当前位置:文档之家› 离散数学课后习题合集

离散数学课后习题合集

离散数学课后习题合集
离散数学课后习题合集

离散数学课后习题答案

习题参考解答 习题 1、(3)P:银行利率降低 Q:股价没有上升 P∧Q (5)P:他今天乘火车去了北京 Q:他随旅行团去了九寨沟 Q P? (7)P:不识庐山真面目 Q:身在此山中 Q→P,或~P→~Q (9)P:一个整数能被6整除 Q:一个整数能被3整除 R:一个整数能被2整除 T:一个整数的各位数字之和能被3整除 P→Q∧R ,Q→T 2、(1)T (2)F (3)F (4)T (5)F (6)T (7)F (8)悖论 习题 1(3) ) ( ) ( ) ( ) ( ) ( ) ( R P Q P R P Q P R Q P R Q P → ∨ → ? ∨ ? ∨ ∨ ? ? ∨ ∨ ? ? ∨ →

(4) ()()()(())()(()())(())()()()()P Q Q R R P P R Q R P P R R P Q R P P R P R Q R Q P ∧∨∧∨∧=∨∧∨∧=∨∨∧∧∨∧=∨∧∨∧∨∧∨=右 2、不, 不, 能 习题 1(3) (())~((~)) (~)()~(~(~))(~~)(~) P R Q P P R Q P P R T P R P R Q Q P R Q P R Q →∧→=∨∧∨=∨∧=∨=∨∨∧=∨∨∧∨∨、 主合取范式 ) ()()()()()()()()()()()()()())(())(()()(()) ()())(()((Q P R P Q R P Q R R Q P R Q P R Q P Q P R Q P R P Q R P Q R R Q P R Q P R Q P R Q P Q Q P R P P Q R R R Q Q P P R Q R P P Q R P P Q R P ∧∧∨∧?∧∨?∧?∧∨∧?∧?∨?∧∧?∨?∧?∧?=∧∧∨?∧∧∨∧?∧∨?∧?∧∨∧?∧?∨∧?∧?∨?∧∧?∨?∧?∧?=∨?∧∧∨∨?∧?∧∨∨?∧∨?∧?=∧∨?∧∨?=∨?∧∨?=→∧→ ————主析取范式 (2) ()()(~)(~) (~(~))(~(~))(~~)(~)(~~) P Q P R P Q P R P Q R R P R Q Q P Q R P Q R P R Q →∧→=∨∧∨=∨∨∧∧∨∨∧=∨∨∧∨∨∧∨∨Q 2、 ()~() (~)(~) (~~)(~)(~~)P Q R P Q R P Q P R P Q R P Q R P R Q →∧=∨∧=∨∧∧=∨∨∧∨∨∧∨∨∴等价 3、解:根据给定的条件有下述命题公式: (A →(CD ))∧~(B ∧C )∧~(C ∧D ) (~A ∨(C ∧~D )∨(~C ∧D ))∧(~B ∨~C )∧(~C ∨~D ) ((~A ∧~B )∨(C ∧~D ∧~B )∨(~C ∧D ∧~B )∨ (~A ∧~C )∨(C ∧~D ∧~C )∨(~C ∧D ∧~C ))∧(~C ∨~D )

屈婉玲版离散数学课后习题答案【3】

第四章部分课后习题参考答案 3. 在一阶逻辑中将下面将下面命题符号化,并分别讨论个体域限制为(a),(b)条件时命题的真值: (1) 对于任意x,均有2=(x+)(x). (2) 存在x,使得x+5=9. 其中(a)个体域为自然数集合. (b)个体域为实数集合. 解: F(x): 2=(x+)(x). G(x): x+5=9. (1)在两个个体域中都解释为) ?,在(a)中为假命题,在(b)中为真命题。 (x xF (2)在两个个体域中都解释为) xG ?,在(a)(b)中均为真命题。 (x 4. 在一阶逻辑中将下列命题符号化: (1) 没有不能表示成分数的有理数. (2) 在北京卖菜的人不全是外地人. 解: (1)F(x): x能表示成分数 H(x): x是有理数 命题符号化为: )) F x∧ ?? x ? ( ) ( (x H (2)F(x): x是北京卖菜的人 H(x): x是外地人 命题符号化为: )) F ?? x x→ (x ( H ) ( 5. 在一阶逻辑将下列命题符号化: (1) 火车都比轮船快. (3) 不存在比所有火车都快的汽车. 解: (1)F(x): x是火车; G(x): x是轮船; H(x,y): x比y快 命题符号化为: )) F y x G ? y ? ∧ x→ , ( )) ( H ) x ((y ( (2) (1)F(x): x是火车; G(x): x是汽车; H(x,y): x比y快

命题符号化为: ))),()(()((y x H x F x y G y →?∧?? 9.给定解释I 如下: (a) 个体域D 为实数集合R. (b) D 中特定元素=0. (c) 特定函数(x,y)=xy,x,y D ∈. (d) 特定谓词(x,y):x=y,(x,y):x

离散数学第三版课后习题答案

离散数学辅助教材 概念分析结构思想与推理证明 第一部分 集合论

离散数学习题解答 习题一(第一章集合) 1. 列出下述集合的全部元素: 1)A={x | x ∈N∧x是偶数∧x<15} 2)B={x|x∈N∧4+x=3} 3)C={x|x是十进制的数字} [解] 1)A={2,4,6,8,10,12,14} 2)B= 3)C={0,1,2,3,4,5,6,7,8,9} 2. 用谓词法表示下列集合: 1){奇整数集合} 2){小于7的非负整数集合} 3){3,5,7,11,13,17,19,23,29} [解] 1){n n∈I∧(?m∈I)(n=2m+1)}; 2){n n∈I∧n≥0∧n<7}; 3){p p∈N∧p>2∧p<30∧?(?d∈N)(d≠1∧d≠p∧(?k∈N)(p=k?d))}。 3. 确定下列各命题的真假性: 1) 2)∈ 3){} 4)∈{} 5){a,b}{a,b,c,{a,b,c}} 6){a,b}∈(a,b,c,{a,b,c}) 7){a,b}{a,b,{{a,b,}}} 8){a,b}∈{a,b,{{a,b,}}} [解]1)真。因为空集是任意集合的子集; 2)假。因为空集不含任何元素; 3)真。因为空集是任意集合的子集; 4)真。因为是集合{}的元素; 5)真。因为{a,b}是集合{a,b,c,{a,b,c}}的子集; 6)假。因为{a,b}不是集合{a,b,c,{a,b,c}}的元素;

