当前位置:文档之家› 晶硅太阳能电池发展状况及趋势分析

晶硅太阳能电池发展状况及趋势分析

晶硅太阳能电池发展状况及趋势分析
晶硅太阳能电池发展状况及趋势分析

晶硅太阳能电池发展状况及趋势分析

太阳能属于可再生资源,具有用之不竭、取之不尽的特点,这也推动了晶硅太阳能电池产业的快速发展。我国是晶硅太阳能电池制造大国,但在发展过程中,我国晶硅太阳能电池却遇到了一系列制约性瓶颈,对此要引起高度重视。文章对晶硅太阳能电池发展状况进行了全面和系统的研究,首先对我国晶硅太阳能电池发展状况进行了简要的回顾和分析,在此基础上对未来我国晶硅太阳能电池发展趋势进行了分析,旨在为推动我国晶硅太阳能电池发展提供一些参考。

标签:晶硅太阳能电池;发展现状;发展趋势

随着全球能源约束越来越大,能源问题已经成为制约全球经济发展的重要因素,特别是在全球都高度重视环境保护的形势下,如何开拓新的能源市场已经成为各个国家高度重视的问题,特别是加强对新能源的利用已经是大势所趋。晶硅太阳能电池是重要的新能源,而且具有绿色环保的优势,因而必须高度重视晶硅太阳能电池的发展。尽管从总体上来看,我国晶硅太阳能取得了重要的发展,但在全球市场竞争越来越激烈的情况下,我国必须大力推动晶硅太阳能电池转型发展,使其在“中国制造2025”战略方面取得重大突破,进而推动我国晶硅太阳能电池步入更加科学化的发展轨道。

1 我国晶硅太阳能电池发展现状

随着全球晶硅太阳能电池市场的不断发展壮大,全球都高度重视晶硅太阳能电池发展,特别是自2004年以来,全球晶硅太阳能电池增长率始终保持在20%以上的速度。我国是太阳能光伏电池生产大国,自1959年以来,我国在这方面不断取得新的更大的成效,我国晶硅太阳能电池组件在全球市场的占有率达到了70%左右,表明我国晶硅太阳能电池产生呈现出蓬勃发展的态势。尽管从总体上来看,我国属于晶硅太阳能电池“制造大国”,但我国还没有上升到“制造强国”的行列,还存在一些不容忽视的问题。

一是发电成本相对较高。晶硅太阳能电池的发展水平如何,最为重要的就是发电成本,只有较低的发电成本,才能使晶硅太阳能电池得到更有效的推广和利用,使其成为“清洁发电”的重要战略性举措。尽管我国不断加大晶硅太阳能电池技术创新力度,而且也取得了重要的成效,但当前我国晶硅太阳能电池发电成本仍然相对较高,远远高于普通市电价格。由于发电成本相对较高,特别是我国一些晶硅太阳能电池生产企业不注重降低成本,这也直接导致我国晶硅太阳能电池发展受到一定的影响,需要引起高度重视,并通过积极的技术创新来降低发电成本。

二是国际贸易壁垒较多。由于我国属于晶硅太阳能电池生产大国,但在出口方面却受到国际贸易壁垒的限制,导致我国晶硅太阳能电池发展受到限制。特别是2008年金融危机以来,针对我国晶硅太阳能电池的贸易壁垒越来越多,国际贸易保护主义越来越严重,比如美国的“双反”政策征收100%的关税。欧盟、印

非晶硅太阳能电池研究毕业论文

非晶硅太阳能电池 赵准 (吉首大学物理与机电工程学院,湖南吉首 416000) 摘要:随着煤炭、石油等现有能源的频频告急和生态环境的恶化.使得人类不得不尽快寻找新的清洁能源和可再生资源。其中包括水能、风能和太阳能,而太阳能以其储量巨大、安全、清洁等优势使其必将成为21世纪的最主要能源之一。太阳是一个巨大的能源,其辐射出来的功率约为其中有被地球截取,这部分能量约有的能量闯过大气层到达地面,在正对太阳的每一平方米地球表面上能接受到1kw左右的能量。 目前分为光热发电和光伏发电两种形式。太阳能热发电是利用聚光集热器把太阳能聚集起来,将一定的工质加热到较高的温度(通常为几百摄氏度到上千摄氏度),然后通过常规的热机动发电机发电或通过其他发电技术将其转换成电能。光伏发电是利用界面的而将光能直接转变为电能的一种技术。目前光—电转换器有两种:一种是光—伽伐尼电池,另一种是光伏效应。由一个或多个太阳能电池片组成的太阳能电池板称为光伏组件,将光伏组件串联起来再配合上功率控制器等部件就形成了光伏发电装置。因为光伏发电规模大小随意、能独立发电、建设时间短、维护起来也简单.所以从70年代开始光伏发电技术得到迅速发展,日本、德国、美国都大力发展光伏产业,他们走在了世界的前列,我国在光伏研究和产业方面也奋起直追,现在以每年20%的速度迅速发展。 关键词:光伏发电;太阳能电池;硅基太阳能电池;非晶硅太阳能电池

1.引言 1976年卡尔松和路昂斯基报告了无定形硅(简称a一Si)薄膜太阳电他的诞生。当时、面积样品的光电转换效率为2.4%。时隔20多年,a一Si太阳电池现在已发展成为最实用廉价的太阳电池品种之一。非晶硅科技已转化为一个大规模的产业,世界上总组件生产能力每年在50MW以上,组件及相关产品销售额在10亿美元以上。应用范围小到手表、计算器电源大到10Mw级的独立电站。涉及诸多品种的电子消费品、照明和家用电源、农牧业抽水、广播通讯台站电源及中小型联网电站等。a一Si太阳电池成了光伏能源中的一支生力军,对整个洁净可再生能源发展起了巨大的推动作用。非晶硅太阳电他的诞生、发展过程是生动、复杂和曲折的,全面总结其中的经验教训对于进一步推动薄膜非晶硅太阳电池领域的科技进步和相关高新技术产业的发展有着重要意义。况且,由于从非晶硅材料及其太阳电池研究到有关新兴产业的发展是科学技术转化为生产力的典型事例,其中的规律性对其它新兴科技领域和相关产业的发展也会有有益的启示。本文将追述非晶硅太阳电他的诞生、发展过程,简要评述其中的关键之点,指出进一步发展的方向。 2.太阳能电池概述 .太阳能电池原理 太阳能电池是通过光电效应或者光化学效应把光能转化成电能的装置。太阳能电池以光电效应工作的结晶体太阳能电池和薄膜式太阳能电池为主流,而以光化学效应工作的湿式太阳能电池则还处于萌芽阶段。太阳能电池工作原理的基础是半导体PN结的光生伏特效应。所谓光生伏特效应就是当物体受到光照时,物体内的电荷分布状态发生变化而产生电动势和电流的一种效应。 为了理解太阳能电池的运做,我们需要考虑材料的属性并且同时考虑太阳光的属性。太阳能电池包括两种类型材料,通常意义上的P型硅和N型硅。在纯净的硅晶体中,自由电子和空穴的数目是相等的。如果在硅晶体掺杂了能俘获电子的硼、铝、镓、铟等杂质元素,那么就构成P型半导体。如果在硅晶体面中掺入能够释放电子的磷、砷、锑等杂质元素,那么就构成了N型半导体。若把这两种半导体结合在一起,由于电子和空穴的扩散,在交接面处便会形成PN结,并在结的两边形成内建电场。太阳光照在半导体 p-n结上,形成新的空穴-电子对,在p-n结电场的作用下,空穴由n 区流向p区,电子由p区流向n区,接通电路后就形成电流。这就是光电效应,也是太阳能电池的工作原理。 太阳能电池种类 太阳能电池的种类有很多,按材料来分,有硅基太阳能电池(单晶,多晶,非晶),化合物半导体太阳能电池(砷化镓(GaAs),磷化铟(InP),碲化镉(CdTe), 铜铟镓硒(CIGS)),有机聚合物太阳能电池(酞青,聚乙炔),染料敏化太阳能电池,纳米晶太阳能电池;按结构来分,有体结晶型太阳能电池和薄膜太阳能电池。

