当前位置:文档之家› 实验2眼图观察测量实验资料

实验2眼图观察测量实验资料

实验2眼图观察测量实验资料
实验2眼图观察测量实验资料

班级通信1403 学号 201409732 姓名裴振启指导教师邵军花日期

实验2 眼图观察测量实验

一、实验目的

学会观察眼图及其分析方法,调整传输滤波器特性。

二、实验仪器

1. 眼图观察电路

2.时钟与基带数据发生模块,位号:G

3.PSK调制模块,位号A

4.噪声模块,位号B

5.PSK解调模块,位号C

6.复接/解复接、同步技术模块,位号:I

7.20M双踪示波器1台

三、实验原理

在整个通信系统中,通常利用眼图方法估计和改善(通过调整)传输系统性能。

所谓“眼图”,就是由解调后经过接收滤波器输出的基带信号,以码元时钟作为同步信号,基带信号一个或少数码元周期反复扫描在示波器屏幕上显示的波形称为眼图。干扰和失真所产生的传输畸变,可以在眼图上清楚地显示出来。因为对于二进制信号波形,它很像人的眼睛故称眼图。

在图2-1中画出两个无噪声的波形和相应的“眼图”,一个无失真,另一个有失真(码间串扰)。

图2-1中可以看出,眼图是由虚线分段的接收码元波形叠加组成的。眼图中央的垂直线表示取样时刻。当波形没有失真时,眼图是一只“完全张开”的眼睛。在取样时刻,所有可能的取样值仅有两个:+1 或-1。当波形有失真时,“眼睛”部分闭合,取样时刻信号取值就分布在小于+1或大于-1附近。这样,保证正确判决所容许的噪声电平就减小了。换言之,在随机噪声的功率给定时,将使误码率增加。“眼睛”张开的大小就表明失真的严重程度。

眼图

图2-1 无失真及有失真时的波形及眼图

(a)无码间串扰时波形;无码间串扰眼图

(b)有码间串扰时波形;有码间串扰眼图

在图

2-2中给出从示波器上观察到的比较理想状态下的眼图照片。本实验主要是完成PSK 解调输出基带信号的眼图观测实验。

(a) 二进制系统 (b) 随机数据输入后的二进制系统图2-2

实验室理想状态下的眼图

四、各测量点和可调元件作用底板右边“眼图观察电路”

W06:接收滤波器特性调整电位器。

P16:眼图观察信号输入点。

P17:接收滤波器输出升余弦波形测试点(眼图观察测量点)。

五、实验步骤

1.插入有关实验模块:

在关闭系统电源的条件下,将“时钟与基带数据发生模块”、“ PSK调制模块” 、“噪声模块”、“PSK解调模块”,插到底板“G、A、B、C”号的位置插座上(具体位置可见底板右下角的“实验模块位置分布表”)。注意模块插头与底板插座的防呆口一致,模块位号与底板位号的一致。

2.BPSK信号线连接:

用专用导线将4P01、37P01;37P02、3P01;3P02、38P01;38P02、P16连接(底板右边“眼图观察电路”)。

注意连接铆孔的箭头指向,将输出铆孔连接输入铆孔。

3.加电:

打开系统电源开关,底板的电源指示灯正常显示。若电源指示灯显示不正常,请立即关闭电源,查找异常原因。

4.跳线开关设置:

“PSK调制模块”跳线开关37K02的1-2、3-4相连。“时钟与基带数据发生模块”的拨码器4SW02:设置为“00001“,4P01产生32Kb/s的 15位m序列输出。

5.无噪声眼图波形观察:

(1)噪声模块调节:调节3W01,将3TP01噪声电平调为0;

(2)调节3W02,调整3P02信号幅度为4V。

(3)调整好PSK调制解调电路状态,即37P01与38P02波形一致(可以反相),若不一致,可调整38W01电位器。

(4)调整接收滤波器H r(w) (这里可视为整个信道传输滤波器H(w) )的特性,使之构成一个等效的理想低通滤波器。

(5)用示波器的一根探头CH1放在4P02(码元时钟)上,另一根探头CH2放在P17(数

通信工程实验教学中心

通信工程实验教学中心通信系统原理实验报告

字基带信号的升余弦波)上,选择示波器触发方式为CH1,调整示波器的扫描旋纽,则可观察到若干个并排的眼图波形。眼图上面的一根水平线由连1引起的持续正电平产生,下面一根水平线由连0码引起的持续的负电平产生,中间部分过零点波形由1、0交替码产生。

观看眼图,调整电位器W06直到眼图波形的过零点位置重合、线条细且清晰,此时的眼图为无码间串扰、无噪声时的眼图。在调整电位器W06过程中,可发现眼图波形过零点线条有时弥散,此时的眼图为有码间串扰、无噪声时的眼图,并且线条越弥散,表示码间串扰越大;在调整过程中,还可发现 W06 在多个不同位置,眼图波形的过零点都重合,由于 W06 不同位置,对应H ( )的不同特性,它正好验证了无码间串扰传输特性不是唯一的。

6.有噪声眼图波形观察:

调节3W01,增加噪声电平。因为噪声的影响,PSK解调输出的基带信号中将出现干扰的毛刺信号(实为电平毛刺,在后续再生信号中容易引起判决错误,出现误码),此时的眼图线条变粗、变模糊并且呈毛刺状。噪声越大,线条越粗,越模糊。

7.另外,噪声也可直接与基带眼图信号混合,然后观测眼图。此时用专用导线将 4P01 与P16及P17与3P01相连。即将基带眼图信号直接接入“噪声模块”,调节3W01,增加噪声电平,此时需在3P02铆孔观测眼图波形。

8. 关机拆线:

实验结束,关闭电源,拆除信号连线,并按要求放置好实验模块。

注:本实验电路要求输入的基带信号为32Kb/s速率。

六、实验结果分析

1.简述眼图的产生原理以及它的作用。

眼图是一系列数字信号在示波器上累积而显示的图形,由于示波器的余辉作用,将扫描所得的每一个码元波形重叠在一起,从而形成眼图。眼图中包含了丰富的信息,从眼图上可以观察出码间串扰和噪声的影响,体现了数字信号整体的特征,从而可以估计系统优劣程度,因而眼图分析是高速互连系统信号完整性分析的核心。另外也可以用此图形对接收滤波器的特性加以调整,来减小码间串扰,改善系统的传输性能。

眼图的“眼睛”张开的大小反映着码间串扰的强弱“眼睛”张的越大,且眼图越端正,表示码间串扰越小;反之表示码间串扰越大。当存在噪声时,噪声将叠加在信号上,观察到的眼图的线迹会变得模糊不清。若同时存在码间串扰,“眼睛”将张开得更小。与无码间串扰时的眼图相比,原来清晰端正的细线迹,变成了比较模糊的带状线,而且不很端正。噪声越大,线迹越宽,越模糊;码间串扰越大,眼图越不端正。

2.观察实验中眼图波形,并采用MATLAB语言进行二进制基带传输系统仿真设计及眼图的仿真观察。

简易眼图仿真

x=randint(3000,1,2);

y=[[0];rcosflt(x,1,10)]; figure(1);

t=1:30061;

plot(t,y); axis([1,300,-0.5,1.5]); grid on

eyediagram(y,20,4);

t1=t';

D=[t1;y]

经过通信系统的眼图仿真

close all;