7)真。因为{a,b}是集合{a,b,{{a,b}}}的子集; 8)假。因为{a,b}不是集合{a,b,{{a,b}}}的元素。 4. 对任意集合A,B,C,确定下列命题的真假性: 1)如果A∈B∧B∈C,则A∈C。 2)如果A∈B∧B∈C,则A∈C。 3)如果A B∧B∈C,则A∈C。 [解] 1)假。例如A={a},B={a,b},C={{a},{b}},从而A∈B∧B∈C但A∈C。 2)假。例如A={a},B={a,{a}},C={{a},{{a}}},从而A∈B∧B∈C,但、A ∈C。 3)假。例如A={a},B={a,b},C={{a},a,b},从而ACB∧B∈.C,但A∈C。5.对任意集合A,B,C,确定下列命题的真假性: 1)如果A∈B∧B C,则A∈C。 2)如果A∈B∧B C,则A C。 3)如果A B∧B∈C,则A∈C。 3)如果A B∧B∈C,则A C。 [解] 1)真。因为B C x(x∈B x∈C),因此A∈B A∈C。 2)假。例如A={a},B={{a},{b}},C={{a},{b},{c}}从而A∈B∧B C,但A C。 3)假。例如A={a},B={{a,b}},C={{a,{a,b}},从而A B∧B∈C,但A C。 4)假。例如A={a},B={{a,b}},C={{a,b},b},从而A B∧B∈C,但A C。 6.求下列集合的幂集: 1){a,b,c} 2){a,{b,c}} 3){} 4){,{}} 5){{a,b},{a,a,b},{a,b,a,b}} [解] 1){,{a},{b},{c},{a,b},{a,c},{b,c},{a,b,c}} 2){,{a},{{b,c}},{a,{a,b}}} 3){,{}} 4){,{},{{}},{,{}}}

离散数学课后习题答案 (邱学绍)

第一章 命题逻辑 习题1.11.解 ⑴不是陈述句,所以不是命题。 ⑵x 取值不确定,所以不是命题。 ⑶问句,不是陈述句,所以不是命题。 ⑷惊叹句,不是陈述句,所以不是命题。 ⑸是命题,真值由具体情况确定。 ⑹是命题,真值由具体情况确定。 ⑺是真命题。 ⑻是悖论,所以不是命题。 ⑼是假命题。 2.解 ⑴是复合命题。设p :他们明天去百货公司;q :他们后天去百货公司。命题符号化为q p ∨。 ⑵是疑问句,所以不是命题。 ⑶是悖论,所以不是命题。 ⑷是原子命题。 ⑸是复合命题。设p :王海在学习;q :李春在学习。命题符号化为p ∧q 。 ⑹是复合命题。设p :你努力学习;q :你一定能取得优异成绩。p →q 。 ⑺不是命题。 ⑻不是命题 ⑼。是复合命题。设p :王海是女孩子。命题符号化为:?p 。 3.解 ⑴如果李春迟到了,那么他错过考试。 ⑵要么李春迟到了,要么李春错过了考试,要么李春通过了考试。 ⑶李春错过考试当且仅当他迟到了。 ⑷如果李春迟到了并且错过了考试,那么他没有通过考试。 4.解 ⑴?p →(q ∨r )。⑵p →q 。⑶q →p 。⑷q → p 。 习题1.2 1.解 ⑴是1层公式。 ⑵不是公式。 ⑶一层: p ∨q ,?p 二层:?p ?q 所以,)()(q p q p ??→∨是3层公式。 ⑷不是公式。 ⑸(p →q )∧?(?q ?( q →?r ))是5层公式,这是因为 一层:p →q ,?q ,?r 二层:q →?r 三层:?q ?( q →?r ) 四层:?(?q ?( q →?r )) 2.解 ⑴A =(p ∨q )∧q 是2层公式。真值表如表2-1所示: 表2-1 ⑵p q p q A →→∧= )(是3层公式。真值表如表2-2所示:

离散数学习题解答

习题一 1.下列句子中,哪些是命题?在是命题的句子中,哪些是简单命题?哪些是真命题?哪些命题的真值现在还不知道? (1)中国有四大发明. 答:此命题是简单命题,其真值为1. (2)5是无理数. 答:此命题是简单命题,其真值为1. (3)3是素数或4是素数. 答:是命题,但不是简单命题,其真值为1. x+< (4)235 答:不是命题. (5)你去图书馆吗? 答:不是命题. (6)2与3是偶数. 答:是命题,但不是简单命题,其真值为0. (7)刘红与魏新是同学. 答:此命题是简单命题,其真值还不知道. (8)这朵玫瑰花多美丽呀! 答:不是命题. (9)吸烟请到吸烟室去! 答:不是命题. (10)圆的面积等于半径的平方乘以π. 答:此命题是简单命题,其真值为1. (11)只有6是偶数,3才能是2的倍数. 答:是命题,但不是简单命题,其真值为0. (12)8是偶数的充分必要条件是8能被3整除. 答:是命题,但不是简单命题,其真值为0. (13)2008年元旦下大雪. 答:此命题是简单命题,其真值还不知道. 2.将上题中是简单命题的命题符号化. 解:(1)p:中国有四大发明. (2)p:是无理数. (7)p:刘红与魏新是同学. (10)p:圆的面积等于半径的平方乘以π. (13)p:2008年元旦下大雪. 3.写出下列各命题的否定式,并将原命题及其否定式都符号化,最后指出各否定式的真值. (1)5是有理数. 答:否定式:5是无理数.p:5是有理数.q:5是无理数.其否定式q的真值为1.