晶体硅太阳能电池

晶体硅太阳能电池 专业班级:机械设计制造及其自动化13秋姓名:张正红 学号: 1334001250324 报告时间: 2015年12月

晶体硅太阳能电池 摘要:人类面临着有限常规能源和环境破坏严重的双重压力,能源己经成为越来越值得关注的社会与环境问题。人们开始急切地寻找其他的能源物质,而光能、风能、海洋能以及生物质能这些可再生能源无疑越来越受到人们的关注。光伏技术也便随之形成并快速地发展了起来,因此近年来,光伏市场也得到了快速发展并取得可喜的成就。本文主要就晶体硅太阳能电池发电原理及关键材料进行介绍,并对晶体硅太阳能电池及其关键材料的市场发展方向进行了展望。 关键词:太阳能电池;工作原理;晶体硅;特点;发展趋势 前言 “开发太阳能,造福全人类”人类这一美好的愿景随着硅材料技术、半导体工业装备制造技术以及光伏电池关键制造工艺技术的不断获得突破而离我们的现实生活越来越近!近20年来,光伏科学家与光伏电池制造工艺技术人员的研究成果已经使太阳能光伏发电成本从最初的几美元/KWh减少到低于20美分/KWh。而这一趋势通过研发更新的工艺技术、开发更先进的配套装备、更廉价的光伏电子材料以及新型高效太阳能电池结构,太阳能光伏(PV)发电成本将会进一步降低,到本世纪中叶将降至4美分/KWh,优于传统的发电费用。 大面积、薄片化、高效率以及高自动化集约生产将是光伏硅电池工业的发展趋势。通过降低峰瓦电池的硅材料成本,通过提升光电转换效率与延长其使用寿命来降低单位电池的发电成本,通过集约化生产节约人力资源降低单位电池制造成本,通过合理的机制建立优秀的技术团队、避免人才的不合理流动、充分保证技术上的持续创新是未来光伏企业发展的核心竞争力所在! 一、晶体硅太阳能电池工作原理 太阳能电池是一种把光能转换成电能的能量转换器,太阳能电池工作原理的基础是半导体PN结的光生伏特效应。

硅基太阳能电池的发展及应用

.. 硅基太阳能电池的发展及应用 摘要:太阳能电池是缓解环境危机和能源危机一条新的出路,本文介绍了硅基太阳能电池的原理,综述了硅基太阳电池的优点与不足,以及硅基太阳能电池和其他太阳能电池的横向比较,硅基太阳能电池在光伏产业中的地位,并展望了发展趋势及应用前景等。 关键词:硅基太阳能电池转换效率 1引言 二十一世纪以来,全球经济增长所引发的能源消耗达到了空前的程度。传统的化石能源是人类赖以生存的保障,可是如今化石能源不仅在满足人类日常生活需要方面捉襟见肘,而且其燃烧所排放的温室气体更是全球变暖的罪魁祸首。随着如今全球人口突破70亿,能源的需求也在过去30年间增加了一倍。特别是电力能源从上世纪开始,在总能源需求中的比重增长迅速。中国政府己宣布了其在哥本哈根协议下得承诺,至2020年全国单位国内生产总值二氧化碳排放量比2005年下降40% --45%,非化石能源占一次能源消费的比重提高至少15%左右【6】。 目前太阳能电池主要有以下几种:硅太阳能电池,聚光太阳能电池,无机化合物薄膜太阳能电池,有机化合物薄膜太阳能电池,纳米晶薄膜太阳能电池,叠层薄膜太阳能电池等,其材料主要包括产生光伏效应的半导体材料,薄膜衬底材料,减反射膜材料等【5】。

(图1:太阳能电池的种类) 太阳电池的基本工作原理是:在被太阳电池吸收的光子中,那些能量大于半导体禁带宽度的光子,可以使得半导体中原子的价电子受到激发,在p区、空间电荷区和n区都会产生光生电子左穴对,也称光生载流子。这样形成的光生载流子由于热运动,向各个方向迁移。光生载流子在空间电荷区中产生后,立即被内建电场分离,光生电子被推进n区,光生空穴被推进p区。因此,在p-n结两侧产生了正、负电荷的积累,形成与内建电场相反的光生电场。这个电场除了一部分要抵消内建电场以外,还使p型层带正电,n型层带负电,因此产生了光生电动势,这就是光生伏特效应(简称光伏)。