M = 2; % Define the M-ary number Fd = 2; Fs = 40; % sampling rates. Pd = 200; % Number of points in the calculation

msg_o= randint(Pd,1,M); % Random integers in the range [0,M-

1]original signal

snr=10;%Signal-to-noise rate

msg_m = pskmod(msg_o,M);

k=rand(1);

noise=k*rand(size(msg_o));

nmsg_m= msg_o+noise;

y= awgn(msg_o,snr,'measured');

z=awgn(msg_m,snr)

delay = 3;

rcva =

rcosflt(z,Fd,Fs,'fir/normal',.5,delay;

N = Fs/Fd;

propdelay = delay .* N + 1;

rcv1 = rcva(propdelay:end-

(propdelay-1),:);

offset = 0;

h1 = eyediagram(rcv1,N,1/Fd,offset);

set(h1,'Name','PSKMOD Eye Diagram Through AWGN &Filter');

3.通过 MATLAB 语言仿真观察基带信号(单极性归零、单极性不归零、双极性归零、双极性不归零波形)的功率谱密度图。 Ts=1;

N_sample=128;%每个码元的抽样点数 dt=Ts/N_sample;%抽样时间间隔 N=1000;%码元数

t=0:dt:(N*N_sample-1)*dt; gt1=ones(1,N_sample);%NRZ

gt2=[ones(1,N_sample/2),zeros(1,N_sam ple/2)];%RZ 波形

%gt3=sinc(pi*t/Ts);双极性sinc 函数波形

d=(sign(randn(1,N))+1)/2;%单极性 data=sigexpand(d,N_sample);%在序列中插入N_sample-1个0

st1=conv(data,gt1);%卷积 st2=conv(data,gt2);%卷积 d2=sign(randn(1,N));

data2=sigexpand(d2,N_sample);%对序列间隔插入N_sample-1个0 st3=conv(data2,gt1);%卷积 st4=conv(data2,gt2);

[f1,stf1]=T2F(t,st1(1:length(t))); [f2,stf2]=T2F(t,st2(1:length(t))); [f3,stf3]=T2F(t,st3(1:length(t))); [f4,stf4]=T2F(t,st4(1:length(t))); figure(1) subplot(211)

plot(t,st1(1:length(t)),'b'); axis([0 20 0 1.5]);grid on; title('单极性NRZ 波形'); subplot(212);

plot(f1,10*log10(abs(stf1).^2/N)); axis([-5 5 -40 10]);grid on;

title('单极性NRZ 功率谱密度(dB/H )');

figure(2) subplot(211)

plot(t,st2(1:length(t)),'b'); axis([0 20 0 1.5]);grid on; title('单极性RZ 波形'); subplot(212);

plot(f2,10*log10(abs(stf2).^2/N)); axis([-5 5 -40 10]);grid on;

title('单极性RZ 功率谱密度(dB/H )');

figure(3) subplot(211)

plot(t,st3(1:length(t)),'b'); axis([0 20 -1.5 1.5]);grid on; title('双极性NRZ 波形'); subplot(212);

plot(f3,10*log10(abs(stf3).^2/N)); axis([-5 5 -40 10]);grid on;

title('双极性NRZ 功率谱密度(dB/H )');

figure(4) subplot(211)

plot(t,st4(1:length(t)),'b'); axis([0 20 -1.5 1.5]);grid on; title('双极性RZ 波形'); subplot(212);

plot(f4,10*log10(abs(stf4).^2/N)); axis([-5 5 -40 10]);grid on;

title('双极性RZ 功率谱密度(dB/H )');

4.(选做)采用 MATLAB 语言进行多进制基带传输系统眼图的仿真观察。

close all;

alpha=0.2; %设置滚降系数,取值范围在[0,1]

Ts=1e-2; %升余弦滚降滤波器的参考码元周

Fs=1e3; %采样频率,单位Hz。注意:该数

Rs=50; %输入码元速率,单位Baud

M=4; %输入码元进制

Num=100; %输入码元序列长度。注意:该数值

Samp_rate=Fs/Rs %采样率,应为大于1的正整数,即

Eye_num=4; %在一个窗口内可观测到的眼图个数。

NRZ=2*randint(1,Num,M)-M+1; figure(1);

stem(NRZ);

xlabel('时间');

ylabel('幅度');

hold on;

grid on;

title('双极性NRZ码元序列');

k=1;

for ii=1:Num

for jj=1:Samp_rate

Samp_data(k)=NRZ(ii);

k=k+1;

end

end

[ht,a] =

rcosine(1/Ts,Fs,'fir',alpha);

figure(2);

subplot(2,1,1);

plot(ht);

xlabel('时间');

ylabel('冲激响应');

hold on;

grid on; title('升余弦滚降系统冲激响应,滚降因子\alpha=0.2');

st = conv(Samp_data,ht)/(Fs*Ts); subplot(2,1,2);

plot(st);

xlabel('时间');

ylabel('信号幅度');

hold on;

grid on;

title('经过升弦滚降系统后的码元') figure(3);

for k =

10:floor(length(st)/Samp_rate)-10 %不考虑过渡阶段信号,只观测稳定阶段 ss =

st(k*Samp_rate+1:(k+Eye_num)*Samp_ra te);

plot(ss);

hold on;

end

xlabel('时间');

ylabel('信号幅度');

hold on;

grid on;

title('基带信号眼图');

实验实际拍摄到的二进制基带系统眼图:

眼图常用知识介绍

眼图常用知识介绍 关于眼图及其测量大家已经做了较多的讨论传输指标测试大全其侧重于眼图的定义和测量光眼图分析张轩/22336著 以及色散对长距离传输后的眼图的影响 如下降时间消光比信噪比以及如何从各个方面来衡量一个眼图的优劣 现在我们公司常用的测量眼图的仪器为CSA8000 1眼图与常用指标介绍 下图为一个10G光信号的眼图右边一栏为这个光信号的一些测量值ExdB交叉点比例QF平均光 功率Rise下降时间峰值抖动 RMSJ 消光比定义为眼图中电平比电平的值传输距离又不同的要求G.957的建议 衡量器件是否符合要求除了满足建议要求之外 一般的对于FP/DFB直调激光器要求EML电吸收激光器消光比不小于10dBμ?ê??a2¢2?òa??×???1a±è

可以无限大将导致激光器的啁啾系数太大不利于长距传 输与速率的最低要求消光比大0.5~1.5dB???ùò???3??a?′ò???êy?μê?o|????1a±èì???á? μ????ó??2úéú?òí¨μà′ú??3?±ê??óD2úéú?ó??2¢?òí¨μà′ú???ú×???±êòa?ó?à′ó???éò? óéóú′?ê?1y3ì?Dμ????óê?2àμ???2?μ??à??óú·¢?í2àé?ò?±£?¤?óê?2àμ???2?μ?±èày?ú′ó??50ê1μ??óê?2àμ?áé???è×???ò?°?·¢?í2à??2?μ?±èày?¨òé?????ú4045 Q因子综合反映眼图的质量问题表明眼图的质量越好 光功率一般来说1???????ú2??ó1a?¥??μ??é????越高越好越高越好 如果需要准确地测量光功率 信号的上升时间下降的快慢 的变化的时间下降时间不能大于信号的周期的40如9.95G信号要求其上升 峰可以定性反映信号的抖动大小这两个测量值是越小越好如Agilint 的37718 在测量抖动的时候才能保证测量值相对准确 做为一个比较参考一般在发送侧的测量值都大于30dB

