bw=Omgp2-Omgp1; w0=sqrt(Omgp1*Omgp2); %通带中心频率

%模拟原型滤波器计算

[N, Omgn]=cheb1ord(Omgp, Omgs, Rp, Rs, 's'); %计算阶数和截止频率

[z0, p0, k0]=cheb1ap(N, Rp); %归一化原型设计

[b0, a0]=zp2tf(z0, p0, k0); %求原型滤波器系数

[ba, aa]=lp2bp(b0, a0, w0, bw); %低通原型转换为带通

[num, den]=impinvar(ba, aa, Fs); %用冲激响应不变法计算数字滤波器系数

%求数字滤波器的频率特性

[H, w]=freqz(num, den);

db_H=20*log10((abs(H)+eps)/max(abs(H))); %转换为分贝值

subplot(2, 2, 1); plot(w/pi, abs(H));

ylabel('幅度'); xlabel('频率'); axis([0, 1, 0, 1.1]);

set(gca, 'XTickMode', 'manual', 'XTick', [0.2, 0.3, 0.7, 0.8]);

ripple=10^(-Rp/20); rs=10^(-Rs/20);

set(gca, 'YTickMode', 'manual', 'YTick', [0, rs, ripple, 1]); grid subplot(2, 2, 2); plot(w/pi, angle(H)/pi);

ylabel('相位'); xlabel('频率'); axis([0, 1, -1, 1]);

set(gca, 'XTickMode', 'manual', 'XTick', [0.2, 0.3, 0.7, 0.8]); set(gca, 'YTickMode', 'manual', 'YTick', [-1, 0, 1]); grid

subplot(2, 2, 3); plot(w/pi, db_H);

ylabel('幅度(dB)'); xlabel('频率'); axis([0, 1, -50, 5]);

set(gca, 'XTickMode', 'manual', 'XTick', [0.2, 0.3, 0.7, 0.8]); set(gca, 'YTickMode', 'manual', 'YTick', [-50, -20, -1, 0]); grid subplot(2, 2, 4); zplane(num, den);

axis([-1.1, 1.1, -1.1, 1.1]); title('零极点图');

图形结果:

3)基于切比雪夫II 型模拟滤波器原型设计,采用双线性变换法设计一个数字带阻滤波器,参数指标:通带低端截止频率Wp1=0.2 π,通带高端截止频率Wp2=0.8 π,通带最大衰减Rp=1dB;阻带低端截止频率Ws1=0.3 π,阻带高端截止频率Ws2=0.7 π,阻带最小衰减Rs=20dB。滤波器采样频率Fs=2000Hz。

要求:绘出幅频特性、相频特性图并比较结果,绘出滤波器零极点图,写出滤波器的系统函数。

代码如下:

%数字滤波器指标

Wp1=0.2*pi; Wp2=0.8*pi; Ws1=0.3*pi; Ws2=0.7*pi;

Rp=1; Rs=20;

%转换为模拟滤波器指标

Fs=2000; T=1/Fs;

Omgp1=(2/T)*tan(Wp1/2); Omgp2=(2/T)*tan(Wp2/2);

Omgs1=(2/T)*tan(Ws1/2); Omgs2=(2/T)*tan(Ws2/2);

Omgp=[Omgp1, Omgp2];

Omgs=[Omgs1, Omgs2];

bw=Omgp2-Omgp1; w0=sqrt(Omgp1*Omgp2); %阻带中心频率

%模拟原型滤波器设计

[N, Omgn]=cheb2ord(Omgp, Omgs, Rp, Rs, 's'); %计算阶数和截止频率

[z0, p0, k0]=cheb2ap(N, Rs); %归一化原型设计

[b0, a0]=zp2tf(z0, p0, k0); %求原型滤波器系数

[ba, aa]=lp2bs(b0, a0, w0, bw); %低通原型转换为带阻

[num, den]=bilinear(ba, aa, Fs); %用双线性变换法计算数字滤波器系数

%求数字滤波器的频率特性

[H, w]=freqz(num, den);

db_H=20*log10((abs(H)+eps)/max(abs(H))); %转换为分贝值

subplot(2, 2, 1); plot(w/pi, abs(H));

ylabel('幅度'); xlabel('频率'); axis([0, 1, 0, 1.1]);

set(gca, 'XTickMode', 'manual', 'XTick', [0.2, 0.3, 0.7, 0.8]);

ripple=10^(-Rp/20); rs=10^(-Rs/20);

set(gca, 'YTickMode', 'manual', 'YTick', [0, rs, ripple, 1]); grid

subplot(2, 2, 2); plot(w/pi, angle(H)/pi*180,'k');

ylabel('相位'); xlabel('频率'); axis([0, 1, -180, 180]);

set(gca, 'XTickMode', 'manual', 'XTick', [0.2, 0.3, 0.7, 0.8]);

set(gca, 'YTickMode', 'manual', 'YTick', [-180, -90, 0, 90, 180]); grid subplot(2, 2, 3); plot(w/pi, db_H);

ylabel('幅度(dB)'); xlabel('频率'); axis([0, 1, -60, 5]);

set(gca, 'XTickMode', 'manual', 'XTick', [0.2, 0.3, 0.7, 0.8]);

set(gca, 'YTickMode', 'manual', 'YTick', [-80, -20, -1, 0]); grid

subplot(2, 2, 4); zplane(num, den);

axis([-1.1, 1.1, -1.1, 1.1]); title('零极点图');

图形结果:

4)基于椭圆模拟滤波器原型设计,采用双线性变换法设计一个数字高通滤波器,参数指标:通带

截止频率Wp=0.45 π,通带最大衰减Rp=1dB;阻带截止频率Ws=0.3 π,阻带最小衰减Rs=40dB。滤

波器采样频率Fs=2000 Hz。

要求:绘出幅频特性、相频特性图并比较结果,绘出滤波器零极点图,写出滤波器的系统函数。

代码如下:

%数字滤波器指标

Wp=0.45*pi; Ws=0.3*pi;

Rp=1; Rs=40;

%转换为模拟滤波器指标

Fs=2000; T=1/Fs;

Omgp=(2/T)*tan(Wp/2); Omgs=(2/T)*tan(Ws/2);

%模拟原型滤波器设计

[N, Omgc]=ellipord(Omgp, Omgs, Rp, Rs, 's');

[z0, p0, k0]=ellipap(N, Rp, Rs);

[b0, a0]=zp2tf(z0, p0, k0);

[ba, aa]=lp2hp(b0, a0, Omgc); %低通原型转换为高通

[num, den]=bilinear(ba, aa, Fs);