高效晶硅太阳能电池生产的前沿技术介绍

高效晶硅太阳能电池生产的前沿技术介绍系列之 ————SE电池技术 序言: 太阳能电池产品能够普及的关键是低成本发电。当光伏发电成本与传统能源持平甚至低于传统能源的时候,太阳能电池产品将不依赖于政府的补贴,得以在民众中普及推广。低成本的实现途径包括光电转化效率提高、生产成本下降及组件寿命提升三方面。提高太阳能电池光电转换效率一直是光伏行业工艺研发人员的工作重点,近年来发展起来的高效晶硅太阳能电池前沿技术包括:SE选择性发射电极技术、MWT技术、EWT 技术、HIT技术、表面钝化技术、IBC技术、LBSF技术、黑硅技术、双面电池技术、二次印刷技术等。虽然,到目前为止,上述太阳能电池前沿技术的生产成本还很难与常规电池工艺匹敌,无法实现大批量生产。但是,低成本光伏产品的爆炸式发展将依赖于太阳能电池新工艺技术的革新。因此,我计划对目前世界范围内研发的高效晶硅太阳能电池前沿技术进行一个系列介绍,以便于我司技术人员了解晶硅太阳能电池行业的技术动态,拓展思维方式。本期将首先介绍SE选择性发射电极技术。 一、SE电池技术介绍 SE电池技术即选择性发射极(SE-selectiveemiter)技术,即在金属栅线(电极)与硅片接触部位进行重掺杂,在电极之间位置进行轻掺杂。这样的结构可降低扩散层复合,由此可提高光线的短波响应,同时减少前金属电极与硅的接触电阻,使得短路电流、开路电压和填充因子都得到较好的改善,从而提高转换效率。其电池结构示意图如图1所示: 图1:SE电池与传统电池结构比较 二、SE结构电池的优点 1、降低串联电阻,提高填充因子 在丝网印刷工艺下,前栅接触电阻、体电阻和扩散层薄层电阻对串联电阻贡献最大。根据金属-半导体接触电阻理论,接触电阻与金属势垒(barrierheight)和表面掺杂浓度(Nb)有关,势垒越低,掺杂浓度越高,接触电阻越小。 2、减少载流子Auger复合,提高表面钝化效果 当杂质浓度大于1017cm-3时,Auger复合是半导体中主要的复合机制,而Auger复合速率与杂质浓度的平方成反比关系,所以SE的浅扩散可以有效减少载流子在扩散层横向流动时的Auger,提高载流子收集效率。

硅太阳能电池的结构及工作原理

一.引言: 太阳能是人类取之不尽用之不竭的可再生能源。也是清洁能源,不产生任何的环境污染。 当电力、煤炭、石油等不可再生能源频频告急,能源问题日益成为制约国际社会经济发展的瓶颈时,越来越多的国家开始实行“阳光计划”,开发太阳能资源,寻求经济发展的新动力。欧洲一些高水平的核研究机构也开始转向可再生能源。在国际光伏市场巨大潜力的推动下,各国的太阳能电池制造业争相投入巨资,扩大生产,以争一席之地。 全球太阳能电池产业1994-2004年10年里增长了17倍,太阳能电池生产主要分布在日本、欧洲和美国。2006年全球太阳能电池安装规模已达1744MW,较2005年成长19%,整个市场产值已正式突破100亿美元大关。2007年全球太阳能电池产量达到3436MW,较2006年增长了56%。 中国对太阳能电池的研究起步于1958年,20世纪80年代末期,国内先后引进了多条太阳能电池生产线,使中国太阳能电池生产能力由原来的3个小厂的几百kW一下子提升到4个厂的4.5MW,这种产能一直持续到2002年,产量则只有2MW左右。2002年后,欧洲市场特别是德国市场的急剧放大和无锡尚德太阳能电力有限公司的横空出世及超常规发展给中国光伏产业带来了前所未有的发展机遇和示范效应。 目前,我国已成为全球主要的太阳能电池生产国。2007年全国太阳能电池产量达到1188MW,同比增长293%。中国已经成功超越欧洲、日本为世界太阳能电池生产第一大国。在产业布局上,我国太阳能电池产业已经形成了一定的集聚态势。在长三角、环渤海、珠三角、中西部地区,已经形成了各具特色的太阳能产业集群。 中国的太阳能电池研究比国外晚了20年,尽管最近10年国家在这方面逐年加大了投入,但投入仍然不够,与国外差距还是很大。政府应加强政策引导和政策激励,尽快解决太阳能发电上网与合理定价等问题。同时可借鉴国外的成功经验,在公共设施、政府办公楼等领域强制推广使用太阳能,充分发挥政府的示范作用,推动国内市场尽快起步和良性发展。 太阳能光伏发电在不远的将来会占据世界能源消费的重要席位,不但要替代部分常规能源,而且将成为世界能源供应的主体。预计到2030年,可再生能源在总 绿色环保节能太阳能 能源结构中将占到30%以上,而太阳能光伏发电在世界总电力供应中的占比也将达到10%以上;到2040年,可再生能源将占总能耗的50%以上,太阳能光伏发电将占总电力的20%以上;到21世纪末,可再生能源在能源结构中将占到80%以上,太阳能发电将占到60%以上。这些数字足以显

晶硅太阳能电池的特点和种类

晶体硅太阳能电池的种类及特点 太阳能电池已经有30多年的发展历史。目前世界各国研制的硅太阳能电池种类繁多,;主要系列有单晶、多晶、非晶硅几种。其中单晶硅太阳能电池占50%,多晶硅电池占20%、非晶占30%。我国光伏发电发展需解决的关键问题。太阳能光伏发电发展的瓶颈 是成本高。为此,需加大研发力度,集中在降低成本和提高效率的关键技术上有所突破,主要包括:a)晶体硅电池技术。降低太阳硅材料的制备成本:开发专门用于晶体硅太阳 能电池的硅材料,是生产高效和低成本太阳电池的基本条件;同时实现硅材料国产化和 提高性能,从产业链的源头,抓好降低成本工作。提高电池/组件转换效率:高效钝化 技术,高效陷光技术,选择性发射区,背表面场,细栅或者单面技术,封装材料的最佳 折射率等高效封装技术等。光伏技术的发展以薄膜电池为方向,高效率、高稳定性、低 成本是光伏电池发展的基本原则。 单晶硅在太阳能的有效利用当中,太阳能光电利用是近些年来发展最快,也是最具 活力的研究领域。而硅材料太阳能电池无疑是市场的主体,硅基(多晶硅、单晶硅)太阳 能电池占80%以上,每年全世界需消费硅材料3000t左右。生产太阳能电池用单晶硅, 虽然利润比较低,但是市场需求量大,供不应求,如果进行规模化生产,其利润仍然很 可观。目前,中国拟建和在建的太阳能电池生产线每年将需要680多吨的太阳能电池用 多晶硅和单晶硅材料,其中单晶硅400多吨,而且,需求量还以每年15%~20%的增长 率快速增长。硅系列太阳能电池中,单晶硅太阳能电池在实验室里最高的转换效率为23%,而规模生产的单晶硅太阳能电池,其效率为15%,技术也最为成熟。高性能单晶 硅电池是建立在高质量单晶硅材料和相关的成熟的加工处理工艺基础上的。现在单晶硅 的电池工艺已近成熟,在电池制作中,一般都采用表面织构化、发射区钝化、分区掺杂 等技术,开发的电池主要有平面单晶硅电池和刻槽埋栅电极单晶硅电池。提高转化效率 主要是靠单晶硅表面微结构处理和分区掺杂工艺。在此方面,德国夫朗霍费费莱堡太阳 能系统研究所保持着世界领先水平。该研究所采用光刻照相技术将电池表面织构化,制 成倒金字塔结构。通过改进了的电镀过程增加栅极的宽度和高度的比率:通过以上制得 的电池转化效率超过23%。单晶硅具有完整的金刚石结构。通过掺杂得到n,P型单晶硅,进而制备出p/n结、二极管及晶体管,从而使硅材料有了真正的用途。单晶硅太阳能电 池转换效率无疑是最高的,在大规模应用和工业生产中仍占据主导地位,但由于受单晶 硅材料价格及相应的繁琐的电池工艺影响,致使单晶硅成本价格居高不下,要想大幅度 降低其成本是非常困难的。 多晶硅众所周知,利用太阳能有许多优点,光伏发电将为人类提供主要的能源,但 目前来讲,要使太阳能发电具有较大的市场,被广大的消费者接受,提高太阳电池的光 电转换效率,降低生产成本应该是我们追求的最大目标,从目前国际太阳电池的发展过 程可以看出其发展趋势为单晶硅、多晶硅、带状硅、薄膜材料(包括微晶硅基薄膜、化合 1