信号完整性分析基础系列之一——眼图测量

信号完整性分析基础系列之一 ——关于眼图测量(上) 汪进进美国力科公司深圳代表处 内容提要:本文将从作者习惯的无厘头漫话风格起篇,从四个方面介绍了眼图测量的相关知识:一、串行数据的背景知识; 二、眼图的基本概念; 三、眼图测量方法; 四、力科示波器在眼图测量方面的特点和优势。全分为上、下两篇。上篇包括一、二部分。下篇包括三、四部分。 您知道吗?眼图的历史可以追溯到大约47年前。在力科于2002年发明基 于连续比特位的方法来测量眼图之前,1962年-2002的40年间,眼图的测量是基 于采样示波器的传统方法。 您相信吗?在长期的培训和技术支持工作中,我们发现很少有工程师能完整地准确地理解眼图的测量原理。很多工程师们往往满足于各种标准权威机构提供的测量向导,Step by Step,满足于用“万能”的Sigtest软件测量出来的眼图给出的Pass or Fail结论。这种对于Sigtest的迷恋甚至使有些工程师忘记了眼图是 可以作为一项重要的调试工具的。 在我2004年来力科面试前,我也从来没有听说过眼图。那天面试时,老板反复强调力科在眼图测量方面的优势,但我不知所云。之后我Google“眼图”, 看到网络上有限的几篇文章,但仍不知所云。刚刚我再次Google“眼图”,仍然 没有找到哪怕一篇文章讲透了眼图测量。 网络上搜到的关于眼图的文字,出现频率最多的如下,表达得似乎非常地专业,但却在拒绝我们的阅读兴趣。 “在实际数字互连系统中,完全消除码间串扰是十分困难的,而码间串扰 对误码率的影响目前尚无法找到数学上便于处理的统计规律,还不能进行准确计算。为了衡量基带传输系统的性能优劣,在实验室中,通常用示波器观察接收信号波形的方法来分析码间串扰和噪声对系统性能的影响,这就是眼图分析法。 如果将输入波形输入示波器的Y轴,并且当示波器的水平扫描周期和码元 定时同步时,适当调整相位,使波形的中心对准取样时刻,在示波器上显示的图形很象人的眼睛,因此被称为眼图(Eye Map)。 二进制信号传输时的眼图只有一只“眼睛”,当传输三元码时,会显示两 只“眼睛”。眼图是由各段码元波形叠加而成的,眼图中央的垂直线表示最佳抽样时刻,位于两峰值中间的水平线是判决门限电平。 在无码间串扰和噪声的理想情况下,波形无失真,每个码元将重叠在一起,最终在示波器上看到的是迹线又细又清晰的“眼睛”,“眼”开启得最大。当有码

现代检测技术 实验四__K热电偶测温性能实验

检测技术实验报告 院(系):自动化专业:自动化姓名:学号: 同组人员: 评定成绩:评阅教师:

K热电偶测温性能实验 一、实验目的: 了解热电偶测温原理及方法和应用。 二、基本原理: 热电偶测量温度的基本原理是热电效应。将A和B二种不同的导体首尾相连组成闭合回路,如果二连接点温度(T,T0)不同,则在回路中就会产生热电动势,形成热电流,这就是热电效应。热电偶就是将A和B二种不同的金属材料一端焊接而成。A和B称为热电极,焊接的一端是接触热场的T端称为工作端或测量端,也称热端;未焊接的一端(接引线)处在温度T0称为自由端或参考端,也称冷端。T与T0的温差愈大,热电偶的输出电动势愈大;温差为0时,热电偶的输出电动势为0;因此,可以用测热电动势大小衡量温度的大小。国际上,将热电偶的A、B热电极材料不同分成若干分度号,如常用的K(镍铬-镍硅或镍铝)、E(镍铬-康铜)、T(铜-康铜)等等,并且有相应的分度(见附录)表即参考端温度为0℃时的测量端温度与热电动势的对应关系表;可以通过测量热电偶输出的热电动势值再查分度表得到相应的温度值。 三、需用器件与单元: 主机箱、温度源、P t100热电阻(温度源温度控制传感器)、K热电偶(温度特性实验传感器)、温度传感器实验模板、应变传感器实验模板(代mV发生器)。 四、实验步骤: 热电偶使用说明:热电偶由A、B热电极材料及直径(偶丝直径)决定其测温范围,如K(镍铬-镍硅或镍铝)热电偶,偶丝直径3.2mm时测温范围0~1200℃,本实验用的K热电偶偶丝直径为0.5mm,测温范围0~800℃;E(镍铬-康铜),偶丝直径3.2mm时测温范围-200~+750℃,实验用的E热电偶偶丝直径为0.5mm,测温范围-200~+350℃。由于温度源温度<200℃,所以,所有热电偶实际测温范围<200℃。 从热电偶的测温原理可知,热电偶测量的是测量端与参考端之间的温度差,必须保证参考端温度为0℃时才能正确测量测量端的温度,否则存在着参考端所处环境温度值误差。 热电偶的分度表(见附录)是定义在热电偶的参考端(冷端)为0℃时热电偶输出的热电

温度测量实验报告

温度测量实验报告 上海交通大学材料科学与工程学院 实验目的 1.掌握炉温实时控制系统结构图及其电压控制原理; 2.通过数据采集板卡,对温度信号(输入为电压模拟量)采集和滤波; 3.通过数据采集板卡,输出模拟电压量到调节器; 4.通过观测温度曲线,实施手动调节输出电压,使得温度曲线与理想波形尽量接近; 5.用增量式PID控制算法控制炉温曲线。 实验原理 (一)炉温实时控制系统结构图 (二)输出控制电压与工作电压的关系 加热炉加热电压=板卡输出控制电压×220 10 (三)电压控制原理 (四)温度与电压的关系

温度=电压× 700℃ (五)PID控制算法公式 ?u k= Ae k? Be k ? 1+ Ce(k ? 2) 其中:A=K P(1+ T T I + T D T );B=K P(1+2T D T );C=K P T D T 。 u k=u k ? 1+ ?u(k) 手动控制炉温参数选择及理由 加热电压:4V 理由:本套实验装置加热速度很快,若加热电压过高(高于5V)则会导致升温过快从而有可能损坏实验装置,而若加热电压过低则会导致升温过慢,浪费时间。综合实际情况以及上述分析,本组成员决定将加热电压设置为4V。 PID炉温控制参数选择及理由 表1 PID炉温控制参数 选取理由 周期:由于温度滞后性较大,因此周期应当大一些。此处本组采用了推荐值0.2s。 K P:由实际经验可知,K P的最佳范围在0.5-1.5之间。此处本组取了中间值1。 T I:实际操作过程中,本组同学发现若T I较小,超调量就会很大。所以这里将T I取得大一些,设置为20s。T D:小组成员发现炉温滞后现象非常严重,因此T D不得不调大一些,取成0.9s。

实验探究一用常见温度计测温度

■实验探究一用常见温度计测温度 ★实验准备 1、(1)实验室用温度计、体温计、寒暑表的图片 2)观察比较三种液体温度计

补充:体温计在使用之前先将体温计的水银汞柱甩到35℃以下及读数时可离开人体的原因:体温计盛水银的玻璃泡上方有一段非常细的缩口, 测体温时水银膨 胀能通过缩口升到上面的玻璃泡里,读数时体温计离开人体,水银变冷收缩, 在缩口处断开,水银柱不能退回玻璃泡,仍然指示原来的温度,所以体温计虽然离开了人体, 表示的还是人体的温度,体温计的量程是35℃—42℃。所以,在使用之前要使已经升上去的水银再退回玻璃泡里, 要先将体温计的水银汞柱甩到35℃以下(其他温度计不允许甩)。 2、3、略。 ★实验课题在实验室用温度计测出冷水、温水、热水的温度 1、实验器材:温度计、分别装有冷水、温水、热水的三个烧杯; 2、实验要求: (1)检查器材,看器材是否符合实验要求,器材是否齐全; (2)观测器材,看温度计的量程和分度值,记录数据; (3)估测冷水、温水、热水的温度,记录数据; (4)用温度计测量冷水、温水、热水的温度,操作正确,记录数据; (5)整理器材。 3、实验步骤