%求数字滤波器的频率特性

[H, w]=freqz(num, den);

db_H=20*log10((abs(H)+eps)/max(abs(H))); %转换为分贝值

subplot(2, 2, 1); plot(w/pi, abs(H));

ylabel('幅度'); xlabel('频率'); axis([0, 1, 0, 1.1]);

set(gca, 'XTickMode', 'manual', 'XTick', [0.2, 0.3, 0.7, 0.8]);

ripple=10^(-Rp/20); rs=10^(-Rs/20);

set(gca, 'YTickMode', 'manual', 'YTick', [0, rs, ripple, 1]); grid

subplot(2, 2, 2); plot(w/pi, angle(H)/pi*180,'k');

ylabel('相位'); xlabel('频率'); axis([0, 1, -180, 180]);

set(gca, 'XTickMode', 'manual', 'XTick', [0.2, 0.3, 0.7, 0.8]);

set(gca, 'YTickMode', 'manual', 'YTick', [-180, -90, 0, 90, 180]); grid subplot(2, 2, 3); plot(w/pi, db_H);

ylabel('幅度(dB)'); xlabel('频率'); axis([0, 1, -60, 5]);

set(gca, 'XTickMode', 'manual', 'XTick', [0.2, 0.3, 0.7, 0.8]);

set(gca, 'YTickMode', 'manual', 'YTick', [-80, -20, -1, 0]); grid

subplot(2, 2, 4); zplane(num, den);

axis([-1.1, 1.1, -1.1, 1.1]); title('零极点图');

图形结果:

5)基于切比雪夫II 型模拟滤波器原型设计,采用脉冲响应不变法设计一个数字高通滤波

器,要求:Wp=0.45 π,Rp=1dB;Ws=0.25 π,Rs=40 dB,滤波器采样频率Fs=2000Hz。在同一图形界面上显示原模拟高通滤波器和数字高通滤波器的冲激响应和幅频特性进行比较,观察脉冲不变现象及幅频响应有无混叠现象。

代码如下:

%数字滤波器指标

Wp=0.4*pi; Ws=0.25*pi;

Rp=1; Rs=40;

%转换为模拟原型滤波器指标

Fs=2000; T=1/Fs;

Omgp=Wp*Fs; Omgs=Ws*Fs;

%模拟滤波器计算

[N, Omgc]=cheb2ord(Omgp, Omgs, Rp, Rs, 's');

[z0, p0, k0]=cheb2ap(N, Rs); %设计归一化的切比雪夫模拟原型滤波器

ba1=k0*real(poly(z0));

aa1=real(poly(p0));

[b0, a0]=zp2tf(z0, p0, k0);

[ba, aa]=lp2hp(b0, a0, Omgc);

[num, den]=impinvar(ba, aa, Fs); %用脉冲响应不变法计算数字滤波器系数

%模拟滤波器与数字滤波器的冲激响应

t=0: T: (30*T); nt=length(t);

ha=impulse(ba, aa, t);

h=impz(num, den, nt);

subplot(2, 1, 1); plot(t, ha*T, 'r'); hold on

stem(t, h, 'k')

title('模拟(红)与数字(黑)滤波器的冲激响应');

%模拟滤波器与数字滤波器的幅频响应

wb=[0: Fs]*2*pi; %为作图建立频率向量

Ha=freqs(ba, aa, wb); %计算模拟频率响应

H=freqz(num, den, wb/Fs); %计算数字频率响应

subplot(2, 1, 2);

plot(wb/(2*pi), abs(Ha)/max(abs(Ha)), 'r'); hold on

plot(wb/(2*pi), abs(H)/max(abs(H)), 'k');

title('模拟(红)与数字(黑)滤波器的幅频响应')

%由运行结果可见,数字高通滤波器的冲激响应是对模拟高通滤波器冲激响应的等间隔采样,即脉

%冲响应不变的意义。

%在幅频曲线中,图形横轴取0~Fs 的频率范围,可以看出,数字滤波器幅频特性是对模拟滤波器

%幅频特性的周期延拓,在0~Fs 范围内,关于Fs/2 对称。但由运行结果可知,高通数字滤波器幅频曲

%线与模拟滤波器的幅频曲线比较,产生了很大的频响混叠,不能满足设计要求。

图形结果:

绝对经典的低通滤波器设计报告

经典 无源低通滤波器的设计

团队:梦知队 团结奋进,求知创新,追求卓越,放飞梦想 队员: 日期:2010.12.10 目录 第一章一阶无源RC低通滤波电路的构建 (3) 1.1 理论分析 (3) 1.2 电路组成 (4) 1.3 一阶无源RC低通滤波电路性能测试 (5) 1.3.1 正弦信号源仿真与实测 (5) 1.3.2 三角信号源仿真与实测 (10) 1.3.3 方波信号源仿真与实测 (15) 第二章二阶无源LC低通滤波电路的构建 (21) 2.1理论分析 (21) 2.2 电路组成 (22) 2.3 二阶无源LC带通滤波电路性能测试 (23) 2.3.1 正弦信号源仿真与实测 (23) 2.3.2 三角信号源仿真与实测 (28)

2.3.3 方波信号源仿真与实测 (33) 第三章结论与误差分析 (39) 3.1 结论 (39) 3.2 误差分析 (40) 第一章一阶无源RC低通滤波电路的构建1.1理论分析 滤波器是频率选择电路,只允许输入信号中的某些频率成分通过,而阻止其他频率成分到达输出端。也就是所有的频率成分中,只是选中的部分经过滤波器到达输出端。 低通滤波器是允许输入信号中较低频率的分量通过而阻止较高频率的分量。 图1 RC低通滤波器基本原理图 当输入是直流时,输出电压等于输入电压,因为Xc无限大。当输入

频率增加时,Xc减小,也导致Vout逐渐减小,直到Xc=R。此时的频率为滤波器的特征频率fc。 解出,得: 在任何频率下,应用分压公式可得输出电压大小为: 因为在=时,Xc=R,特征频率下的输出电压用分压公式可以表述为: 这些计算说明当Xc=R时,输出为输入的70.7%。按照定义,此时的频率称为特征频率。 1.2电路组成

实验四 IIR数字滤波器设计

实验四IIR数字滤波器的设计与MATLAB实现 一、实验目的: 1、要求掌握IIR数字滤波器的设计原理、方法、步骤。 2、能够根据滤波器设计指标进行滤波器设计。 3、掌握数字巴特沃斯滤波器和数字切比雪夫滤波器的设计原理和步骤。 二、实验原理: IIR数字滤波器的设计方法:频率变换法、数字域直接设计以及计算机辅助等。这里只介绍频率变换法。由模拟低通滤波器到数字低通滤波器的转换,基本设计过程: 1、将数字滤波器的设计指标转换为模拟滤波器指标 2、设计模拟滤波器G(S) 3、将G(S)转换为数字滤波器H(Z) 在低通滤波器设计基础上,可以得到数字高通、带通、带阻滤波器的设计流程如下: 1、给定数字滤波器的设计要求(高通、带通、带阻) 2、转换为模拟(高通、带通、带阻)滤波器的技术指标 3、转换为模拟低通滤波器的指标 4、设计得到满足3步骤中要求的低通滤波器传递函数 5、通过频率转换得到模拟(高通、带通、带阻)滤波器 6、变换为数字(高通、带通、带阻)滤波器 三、标准数字滤波器设计函数 MATLAB提供了一组标准的数字滤波器设计函数,大大简化了滤波器设计过程。 1、butter 例题1 设计一个5阶Butterworth数字高通滤波器,阻带截止频率为250Hz ,设采样频率为1KHz. 图1 5阶Butterworth数字高通滤波器