太阳能电池生产工艺及关键设备

太阳能电池生产工艺及关键设备 目录 1 硅棒与硅锭铸造工艺及主要设备 (1) 1.1 硅棒铸造工艺及主要设备 (2) 1.1.1 工艺流程 (2) 1.1.2 工艺简介 (2) 1.1.3 主要设备介绍 (3) 1.2 硅锭铸造工艺及主要设备 (4) 1.2.1 工艺流程 (4) 1.2.2 工艺简介 (4) 1.2.3 主要设备介绍 (4) 2 硅片生产工艺及主要设备 (5) 2.1 工艺流程 (5) 2.2 工艺简介 (5) 2.3 主要设备介绍 (5) 2.3.1 切方机 (5) 2.3.2 多线切割机 (5) 3、电池片生产工艺及主要设备 (6) 3.1 工艺流程 (6) 3.2 工艺简介 (6) 3.3 主要设备介绍 (7) 3.3.1 清洗制绒设备 (7) 3.3.2 扩散炉 (7) 3.3.3 等离子刻蚀机 (8) 3.3.4 PECVD (8) 3.3.5 丝网印刷机 (8) 3.3.6 烧结炉 (9) 4 组件生产工艺及主要设备 (9) 4.1 工艺流程 (9) 4.2 工艺简介 (9) 4.3 主要设备介绍 (10) 4.3.1 层压机 (10) 4.3.2 太阳能电池分选仪 (10) 4.3.3 组件测试仪 (11)

1 硅棒与硅锭铸造工艺及主要设备 在硅锭和硅棒的制备中存在两种不同的技术路线,即多晶铸造和直拉单晶,两种生长技术相比,各有优劣。 直拉单晶棒中[C]杂质非常少,且基本无位错存在,所以制得的优质电池片最终转换效率在17%-23%之间。但由于一炉只能拉取一根硅棒,产量有限,能耗非常高,且圆形硅棒需要切除四个圆弧边才能继续使用。同时直拉单晶过程的自动化程度不高,晶棒的质量在很大程度上有赖于操作工的技能。由于坩埚和晶棒在这个拉制过程中处于旋转状态,强迫对流使得杂质和缺陷出现径向分布,极易引起氧诱导推垛层错环(OSF)和空隙或空位团的漩涡缺陷,这些因素会让单晶片质量直线下降。同时由于坩埚的原因,单晶棒中氧杂质的控制非常困难,使得单晶电池片的衰减非常厉害,影响使用寿命。 多晶铸造一次成锭16-36块,随着技术的发展该单锭所包含的块数也会随之增加,能耗也较之直拉单晶降低很多。且多晶铸造可以实现大规模全自动化的生产过程,极大减少了人力成本,且降低了误操作带来的风险。但是多晶在晶核生成阶段有很大的随机性,这就使得硅晶粒之间的边界形成各种各样的“扭折”,使位错的簇或线形式的结构缺陷成核。这些位错缺陷往往吸引硅中的杂质,并最终造成了多晶硅制成的光伏电池片中电荷载流子的快速复合,降低电池的转换效率。目前多晶硅制得的电池片转换效率16%-18%之间。 以下将对两种不同的制造工艺进行介绍: 1.1 硅棒铸造工艺及主要设备 1.1.1 工艺流程 装料与熔料——熔接——引细颈——放肩——转肩——等径生长——收尾 1.1.2 工艺简介 装料与熔料:将多晶硅料投入单晶炉中,加热使其溶化。 熔接:当硅料全部熔化后,调整加热功率以控制熔体的温度。按工艺要求调整气体的流量、压力、坩埚位置、晶转、埚转。硅料全部熔化后熔体必须有一定的稳定时间达到熔体温度和熔体的流动的稳定。装料量越大,则所需时间越长。待熔体稳定后,降下籽晶至离液面3~5mm距离,使粒晶预热,以减少籽晶与熔硅的温度差,从而减少籽晶与熔硅接触时在籽晶中产生的热应力。预热后,下降籽晶至熔体的表面,让它们充分接触,这一过程称为熔接。在熔接过程中熔硅表面的温度适当,避免籽晶熔断(温度过高)或长出多晶

太阳能晶硅电池发展历程及其关键材料技术

太阳能晶硅电池发展历程及其关键材料技术 2.1前言部分 21世纪以来,全球范围内的传统能源迅速短缺和环境污染日益严重,这两个问题成为了制约经济发展的主要问题。太阳能作为一种清洁、无污染的新能源,早已走进了人们的视野,太阳能发电及光伏产业近来受到了人们的高度重视。太阳能电池是利用光生伏特效应直接把太阳能转换成电能的一种器件。太阳能电池主要有块状太阳能电池和薄膜型太阳能电池两大类,其中硅太阳能电池又可分为单晶硅太阳能电池、多晶硅太阳能电池等。硅太阳能电池由于其转换效率比较高、性能稳定、原材料丰富等优点成为当今光伏产业中的重要支柱。太阳能电池以硅材料为主的主要原因: 对太阳能电池材料一般的要求: 1、半导体材料的禁带不能太宽; 2、要有较高的光电转换效率: 3、材料本身对环境不造成污染; 4、材料便于工业化生产且材料性能稳定。 基于以上几个方面考虑,硅是最理想的太阳能电池材料,这也是太阳能电池以硅材料为主的主要原因。但随着新材料的不断开发和相关技术的发展,以其它材料为基础的太阳能电池也愈来愈显示出诱人的前景。本文简要地综述了太阳能电池的种类及其研究现状,并讨论了太阳能电池的发展及趋势。 本文就晶硅太阳能电池的发展历程及其关键材料技术展开介绍。