问题探讨:为什么不能用体温度测量热水的温度?因为热水的温度一般要超过体温计的量程,体温计会损坏。 温度与温度计习题 一、选择题(本大题共5小题,每题3分,共15分) 1.(2014 ·滨湖区质检) 下列关于温度的描述中符合实际的是( ) A.人体的正常温度为37℃ B.冰箱冷冻室的温度为10℃ C.饺子煮熟即将出锅时温度为50℃ D.加冰的橙汁饮料温度为-20 ℃ 【解析】选A。本题考查温度的估测。人体的正常温度为37℃, 冰箱冷冻室的温度低于0℃。1 标准大气压下水的沸点是100℃,故饺子煮熟即将出锅时的温度与沸水温度相同, 为100℃。加冰的橙汁饮料为冰水混合物, 温度为0℃。 2.(2014 ·连云港岗埠期中)体温计的测量精度可达到0.1℃, 这是因为( ) A.体温计的玻璃泡的容积比细管的容积大得多 B.体温计的测量范围只有35~42℃ C.体温计的玻璃泡附近有一段弯曲的细管 D.体温计比较短 【解析】选A。本题考查体温计的构造。体温计和常用温度计相比, 前者内径很细,而下端的玻璃泡则很大,使得有微小的温度变化,即吸收很少的热量, 管中水银上升的高度会非常明显, 所以可以测量得更为精密。 3.(2013 ·郴州中考)我国在高温超导研究领域处于世界领先地位, 早已获得绝对温度为100 K 的高温超导材料。绝对温度(T) 与摄氏温度的关系是T=(t+273)K, 绝对温度100 K 相当于( ) A.-173 ℃ B.-100 ℃ C.273℃ D.100℃ 【解析】选A。本题考查绝对温度与摄氏温度的关系。由T=(t+273)K 可

光纤通信系统的眼图测试实验

太原理工大学现代科技学院 光纤通信课程实验报告 专业班级 学号 姓名 指导教师

实验名称 光纤通信系统的眼图测试实验 同组人 专业班级 学号 姓名 成绩 实验三 光纤通信系统的眼图测试实验 一、实验目的 1、了解眼图的形成过程 2、掌握光纤通信系统中眼图的测试方法 二、实验内容 1、测量数字光纤通信系统传输各种数字信号的眼图 2、观察系统眼图,并通过眼图来分析系统的性能 三、实验仪器 1、ZY12OFCom13BG3型光纤通信原理实验箱 1台 2、20MHz 双踪模拟示波器 1台 3、万用表 1台 4、FC/PC-FC/PC 单模光跳线 1根 5、850nm 光发端机和光收端机(可选) 1套 6、ST/PC-ST/PC 多模光跳线(可选) 1根 四、实验原理 眼图是衡量数字光纤通信系统数据传输特性的简单而又有效的方法。眼图可以在时域中测 量,并且可以用示波器直观的显示出来。图20-1是测量眼图的系统框图。测量时,将“伪随机码发生器”输出的伪随机码加在被测数字光纤通信系统的输入端,该被测系统的输出端接至示波器的垂直输入,用位定时信号(由伪随机码发生器提供)作外同步,在示波器水平输入用 数据频率进行触发扫描。这样,在示波器的屏幕上就可以显示出被测系统的眼图。 图1、眼图测试系统框图 ……………………………………装………………………………………订…………………………………………线………………………………………

伪随机脉冲序列是由n 比特长,2n 种不同组合所构成的序列。例如,由n=2比特长的4种 不同有组合、n=3比特长的8种不同的组合、n=4比特长16种不同的组合组成,直到伪随机码发生器所规定的极限值为止,在产生这个极限值以后,数据序列就开始重复,但它用作为测试的数据信号,则具有随机性。如图20-2所示的眼图,是由3比特长8种组合码叠加而成,示 波器上显示的眼图就是这种叠加的结果。 分析眼图图形,可以知道被测系统的性能,下面用图20-3所示的形状规则的眼图进行分析: 1、当眼开度V V V ?-为最大时刻,则是对接收到的信号进行判决的最佳时刻,无码间干扰、 信号无畸变时的眼开度为100%。 2、由于码间干扰,信号畸变使眼开度减小,眼皮厚度V 增加,无畸变眼图的眼皮厚度应该等于零。 3、系统无畸变眼图交叉点发散角 b T T ?应该等于零。 4、系统信道的任何非线性都将使眼图出现不对称,无畸变眼图的正、负极性不对称度 5、系统的定时抖动(也称为边缘抖动或相位失真)是由光收端机的噪声和光纤中的脉冲 失真产生的,如果在“可对信号进行判决的时间间隔T b ”的正中对信号进行判决,那么在阈值电平处的失真量ΔT 就表示抖动的大小。因此,系统的定时抖动用下式计算:定时抖动= …………………………………装……………………………………订………………………………………线……………………………………………

热电偶测温系统实验报告材料书

热电偶测温系统 实验报告书 班级:铁道自动化091班 小组成员:何俊峰、严云钧、王鹏远、倪森 瑜、康宁

目录 一热电偶的工作原理,补偿方法及其应用1热电偶的工作原理 2热电偶的补偿方法 3热电偶的实际应用 二热电偶测温系统的相关介绍 1线路原理图 2主要原件及其作用 3调试方法及其注意事项 三实验收尾及总结报告 1处理实验数据 2 实验总结

一热电偶的工作原理,补偿方法及其应用1热电偶的工作原理 (1)概况:热电偶是一种感温元件,热电偶的工作原理这就要从热电偶测温原理说起。一次仪表,直接测量温度,并把温度信号转换成热电动势信号,通过电气仪表(二次仪表)转换成被测介质温度。热电偶测温的基本原理是两种不同成份的材质导体组成闭合回路,当两端存在温度梯度时,回路中就会有电流通过,此时两端之间就存在Seebeck电动势—热电动势,这就是所谓的塞贝克效应。两种不同成份的均质导体为热电极,温度较高的一端为工作端,温度较低的一端为自由端,自由端通常处于某个恒定的温度下。根据热电动势与温度的函数关系,制成热电偶分度表;分度表是自由端温度在0℃时的条件下得到不同的热电偶具有不同的分度表。热电偶回路中接入第三种金属资料时,只要该资料两个接点的温度相同,热电偶所产生的热电势将坚持不变,即不受第三种金属接入回路中的影响。因此,热电偶测温时,可接入测量仪表,测得热电动势后,即可知道被测介质的温度。 B热电偶工作原理:两种不同成份的导体(称为热电偶丝材或热电极)两端接合成回路,当接合点的温度不同时,回路中就会发生电动势,这种现象称为热电效应,而这种电动势称为热电势。热电偶就是利用这种原理进行温度丈量的其中,直接用作丈量介质温度的一端叫做工作端(也称为丈量端)另一端叫做冷端(也称为弥补端)冷端与显示仪表或配套仪表连接,显示仪表会指出热电偶所产生的热电势。热电偶实际上是一种能量转换器,将热能转换为电能,用所产生的热电势测量温度 (2)分类:(S型热电偶)铂铑10-铂热电偶 铂铑10-铂热电偶(S型热电偶)为贵金属热电偶。偶丝直径规定为0.5mm,允许偏差-0.015mm,其正极(SP)的名义化学成分为铂铑合金,其中含铑为10%,含铂为90%,负极(SN)为纯铂,故俗称单铂铑热电偶。该热电偶长期最高使用温度为1300℃,短期最高使用温度为1600℃。 S型热电偶在热电偶系列中具有准确度最高,稳定性最好,测温温区宽,使用寿命长等优点。它的物理,化学性能良好,热电势稳定性及在高温下抗氧化性能好,适用于氧化性和惰性气氛中。由于S型热电偶具有优良的综合性能,符合国际使用温标的S型热电偶,长期以来曾作为国际温标的内插仪器,“ITS-90”虽规定今后不再作为国际温标的内查仪器,但国际温度咨询委员会(CCT)认为S型热电偶仍可用于近似实现国际温标。 S型热电偶不足之处是热电势,热电势率较小,灵敏读低,高温下机械强度下降,对污染非常敏感,贵金属材料昂贵,因而一次性投资较大。 (R型热电偶)铂铑13-铂热电偶 铂铑13-铂热电偶(R型热电偶)为贵金属热电偶。偶丝直径规定为0.5mm,允许偏差-0.015mm,其正极(RP)的名义化学成分为铂铑合金,其中含铑为13%,含铂为87%,负极(RN)为纯铂,长期最高使用温度为1300℃,短期最高使用温度为1600℃。 R型热电偶在热电偶系列中具有准确度最高,稳定性最好,测温温区宽,使用寿命长等优点。其物理,化学性能良好,热电势稳定性及在高温下抗氧化性能好,适用于氧化性和惰性气氛中。由于R型热电偶的综合性能与S