(2)25不是无理数. 答:否定式:25是有理数. p :25不是无理数. q :25是有理数. 其否定式q 的真值为1. (3)2.5是自然数. 答:否定式:2.5不是自然数. p :2.5是自然数. q :2.5不是自然数. 其否定式q 的真值为1. (4)ln1是整数. 答:否定式:ln1不是整数. p :ln1是整数. q :ln1不是整数. 其否定式q 的真值为1. 4.将下列命题符号化,并指出真值. (1)2与5都是素数 答:p :2是素数,q :5是素数,符号化为p q ∧,其真值为1. (2)不但π是无理数,而且自然对数的底e 也是无理数. 答:p :π是无理数,q :自然对数的底e 是无理数,符号化为p q ∧,其真值为1. (3)虽然2是最小的素数,但2不是最小的自然数. 答:p :2是最小的素数,q :2是最小的自然数,符号化为p q ∧?,其真值为1. (4)3是偶素数. 答:p :3是素数,q :3是偶数,符号化为p q ∧,其真值为0. (5)4既不是素数,也不是偶数. 答:p :4是素数,q :4是偶数,符号化为p q ?∧?,其真值为0. 5.将下列命题符号化,并指出真值. (1)2或3是偶数. (2)2或4是偶数. (3)3或5是偶数. (4)3不是偶数或4不是偶数. (5)3不是素数或4不是偶数. 答: p :2是偶数,q :3是偶数,r :3是素数,s :4是偶数, t :5是偶数 (1) 符号化: p q ∨,其真值为1. (2) 符号化:p r ∨,其真值为1. (3) 符号化:r t ∨,其真值为0. (4) 符号化:q s ?∨?,其真值为1. (5) 符号化:r s ?∨?,其真值为0. 6.将下列命题符号化. (1)小丽只能从筐里拿一个苹果或一个梨. 答:p :小丽从筐里拿一个苹果,q :小丽从筐里拿一个梨,符号化为: p q ∨. (2)这学期,刘晓月只能选学英语或日语中的一门外语课. 答:p :刘晓月选学英语,q :刘晓月选学日语,符号化为: ()()p q p q ?∧∨∧?. 7.设p :王冬生于1971年,q :王冬生于1972年,说明命题“王冬生于1971年或1972年”既可以化 答:列出两种符号化的真值表:

吉林大学离散数学课后习题答案

第二章命题逻辑 §2.2 主要解题方法 2.2.1 证明命题公式恒真或恒假 主要有如下方法: 方法一.真值表方法。即列出公式的真值表,若表中对应公式所在列的每一取值全为1,这说明该公式在它的所有解释下都是真,因此是恒真的;若表中对应公式所在列的每

一取值全为0,这说明该公式在它的所有解释下都为假,因此是恒假的。 真值表法比较烦琐,但只要认真仔细,不会出错。 例2.2.1 说明G= (P∧Q→R)∧(P→Q)→(P→R)是恒真、恒假还是可满足。 解:该公式的真值表如下: 表2.2.1 由于表2.2.1中对应公式G所在列的每一取值全为1,故

G恒真。 方法二.以基本等价式为基础,通过反复对一个公式的等价代换,使之最后转化为一个恒真式或恒假式,从而实现公式恒真或恒假的证明。 例2.2.2 说明G= ((P→R) ∨? R)→ (? (Q→P) ∧ P)是恒真、恒假还是可满足。 解:由(P→R) ∨? R=?P∨ R∨? R=1,以及 ? (Q→P) ∧ P= ?(?Q∨ P)∧ P = Q∧? P∧ P=0 知,((P→R) ∨? R)→ (? (Q→P) ∧ P)=0,故G恒假。 方法三.设命题公式G含n个原子,若求得G的主析取范式包含所有2n个极小项,则G是恒真的;若求得G的主合取范式包含所有2n个极大项,则G是恒假的。 方法四. 对任给要判定的命题公式G,设其中有原子P1,P2,…,P n,令P1取1值,求G的真值,或为1,或为0,或成为新公式G1且其中只有原子P2,…,P n,再令P1取0值,求G真值,如此继续,到最终只含0或1为止,若最终结果全为1,则公式G恒真,若最终结果全为0,则公式G

离散数学重点笔记

第一章,0命题逻辑 素数 = 质数,合数有因子 和或假必真同为真 (p→q)∧(q←→r),(p∧q)∧┐r,p∧(q∧┐r)等都是合式公式,而pq→r,(p→(r→q)等不是合式公式。 若公式A是单个的命题变项,则称A为0层合式 (┐p∧q)→r,(┐(p→┐q))∧((r∨s)┐p)分别为3层和4层公式 【例】求下列公式的真值表,并求成真赋值和成假赋值。 (┐p∧q)→┐r 公式(1)的成假赋值为011,其余7个赋值都是成真赋值 第二章,命题逻辑等值演算 (1)双重否定律??A?A (2)等幂律 A∧A?A ; A∨A?A (3)交换律 A∧B?B∧A ; A∨B?B∨A (4)结合律(A∧B)∧C?A∧(B∧C);(A∨B)∨C?A∨(B∨C) (5)分配律(A∧B)∨C?(A∨C)∧(B∨C);(A∨B)∧C?(A∧C)∨(B∧C)(6)德·摩根律?(A∨B)??A∧?B ;?(A∧B)??A∨?B (7)吸收律 A∨(A∧B)?A;A∧(A∨B)?A (8)零一律 A∨1?1 ; A∧0?0 (9)同一律 A∨0?A ; A∧1?A (10)排中律 A∨?A?1 (11)矛盾律 A∧?A?0