2.2主题部分 2.2.1太阳能电池发展历程 从发现光伏现象,太阳能电池已经有近170多年的发展历史。1839年法国人发现了光伏现象,38年后才研制出第一片硒太阳电池,仅有1%的转换效率,作为发电没能推广。1954年美国贝尔实验室的3位科学家才做出具有实用价值的单晶硅电池(4.5%),几年后迅速提升到10%,这时主要用于卫星、航天器(价格太高,每瓦要近2000美圆)。 上世纪70年代后,由于化石能源危机(石油、煤炭),再生能源被各国重视,尤其是太阳能电池,此时的工艺、材料研究得到迅速发展,从1995年以后,太阳能电池以每年35%的年增长幅度高速发展。价格也大幅度降低(2—4美圆每瓦) 最近5年是世界光伏电池快速增长几年,平均年增长速度超过40%。 2004年全球太阳能电池产量1200MW,2005年产量达到1650MW,比2004年增加38%。转换效率常规生产单晶15.5%、多晶14.5%,实验室达24.8%。 由于世界各国加大了对硅和生产工艺的研究,加上地球硅材料及其丰富,有人预计,太阳能发电21世纪中叶将占整个能源市场的20%-50%。 2.2.2太阳能晶硅电池关键材料技术 ·晶体硅太阳能电池的基本原理

高效晶体硅太阳能电池介绍

高效晶体硅太阳电池简介(1) PERC电池是澳大利亚新南威尔士大学光伏器件实验室最早研究 的高效电池。它的结构如图2-13a所示,正面采用倒金字塔结构,进行双面钝化,背电极通过一些分离很远的小孔贯穿钝化层与衬底接触,这样制备的电池最高效率可达到23.2%[26]。由于背电极是通过一些小孔直接和衬底相接触的,所以此处没能实现钝化。为了尽可能降低此处的载流子复合,所设计的孔间距要远大于衬底的厚度才可。然而孔间距的增大又使得横向电阻增加(因为载流子要横向长距离传输才能到达此处),从而导致电池的填充因子降低。另外,在轻掺杂的衬底上实现电极的欧姆接触非常困难,这就限制了高效PERC电池衬底材料只能选用电阻率低于0.5 Ωcm以下的硅材料。 为了进一步改善PERC电池性能,该实验室设想了在电池的背面增加定域掺杂,即在电极与衬底的接触孔处进行浓硼掺杂。这种想法早已有人提出,但是最大的困难是掺杂工艺的实现,因为当时所采用的固态源进行硼掺杂后载流子寿命会有很大降低。后来在实验过程中发现采用液态源BBr3进行硼掺杂对硅片的载流子寿命影响较小,并且可以和利用TCA制备钝化层的工艺有很好的匹配。1990年在PERC结构和工艺的基础上,J.Zhao在电池的背面接触孔处采用了BBr3定域扩散制备出PERL电池,结构如图2.13b所示[27]。定域掺硼的温度为900 ℃,时间为20 min,随后采用了drive-in step技术(1070 ℃,2 h)。经过这样处理后背面接触孔处的薄层电阻可降到20 Ω/□以下。孔间距离也进行了调整,由2 mm缩短为250 μm,大大减少了横

向电阻。如此,在0.5 Ωcm和2 Ωcm的p型硅片上制作的4 cm2的PERL电池的效率可达23-24%,比采用同样硅片制作的PERC电池性能有较大提高。 1993年该课题组对PERL电池进行改善,使其效率提高到24%,1998年再次提高到24.4%,2001年达到24.7%,创造了世界最高记录。这种PERL电池取得高效的原因是[28]:(1)正面采光面为倒金字塔结构,结合背电极反射器,形成了优异的光陷阱结构;(2)在正面上蒸镀了MgF2/ZnS双层减反射膜,进一步降低了表面反射;(3)正面与背面的氧化层均采用TCA工艺(三氯乙烯工艺)生长高质量的氧化层,降低了表面复合;(4)为了和双层减反射膜很好配合,正面氧化硅层要求很薄,但是随着氧化层的减薄,电池的开路电压和短路电流又会降低。为了解决这个矛盾,相对于以前的研究,增加了“alneal”工艺,即在正面的氧化层上蒸镀铝膜,然后在370 ℃的合成气氛中退火30 min,最后用磷酸腐蚀掉这层铝膜。经过“alneal”工艺后,载流子寿命和开路电压都得到较大提高,而与正面氧化层的厚度关系不大。这种工艺的原理是,在一定温度下,铝和氧化物中OH-离子发生反应产生了原子氢,在Si/SiO2的界面处对一些悬挂键进行钝化。(5)电池的背电场通过定域掺杂形成,掺杂的温度和时间至关重要,对实现定域掺杂的接触孔的设计也非常重要,因为这关系到能否在整个背面形成背电场以及体串联电阻的大小。在这个电池中浓硼扩散区面积为30 μm×30 μm,接触孔的面积为10 μm ×10 μm,孔间距为250 μm,浓硼扩散区的面积仅占背面积的1.44%。定域扩散

太阳能电池的发展与应用

太阳能电池的发展与应用 目前国际上大量使用的电池为单晶硅太阳电池、多晶硅太阳电池和非晶硅太阳电池三种,这三种电池约各占1/3的市场,我国目前有7个太阳电池生产线,主要是生产单晶硅及非晶硅太阳电池,多晶硅太阳电池也有少量生产。我国生产单晶硅太阳电池的效率在12-13%,多晶硅太阳电池在10%,非晶硅太阳电池在5-6%。晶体硅太阳电池在研究上是朝着高效率化、薄片化、大面积化的方向发展。1995年我国晶体硅太阳电池组件的参考价格为45元/瓦,非晶硅太阳电池组件为25元/瓦,仍为常规能源的几倍,但在无电地区及拉线不方便的地方,已产生了良好的经济效益。 太阳能蓄电池又称光伏电池,是一种能有效地吸收太阳辐射能,并使之转变成电能的半导体器件。它可单独地作为光探测元件,例如在照像机中使用,主要是经过串联和并联,以获得所需的电压及电流来作为供电电源使用。太阳电池的外观就如一张薄的卡片或一片薄的玻璃片一样,与普通电池外观不同,它自身也不能储存电能,即没以有光时就不发电,如果晚上要用它,就要与蓄电池配合使用。 太阳电池的面积每100㎝2在强阳光下约产生1瓦的电,我们常说的1度电是1千瓦小时,也就是1千瓦这样的电池工作1小时才能产生1度电。 太阳能光伏发电,可视为迄今为止最美妙、最长寿和最可靠的发电技术。与太阳能发电相比,它另涉及半导体器件,既无运动部件,又无流动工质,因此,避免了机械维修和工质腐蚀的问题,是可再生能源和可持续发展的可靠能源。 硅太阳电池的发展,始于1954年在,美国贝尔研究所试制成功,次年便被用做电信装置的电源,1958年又被美国首次应用和于"先锋1号"人造卫星。宇宙开发极大地促进了太阳电池的开发。与此同时,地面用太阳电池的研究也在不断开展,特别是1973年的能源危机,又大大加速了地面太阳电池的发展。许多国家为开发、利用太阳能蓄电池,为阳光发电的研究投入了相当数量的资金。迄今为止翱翔于太空的成千个飞行器中,大多数都配备了太阳能蓄电池系统。第一颗人造卫星上天,是光伏技术开发利用的起点,经过近五十年的发展,它已形成一门新的光伏科学与光伏工程。无论是在宇宙飞行中的应用,还是作为地面发电系统的应用,从开发速度、技术成熟性和应用领域来看,光伏技术都是新能源中的佼佼者。 太阳电池作为有潜力的可再生能源,在地面上逐渐得到推广。太阳电池的成本及售价也在逐年下降,多年来太阳电池的产量一直以10-25%的增长率在增加。1990年世界太阳能蓄电池组件的产量70MW(兆瓦),我国为1.2MW,主要是用在太阳光照好的边远地区。到2001年全世界太阳电池的产量达到350MW,我国太阳能蓄电池的实际产量已达到4.5MW,累计安装量已超过20MW。我国是个发展中国家,地域辽阔,有许多边远省份和经济欠发达地区。据统计目前我国尚有700万户(2800万人口),还没有用上电,60%的有电县严重缺电。这些地区在短期内不可能靠常规电力解决用电问题,光伏发电则是解决分散农、牧民用电的理想途径,市场潜力非常巨大。