眼图测量

眼图——概念与测量(摘记) 中文名称: 眼图 英文名称: eyediagram;eye pattern 定义: 示波器屏幕上所显示的数字通信符号,由许多波形部分重叠形成,其形状类似“眼”的图形。“眼”大表示系统传输特性好;“眼”小表示系统中存在符号间干扰。 一.概述 “在实际数字互连系统中,完全消除码间串扰是十分困难的,而码间串扰对误码率的影响目前尚无法找到数学上便于处理的统计规律,还不能进行准确计算。为了衡量基带传输系统的性能优劣,在实验室中,通常用示波器观察接收信号波形的方法来分析码间串扰和噪声对系统性能的影响,这就是眼图分析法。 在无码间串扰和噪声的理想情况下,波形无失真,每个码元将重叠在一起,最终在示波器上看到的是迹线又细又清晰的“眼睛”,“眼”开启得最大。当有码间串扰时,波形失真,码元不完全重合,眼图的迹线就会不清晰,引起“眼”部分闭合。若再加上噪声的影响,则使眼图的线条变得模糊,“眼”开启得小了,因此,“眼”张开的大小表示了失真的程度,反映了码间串扰的强弱。由此可知,眼图能直观地表明码间串扰和噪声的影响,可评价一个基带传输系统性能的优劣。另外也可以用此图形对接收滤波器的特性加以调整,以减小码间串扰和改善系统的传输性能。通常眼图可以用下图所示的图形来描述,由此图可以看出: (1)眼图张开的宽度决定了接收波形可以不受串扰影响而抽样再生的时间间隔。显然,最佳抽样时刻应选在眼睛张开最大的时刻。 (2)眼图斜边的斜率,表示系统对定时抖动(或误差)的灵敏度,斜率越大,系统对定时抖动越敏感。

(3)眼图左(右)角阴影部分的水平宽度表示信号零点的变化范围,称为零点失真量,在许多接收设备中,定时信息是由信号零点位置来提取的,对于这种设备零点失真量很重要。 (4)在抽样时刻,阴影区的垂直宽度表示最大信号失真量。 (5)在抽样时刻上、下两阴影区间隔的一半是最小噪声容限,噪声瞬时值超过它就有可能发生错误判决。 (6)横轴对应判决门限电平。” 二、眼图的一些基本概念 —“什么是眼图?” “眼图就是象眼睛一样形状的图形。 图五眼图定义” 眼图是用余辉方式累积叠加显示采集到的串行信号的比特位的结果,叠加后的图形形状看起来和眼睛很像,故名眼图。眼图上通常显示的是1.25UI的时间窗口。眼睛的形状各种各样,眼图的形状也各种各样。通过眼图的形状特点可以快速地判断信号的质量。 图六的眼图有“双眼皮”,可判断出信号可能有串扰或预(去)加重。 图六“双眼皮”眼图 图七的眼图“眼睛里布满血丝”,这表明信号质量太差,可能是测试方法有错误,也可能是PCB布线有明显错误。

居里温度的测定_实验报告

钙钛矿锰氧化物居里温度的测定 物理学院 111120160 徐聪 摘要:本文阐述了居里温度的物理意义及测量方法,测定了钙钛矿锰氧化物样品 在不同实验条件下的居里温度,最后对本实验进行了讨论。 关键词:居里温度,钙钛矿锰氧化物,磁化强度,交换作用 1. 引言 磁性材料的自发磁化来自磁性电子间的交换作用。在磁性材料内部,交换作用总是力图使原子磁矩呈有序排列:平行取向或反平行取向。但是随着温度升高,原子热运动能量增大,逐步破坏磁性材料内部的原子磁矩的有序排列,当升高到一定温度时,热运动能和交换作用能量相等,原子磁矩的有序排列不复存在,强磁性消失,材料呈现顺磁性,此即居里温度。 不同材料的居里温度是不同的。材料居里温度的高低反映了材料内部磁性原子之间的直接交换作用、超交换作用、双交换作用。因此,深入研究和测定材料的居里温度有着重要意义。 2.居里温度的测量方法 测量材料的居里温度可以采用许多方法。常用的测量方法有: (1)通过测量材料的饱和磁化强度的温度依赖性得到曲线,从而得到降为零时对应的居里温度。这种方法适用于那些可以用来在变温条件下直接测量样品饱和磁化强度的装置,例如磁天平、振动样品磁强计以及等。 (2)通过测定样品材料在弱磁场下的初始磁导率的温度依赖性,利用霍普金森效应,确定居里温度。 (3)通过测量其他磁学量(如磁致伸缩系数等)的温度依赖性求得居里温度。 (4)通过测定一些非磁学量如比热、电阻温度系数、热电势等随温度的变化,随后根据这些非磁学量在居里温度附近的反常转折点来确定居里温度。 3. 钙钛矿锰氧化物 钙钛矿锰氧化物指的是成分为(R是二价稀土金属离子,为一价碱土金属离子)的一大类具有型钙钛矿结构的锰氧化物。理想的型(为稀土或碱土金属离子,为离子)钙钛矿具有空间群为的立方结构,如以稀土离子作为立方晶格的顶点,则离子和离子分别处在体心和面心的位置,同时,离子又位于六个氧离子组成的八面体的重心,如图1(a)所示。图1(b)则是以离子为立