2、cheby1和cheby2 例题2 设计一个7阶chebyshevII型数字低通滤波器,截止频率为3000Hz,Rs=30dB,采样频率为1KHz。 图2 7阶chebyshevII型数字低通滤波器 四、冲激响应不变法 一般来说,在要求时域冲激响应能模仿模拟滤波器的场合,一般使用该方法。冲激响应不变法一个重要的特点是频率坐标的变换时线性的,因此如果模拟滤波器的频响带限于折叠频率的话,则通过变换后滤波器的频率响应可不失真的反映原响应与频率的关系。 例题3 设计一个中心频率为500Hz,带宽为600 Hz的数字带通滤波器,采样频率为1K Hz。

实验五:FIR数字滤波器设计与软件实现

实验五:FIR数字滤波器设计与软件实现 一、实验指导 1.实验目的 (1)掌握用窗函数法设计FIR数字滤波器的原理和方法。 (2)掌握用等波纹最佳逼近法设计FIR数字滤波器的原理和方法。 (3)掌握FIR滤波器的快速卷积实现原理。 (4)学会调用MATLAB函数设计与实现FIR滤波器。 2.实验容及步骤 (1)认真复习第七章中用窗函数法和等波纹最佳逼近法设计FIR数字滤波器的原理; (2)调用信号产生函数xtg产生具有加性噪声的信号xt,并自动显示xt及其频谱,如图1所示; 图1 具有加性噪声的信号x(t)及其频谱如图 (3)请设计低通滤波器,从高频噪声中提取xt中的单频调幅信号,要求信号幅频失真小于0.1dB,将噪声频谱衰减60dB。先观察xt的频谱,确定滤波器指标参数。 (4)根据滤波器指标选择合适的窗函数,计算窗函数的长度N,调用MATLAB函数fir1设计一个FIR低通滤波器。并编写程序,调用MATLAB快速卷积函数fftfilt实现对xt的滤波。绘图显示滤波器的频响特性曲线、滤波器输出信号的幅频特性图和时域波形图。 (4)重复(3),滤波器指标不变,但改用等波纹最佳逼近法,调用MATLAB函数remezord 和remez设计FIR数字滤波器。并比较两种设计方法设计的滤波器阶数。 提示:○1MATLAB函数fir1的功能及其调用格式请查阅教材; ○2采样频率Fs=1000Hz,采样周期T=1/Fs; ○3根据图1(b)和实验要求,可选择滤波器指标参数:通带截止频率fp=120Hz,阻带截

至频率fs=150Hz ,换算成数字频率,通带截止频率p 20.24p f ωπ=T =π,通带最大衰为0.1dB ,阻带截至频率s 20.3s f ωπ=T =π,阻带最小衰为60dB 。 ○ 4实验程序框图如图2所示,供读者参考。 图2 实验程序框图 4.思考题 (1)如果给定通带截止频率和阻带截止频率以及阻带最小衰减,如何用窗函数法设计线性相位低通滤波器?请写出设计步骤. (2)如果要求用窗函数法设计带通滤波器,且给定通带上、下截止频率为pl ω和pu ω,阻带上、下截止频率为sl ω和su ω,试求理想带通滤波器的截止频率cl cu ωω和。 (3)解释为什么对同样的技术指标,用等波纹最佳逼近法设计的滤波器阶数低? 5.信号产生函数xtg 程序清单(见教材) 二、 滤波器参数及实验程序清单 1、滤波器参数选取 根据实验指导的提示③选择滤波器指标参数: 通带截止频率fp=120Hz ,阻带截至频率fs=150Hz 。代入采样频率Fs=1000Hz ,换算成数字频率,通带截止频率p 20.24p f ωπ=T =π,通带最大衰为0.1dB ,阻带截至频率

有源电力滤波器设计

1 引言 近年来,公用电网受到谐波电流和谐波电压的严重污染,而电力电子装置是其主要的谐波污染源。随着电力电子装置的日益广泛应用,电网中的谐波污染也日益严重,谐波污染影响到供电质量和用户使用的安全性,因此电网谐波污染的治理越来越受到关注。 滤波器在本质上是一种频率选择电路,通常用幅频响应和相位响应来表征一个滤波电路的特性。理想滤波电路在通带内应具有零衰减的幅频响应和线性的相位响应,而在阻带内应具有无限大的幅度衰减。按照通带和阻带的相互位置不同,滤波器可分为低通、高通、带通、带阻、全通5类。有源滤波器采用有源器件需要使用电源,加上功耗较大且集成运放的带宽有限,因此目前有源滤波电路的工作频率难以做得很高,一般不能用于高频场合。但总的来讲有源滤波器在低频(低于1MHz)场合中使用有较无源滤波器更优的性能,因而目前在音频处理、工业测控等领域广泛应用。有源电力滤波器是一种用于动态抑制谐波、补偿无功功率的新型电力电子装置,能对大小和频率都变化的谐波及无功功率进行补偿。和传统的无源滤波器相比,有以下几点突出的优点: (1)对各次谐波和分数谐波均能有效地抑制,且可提高功率因数; (2)系统阻抗和频率发生波动时,不会影响补偿效果。并能对频率和幅值都变化的谐波进行跟踪补偿,且补偿特性不受电网阻抗的影响; (3)不会产生谐振现象,且能抑制由于外电路的谐振产生的谐波电流的变化; (4)用一台装置就可以实现对各次谐波和基波无功功率的补偿; (5)不存在过载问题,即当系统中谐波较大时,装置仍可运行,无需断开。 由以上可看出,它克服了传统的无源滤波器的缺点,具有良好的调节性能,因而有很大的发展前途。

简单低通滤波器设计及matlab仿真

东北大学 研究生考试试卷 考试科目: 课程编号: 阅卷人: 考试日期: 姓名:xl 学号: 注意事项 1.考前研究生将上述项目填写清楚. 2.字迹要清楚,保持卷面清洁. 3.交卷时请将本试卷和题签一起上交. 4.课程考试后二周内授课教师完成评卷工作,公共课成绩单与试卷交研究生院培养办公室, 专业课成绩单与试卷交各学院,各学院把成绩单交研究生院培养办公室. 东北大学研究生院培养办公室

数字滤波器设计 技术指标: 通带最大衰减: =3dB , 通带边界频率: =100Hz 阻带最小衰减: =20dB 阻带边界频率: =200Hz 采样频率:Fs=200Hz 目标: 1、根据性能指标设计一个巴特沃斯低通模拟滤波器。 2、通过双线性变换将该模拟滤波器转变为数字滤波器。 原理: 一、模拟滤波器设计 每一个滤波器的频率范围将直接取决于应用目的,因此必然是千差万别。为了使设计规范化,需要将滤波器的频率参数作归一化处理。设所给的实际频 率为Ω(或f ),归一化后的频率为λ,对低通模拟滤波器令λ=p ΩΩ/,则1 =p λ, p s s ΩΩ=/λ。令归一化复数变量为p ,λj p =,则p p s j j p Ω=ΩΩ==//λ。所以巴 特沃思模拟低通滤波器的设计可按以下三个步骤来进行。 (1)将实际频率Ω规一化 (2)求Ωc 和N 11010/2-=P C α s p s N λααlg 1 10 110lg 10 /10/--= 这样Ωc 和N 可求。 p x fp s x s f