晶硅太阳能电池发展状况及趋势分析

晶硅太阳能电池发展状况及趋势分析 太阳能属于可再生资源,具有用之不竭、取之不尽的特点,这也推动了晶硅太阳能电池产业的快速发展。我国是晶硅太阳能电池制造大国,但在发展过程中,我国晶硅太阳能电池却遇到了一系列制约性瓶颈,对此要引起高度重视。文章对晶硅太阳能电池发展状况进行了全面和系统的研究,首先对我国晶硅太阳能电池发展状况进行了简要的回顾和分析,在此基础上对未来我国晶硅太阳能电池发展趋势进行了分析,旨在为推动我国晶硅太阳能电池发展提供一些参考。 标签:晶硅太阳能电池;发展现状;发展趋势 随着全球能源约束越来越大,能源问题已经成为制约全球经济发展的重要因素,特别是在全球都高度重视环境保护的形势下,如何开拓新的能源市场已经成为各个国家高度重视的问题,特别是加强对新能源的利用已经是大势所趋。晶硅太阳能电池是重要的新能源,而且具有绿色环保的优势,因而必须高度重视晶硅太阳能电池的发展。尽管从总体上来看,我国晶硅太阳能取得了重要的发展,但在全球市场竞争越来越激烈的情况下,我国必须大力推动晶硅太阳能电池转型发展,使其在“中国制造2025”战略方面取得重大突破,进而推动我国晶硅太阳能电池步入更加科学化的发展轨道。 1 我国晶硅太阳能电池发展现状 随着全球晶硅太阳能电池市场的不断发展壮大,全球都高度重视晶硅太阳能电池发展,特别是自2004年以来,全球晶硅太阳能电池增长率始终保持在20%以上的速度。我国是太阳能光伏电池生产大国,自1959年以来,我国在这方面不断取得新的更大的成效,我国晶硅太阳能电池组件在全球市场的占有率达到了70%左右,表明我国晶硅太阳能电池产生呈现出蓬勃发展的态势。尽管从总体上来看,我国属于晶硅太阳能电池“制造大国”,但我国还没有上升到“制造强国”的行列,还存在一些不容忽视的问题。 一是发电成本相对较高。晶硅太阳能电池的发展水平如何,最为重要的就是发电成本,只有较低的发电成本,才能使晶硅太阳能电池得到更有效的推广和利用,使其成为“清洁发电”的重要战略性举措。尽管我国不断加大晶硅太阳能电池技术创新力度,而且也取得了重要的成效,但当前我国晶硅太阳能电池发电成本仍然相对较高,远远高于普通市电价格。由于发电成本相对较高,特别是我国一些晶硅太阳能电池生产企业不注重降低成本,这也直接导致我国晶硅太阳能电池发展受到一定的影响,需要引起高度重视,并通过积极的技术创新来降低发电成本。 二是国际贸易壁垒较多。由于我国属于晶硅太阳能电池生产大国,但在出口方面却受到国际贸易壁垒的限制,导致我国晶硅太阳能电池发展受到限制。特别是2008年金融危机以来,针对我国晶硅太阳能电池的贸易壁垒越来越多,国际贸易保护主义越来越严重,比如美国的“双反”政策征收100%的关税。欧盟、印

太阳能电池板的生产工艺流程

太阳能电池板的生产工艺流程 太阳能电池板的生产工艺流程 封装是太阳能电池生产中的关键步骤,没有良好的封装工艺,多好的电池也生产不出好的太阳能电池板。电池的封装不仅可以使电池的寿命得到保证,而且还增强了电池的抗击强度。产品的高质量和高寿命是赢得客户满意的关键,所以太阳能电池板的封装质量非常重要。 (1)流程 电池检测——正面焊接——检验——背面串接——检验——敷设(玻璃清洗、材料切割、玻璃预处理、敷设)——层压——去毛边(去边、清洗)——装边框(涂胶、装角键、冲孔、装框、擦洗余胶)——焊接接线盒——高压测试——组件测试——外观检验——包装入库。 (2)组件高效和高寿命的保证措施高转换效率、高质量的电池片;高质量的 原材料,例如,高的交联度的 EVA高黏结强度的封装剂(中性硅酮树脂胶)、高透光率高强度的钢化玻璃等; 合理的封装工艺,严谨的工作作风, 由于太阳电池属于高科技产品,生产过程中一些细节问题,如应该戴手套而不戴、应该均匀地涂刷试剂却潦草完事等都会严重地影响产品质量,所以除了制定合理的工艺外,员工的认真和严谨是非常重要的。 (3)太阳能电池组装工艺简介 ①电池测试:由于电池片制作条件的随机性,生产出来的电池性能不尽相同,所以为了有效地将性能一致或相近的电池组合在一起,所以应根据其性能参数进行分类;电池测试即通过测试电池的输出参数(电流和电压)的大小对其进行分类。以提高电池的利用率,做出质量合格的太阳能电池组件。如果把一片或者几片低功率的电池片装在太阳电池单体中,将会使整个组件的输出功率降低。因此,为了最大限度地降低电池串并联的损失,必须将性能相近的单体电池组合成组件。 ②焊接:一般将6?12个太阳能电池串联起来形成太阳能电池串。传统 上,一般采用银扁线构成电池的接头,然后利用点焊或焊接(用红外灯,利用红外线的热效应)等方法连接起来。现在一般使用60%的Sn、38%的Pb、2%的Ag 电镀后的铜扁丝(厚度约为100?200卩m)。接头需要经过火烧、红外、热风、激光处理。由于铅有毒,因此现在越来越多地采用 96.5 %的铜和 3.5 %的银合金。但是