(12)蕴涵等值式 A→B??A∨B (13)假言易位 A→B??B→?A (14)等价等值式 A?B?(A→B)∧(B→A) (15)等价否定等值式 A?B??A??B??B??A (16)归缪式(A→B)∧(A→?B)??A (p∧┐q)∨(┐q∧┐r)∨p (p∨q∨r)∧(┐p∨┐q)∧r 一个析取范式是矛盾式当且仅当它的每个简单合取式都是矛盾式 一个合取范式是重言式当且仅当它的每个简单析取式都是重言式 主范式【∧小真,∨大假】 ∧成真小写 【例】 (p→q)→(┐q→┐p) = ┐(┐p∨q)∨(q∨┐p) (消去→) = (p∧┐q)∨┐p∨q (┐内移) (已为析取范式) = (p∧┐q)∨(┐p∧┐q)∨(┐p∧q)∨(┐p∧q)∨(p∧q) (*) = m2∨m0∨m1∨m1∨m3 = m0∨m1∨m2∨m3 (幂等律、排序) (*)由┐p及q派生的极小项的过程如下: ┐p = ┐p∧(┐q∨q) = (┐p∧┐q)∨(┐p∧q) q = (┐p∨p)∧q = (┐p∧q)∨(p∧q)

屈婉玲版离散数学课后习题答案【1】

第一章部分课后习题参考答案 16 设p、q的真值为0;r、s的真值为1,求下列各命题公式的真值。 (1)p∨(q∧r)?0∨(0∧1) ?0 (2)(p?r)∧(﹁q∨s) ?(0?1)∧(1∨1) ?0∧1?0. (3)(?p∧?q∧r)?(p∧q∧﹁r) ?(1∧1∧1)? (0∧0∧0)?0 (4)(?r∧s)→(p∧?q) ?(0∧1)→(1∧0) ?0→0?1 17.判断下面一段论述是否为真:“π是无理数。并且,如果3是无理数,则2也是无理数。另外6能被2整除,6才能被4整除。” 答:p: π是无理数 1 q: 3是无理数0 r: 2是无理数 1 s:6能被2整除 1 t: 6能被4整除0 命题符号化为:p∧(q→r)∧(t→s)的真值为1,所以这一段的论述为真。19.用真值表判断下列公式的类型: (4)(p→q) →(?q→?p) (5)(p∧r) ?(?p∧?q) (6)((p→q) ∧(q→r)) →(p→r) 答:(4) p q p→q ?q ?p ?q→?p (p→q)→(?q→?p) 0 0 1 1 1 1 1 0 1 1 0 1 1 1 1 0 0 1 0 0 1 1 1 1 0 0 1 1 所以公式类型为永真式//最后一列全为1 (5)公式类型为可满足式(方法如上例)//最后一列至少有一个1 (6)公式类型为永真式(方法如上例)// 第二章部分课后习题参考答案 3.用等值演算法判断下列公式的类型,对不是重言式的可满足式,再用真值表法求出成真赋值.

(1) ?(p∧q→q) (2)(p→(p∨q))∨(p→r) (3)(p∨q)→(p∧r) 答:(2)(p→(p∨q))∨(p→r)?(?p∨(p∨q))∨(?p∨r)??p∨p∨q∨r?1所以公式类型为永真式 (3)P q r p∨q p∧r (p∨q)→(p∧r) 0 0 0 0 0 1 0 0 1 0 0 1 0 1 0 1 0 0 0 1 1 1 0 0 1 0 0 1 0 0 1 0 1 1 1 1 1 1 0 1 0 0 1 1 1 1 1 1 所以公式类型为可满足式 4.用等值演算法证明下面等值式: (2)(p→q)∧(p→r)?(p→(q∧r)) (4)(p∧?q)∨(?p∧q)?(p∨q) ∧?(p∧q) 证明(2)(p→q)∧(p→r) ? (?p∨q)∧(?p∨r) ??p∨(q∧r)) ?p→(q∧r) (4)(p∧?q)∨(?p∧q)?(p∨(?p∧q)) ∧(?q∨(?p∧q) ?(p∨?p)∧(p∨q)∧(?q∨?p) ∧(?q∨q) ?1∧(p∨q)∧?(p∧q)∧1 ?(p∨q)∧?(p∧q) 5.求下列公式的主析取范式与主合取范式,并求成真赋值 (1)(?p→q)→(?q∨p) (2)?(p→q)∧q∧r (3)(p∨(q∧r))→(p∨q∨r) 解: (1)主析取范式 (?p→q)→(?q∨p)

离散数学课后答案

离散数学课后答案 习题一 6.将下列命题符号化。 (1)小丽只能从框里那一个苹果或一个梨. (2)这学期,刘晓月只能选学英语或日语中的一门外语课. 答: (1)(p Λ?q )ν(?pΛq)其中p:小丽拿一个苹果,q:小丽拿一个梨(2)(p Λ?q )ν(?pΛq)其中p:刘晓月选学英语,q:刘晓月选学日语 14.将下列命题符号化. (1) 刘晓月跑得快, 跳得高. (2)老王是山东人或河北人. (3)因为天气冷, 所以我穿了羽绒服. (4)王欢与李乐组成一个小组. (5)李辛与李末是兄弟. (6)王强与刘威都学过法语. (7)他一面吃饭, 一面听音乐. (8)如果天下大雨, 他就乘班车上班. (9)只有天下大雨, 他才乘班车上班. (10)除非天下大雨, 他才乘班车上班. (11)下雪路滑, 他迟到了. (12)2与4都是素数, 这是不对的. (13)“2或4是素数, 这是不对的”是不对的. 答: (1)p∧q, 其中, p: 刘晓月跑得快, q: 刘晓月跳得高. (2)p∨q, 其中, p: 老王是山东人, q: 老王是河北人. (3)p→q, 其中, p: 天气冷, q: 我穿了羽绒服. (4)p, 其中, p: 王欢与李乐组成一个小组, 是简单命题. (5)p, 其中, p: 李辛与李末是兄弟. (6)p∧q, 其中, p: 王强学过法语, q: 刘威学过法语. (7)p∧q, 其中, p: 他吃饭, q: 他听音乐. (8)p→q, 其中, p: 天下大雨, q: 他乘班车上班. (9)p→q, 其中, p: 他乘班车上班, q: 天下大雨. (10)p→q, 其中, p: 他乘班车上班, q: 天下大雨. (11)p→q, 其中, p: 下雪路滑, q: 他迟到了. (12) ? (p∧q)或?p∨?q, 其中, p: 2是素数, q: 4是素数. (13) ? ? (p∨q)或p∨q, 其中, p: 2是素数, q: 4是素数. 16. 19.用真值表判断下列公式的类型: (1)p→ (p∨q∨r) (2)(p→?q) →?q