根据滤波器设计要求=3dB ,则C =1,这样巴特沃思滤波器的设计就只剩一个参数N ,这时 N p N j G 222 )/(11 11)(ΩΩ+= += λλ (3)确定)(s G 因为λj p =,根据上面公式有 N N N p j p p G p G 22)1(11 )/(11)()(-+= += - 由 0)1(12=-+N N p 解得 )221 2exp(πN N k j p k -+=,k =1,2, (2) 这样可得 1 )21 2cos(21 ) )((1 )(21+-+-= --= -+πN N k p p p p p p p G k N k k 求得)(p G 后,用p s Ω/代替变量p ,即得实际需要得)(s G 。 二、双线性变换法 双线性变换法是将s 平面压缩变换到某一中介1s 平面的一条横带里,再通过标准变换关系)*1exp(T s z =将此带变换到整个z 平面上去,这样就使s 平面与z 平面之间建立一一对应的单值关系,消除了多值变换性。 为了将s 平面的Ωj 轴压缩到1s 平面的1Ωj 轴上的pi -到pi 一段上,可以通过以下的正切变换来实现: )21 tan(21T T Ω= Ω 这样当1Ω由T pi -经0变化到T pi 时,Ω由∞-经过0变化到∞+,也映射到了整个Ωj 轴。将这个关系延拓到整个s 平面和1s 平面,则可以得到

实验4 基于MATLAB的FIR数字滤波器设计

实验4 基于MATLAB 的FIR 数字滤波器设计 实验目的:加深对数字滤波器的常用指标和设计过程的理解。 实验原理:低通滤波器的常用指标: P P P for H Ω≤Ω+≤Ω≤-,1)(1δδ πδ≤Ω≤Ω≤ΩS S for H ,)( 通带边缘频率P Ω,阻带边缘频率S Ω ,通带起伏 P δ, 通带峰值起伏] )[1(log 2010dB p p δα--=, 阻带起伏s δ,最小阻带衰减])[(log 2010dB s S δα-=。 数字滤波器有IIR 和FIR 两种类型,它们的特点和设计方法不同。 在MATLAB 中,可以用b=fir1(N,Wn,’ftype’,taper) 等函数辅助设计FIR 数字滤波器。N 代表滤波器阶数;Wn 代表滤波器的截止频率(归一化频率),当设计带通和带阻滤波器时,Wn 为双元素相量;ftype 代表滤波器类型,如’high ’高通,’stop ’带阻等;taper 为窗函数类型,默认为海明窗,窗系数需要实现用窗函数blackman, hamming,hanning chebwin, kaiser 产生。 例1 用凯塞窗设计一FIR 低通滤波器,通带边界频率π3.0=Ωp ,阻带边界频率π5.0=Ωs ,阻带衰减 不小于50dB 。 解 首先由过渡带宽和阻带衰减 来决定凯塞窗的N 和 π2.0=Ω-Ω=?Ωp s , , S P P S Passband Stopband Transition band Fig 1 Typical magnitude specification for a digital LPF

IIR数字滤波器的设计实验报告

IIR数字滤波器的设计 一、实验目的: 掌握冲激相应不变法和双线性变换法设计IIR数字滤波器的原理和方法; 观察冲激相应不变法和双线性变换法设计IIR数字滤波器的频率特性; 了解冲激相应不变法和双线性变换法的特点和区别。 二、实验原理: 无限长单位冲激响应(IIR)数字滤波器的设计思想: a)设计一个合适的模拟滤波器 b)利用一定的变换方法将模拟滤波器转换成满足预定指 标的数字滤波器 切贝雪夫I型:通带中是等波纹的,阻带是单调的

切贝雪夫II型:通带中是单调的,阻带是等波纹的 1.用冲击响应不变法设计一个低通切贝雪夫I型数字滤波器通带上限截止频率为400Hz 阻带截止频率为600Hz 通带最大衰减为0.3分贝 阻带最小衰减为60分贝 抽样频率1000Hz 2.用双线性变换法设计切贝雪夫II型高通滤波器 通带截止频率2000Hz 阻带截止频率1500Hz 通带最大衰减0.3分贝 阻带最小衰减50分贝 抽样频率20000Hz 四、实验程序:

1) Wp=2*pi*400; Ws=2*pi*600; Rp=0.3; Rs=60; Fs=1000; [N,Wn]=cheb1ord(Wp,Ws,Rp,Rs,'s'); [Z,P,K]=cheb1ap(N,Rp); [A,B,C,D]=zp2ss(Z,P,K); [At,Bt,Ct,Dt]=lp2lp(A,B,C,D,Wn); [num1,den1]=ss2tf(At,Bt,Ct,Dt); [num2,den2]=impinvar(num1,den1,Fs); [H,W1]=freqs(num1,den1); figure(1) subplot(2,1,1); semilogx(W1/pi/2,20*log10(abs(H)));grid; xlabel(' 频率/ Hz'); ylabel(' 模拟滤波器幅值(db)'); [H,W2]=freqz(num2,den2,512,'whole',Fs); subplot(2,1,2); plot(W2,20*log10(abs(H)));grid; xlabel(' 频率/ Hz');

有源滤波器设计范例汇总

、低通滤波器的设计 低通滤波器的设计是已知w。(-3dB截止频率)、H OLP(直流增益)、Q (在-3dB截止频率时的电压放大倍数与通带放大倍数数值之比)三个参数来设计电路,可选的电路形式为压控电压源低通滤波器和无限增益多路反馈低通滤波器。下面分别介绍: (一)二阶压控电压源低通滤波器 图1二阶压控电压源低通滤波器原理图 H OLP二K =1 空 R A Q (1 —K MRCJR2C2+ JR2C2/RG 由上式可知,可通过先调整R1来先调整w。,然后通过调整K来调整Q值。 对于巴特沃斯、切比雪夫、贝塞尔三种类型二阶LPF的Q值分别为0.707、1、0.56。 1、等值元件KRC电路设计 令& = & = R和G = C2 = c,简化上述各式,则 H OLP”1R A W。_ RC Q — 3- K 得出的设计方程为 W o R1C1 R2C2 1

R B 由上式可知,H OLP 值依赖于Q 值大小。为了将增益从现在的 A oid 降到另一个不同的值 A new , 应用戴维南定理,用分压器 R !A 和R IB 取代R I ,同时确保W o 不受替换的影响,需符合 下式: 电路连接如图2所示 图2二阶压控电压源低通滤波器等值法原理图 2、参考运算放大器应用技术手册 (1)选取C1 1 (3) 电容扩展系数m 二二 -(H OLP -1) 4Q 2 (4) C 2 二 mG (5) & =2QR R 2Qm (7)选取 R A ,则 R B (( H OLP -1) R A RC = (6) W o K Q =(K -1)R A R 1B R IA B = R 1 (2) 1 2%0