太阳能硅材料的发展前景调研

太阳能电池级硅材料行业调研报告 1国内外光伏发电现状 1.1全球光伏发电现状 2008年全球光伏发电累计装机容量:14GW 为了扶持和促进太阳能发电产业的发展,很多国家都制定了相关的激励政策用于鼓励产业界以及科技界对该产业的投入,太阳能产业已初具规模。 2008年全球光伏发电累计装机容量为14.5GW,1992年仅0.1 GW。特别是2000年以来,全球光伏发电装机容量以每年40%的速度增长,仅2008年一年就新增6GW。光伏发电仅满足全球0.1%的电力需求。但发展速度惊人。 全球光伏发电装机容量变化 2009年全球新增光伏发电装机容量7.2GW ,其中德国3.8GW,约占全球的1/2。欧洲之外,最大的市场是日本,新增装机容量预计为1GW,其次为美国0.8GW。2010年全球新增光伏装机容量16GW,是上年新增容量的两倍。德国和意大利的数据大约分别为7GW和3GW。欧洲其他主要国家的太阳能光伏发电新增装机容量预计为捷克1.3GW,法国0.5GW,西班牙0.4GW,比利时0.25GW以及希腊0.2GW。2010年全球太阳能光伏累计装机容量接近40GW,比2009年的23GW增加70%。 2011年全球新增光伏装机预计19GW。 1.2中国光伏发电现状 中国太阳能发电产业起步晚,发展快,空间大 截至2008年底,中国累计光伏装机量仅为145MW。 中国政府的一系列光伏激励政策促进了中国光伏市场的快速增长。2009年中国年度光伏新增装机量达到160MW,超过了截至2008年底的累计安装总量。2010年实际新增装机量超过500MW。截止到2010年底,光伏累计装机容量为800MW 左右,仍未达到1GW。

晶硅太阳能电池片的制作过程

晶硅太阳能电池板的制作过程 1、表面制绒单晶硅绒面的制备是利用硅的各向异性腐蚀,在每平方厘米硅表面形成几百万个四面方锥体也即金字塔结构。由于入射光在表面的多次反射和折射,增加了光的吸收,提高了电池的短路电流和转换效率。硅的各向异性腐蚀液通常用热的碱性溶液,可用的碱有氢氧化钠,氢氧化钾、氢氧化锂和乙二胺等。大多使用廉价的浓度约为1%的氢氧化钠稀溶液来制备绒面硅,腐蚀温度为70-85℃。为了获得均匀的绒面,还应在溶液中酌量添加醇类如乙醇和异丙醇等作为络合剂,以加快硅的腐蚀。制备绒面前,硅片须先进行初步表面腐蚀,用碱性或酸性腐蚀液蚀去约20~25μm,在腐蚀绒面后,进行一般的化学清洗。经过表面准备的硅片都不宜在水中久存,以防沾污,应尽快扩散制结。 2、扩散制结太阳能电池需要一个大面积的PN结以实现光能到电能的转换,而扩散炉即为制造太阳能电池PN结的专用设备。管式扩散炉主要由石英舟的上下载部分、废气室、炉体部分和气柜部分等四大部分组成。扩散一般用三氯氧磷液态源作为扩散源。把P型硅片放在管式扩散炉的石英容器内,在850---900摄氏度高温下使用氮气将三氯氧磷带入石英容器,通过三氯氧磷和硅片进行反应,得到磷原子。经过一定时间,磷原子从四周进入硅片的表面层,并且通过硅原子之间的空隙向硅片内部渗透扩散,形成了N型半导体和P型半导体的交界面,也就是PN结。这种方法制出的PN 结均匀性好,方块电阻的不均匀性小于百分之十,少子寿命可大于10ms。制造PN结是太阳电池生产最基本也是最关键的工序。因为正是PN结的形成,才使电子和空穴在流动后不再回到原处,这样就形成了电流,用导线将电流引出,就是直流电。 3、去磷硅玻璃该工艺用于太阳能电池片生产制造过程中,通过化学腐蚀法也即把硅片放在氢氟酸溶液中浸泡,使其产生化学反应生成可溶性的络和物六氟硅酸,以去除扩散制结后在硅片表面形成的一层磷硅玻璃。在扩散过程中,POCL3与O2反应生成P2O5淀积在硅片表面。P2O5与Si反应又生成SiO2和磷原子,这样就在硅片表面形成一层含有磷元素的SiO2,称之为磷硅玻璃。去磷硅玻璃的设备一般由本体、清洗槽、伺服驱动系统、机械臂、电气控制系统和自动配酸系统等部分组成,主要动力源有氢氟酸、氮气、压缩空气、纯水,热排风和废水。氢氟酸能够溶解二氧化硅是因为氢氟酸与二氧化硅反应生成易挥发的四氟化硅气体。若氢氟酸过量,反应生成的四氟化硅会进一步与氢氟酸反应生成可溶性的络和物六氟硅酸。 4、等离子刻蚀由于在扩散过程中,即使采用背靠背扩散,硅片的所有表面包括边缘都将不可避免地扩散上磷。PN结的正面所收集到的光生电子会沿着边缘扩散有磷的区域流到PN结的背面,而造成短路。因此,必须对太阳能电池周边的掺杂硅进行刻蚀,以去除电池边缘的PN结。通常采用等离子刻蚀技术完成这一工艺。等离子刻蚀是在低压状态下,反应气体CF4的母体分子在射频功率的激发下,产生电离并形成等离子体。等离子体是由带电的电子和离子组成,反应腔体中的气体在电子的撞击下,

我国太阳能电池的发展历史

从1958年中国开始研制第一片晶体硅光伏电池以来,到现在已走过半个多世纪。光伏专家、上海交通大学太阳能研究所所长崔容强告诉编辑:“中国的太阳能电池也经历了从无到有、从空间到地面、由军到民、由小到大、由单品种到多品种以及光电转换效率由低到高的艰难而辉煌的历程。” 据统计,从2002年至今,中国太阳能电池产量猛增了77倍。2008年,我国太阳能电池产量约占世界总产量的三分之一,连续两年成为世界第一大太阳能电池生产国。 1839年法国物理学家贝克勒尔首次发现光伏效应;1954年美国贝尔实验室制成第一个单晶硅太阳能电池;1983年美国在加州建立了当时世界上最大的太阳能电厂……人类从来未曾停止过追逐太阳的步伐。 1969年研制完成硅太阳能电池组 1958,我国研制出了首块硅单晶 中科院院士、中科院半导体研究所研究员王占国对编辑说:“美国1957年左右拉出了首块硅单晶,我国1958年也研制出了首块硅单晶,随后,中科院物理新成立的半导体研究室正式开始研发太阳能电池。” 最初,研发出的电池主要用于空间领域。从1958年到1965年间,半导体所研制出的PN结电池效率突飞猛进,10×20mm电池效率稳定在15%,同国际水平相差不大。 1968年至1969年底,半导体所承担了为“实践1号卫星”研制和生产硅太阳能电池板的任务。在研究中,研究人员发现,P+/N硅单片太阳电池在空间中运行时会遭遇电子辐射,造成电池衰减,使电池无法长时间在空间运行。