离散数学课后习题答案(左孝凌版)

离散数学课后习题答案(左孝凌版) 1-1,1-2解: a)是命题,真值为T。 b)不是命题。 c)是命题,真值要根据具体情况确定。 d)不是命题。 e)是命题,真值为T。 f)是命题,真值为T。 g)是命题,真值为F。 h)不是命题。 i)不是命题。 (2)解: 原子命题:我爱北京天安门。 复合命题:如果不是练健美操,我就出外旅游拉。 (3)解: a)(┓P ∧R)→Q b)Q→R c)┓P d)P→┓Q (4)解: a)设Q:我将去参加舞会。R:我有时间。P:天下雨。 Q (R∧┓P):我将去参加舞会当且仅当我有时间和天不下雨。 b)设R:我在看电视。Q:我在吃苹果。

R∧Q:我在看电视边吃苹果。 c) 设Q:一个数是奇数。R:一个数不能被2除。 (Q→R)∧(R→Q):一个数是奇数,则它不能被2整除并且一个数不能被2整除,则它是奇数。 (5) 解: a)设P:王强身体很好。Q:王强成绩很好。P∧Q b)设P:小李看书。Q:小李听音乐。P∧Q c)设P:气候很好。Q:气候很热。P∨Q d)设P: a和b是偶数。Q:a+b是偶数。P→Q e)设P:四边形ABCD是平行四边形。Q :四边形ABCD的对边平行。P Q f)设P:语法错误。Q:程序错误。R:停机。(P∨ Q)→ R (6) 解: a)P:天气炎热。Q:正在下雨。 P∧Q b)P:天气炎热。R:湿度较低。 P∧R c)R:天正在下雨。S:湿度很高。 R∨S d)A:刘英上山。B:李进上山。 A∧B e)M:老王是革新者。N:小李是革新者。 M∨N f)L:你看电影。M:我看电影。┓L→┓M g)P:我不看电视。Q:我不外出。 R:我在睡觉。 P∧Q∧R h)P:控制台打字机作输入设备。Q:控制台打字机作输出设备。P∧Q 1-3 (1)解:

最新离散数学习题答案

离散数学习题答案 习题一及答案:(P14-15) 14、将下列命题符号化: (5)李辛与李末是兄弟 解:设p :李辛与李末是兄弟,则命题符号化的结果是p (6)王强与刘威都学过法语 解:设p :王强学过法语;q :刘威学过法语;则命题符号化的结果是 p q ∧ (9)只有天下大雨,他才乘班车上班 解:设p :天下大雨;q :他乘班车上班;则命题符号化的结果是q p → (11)下雪路滑,他迟到了 解:设p :下雪;q :路滑;r :他迟到了;则命题符号化的结果是()p q r ∧→ 15、设p :2+3=5. q :大熊猫产在中国. r :太阳从西方升起. 求下列复合命题的真值: (4)()(())p q r p q r ∧∧???∨?→ 解:p=1,q=1,r=0, ()(110)1p q r ∧∧??∧∧??, (())((11)0)(00)1p q r ?∨?→??∨?→?→? ()(())111p q r p q r ∴∧∧???∨?→??? 19、用真值表判断下列公式的类型: (2)()p p q →?→? 解:列出公式的真值表,如下所示: 20、求下列公式的成真赋值:

(4)()p q q ?∨→ 解:因为该公式是一个蕴含式,所以首先分析它的成假赋值,成假赋值的条件是: ()10p q q ?∨??????00 p q ????? 所以公式的成真赋值有:01,10,11。 习题二及答案:(P38) 5、求下列公式的主析取范式,并求成真赋值: (2)()()p q q r ?→∧∧ 解:原式()p q q r ?∨∧∧q r ?∧()p p q r ??∨∧∧ ()()p q r p q r ??∧∧∨∧∧37m m ?∨,此即公式的主析取范式, 所以成真赋值为011,111。 6、求下列公式的主合取范式,并求成假赋值: (2)()()p q p r ∧∨?∨ 解:原式()()p p r p q r ?∨?∨∧?∨∨()p q r ??∨∨4M ?,此即公式的主合取范式, 所以成假赋值为100。 7、求下列公式的主析取范式,再用主析取范式求主合取范式: (1)()p q r ∧∨ 解:原式()(()())p q r r p p q q r ?∧∧?∨∨?∨∧?∨∧ ()()()()()()p q r p q r p q r p q r p q r p q r ?∧∧?∨∧∧∨?∧?∧∨?∧∧∨∧?∧∨∧∧ ()()()()()p q r p q r p q r p q r p q r ??∧?∧∨?∧∧∨∧?∧∨∧∧?∨∧∧ 13567m m m m m ?∨∨∨∨,此即主析取范式。 主析取范式中没出现的极小项为0m ,2m ,4m ,所以主合取范式中含有三个极大项0M ,2M ,4M ,故原式的主合取范式024M M M ?∧∧。 9、用真值表法求下面公式的主析取范式:

离散数学课后习题答案_(左孝凌版)