有源低通滤波器设计报告要点

课程设计(论文)说明书 题目:有源低通滤波器 院(系):信息与通信学院 专业:通信工程 学生姓名: 学号: 指导教师: 职称: 2010年 12 月 19 日

摘要 低通滤波器是一个通过低频信号而衰减或抑制高频信号的部件。理想滤波器电路的频响在通带内应具有一定幅值和线性相移,而在阻带内其幅值应为零。有源滤波器是指由放大电路及RC网络构成的滤波器电路,它实际上是一种具有特定频率响应的放大器。滤波器的阶数越高,幅频特性衰减的速率越快,但RC网络节数越多,元件参数计算越繁琐,电路的调试越困难。根据指标,本次设计选用二阶有源低通滤波器。 关键词:低通滤波器;集成运放UA741;RC网络 Abstract Low-pass filter is a component which can only pass the low frequency signal and attenuation or inhibit the high frequency signal . Ideal frequency response of the filter circuit in the pass band should have a certain amplitude and linear phase shift, and amplitude of the resistance band to be zero. Active filter is composed of the RC network and the amplifier, it actually has a specific frequency response of the amplifier. Higher the order of the filter, the rate of amplitude-frequency characteristic decay faster, but more the number of RC network section, the more complicated calculation of device parameters, circuit debugging more difficult. According to indicators ,second-order active low-pass filter is used in this design . Key words:Low-pass filter;Integrated operational amplifier UA741;RC network,

实验四 用窗函数法设计FIR数字滤波器

实验四 用窗函数法设计FIR 数字滤波器 实验项目名称:用窗函数法设计FIR 数字滤波器 实验项目性质:验证性实验 所属课程名称:数字信号处理 实验计划学时:2 一. 实验目的 (1)掌握用窗函数法设计FIR 数字滤波器的原理与方法。 (2)熟悉线性相位FIR 数字滤波器的特性。 (3)了解各种窗函数对滤波特性的影响。 二. 实验容和要求 (1) 复习用窗函数法设计FIR 数字滤波器一节容,阅读本实验原理,掌握设计步骤。 (2) 用升余弦窗设计一线性相位低通FIR 数字滤波器,截止频率 rad c 4 π ω= 。窗口长度N =15,33。要求在两种窗口长度情况下,分别求出()n h ,打印出相应的幅频特性和相频特性曲线,观察3dB 带宽和20dB 带宽。总结窗口长度N 对滤波器特性的影响。 设计低通FIR 数字滤波器时,一般以理想低通滤波特性为逼近函数()ωj e H ,即 ()?????≤<≤=-π ωωωωωα ω c c j j d ,,e e H 0 其中2 1 -= N α ()() ()[]() a n a n d e e d e e H n h c j j j j d d c c --= = = ??- -- πωωπ ωπ ωαωω ωαωπ π ωsin 2121

(3) 33=N ,4πω=c ,用四种窗函数设计线性相位低通滤波器,绘制相应的幅频特性曲线,观察3dB 带宽和20dB 带宽以及阻带最小衰减,比较四种窗函数对滤波器特性的影响。 三. 实验主要仪器设备和材料 计算机,MATLAB6.5或以上版本 四. 实验方法、步骤及结果测试 如果所希望的滤波器的理想的频率响应函数为()ωj d e H ,则其对应的单位脉冲响应为 ()()ωπ ω ωπ πd e e H n h j j d d ?- = 21 (4.1) 窗函数设计法的基本原理是用有限长单位脉冲响应序列()n h 逼近 ()n h d 。由于()n h d 往往是无限长序列,而且是非因果的,所以用窗函数() n ω将()n h d 截断,并进行加权处理,得到: ()()()n n h n h d ω= (4.2) ()n h 就作为实际设计的FIR 数字滤波器的单位脉冲响应序列,其频率 响应函数()ωj e H 为 ()()n j N n j e n h e H ωω ∑-==1 (4.3) 式中,N 为所选窗函数()n ω的长度。 我们知道,用窗函数法设计的滤波器性能取决于窗函数()n ω的类型及窗口长度N 的取值。设计过程中,要根据对阻带最小衰减和过渡带宽度的

实验四数字滤波器的设计实验报告

数字信号处理 实验报告 实验四 IIR数字滤波器的设计学生姓名张志翔 班级电子信息工程1203班 学号 指导教师 实验四 IIR数字滤波器的设计 一、实验目的: 1. 掌握双线性变换法及脉冲响应不变法设计IIR数字滤波器的具体设 计方法及其原理,熟悉用双线性变换法及脉冲响应不变法设计低通、高通和带通IIR数字滤波器的MATLAB编程。 2. 观察双线性变换及脉冲响应不变法设计的滤波器的频域特性,了解双线性变换法及脉冲响应不变法的特点。 3.熟悉Butterworth滤波器、切比雪夫滤波器和椭圆滤波器的频率特性。 二、实验原理: 1.脉冲响应不变法 用数字滤波器的单位脉冲响应序列模仿模拟滤波器的冲激响应 ,让正好等于的采样值,即,其中为采样间隔,如果以及分别表示的拉式变换及的Z变换,则 2.双线性变换法 S平面与z平面之间满足以下映射关系:

s平面的虚轴单值地映射于z平面的单位圆上,s平面的左半平面完全映射到z平面的单位圆内。 双线性变换不存在混叠问题。 双线性变换是一种非线性变换,这种非线性引起的幅频特性畸变可通过预畸而得到校正。 三、实验内容及步骤: 实验中有关变量的定义: fc 通带边界频率; fr阻带边界频率;δ通带波动;At 最小阻带衰减; fs采样频率; T采样周期 (1) =0.3KHz, δ=0.8Db, =0.2KHz, At =20Db,T=1ms; 设计一个切比雪夫高通滤波器,观察其通带损耗和阻带衰减是否满足要求。 MATLAB源程序: wp=2*1000*tan(2*pi*300/(2*1000)); ws=2*1000*tan(2*pi*200/(2*1000)); [N,wn]=cheb1ord(wp,ws,0.8,20,'s'); %给定通带(wp)和阻带(ws)边界角频率,通带波动波动0.8,阻带最小衰减20dB,求出最低阶数和通带滤波器的通带边界频率Wn [B,A]=cheby1(N,0.5,wn,'high','s');%给定通带(wp)和阻带(ws)边界角频率,通带波动 [num,den]=bilinear(B,A,1000); [h,w]=freqz(num,den); f=w/(2*pi)*1000; plot(f,20*log10(abs(h)));