于是,包括王占国在内的6人小组开始进行人造卫星用硅太阳电池辐照效应研究,实验过程中,由于技术不成熟、设备落后,致使王占国的右手严重电子灼伤,从此他一直饱受痛苦,直到1978年夏天进行植皮手术才有所缓解。编辑注意到,王占国院士右手手背上有一些黑色的褶皱,这正是老一辈科学家殚精竭虑献身科学的印记。 经过刻苦攻关,实验结果给研究人员带来巨大惊喜。王占国院士介绍,NP 结硅太阳电池抗电子辐照的能力比PN结硅电池大几十倍!随后,半导体所做出了将硅PN电池改为NP定型投产的决定,生产出了5690片NP结硅太阳电池,其中达到空间应用要求的成品3350片,圆满完成了“实践1号”卫星用太阳能电池板的研制、生产任务。1971年实践1号发射升空,在8年的寿命期内,太阳电池功率衰降不到15%,该项目在1978年全国科学大会上获重大成果奖。 1969年,半导体所停止了硅太阳电池研发,随后,天津18所为东方红二号、三号、四号系列地球同步轨道卫星研制生产太阳电池阵。 王占国院士说:“70年代末,我国与国际同期开展了砷化镓太阳能电池研究,该电池具有很高的光发射和光吸收系数,1999年,2×2cm2电池的转换效率达22%。” 1975年宁波、开封先后成立太阳电池厂,电池制造工艺模仿早期生产空间电池的工艺,太阳能电池的应用开始从空间降落到地面。 1998,我国太阳能产业有了第一个“吃螃蟹”的人 上世纪80年代开始,我国太阳能电池开始进入萌芽期,研发工作在各地次第展开,但进展缓慢。

高效晶体硅太阳能电池背场钝化技术

高效晶体硅太阳能电池 作者:S.W. Glunz,Fraunhofer Institute of Solar Energy System 如今的晶体硅光伏组件的成本分布主要是材料成本,特别是硅片成本。因此,采用更薄的硅片以及增加电池的转换效率引起了光伏业界的广泛兴趣。 表面钝化 电介质钝化与背表面场 所有转换效率大于20%的电池结构都具有电介质层的钝化表面。然而,目前业界的晶体硅太阳能电池的表面结构多采用的是丝网印刷和热场Al背表面场(Al-BSF)。它有两个主要的限制:由烧结工艺带来的硅片弯曲;更低的电学和光学特性。特别是,Sback、背表面再复合速率是关键的参数,但是在文献中却有着大量的数值。这使得衡量Al-BSF的潜力与电介质钝化变得很困难。 我们对不同的背表面结构并结合高效前表面结构进行了实验。这将有可能准确的确定表面的再复合速率、Sback以及内部反射率Rback。 图1表示了不同背表面结构的内部量子效率,从低质量的欧姆Al接触开始一直到PERL/LBSF背表面。有效的Sback和Rback已经从IQE和反射率测量中去除。

采用这些参数就有可能确定不同背表面结构对太阳能电池性能的影响(图2)。电介质钝化甚至比高质量的发射极和更薄的硅片带来的好处更多。 电介质层的钝化机理 良好的表面钝化有两种不同的机理:交界面状态Dit的降低;场效应钝化,即钝化层中一种载子类型与固定电荷Qf结合时的显著降低。尽管这些机理或两种机理的结合会导致较低的表面再复合速率,Seff(Δn)曲线显示了不同的特性(图3)。热生长的SiO2层更容易获得交界面状态的降低,而对于PECVD沉积的薄膜,如SiNx,场效应钝化和中等程度的Dit降低则更为常见。SiO2的Dit=1010cm2eV-1,Qf=1010cm2。而SiNx的Dit=1011cm2eV-1,Qf=1011cm2。

石墨烯-硅太阳能电池研发现状及应用前景

龙源期刊网 https://www.doczj.com/doc/507197137.html, 石墨烯-硅太阳能电池研发现状及应用前景作者:朱淼李昕明朱宏伟 来源:《新材料产业》2015年第07期 传统能源如石油、天然气和煤炭等大量开采和消耗,使其储量已接近枯竭。能源短缺已成为当前制约世界各国经济社会发展的主要问题。我国已连续多年成为世界上最大的能源消耗国,年能源消耗占到全球总量的1/5。因此,我国未来所面临的能源问题尤其严重,寻找新的替代能源迫在眉睫。 太阳能是一种清洁友好的新能源,其储量巨大,分布广泛,被普遍认为在未来的能源使用中具有光明的前景。太阳能电池便是基于光伏效应将太阳能转化为电能的器件。1954年,美 国贝尔实验室第1次报道了光电转换效率达6%的单晶硅pn结型太阳能电池,成为了太阳能发电史上的里程碑[1]。经过数十年的研究和发展,今天可用于制作太阳能电池的材料已有硅 (单晶、多晶、非晶)、砷化镓、铜铟镓硒(CIGS)等多种。此外,还包括有机薄膜电池和染料敏化电池等多种形式的太阳能电池。但由于材料成本及制作工艺所限,当前应用最为广泛、所占市场份额最高的还是晶体硅太阳能电池。其中,单晶硅太阳能电池所能达到的转换效率约为25%,多晶硅太阳能电池约为20%左右[2]。 一、石墨烯-硅太阳能电池 石墨烯作为一种性能优异的二维纳米碳材料,具有极高的电子迁移率和良好的透光性,十分适合用作太阳能电池的透明导电材料。在有机太阳电池及染料敏化电池等领域,石墨烯已可取代成本较高的氧化铟锡(ITO)来制作电池的透明电极[3,4]。由于石墨烯的功函数(约 4.5eV)高于硅的功函数4.31eV,若将石墨烯与硅直接进行接触,二者可形成异质结,当太阳光照射到其表面时,硅中的价电子吸收入射光中的光子能量发生跃迁,从而形成电子-空穴对。在内建电场的作用下,电子-空穴对被分离,并可经由石墨烯和硅传输到外电路当中,实现太阳能到电能的转换。基于这样的原理,Li等人于2010年提出石墨烯-硅异质结太阳能电池模型(图1),其转换效率为1.5%左右[5,6]。

相关主题
文本预览
相关文档 最新文档