数字光纤通信系统信号眼图测试

实验二数字光纤通信系统信号眼图测试 一.实验目的 1.了解眼图产生的基础,根据眼图测量数字通信系统性能的原理; 2.学习通过数字示波器调试、观测眼图; 3.掌握判别眼图质量的指标; 4.熟练使用数字示波器和误码仪。 二.实验原理 眼图是估计数字传输系统性能的一种十分有效的实验方法。这种方法已广泛应用于数字通信系统,在光纤数字通信中也是评价系统性能的重要实验方法。眼图是在时域进行的用示波器显示二进制数字信号波形的失真效应的测量方法。图2.1是测量眼图的装置图。由AV5233C误码仪产生一定长度的伪随机二进制数据流(AMI码、HDB3码、RZ 码、NRZ码)调制单模光产生相应的伪随机数据光脉冲并通过光纤活动连接器注入单模光纤,经过光纤传输后,再与光接收机相接。光接收机将从光纤传输的光脉冲变为电脉冲,并输入到AV4451(500MHz)示波器,示波器显示的扫描图形与人眼相似,因此称为眼图。 用眼图法测量系统时应有多种字型,可以采用各比特位上0和1出现的概率相等的随机数字信号进行测试。AV5233C误码仪用来产生伪随机数字序列信号。在这里“伪随机”的意义是伪随机码型发生器产生N比特长度的随机二进制数字信号是数字序列在N 比特后发生重复,并不是测试时间内整个数字序列都是随机的,因此称为“伪随机”。伪随机序列如果由2比特位组成,则共有四种组合,3比特数字信号有8种组合,N比特数字信号有2N个组合。伪随机数字信号的长度为2N-1,这种选择可保证字型不与数据率相关。例如N可取7、10、15、23、31等。如果只考虑3比特非归零码,应有如图2.2所示的8种组合。将这8种组合同时叠加,就可形成如图2.3所示的眼图。 图2.1 眼图测量装置

温度测量控制系统的设计与制作实验报告(汇编)

北京电子科技学院 课程设计报告 ( 2010 – 2011年度第一学期) 名称:模拟电子技术课程设计 题目:温度测量控制系统的设计与制作 学号: 学生姓名: 指导教师: 成绩: 日期:2010年11月17日

目录 一、电子技术课程设计的目的与要求 (3) 二、课程设计名称及设计要求 (3) 三、总体设计思想 (3) 四、系统框图及简要说明 (4) 五、单元电路设计(原理、芯片、参数计算等) (4) 六、总体电路 (5) 七、仿真结果 (8) 八、实测结果分析 (9) 九、心得体会 (9) 附录I:元器件清单 (11) 附录II:multisim仿真图 (11) 附录III:参考文献 (11)

一、电子技术课程设计的目的与要求 (一)电子技术课程设计的目的 课程设计作为模拟电子技术课程的重要组成部分,目的是使学生进一步理解课程内容,基本掌握电子系统设计和调试的方法,增加集成电路应用知识,培养学生实际动手能力以及分析、解决问题的能力。 按照本专业培养方案要求,在学完专业基础课模拟电子技术课程后,应进行课程设计,其目的是使学生更好地巩固和加深对基础知识的理解,学会设计小型电子系统的方法,独立完成系统设计及调试,增强学生理论联系实际的能力,提高学生电路分析和设计能力。通过实践教学引导学生在理论指导下有所创新,为专业课的学习和日后工程实践奠定基础。 (二)电子技术课程设计的要求 1.教学基本要求 要求学生独立完成选题设计,掌握数字系统设计方法;完成系统的组装及调试工作;在课程设计中要注重培养工程质量意识,按要求写出课程设计报告。 教师应事先准备好课程设计任务书、指导学生查阅有关资料,安排适当的时间进行答疑,帮助学生解决课程设计过程中的问题。 2.能力培养要求 (1)通过查阅手册和有关文献资料培养学生独立分析和解决实际问题的能力。 (2)通过实际电路方案的分析比较、设计计算、元件选取、安装调试等环节,掌握简单实用电路的分析方法和工程设计方法。 (3)掌握常用仪器设备的使用方法,学会简单的实验调试,提高动手能力。 (4)综合应用课程中学到的理论知识去独立完成一个设计任务。 (5)培养严肃认真的工作作风和严谨的科学态度。 二、课程设计名称及设计要求 (一)课程设计名称 设计题目:温度测量控制系统的设计与制作 (二)课程设计要求 1、设计任务 要求设计制作一个可以测量温度的测量控制系统,测量温度范围:室温0~50℃,测量精度±1℃。 2、技术指标及要求: (1)当温度在室温0℃~50℃之间变化时,系统输出端1相应在0~5V之间变化。 (2)当输出端1电压大于3V时,输出端2为低电平;当输出端1小于2V时,输出端2为高电平。 输出端1电压小于3V并大于2V时,输出端2保持不变。 三、总体设计思想 使用温度传感器完成系统设计中将实现温度信号转化为电压信号这一要求,该器件具有良好的线性和互换性,测量精度高,并具有消除电源波动的特性。因此,我们可以利用它的这些特性,实现从温度到电流的转化;但是,又考虑到温度传感器应用在电路中后,相当于电流源的作用,产生的是电流信号,所以,应用一个接地电阻使电流信号在传输过程中转化为电压信号。接下来应该是对产生电压信号的传输与调整,这里要用到电压跟随器、加减运算电路,这些电路的实现都离不开集成运放对信号进行运算以及电位器对电压调节,所以选用了集成运放LM324和电位器;最后为实现技术指标(当输出端1电压大于3V时,输出端2为低电平;当输出端1小于2V时,输出端2为高电平。输出端1电压小于3V并大于2V时,输出端2保持不变。)中的要求,选用了555定时器LM555CM。 通过以上分析,电路的总体设计思想就明确了,即我们使用温度传感器AD590将温度转化成电压信号,然后通过一系列的集成运放电路,使表示温度的电压放大,从而线性地落在0~5V这个区间里。最后通过一个555设计的电路实现当输出电压在2与3V这两点上实现输出高低电平的变化。

眼图分析

清风醉明月 slp_art 随笔- 42 文章- 1 评论- 20 博客园首页新随笔联系管理订阅 眼图——概念与测量(摘记) 中文名称: 眼图 英文名称: eye diagram;eye pattern 定义: 示波器屏幕上所显示的数字通信符号,由许多波形部分重叠形成,其形状类似“眼”的图形。“眼”大表示系统传输特性好;“眼”小表示系统中存在符号间干扰。 一.概述 “在实际数字互连系统中,完全消除码间串扰是十分困难的,而码间串扰对误码率的影响目前尚无法找到数学上便于处理的统计规律,还不能进行准确计算。为了衡量基带传输系统的性能优劣,在实验室中,通常用示波器观察接收信号波形的方法来分析码间串扰和噪声对系统性能的影响,这就是眼图分析法。 在无码间串扰和噪声的理想情况下,波形无失真,每个码元将重叠在一起,最终在示波器上看到的是迹线又细又清晰的“眼睛”,“眼”开启得最大。当有码间串扰时,波形失真,码元不完全重合,眼图的迹线就会不清晰,引起“眼”部分闭合。若再加上噪声的影响,则使眼图的线条变得模糊,“眼”开启得小了,因此,“眼”张开的大小表示了失真的程度,反映了码间串扰的强弱。由此可知,眼图能直观地表明码间串扰和噪声的影响,可评价一个基带传输系统性能的优劣。另外也可以用此图形对接收滤波器的特性加以调整,以减小码间串扰和改善系统的传输性能。通常眼图可以用下图所示的图形来描述,由此图可以看出:

(1)眼图张开的宽度决定了接收波形可以不受串扰影响而抽样再生的时间间隔。显然,最佳抽样时刻应选在眼睛张开最大的时刻。 (2)眼图斜边的斜率,表示系统对定时抖动(或误差)的灵敏度,斜率越大,系统对定时抖动越敏感。 (3)眼图左(右)角阴影部分的水平宽度表示信号零点的变化范围,称为零点失真量,在许多接收设备中,定时信息是由信号零点位置来提取的,对于这种设备零点失真量很重要。 (4)在抽样时刻,阴影区的垂直宽度表示最大信号失真量。 (5)在抽样时刻上、下两阴影区间隔的一半是最小噪声容限,噪声瞬时值超过它就有可能发生错误判决。 (6)横轴对应判决门限电平。” 二、眼图的一些基本概念 —“什么是眼图?” “眼图就是象眼睛一样形状的图形。 图五眼图定义” 眼图是用余辉方式累积叠加显示采集到的串行信号的比特位的结果,叠加后的图形形状看起来和眼睛很像,故名眼图。眼图上通常显示的是1.25UI的时间窗口。眼睛的形状各种各样,眼图的形状也各种各样。通过眼图的形状特点可以快速地判断信号的质量。 图六的眼图有“双眼皮”,可判断出信号可能有串扰或预(去)加重。 图六“双眼皮”眼图