电路实验报告12 有源滤波器设计

课程名称:电路与电子技术实验II 指导老师:沈连丰成绩:__________________ 实验名称:有源滤波器设计实验类型:________________同组学生姓名:__________ 一、实验目的和要求(必填)二、实验内容和原理(必填) 三、主要仪器设备(必填)四、操作方法和实验步骤 五、实验数据记录和处理六、实验结果与分析(必填) 七、讨论、心得 一、实验目的和要求 1、掌握有源滤波器的分析和设计方法。 2、学习有源滤波器的调试、幅频特性的测量方法。 3、了解滤波器的结构和参数对滤波器性能的影响。 4、用EDA仿真的方法来研究滤波电路,了解元件参数对滤波效果的影响。 二、实验内容和原理 1、滤波器的5个主要指标: (1) 传递函数A v(s) :反映滤波器增益随频率的变化关系,也称为电路的频率响应、频率特性。 (2) 通带增益A v p:为一个实数。(针对LPF)、(针对HPF)、(针对BPF)、(针对BEF)。 (3) 固有频率f0:也称自然频率、特征频率,其值由电路元件的参数决定。 (4) 通带截止频率f p:滤波器增益下降到其通带增益A v p 的0.707倍时所对应的频率(也称–3dB 频率、半功率点、上限频率(ωH 、f H )或下限频率(ωL 、f L )。 (5) 品质因数Q:反映滤波器频率特性的一项重要指标,不同类型滤波器的定义不同。例如,在低通和高通滤波器中,定义为当时增益的模与通带增益之比。 2、有源滤波器的设计流程: 设计一个有源低通滤波器时,一般可以先按照预定的性能指标,选择一定的电路形式,然后写出电路的电压传递函数,计算并选定电路中的各个元器件参数。最后再通过实验进行调试,确定实际的器件参数。 三、实验器材 运放LM358、 四、操作方法和实验步骤 1、实验内容 (1) 在实验板上安装所设计的电路。 (2) 有源滤波器的静态调零。 (3) 测量滤波器的通带增益A v p、通带截止频率f p。 (4) 测量滤波器的频率特性(有条件时可使用扫频仪)。 (5) 改变电路参数,研究品质因数Q 对滤波器频率特性的影响。 2、设计一个二阶有源低通滤波器。具体要求如下: (1) 通带截止频率:f p=1kHz;

fir低通滤波器设计(完整版)

电子科技大学信息与软件工程学院学院标准实验报告 (实验)课程名称数字信号处理 电子科技大学教务处制表

电 子 科 技 大 学 实 验 报 告 学生姓名: 学 号: 指导教师: 实验地点: 实验时间:14-18 一、实验室名称:计算机学院机房 二、实验项目名称:fir 低通滤波器的设计 三、实验学时: 四、实验原理: 1. FIR 滤波器 FIR 滤波器是指在有限范围内系统的单位脉冲响应h[k]仅有非零值的滤波器。M 阶FIR 滤波器的系统函数H(z)为 ()[]M k k H z h k z -==∑ 其中H(z)是k z -的M 阶多项式,在有限的z 平面内H(z)有M 个零点,在z 平面原点z=0有M 个极点. FIR 滤波器的频率响应 ()j H e Ω 为 0 ()[]M j jk k H e h k e Ω -Ω ==∑ 它的另外一种表示方法为 () ()()j j j H e H e e φΩΩΩ=

其中 () j H e Ω和()φΩ分别为系统的幅度响应和相位响应。 若系统的相位响应()φΩ满足下面的条件 ()φαΩ=-Ω 即系统的群延迟是一个与Ω没有关系的常数α,称为系统H(z)具有严格线性相位。由于严格线性相位条件在数学层面上处理起来较为困难,因此在FIR 滤波器设计中一般使用广义线性相位。 如果一个离散系统的频率响应 ()j H e Ω 可以表示为 ()()()j j H e A e αβΩ-Ω+=Ω 其中α和β是与Ω无关联的常数,()A Ω是可正可负的实函数,则称系统是广义线性相位的。 如果M 阶FIR 滤波器的单位脉冲响应h[k]是实数,则可以证明系统是线性相位的充要条件为 [][]h k h M k =±- 当h[k]满足h[k]=h[M-k],称h[k]偶对称。当h[k]满足h[k]=-h[M-k],称h[k]奇对称。按阶数h[k]又可分为M 奇数和M 偶数,所以线性相位的FIR 滤波器可以有四种类型。 2. 窗函数法设计FIR 滤波器 窗函数设计法又称为傅里叶级数法。这种方法首先给出()j d H e Ω, ()j d H e Ω 表示要逼近的理想滤波器的频率响应,则由IDTFT 可得出滤波器的单位脉冲响应为 1 []()2j jk d d h k H e e d π π π ΩΩ-= Ω ? 由于是理想滤波器,故 []d h k 是无限长序列。但是我们所要设计的FIR 滤波 器,其h[k]是有限长的。为了能用FIR 滤波器近似理想滤波器,需将理想滤波器的无线长单位脉冲响应 []d h k 分别从左右进行截断。 当截断后的单位脉冲响应 []d h k 不是因果系统的时候,可将其右移从而获得因果的FIR 滤波器。

实验四IIR数字滤波器设计及软件实现

实验四IIR数字滤波器设计及软件实现 1.实验目的 (1)熟悉用双线性变换法设计IIR数字滤波器的原理与方法; (2)学会调用MATLAB信号处理工具箱中滤波器设计函数(或滤波器设计分析工具fdatool)设计各种IIR数字滤波器,学会根据滤波需求确定滤波器指标参数。 (3)掌握IIR数字滤波器的MATLAB实现方法。 (4)通过观察滤波器输入输出信号的时域波形及其频谱,建立数字滤波的概念。 2.实验原理 设计IIR数字滤波器一般采用间接法(脉冲响应不变法和双线性变换法),应用最广泛的是双线性变换法。基本设计过程是:①先将给定的数字滤波器的指标转换成过渡模拟滤波器的指标;②设计过渡模拟滤波器;③将过渡模拟滤波器系统函数转换成数字滤波器的系统函数。MATLAB信号处理工具箱中的各种IIR数字滤波器设计函数都是采用双线性变换法。第六章介绍的滤波器设计函数butter、cheby1 、cheby2 和ellip可以分别被调用来直接设计巴特沃斯、切比雪夫1、切比雪夫2和椭圆模拟和数字滤波器。本实验要求读者调用如上函数直接设计IIR数字滤波器。 本实验的数字滤波器的MATLAB实现是指调用MATLAB信号处理工具箱函数filter对给定的输入信号x(n)进行滤波,得到滤波后的输出信号y(n)。

3.实验内容及步骤 (1)调用信号产生函数mstg产生由三路抑制载波调幅信号相加构成的复合信号st,该函数还会自动绘图显示st的时域波形和幅频特性曲线。三路信号时域混叠无法在时域分离。但频域是分离的,所以可以通过滤波的方法在频域分离,这就是本实验的目的。 (2)要求将st中三路调幅信号分离,通过观察st的幅频特性曲线,分别确定可以分离st中三路抑制载波单频调幅信号的三个滤波器(低通滤波器、带通滤波器、高通滤波器)的通带截止频率和阻带截止频率。要求滤波器的通带最大衰减为0.1dB,阻带最小衰减为60dB。 (3)编程序调用MATLAB滤波器设计函数ellipord和ellip分别设计这三个椭圆滤波器,并绘图显示其幅频响应特性曲线。