1-1,1-2 (1)解: a)是命题,真值为T。 b)不是命题。 c)是命题,真值要根据具体情况确定。 d)不是命题。 e)是命题,真值为T。 f)是命题,真值为T。 g)是命题,真值为F。 h)不是命题。 i)不是命题。 (2)解: 原子命题:我爱北京天安门。 复合命题:如果不是练健美操,我就出外旅游拉。 (3)解: a)(┓P ∧R)→Q b)Q→R c)┓P d)P→┓Q (4)解: a)设Q:我将去参加舞会。R:我有时间。P:天下雨。 Q (R∧┓P):我将去参加舞会当且仅当我有时间和天不下雨。 b)设R:我在看电视。Q:我在吃苹果。 R∧Q:我在看电视边吃苹果。 c) 设Q:一个数是奇数。R:一个数不能被2除。 (Q→R)∧(R→Q):一个数是奇数,则它不能被2整除并且一个数不能被2整除,则它是奇数。 (5) 解: a)设P:王强身体很好。Q:王强成绩很好。P∧Q b)设P:小李看书。Q:小李听音乐。P∧Q c)设P:气候很好。Q:气候很热。P∨Q d)设P:a和b是偶数。Q:a+b是偶数。P→Q

e)设P:四边形ABCD是平行四边形。Q :四边形ABCD的对边平行。P Q f)设P:语法错误。Q:程序错误。R:停机。(P∨Q)→R (6) 解: a)P:天气炎热。Q:正在下雨。P∧Q b)P:天气炎热。R:湿度较低。P∧R c)R:天正在下雨。S:湿度很高。R∨S d)A:刘英上山。B:李进上山。A∧B e)M:老王是革新者。N:小李是革新者。M∨N f)L:你看电影。M:我看电影。┓L→┓M g)P:我不看电视。Q:我不外出。R:我在睡觉。P∧Q∧R h)P:控制台打字机作输入设备。Q:控制台打字机作输出设备。P∧Q 1-3 (1)解: a)不是合式公式,没有规定运算符次序(若规定运算符次序后亦可作为合式公式) b)是合式公式 c)不是合式公式(括弧不配对) d)不是合式公式(R和S之间缺少联结词) e)是合式公式。 (2)解: a)A是合式公式,(A∨B)是合式公式,(A→(A∨B))是合式公式。这个过程可以简记为:A;(A∨B);(A→(A∨B)) 同理可记 b)A;┓A ;(┓A∧B) ;((┓A∧B)∧A) c)A;┓A ;B;(┓A→B) ;(B→A) ;((┓A→B)→(B→A)) d)A;B;(A→B) ;(B→A) ;((A→B)∨(B→A)) (3)解: a)((((A→C)→((B∧C)→A))→((B∧C)→A))→(A→C)) b)((B→A)∨(A→B))。 (4)解: a) 是由c) 式进行代换得到,在c) 中用Q代换P, (P→P)代换Q.

离散数学答案 第二版 课后答案--

离散数学答案屈婉玲版 第二版高等教育出版社课后答案 第一章部分课后习题参考答案 16 设p、q的真值为0;r、s的真值为1,求下列各命题公式的真值。 (1)p∨(q∧r)?0∨(0∧1) ?0 (2)(p?r)∧(﹁q∨s) ?(0?1)∧(1∨1) ?0∧1?0. (3)(?p∧?q∧r)?(p∧q∧﹁r) ?(1∧1∧1)? (0∧0∧0)?0 (4)(?r∧s)→(p∧?q) ?(0∧1)→(1∧0) ?0→0?1 17.判断下面一段论述是否为真:“π是无理数。并且,如果3是无理数,则2也是无理数。另外6能被2整除,6才能被4整除。” 答:p: π是无理数 1 q: 3是无理数0 r: 2是无理数 1 s:6能被2整除 1 t: 6能被4整除0 命题符号化为:p∧(q→r)∧(t→s)的真值为1,所以这一段的论述为真。19.用真值表判断下列公式的类型: (4)(p→q) →(?q→?p) (5)(p∧r) ?(?p∧?q) (6)((p→q) ∧(q→r)) →(p→r) 答:(4) p q p→q ?q ?p ?q→?p (p→q)→(?q→?p) 0 0 1 1 1 1 1 0 1 1 0 1 1 1 1 0 0 1 0 0 1 1 1 1 0 0 1 1 所以公式类型为永真式 (5)公式类型为可满足式(方法如上例) (6)公式类型为永真式(方法如上例) 第二章部分课后习题参考答案

3.用等值演算法判断下列公式的类型,对不是重言式的可满足式,再用真值表法求出成真赋值. (1) ?(p∧q→q) (2)(p→(p∨q))∨(p→r) (3)(p∨q)→(p∧r) 答:(2)(p→(p∨q))∨(p→r)?(?p∨(p∨q))∨(?p∨r)??p∨p∨q∨r?1所以公式类型为永真式 (3)P q r p∨q p∧r (p∨q)→(p∧r) 0 0 0 0 0 1 0 0 1 0 0 1 0 1 0 1 0 0 0 1 1 1 0 0 1 0 0 1 0 0 1 0 1 1 1 1 1 1 0 1 0 0 1 1 1 1 1 1 所以公式类型为可满足式 4.用等值演算法证明下面等值式: (2)(p→q)∧(p→r)?(p→(q∧r)) (4)(p∧?q)∨(?p∧q)?(p∨q) ∧?(p∧q) 证明(2)(p→q)∧(p→r) ? (?p∨q)∧(?p∨r) ??p∨(q∧r)) ?p→(q∧r) (4)(p∧?q)∨(?p∧q)?(p∨(?p∧q)) ∧(?q∨(?p∧q) ?(p∨?p)∧(p∨q)∧(?q∨?p) ∧(?q∨q) ?1∧(p∨q)∧?(p∧q)∧1 ?(p∨q)∧?(p∧q) 5.求下列公式的主析取范式与主合取范式,并求成真赋值 (1)(?p→q)→(?q∨p) (2)?(p→q)∧q∧r (3)(p∨(q∧r))→(p∨q∨r)

离散数学课后习题答案_(左孝

证明 设A 上定义的二元关系R 为: <<x,y >, <u,v >>∈R ?x y =u v ① 对任意<x,y >∈A ,因为x y =x y ,所以 <<x,y >, <x,y >>∈R 即R 是自反的。 ② 设<x,y >∈A ,<u,v >∈A ,若 <<x,y >, <u,v >>∈R ?x y =u v ?u v =x y ?<<u,v >,<x,y >>∈R 即R 是对称的。 ③ 设任意<x,y >∈A ,<u,v >∈A ,<w,s >∈A ,对 <<x,y >, <u,v >>∈R ∧<<u,v >, <w,s >>∈R ?(x y =u v )∧(u v =w s )?x y =w s ?<<x,y >, <w,s >>∈R 故R 是传递的,于是R 是A 上的等价关系。