信号完整性分析基础系列之一__关于眼图测量(全)

信号完整性分析基础系列之一_——关于眼图测量(全) 您知道吗?眼图的历史可以追溯到大约47年前。在力科于2002年发明基于连续比特位的方法来测量眼图之前,1962年-2002的40年间,眼图的测量是基于采样示波器的传统方法。 您相信吗?在长期的培训和技术支持工作中,我们发现很少有工程师能完整地准确地理解眼图的测量原理。很多工程师们往往满足于各种标准权威机构提供的测量向导,Step by Step,满足于用“万能”的Sigtest软件测量出来的眼图给出的Pass or Fail结论。这种对于Sigtest 的迷恋甚至使有些工程师忘记了眼图是可以作为一项重要的调试工具的。 在我2004年来力科面试前,我也从来没有听说过眼图。那天面试时,老板反复强调力科在眼图测量方面的优势,但我不知所云。之后我Google“眼图”,看到网络上有限的几篇文章,但仍不知所云。刚刚我再次Google“眼图”,仍然没有找到哪怕一篇文章讲透了眼图测量。 网络上搜到的关于眼图的文字,出现频率最多的如下,表达得似乎非常地专业,但却在拒绝我们的阅读兴趣。 “在实际数字互连系统中,完全消除码间串扰是十分困难的,而码间串扰对误码率的影响目前尚无法找到数学上便于处理的统计规律,还不能进行准确计算。为了衡量基带传输系统的性能优劣,在实验室中,通常用示波器观察接收信号波形的方法来分析码间串扰和噪声对系统性能的影响,这就是眼图分析法。 如果将输入波形输入示波器的Y轴,并且当示波器的水平扫描周期和码元定时同步时,适当调整相位,使波形的中心对准取样时刻,在示波器上显示的图形很象人的眼睛,因此被称为眼图(Eye Map)。 二进制信号传输时的眼图只有一只“眼睛”,当传输三元码时,会显示两只“眼睛”。眼图是由各段码元波形叠加而成的,眼图中央的垂直线表示最佳抽样时刻,位于两峰值中间的水平线是判决门限电平。 在无码间串扰和噪声的理想情况下,波形无失真,每个码元将重叠在一起,最终在示波器上看到的是迹线又细又清晰的“眼睛”,“眼”开启得最大。当有码间串扰时,波形失真,码元不完全重合,眼图的迹线就会不清晰,引起“眼”部分闭合。若再加上噪声的影响,则使眼图的线条变得模糊,“眼”开启得小了,因此,“眼”张开的大小表示了失真的程度,反映了码间串扰的强弱。由此可知,眼图能直观地表明码间串扰和噪声的影响,可评价一个基带传输系统性能的优劣。另外也可以用此图形对接收滤波器的特性加以调整,以减小码间串扰和改善系统的传输性能。通常眼图可以用下图所示的图形来描述,由此图可以看出:(1)眼图张开的宽度决定了接收波形可以不受串扰影响而抽样再生的时间间隔。显然,最佳抽样时刻应选在眼睛张开最大的时刻。 (2)眼图斜边的斜率,表示系统对定时抖动(或误差)的灵敏度,斜率越大,系统对定时抖动越敏感。

温度检测与控制实验报告

实验三十二温度传感器温度控制实验 一、实验目的 1.了解温度传感器电路的工作原理 2.了解温度控制的基本原理 3.掌握一线总线接口的使用 二、实验说明 这是一个综合硬件实验,分两大功能:温度的测量和温度的控制。 1.DALLAS最新单线数字温度传感器DS18B20简介 Dallas 半导体公司的数字化温度传感器DS1820是世界上第一片支持“一线总线”接口的温度传感器。现场温度直接以“一线总线”的数字方式传输,大大提高了系统的抗干扰性。适合于恶劣环境的现场温度测量,如:环境控制、设备或过程控制、测温类消费电子产品等。与前一代产品不同,新的产品支持3V~5.5V的电压范围,使系统设计更灵活、方便。 DS18B20测量温度范围为 -55°C~+125°C,在-10~+85°C范围内,精度为±0.5°C。DS18B20可以程序设定9~12位的分辨率,及用户设定的报警温度存储在EEPROM中,掉电后依然保存。 DS18B20内部结构 DS18B20内部结构主要由四部分组成:64位光刻ROM、温度传感器、非挥发的温度报警触发器TH和TL、配置寄存器。DS18B20的管脚排列如下: DQ为数字信号输入/输出端;GND为电源地;VDD为外接供电电源输入端(在寄生电源接线方式时接地)。 光刻ROM中的64位序列号是出厂前被光刻好的,它可以看作是该DS18B20的地址序列码。64位光刻ROM的排列是:开始8位(28H)是产品类型标号,接 着的48位是该DS18B20自身的序列号,最后8位是前面56位的循环冗余校验 码(CRC=X8+X5+X4+1)。光刻ROM的作用是使每一个DS18B20都各不相同,这样 就可以实现一根总线上挂接多个DS18B20的目的。 DS18B20中的温度传感器可完成对温度的测量,以12位转化为例:用16位符号扩展的二进制补码读数形式提供,以0.0625℃/LSB形式表达,其中S为符号位。 这是12位转化后得到的12位数据,存储在18B20的两个8比特的RAM中,二进制中的

眼图测量方法B

三、眼图测量方法 之前谈到,眼图测量方法有两种:2002年以前的传统眼图测量方法和2002年之后力科发明的现代眼图测量方法。传统眼图测量方法可以用两个英文关键词来表示:“Triggered Eye”和“Single‐Bit Eye”。现代眼图测量方法用另外两个英文关键词来表示:“Continuous‐Bit Eye”和“Single‐Shot Eye”。传统眼图测量方法用中文来理解是八个字:“同步触发+叠加显示”,现代眼图测量方法用中文来理解也是八个字:“同步切割+叠加显示”。两种方法的差别就四个字:传统的是用触发的方法,现代的是用切割的方法。“同步”是准确测量眼图的关键,传统方法和现代方法同步的方法是不一样的。“叠加显示”就是用模拟余辉的方法不断累积显示。 传统的眼图方法就是同步触发一次,然后叠加一次。每触发一次,眼图上增加了一个UI,每个UI的数据是相对于触发点排列的,因此是“Single‐Bit Eye”,每触发一次眼图上只增加了一个比特位。图一形象表示了这种方法形成眼图的过程。 图一传统眼图测量方法的原理 传统方法的第一个缺点就是效率太低。对于现在的高速信号如PCI‐Express Gen2,PCI‐SIG 要求测量1百万个UI的眼图,用传统方法就需要触发1百万次,这可能需要几个小时才能测量完。第二个缺点是,由于每次触发只能叠加一个UI,形成1百万个UI的眼图就需要触发1百万次,这样不断触发的过程中必然将示波器本身的触发抖动也引入到了眼图上。对于2.5GBbps以上的高速信号,这种触发抖动是不可忽略的。 如何同步触发,也就是说如何使每个UI的数据相对于触发点排列?也有两种方法,一种方法是在被测电路板上找到和串行数据同步的时钟,将此时钟引到示波器作为触发源,时钟的边沿作为触发的条件。另外一种方法是将被测的串行信号同时输入到示波器的输入通道和硬件时钟恢复电路(CDR)通道,硬件CDR恢复出串行数据里内嵌的时钟作为触发源。这种同