实验五FIR数字滤波器的设计

实验六 FIR 数字滤波器的设计 一、实验目的 1.熟悉FIR 滤波器的设计基本方法 2.掌握用窗函数设计FIR 数字滤波器的原理与方法。 二、实验内容 1.FIR 数字滤波器的设计方法 FIR 滤波器的设计问题在于寻求一系统函数)(z H ,使其频率响应)(ωj e H 逼近滤波器要求的理想频率响应)(ωj d e H ,其对应的单位脉冲响应为)(n h d 。 (1)用窗函数设计FIR 滤波器的基本原理 设计思想:从时域从发,设计)(n h 逼近理想)(n h d 。设理想滤波器)(ωj d e H 的单位脉 冲响应为)(n h d 。以低通线性相位FIR 数字滤波器为例。 ?∑--∞-∞=== ππωωωωω πd e e H n h e n h e H jn j d d jn n d j d )(21)()()( (6-1) )(n h d 一般是无限长的,且是非因果的,不能直接作为FIR 滤波器的单位脉冲响应。要想得到一个因果的有限长的滤波器h(n),最直接的方法是截断)()()(n w n h n h d =,即截取为有限长因果序列,并用合适的窗函数进行加权作为FIR 滤波器的单位脉冲响应。按照线性相位滤波器的要求,h(n)必须是偶对称的。对称中心必须等于滤波器的延时常数,即 ???-==2 /)1()()()(N a n w n h n h d (6-2) 用矩形窗设计的FIR 低通滤波器,所设计滤波器的幅度函数在通带和阻带都呈现出振荡现象,且最大波纹大约为幅度的9%,这个现象称为吉布斯(Gibbs )效应。为了消除吉布斯效应,一般采用其他类型的窗函数。 (2) 典型的窗函数 ① 矩形窗(Rectangle Window) )()(n R n w N = (6-3)

完整地有源滤波器设计

一.项目意义与目标 意义:本项目通过一个比较综合的、能覆盖《模拟电子技术》这门课程的大部分内容的三级项目,使我们能将整个课程的内容串联起来,实现一个系统的功能,巩固整个课程的学习内容,为以后学习和设计提供良好的模拟电子线路知识。本次有源滤波器设计主要注重的是电子电路的设计、仿真,意在培养学生正确的设计思想方法以及思路,理论联系实际的工作作风,在加深对知识的理解基础上,进一步培养学生综合运用所学知识与生产实践经验,分析和解决工程技术问题的能力。 目标:掌握有源滤波器的分析和设计方法,学习有源滤波器的调试、幅频特性的测量方法,通过仿真的方法来研究滤波电路,了解元件参数对滤波效果的影响,尝试着制作实物来验证理论以及仿真求得的结果并比较三者之间的差距。 二.项目内容与要求 内容:滤波器是一种能够使有用频率信号通过,而同时抑制(或衰减)无用频率信号的电子电路或装置,在工程上常用它来进行信号处理、数据传送或抑制干扰等。有源滤波器是由集成运放、R、C组成,其开环电压增益和输入阻抗都很高,输出阻抗又低,构成有源滤波电路后还具有一定的电压放大和缓冲作用,但因受运算放大器频限制,这种滤波器主要用于低频范围。 要求:在模电课程对有源滤波器所学到的知识的基础上,设计出一阶低通有源滤波电路,一阶高通滤波电路,二阶低通滤波电路,二阶高通滤波电路,二阶带通滤波电路,二阶带阻滤波电路。研究和设计其电路结构、传递函数,并对有关参数进行计算,再利用multisim 软件进行仿真,组装和调试各种有源滤波器,探究其幅频特性。经过仿真和调试,观察效果。由滤波电路的曲线可以看出通带的电压放大倍数、通带上限截止频率,下限截止频率,特征角频率等的实际值,与计算出的理论值相比较,分析误差。

低通滤波器的设计

低通滤波器的设计 模拟滤波器在各种预处理电路中几乎是必不可少的,已成为生物医学仪器中的基本单元电路。有源滤波器实质上是有源选频电路,它的功能是允许指定频段的信号通过,而将其余频段上的信号加以抑制或使其急剧衰减。各种生物信号的低噪声放大,都是首先严格限定在所包含的频谱范围之内。 最常用的全极点滤波器有巴特沃斯滤波器和切比雪夫滤波器。就靠近ω=0处的幅频特性而言,巴特沃斯滤波器比切比雪夫滤波器平直,即在频率的低端巴特沃斯滤波器幅频特性更接近理想情况。但在接近截止频率和在阻带内,巴特沃斯滤波器则较切比雪夫滤波器差得多。本设计中要保证低频信号不被衰减,而对高频要求不高,因此选择了巴特沃斯滤波器。巴特沃思滤波电路(又叫最平幅度滤波电路)是最简单也是最常用的滤波电路,这种滤波电路对幅频响应的要求是:在小于截止频率ωc。的范围内,具有最平幅度响应,而在ω>ωc。后,幅频响应迅速下降。 因为本设计中要保证低频信号不被衰减,而对高频要求不高,所以选择 二阶滤波器即可。本系统采用二阶Butterworth低通滤波器,截止频率f H=100HZ,其电路原理图如1: 图1 低通滤波器图 根据matlab软件算得该设计适合二阶低通滤波器,FSF=628选Z=10000,则

Z R R FSF Z ?=?=的归一值的归一值 C C 3.2脉象信号的的前置放大 由于人体信号的频率和幅度都比较低,很容易受到空间电磁波以及人体其它生理信号的干扰,因此在对其进行变换、分析、存储、记录之前,应该进行一些预处理,以保证测量结果的准确性。因此需要对信号进行放大,“放大”在信号预处理中是第一位的。根据所测参数和所用传感器的不同,放大电路也不同。用于测量生物电位的放大器称为生物电放大器,生物电放大器比一般放大器有更严格的要求。 在本研究中放在传感器后面的电路就是前置放大电路,由于从传感器取得的信号很微弱,且混杂了一些其他的干扰信号。因此前置放大电路的主要功能是,滤除一些共模干扰信号,同时进行一定的放大。该电路由4部分构成:并联型双运放仪器放大器,阻容耦合电路,由集成仪用放大器构成的后继放大器和共模信号取样电路。并联型双运放仪器放大器的优点是不需要精密的匹配电阻,理论上它的共模抑制比为无穷大,且与其外围电阻的匹配程度无关。集成仪用放大器将由并联型双运放仪器放大器输出的双端差动信号转变为单端输出信号,并采用阻容耦合电路隔离直流信号,可以使集成仪用放大器取得较高的差模增益,从而得到很高的共模抑制比。共模取样驱动电路由两个等值电阻和一只由运放构成的跟随器构成,能够使共模信号不经阻容耦合电路的分压直接加在集成放大器的输入端,避免了由于阻容耦合电路的不匹配而降低电路整体的共模抑制比。此电路中也采用了右腿驱动电路来抑制位移电流的影响。前置放大电路参数选择:此部分总的增益取为1000,其中并联型双运放仪器放大器的增益为5,集成仪用放大器的增益为200。具体设计电路如图2所示