3-10.6 设R是集合A 上的对称和传递关系,证明如果对于A中的每一个元素a,在A中同时也存在b,使在R之中,则R是一个等价关系。 证明对任意a∈A,必存在一个b∈A,使得<a,b>∈R. 因为R是传递的和对称的,故有: <a,b>∈R∧<b, c>∈R?<a, c>∈R?<c,a>∈R 由<a,c>∈R∧<c, a>∈R?<a,a>∈R 所以R在A上是自反的,即R是A上的等价关系。 3-10.7 设R1和R2是非空集合A上的等价关系,试确定下述各式,哪些是A上的等价关系,对不是的式子,提供反例证明。a)(A×A)-R1; b)R1-R2; c)R12; d) r(R1-R2)(即R1-R2的自反闭包)。 解 a)(A×A)-R1不是A上等价关系。例如: A={a,b},R1={<a,a>,<b,b>}

离散数学结构 第6章 集合代数

第六章集合代数 1. 集合,相等,(真)包含,子集,空集,全集,幂集 2. 交,并,(相对和绝对)补,对称差,广义交,广义并 3. 文氏图,有穷集计数问题 4. 集合恒等式(等幂律,交换律,结合律,分配律,德·摩根律,吸收律,零律,同一 律,排中律,矛盾律,余补律,双重否定律,补交转换律等) 学习要求 1. 熟练掌握集合的子集、相等、空集、全集、幂集等概念及其符号化表示 2. 熟练掌握集合的交、并、(相对和绝对)补、对称差、广义交、广义并的定义及其性 质 3. 掌握集合的文氏图的画法及利用文氏图解决有限集的计数问题的方法 4. 牢记基本的集合恒等式(等幂律、交换律、结合律、分配律、德·摩根律、收律、零 律、同一律、排中律、矛盾律、余补律、双重否定律、补交转换律) 5. 准确地用逻辑演算或利用已知的集合恒等式或包含式证明新的等式或包含式

6.1 集合的基本概念 一.集合的表示 集合是不能精确定义的基本概念。直观地说,把一些事物汇集到一起组成一个整体就叫集合,而这些事物就是这个集合的元素或成员。例如: 方程x2-1=0的实数解集合; 26个英文字母的集合; 坐标平面上所有点的集合; …… 集合通常用大写的英文字母来标记,例如自然数集合N(在离散数学中认为0也是自然数),整数集合Z,有理数集合Q,实数集合R,复数集合C等。 表示一个集合的方法有两种:列元素法和谓词表示法,前一种方法是列出集合的所有元素,元素之间用逗号隔开,并把它们用花括号括起来。例如 A={a,b,c,…,z} Z={0,±1,±2,…} 都是合法的表示。谓词表示法是用谓词来概括集合中元素的属性,例如集合 B={x|x∈R∧x2-1=0} 表示方程x2-1=0的实数解集。许多集合可以用两种方法来表示,如B也可以写成{-1,1}。但是有些集合不可以用列元素法表示,如实数集合。 集合的元素是彼此不同的,如果同一个元素在集合中多次出现应该认为是一个元素,如{1,1,2,2,3}={1,2,3} 集合的元素是无序的,如 {1,2,3}={3,1,2} 在本书所采用的体系中规定集合的元素都是集合。 元素和集合之间的关系是隶属关系,即属于或不属于,属于记作∈,不属于记作,例如 A={a,{b,c},d,{{d}}} 这里a∈A,{b,c}∈A,d∈A,{{d}}∈A,但b A,{d} A. b和{d}是A的元素的元素。可以用一种树形图来表示这种隶属关系,该图分层构成,每个层上的结点都表示一个集合,它的儿子就是它的元素。上述集合A的树形图如图6.1所示。图中的a,b,c,d也是集合,由于所讨论的问题与a,b,c,d的元素无关,所以没有列出它们的元素。鉴于集合的元素都是集合这一规定,隶属关系可以看作是处在不同层次上的集合之间的关系。

离散数学(左孝凌)课后习题解答(详细)

离散数学~ 习题1.1 1.下列句子中,哪些是命题?哪些不是命题?如果是命题,指出它的真值。 ⑴中国有四大发明。 ⑵计算机有空吗? ⑶不存在最大素数。 ⑷21+3<5。 ⑸老王是山东人或河北人。 ⑹2与3都是偶数。 ⑺小李在宿舍里。 ⑻这朵玫瑰花多美丽呀! ⑼请勿随地吐痰! ⑽圆的面积等于半径的平方乘以 。 ⑾只有6是偶数,3才能是2的倍数。 ⑿雪是黑色的当且仅当太阳从东方升起。 ⒀如果天下大雨,他就乘班车上班。 解:⑴⑶⑷⑸⑹⑺⑽⑾⑿⒀是命题,其中⑴⑶⑽⑾是真命题,⑷⑹⑿是假命题,⑸⑺⒀的真值目前无法确定;⑵⑻⑼不是命题。 2. 将下列复合命题分成若干原子命题。 ⑴李辛与李末是兄弟。 ⑵因为天气冷,所以我穿了羽绒服。 ⑶天正在下雨或湿度很高。 ⑷刘英与李进上山。 ⑸王强与刘威都学过法语。 ⑹如果你不看电影,那么我也不看电影。 ⑺我既不看电视也不外出,我在睡觉。 ⑻除非天下大雨,否则他不乘班车上班。 解:⑴本命题为原子命题; ⑵p:天气冷;q:我穿羽绒服; ⑶p:天在下雨;q:湿度很高; ⑷p:刘英上山;q:李进上山; ⑸p:王强学过法语;q:刘威学过法语; ⑹p:你看电影;q:我看电影; ⑺p:我看电视;q:我外出;r:我睡觉; ⑻p:天下大雨;q:他乘班车上班。