眼图有关知识详细解释

眼图综述报告 -----------李洋 目录 1. 眼图的形成 (2) 1.1 传统的眼图生成方法 (2) 1.2 实时眼图生成方法 (3) 1.3 两种方法比较 (4) 2. 眼图的结构与参数介绍 (4) 2.1 眼图的结构图 (4) 2.2 眼图的主要参数 (5) 2.2.1 消光比 (5) 2.2.2 交叉点 (5) 2.2.3 Q因子 (6) 2.2.4 信号的上升时间、下降时间 (6) 2.2.5 峰—峰值抖动和均方根值抖动 (6) 2.2.6 信噪比 (6) 3. 眼图与系统性能的关系 (7) 4. 眼图与BER的关系 (7) 4. 如何获得张开的眼图 (8) 5. 阻抗匹配的相关知识 (9) 5.1 串联终端匹配 (9) 5.2 并联终端匹配 (10) 6. 眼图常见问题分析 (10) 7. 总结 (17)

1.眼图的形成 眼图是一系列数字信号在示波器上累积而显示的图形,其形状类似于眼睛,故叫眼图。 在用余辉示波器观察传输的数据信号时,使用被测系统的定时信号,通过示波器外触发或外同步对示波器的扫描进行控制,由于扫描周期此时恰为被测信号周期的整数倍,因此在示波器荧光屏上观察到的就是一个由多个随机符号波形共同形成的稳定图形。这种图形看起来象眼睛,称为数字信号的眼图。 示波器测量的一般信号是一些位或某一段时间的波形,更多的反映的是细节信息。而眼图则反映的是链路上传输的所有数字信号的整体特性。如下图: 1.1 传统的眼图生成方法 采样示波器的CLK通常可能是用户提供的时钟,恢复时钟,或者与数据信号本身同步的码同步信号.

图:采样示波器眼图形成原理 1.2 实时眼图生成方法 实时示波器通过一次触发完成所有数据的采样,不需附加的同步信号和触发信号.通常通过软件PLL方法恢复时钟。 图:实时示波器眼图形成原理 另一种示意图:

(完整版)红外测温实验报告

红外测温方法 1.温度测量的基本概念 温度是度量物体冷热程度的物理量。在生产生活和科学实验中占有重要的地位。是国际单位之中的基本物理量之一。从能量角度来看,温度是描述系统不同自由度的能量发布状况的物理量。从热平衡角度来看,温度是描述热平衡系统冷热程度的物理量。从微观上看,温度温度标志着系统内部分子无规则运动的剧烈程度。温度高的物体分子平均动能大,温度低的无题分子平均动能小。早期人们凭感觉出发,凭感觉到的冷热程度来区别温度的高低,这样的出来的结果不准确。研究表明,几乎所有的物质性质都与温度有关。例如尺寸,体积,密度,硬度,弹性模量,破坏强度,电导率,导磁率,光辐射强度等。利用这些性质及其随温度变化规律可进行温度测量。也就是说,温度只能通过物体随温度变化的某些特征来间接测量。而用来测量温度的尺标称为温标。它规定了温度的读数起点(零点)和基本单位。目前国际上用的较多的是华氏温标,摄氏温标,热力学温标和国际实用温标。 2. 红外测温原理,方法和适用范围 2.1红外测温原理 物体处于绝对温度零度以上时,因为其内部带电粒子的运动,以不同波长的电磁波的形式向外辐射能量。波长涉及紫外,可见,红外光区。物体的红外辐射量的大小几千波长的分布与它的表面温度有着十分密切的关系。因此,通过物体自身红外辐射能量便能准确的确定其表面温度。这就是红外辐射测温所应用的原理。 2.2红外测温仪结构 红外测温仪由光学系统、光电探测器、信号放大器及信号处理、显示输出等部分组成。光学系统汇聚其视场内的目标红外辐射能量,视场的大小由测温仪的光学零件及其位置确定。红外能量聚焦在光电探测器上并转变为相应的电信号。该信号经过放大器和信号处理电路,并按照仪器内置的算法和目标发射率校正、环境温度补偿后转变为被测目标的温度值。除此之外还应考虑目标和测温仪的环境条件,如温度,气压,污染和干扰等因素对其性能的影响和修正方法。 2.3红外测温仪器的种类 红外测温仪对于原理可分为单色测温仪和双色测温仪。对于单色测温仪,在例行测温时,检测目标面积应充满测温仪视场。建议被测目标尺寸超过视场大小的50%为好。如果目标尺寸小于视场,背景辐射能量就会进入测温仪的视场干扰测温读数,造成误差。相反,如果目

信号完整性分析:关于眼图测量

关于眼图测量 作者:汪进进美国力科公司深圳代表处 信号完整性分析基础系列之一——关于眼图测量(上) 眼图的历史可以追溯到大约47年前。在力科于2002年发明基于连续比特位的方法来测量眼图之前,1962年-2002的40年间,眼图的测量是基于采样示波器的传统方法。 您相信吗?在长期的培训和技术支持工作中,我们发现很少有工程师能完整地准确地理解眼图的测量原理。很多工程师们往往满足于各种标准权威机构提供的测量向导,Step by Step,满足于用"万能"的Sigtest软件测量出来的眼图给出的Pass or Fail 结论。这种对于Sigtest的迷恋甚至使有些工程师忘记了眼图是可以作为一项重要的调试工具的。 在我2004年来力科面试前,我也从来没有听说过眼图。那天面试时,老板反复强调力科在眼图测量方面的优势,但我不知所云。之后我Google"眼图",看到网络上有限的几篇文章,但仍不知所云。刚刚我再次Google"眼图",仍然没有找到哪怕一篇文章讲透了眼图测量。 网络上搜到的关于眼图的文字,出现频率最多的如下,表达得似乎非常地专业,但却在拒绝我们的阅读兴趣。 "在实际数字互连系统中,完全消除码间串扰是十分困难的,而码间串扰对误码率的影响目前尚无法找到数学上便于处理的统计规律,还不能进行准确计算。为了衡量基带传输系统的性能优劣,在实验室中,通常用示波器观察接收信号波形的方法来分析码间串扰和噪声对系统性能的影响,这就是眼图分析法。 如果将输入波形输入示波器的Y轴,并且当示波器的水平扫描周期和码元定时同步时,适当调整相位,使波形的中心对准取样时刻,在示波器上显示的图形很象人的眼睛,因此被称为眼图(Eye Map)。 二进制信号传输时的眼图只有一只"眼睛",当传输三元码时,会显示两只"眼睛"。眼图是由各段码元波形叠加而成的,眼图中央的垂直线表示最佳抽样时刻,位于两峰值中间的水平线是判决门限电平。 在无码间串扰和噪声的理想情况下,波形无失真,每个码元将重叠在一起,最终在示波器上看到的是迹线又细又清晰的"眼睛","眼"开启得最大。当有码间串扰时,波形失真,码元不完全重合,眼图的迹线就会不清晰,引起"眼"部分闭合。若再加上噪声的影响,则使眼图的线条变得模糊,"眼"开启得小了,因此,"眼"张开的大小表示了失真的程度,反映了码间串扰的强弱。由此可知,眼图能直观地表明码间串扰和噪声的影响,

相关主题
文本预览
相关文档 最新文档