有源滤波器设计实例

有源滤波器设计任务书 一、设计目的 1. 熟悉二阶有源滤波电路幅频特性和相频特性。 2. 掌握二阶有源滤波电路的快速设计方法。 3. 掌握二阶有源滤波电路的调试及其幅频特性和相频特性的测试方法。 二、使用仪器与器材 信号发生器;双线示波器;万用表;直流稳压源;实验电路板;元器件若干。 三、设计任务 图中所示为无限增益多路反馈电路的一般形式,请选择适当类型无源元件Y1~Y5,以构成低通滤波器和高通滤波器 1. 请设计一个二阶1dB无限增益多路反馈切比雪夫低通滤波器,通带增益Kp=2,截止频率fc=5kHz,画出电路图。 2. 请设计一个二阶1dB无限增益多路反馈切比雪夫高通滤波器,通带增益Kp=2 截止频率fc=2kHz,画出电路图。 ● 以上工作请在实验课前完成。写在实验报告中。 四、设计步骤 1. 按设计所确定的电路参数,在实验接插板上放入器件,连接低通滤波器(注意连接可靠,正确) 2.将信号发生器的输出信号电压幅值调到1V,接入低通滤波器的输入端,并调整信号源的频率,在低通滤波器输出端测量所对应的幅值。(可用示波器或交流毫伏表测试,并计录输入频率值和所对应的输出幅值,测量10~12 点。) 3.用示波器李沙育图形测试低通滤波器的相频特性,测量10~12 点。 4.进行高通滤波器的电路连接及幅频特性和相频特性测试。测试方法同上。

五、设计报告要求与思考题 1. 复习并掌握滤波器的工作原理,设计方法及应注意问题。 2. 画出所设计的低通滤波器、高通滤波器的电路图。并注明元件参数。 3. 画出幅频特性与相频特性测试原理图,说明测试方法与步骤。 4. 以表格形式分别给出低通滤波器与高通滤波器的幅频特性与相频特性测试数据,并画出其特性曲线。 5. 如果将低通滤波器与高通滤波器相串联,得到什么类型的滤波器,其通带与通带增益各为多少?画出其特性曲线。也可在实验中予以观测和证实。 6. 为构成所得类型的滤波器,对低通滤波器与高通滤波器的特性有无特 定要求。二者哪个在前有无关系? 附录: 1.几种滤波器原理图、幅频特性

实验四 窗函数法设计FIR数字滤波器

实验四 窗函数法设计FIR 数字滤波器 一、实验目的 1、掌握窗函数法设计FIR 数字滤波器的原理及具体方法。 2、掌握频率取样法设计FIR 数字滤波器的原理和基本方法。 3、学习利用窗函数法和频率取样法设计低通、带通、高通、带阻数字滤波器。 二、实验环境 计算机、MATLAB 软件 三、实验基础理论 窗函数设计FIR 滤波器 1.基本原理 窗函数设计法的基本思想为,首先选择一个适当的理想的滤波器()j d H e ω ,然后 用窗函数截取它的单位脉冲响应(n)d h ,得到线性相位和因果的FIR 滤波器。这种方法的重点是选择一个合适的窗函数和理想滤波器,使设计的滤波器的单位脉冲响应逼近理想滤波器的单位脉冲响应。 2.设计步骤 (1)给定理想滤波器的频率响应()j d H e ω ,在通带上具有单位增益和线性相位, 在阻带上具有零响应。一个带宽为()c c ωωπ<的低通滤波器由下式给定: π ωωωωωωω≤<=≤=-||,0)(,||,)(c j d c ja j d e H e e H 其中α为采样延迟,其作用是为了得到一个因果系统。 (2)确定这个滤波器的单位脉冲响应 ) ()) (sin()(a n a n n h c d --= πω 为了得到一个(n)h 长度为N 的因果的线性相位FIR 滤波器,我们令 2 1 -= N a (3)用窗函数截取(n)d h 得到所设计FIR 数字滤波器:)()()(n R n h n h N d = 3.窗函数的选择 常用的窗函数有矩形(Rectangular )窗,汉宁(Hanning )窗,海明(Hamming )窗、布莱克曼(Blackman )窗、凯瑟(Kaiser )窗等 表4-1 MATLAB 中产生窗函数的命令

FIR数字滤波器设计实验_完整版

班级: 姓名: 学号: FIR 数字滤波器设计实验报告 一、实验目的 1.掌握FIR 数字滤波器的设计方法; 2.熟悉MATLAB 信号处理工具箱的使用; 3.熟悉利用MATLAB 软件进行FIR 数字滤波器设计,以及对所设计的滤波器 进行分析; 4.了解FIR 滤波器可实现严格线性相位的条件和特点; 5.熟悉FIR 数字滤波器窗函数设计法的MATLAB 设计,并了解利用窗函数法 设计FIR 滤波器的优缺点; 6.熟悉FIR 数字滤波器频率采样设计法的MATLAB 设计,并了解利用频率采 样法设计FIR 滤波器的优缺点; 7.熟悉FIR 数字滤波器切比雪夫逼近设计法的MATLAB 设计,并了解利用切 比雪夫逼近法设计FIR 滤波器的优缺点。 二、实验设备及环境 1.硬件:PC 机一台; 2.软件:MATLAB (6.0版以上)软件环境。 三、实验内容及要求 1.实验内容:基于窗函数设计法、频率采样设计法和切比雪夫逼近设计法,利用MATLAB 软件设计满足各自设计要求的FIR 数字低通滤波器,并对采用不同设计法设计的低滤波器进行比较。 2.实验要求: (1)要求利用窗函数设计法和频率采样法分别设计FIR 数字低通滤波 器,滤波器参数要求均为:0.3c w π=。其中,窗函数设计法要求分别利用矩形窗、汉宁窗和布莱克曼窗来设计数字低通滤波器,且 21N ≥,同时要求给出滤波器的幅频特性和对数幅频特性; 频率

采样法要求分别利用采样点数21N =和63N =设计数字低通滤波器,同时要求给出滤波器采样前后的幅频特性,以及脉冲响应及对数幅频特性。 (2)要求利用窗函数设计法和切比雪夫逼近法分别设计FIR 数字低通 滤波器,滤波器参数要求均为: 0.2π, 0.25dB, 0.3π, 50dB p p s s ωαωα==== 其中,窗函数设计法要求利用汉明窗来设计数字低通滤波器,且 66N ≥,同时要求给出滤波器理想脉冲响应和实际脉冲响应,汉 名窗和对数幅频特性; 切比雪夫逼近法要求采用切比雪夫Ⅰ型,同时要求给出滤波器的脉冲响应、幅频特性和误差特性。 (3)将要求(1)和(2)中设计的具有相同参数要求,但采用不同设 计方法的滤波器进行比较,并以图的形式直观显示不同设计设计方法得到的数字低通滤波器的幅频特性的区别。 四、实验步骤 1.熟悉MATLAB 运行环境,命令窗口、工作变量窗口、命令历史记录窗口,FIR 常用基本函数; 2.熟悉MATLAB 文件格式,m 文件建立、编辑、调试; 3.根据要求(1)的内容,设计FIR 数字低通滤波器,建立M 文件,编写、调试、运行程序; 4.根据要求(2)的内容,设计FIR 数字低通滤波器,建立M 文件,编写、调试、运行程序; 5.将要求(1)和(2)中设计的具有相同参数要求,但采用不同设计方法的滤波器进行比较分析; 6.记录实验结果; 7.分析实验结果; 8.书写实验报告。 五、实验预习思考题 1.FIR 滤波器有几种常用设计方法?这些方法各有什么特点?

相关主题
文本预览
相关文档 最新文档