3. 将下列命题符号化。 ⑴他一面吃饭,一面听音乐。 ⑵3是素数或2是素数。 ⑶若地球上没有树木,则人类不能生存。 ⑷8是偶数的充分必要条件是8能被3整除。 ⑸停机的原因在于语法错误或程序错误。 ⑹四边形ABCD是平行四边形当且仅当它的对边平行。 ⑺如果a和b是偶数,则a+b是偶数。 解:⑴p:他吃饭;q:他听音乐;原命题符号化为:p∧q ⑵p:3是素数;q:2是素数;原命题符号化为:p∨q ⑶p:地球上有树木;q:人类能生存;原命题符号化为:?p→?q ⑷p:8是偶数;q:8能被3整除;原命题符号化为:p?q ⑸p:停机;q:语法错误;r:程序错误;原命题符号化为:q∨r→p ⑹p:四边形ABCD是平行四边形;q:四边形ABCD的对边平行;原命题符号化为:p?q。 ⑺p:a是偶数;q:b是偶数;r:a+b是偶数;原命题符号化为:p∧q→r 4. 将下列命题符号化,并指出各复合命题的真值。 ⑴如果3+3=6,则雪是白的。 ⑵如果3+3≠6,则雪是白的。 ⑶如果3+3=6,则雪不是白的。 ⑷如果3+3≠6,则雪不是白的。 ⑸3是无理数当且仅当加拿大位于亚洲。 ⑹2+3=5的充要条件是3是无理数。(假定是10进制) ⑺若两圆O1,O2的面积相等,则它们的半径相等,反之亦然。 ⑻当王小红心情愉快时,她就唱歌,反之,当她唱歌时,一定心情愉快。 解:设p:3+3=6。q:雪是白的。 ⑴原命题符号化为:p→q;该命题是真命题。 ⑵原命题符号化为:?p→q;该命题是真命题。 ⑶原命题符号化为:p→?q;该命题是假命题。 ⑷原命题符号化为:?p→?q;该命题是真命题。 ⑸p:3是无理数;q:加拿大位于亚洲;原命题符号化为:p?q;该命题是假命题。 ⑹p:2+3=5;q:3是无理数;原命题符号化为:p?q;该命题是真命题。 ⑺p:两圆O1,O2的面积相等;q:两圆O1,O2的半径相等;原命题符号化为:p?q;该命题是真命题。 ⑻p:王小红心情愉快;q:王小红唱歌;原命题符号化为:p?q;该命题是真命题。

离散数学-第六章集合代数课后练习习题及答案

第六章作业 评分要求: 1. 合计57分 2. 给出每小题得分(注意: 写出扣分理由). 3. 总得分在采分点1处正确设置. 一有限集合计数问题 (合计20分: 每小题10分, 正确定义集合得4分, 方法与过程4分, 结果2分) 要求: 掌握集合的定义方法以及处理有限集合计数问题的基本方法 1 对60个人的调查表明, 有25人阅读《每周新闻》杂志, 26人阅读《时代》杂志, 26人阅读《财富》杂志, 9人阅读《每周新闻》和《财富》杂志, 11人阅读《每周新闻》和《时代》杂志, 8人阅读《时代》和《财富》杂志, 还有8人什么杂志也不读. (1) 求阅读全部3种杂志的人数; (2) 分别求只阅读《每周新闻》、《时代》和《财富》杂志的人数. 解定义集合: 设E={x|x是调查对象}, A={x|x阅读《每周新闻》}, B={x|x阅读《时代》}, C={x|x阅读《财富》} 由条件得|E|=60, |A|=25, |B|=26, |C|=26, |A∩C|=9, |A∩B|=11, |B∩C|=8, |E-A∪B∪C|=8 (1) 阅读全部3种杂志的人数=|A∩B∩C| =|A∪B∪C|-(|A|+|B|+|C|)+(|A∩B|+|A∩C|+|B∩C|) =(60-8)-(25+26+26)+(11+9+8)=3 (2) 只阅读《每周新闻》的人数=|A-B∪C|=|A-A∩(B∪C)|=|A-(A∩B)∪(A∩C)| =|A|-(|A∩B|+|A∩C|-|A∩B∩C|)=25-(11+9-3)=8 同理可得只阅读《时代》的人数为10, 只阅读《财富》的人数为12. 2 使用容斥原理求不超过120的素数个数. 分析:本题有一定难度, 难在如何定义集合. 考虑到素数只有1和其自身两个素因子, 而不超过120的合数的最小素因子一定是2,3,5或7(比120开方小的素数), 也就是说, 不超过120的合数一定是2,3,5或7的倍数. 因此, 可定义4条性质分别为2,3,5或7的倍数, 先求出不超过120的所有的合数, 再得出素数的个数. 解定义集合: 设全集E={x|x∈Z∧1≤x∧x≤120} A={2k|k∈Z∧k≥1∧2k≤120}, B={3k|k∈Z∧k≥1∧3k≤120}, C={5k|k∈Z∧k≥1∧5k≤120}, D={7k|k∈Z∧k≥1∧7k≤120}. 则不超过120的合数的个数=|A∪B∪C∪D|-4 (因为2,3,5,7不是合数) =(|A|+|B|+|C|+|D|)-(|A∩B|+|A∩C|+|A∩D|+|B∩C|+|B∩D|+|C∩D|)+ (|A∩B∩C|+|A∩B∩D|+|A∩C∩D|+|B∩C∩D|)-|A∩B∩C∩D|-4 =(60+40+24+17)-(20+12+8+8+5+3)+(4+2+1+1)-0-4 (理由见说明部分) =89 因此不超过120的素数个数=120-1-89=30 (因为1不是素数) 说明: |A|=int(120/2); |A?B|=int(120/lcd(2,3)); |A?B?C|=int(120/lcd(2,3,5)); |A?B?C?D|=int(120/lcd(2,3,5,7)).

相关主题
文本预览
相关文档 最新文档