当前位置:文档之家› 第二章 质点动力学 南京大学出版社 习题解答

第二章 质点动力学 南京大学出版社 习题解答

第二章  质点动力学 南京大学出版社 习题解答
第二章  质点动力学 南京大学出版社 习题解答

第二章 习题解答

2-17 质量为2kg 的质点的运动学方程为 j t t i t r ?)133(?)16(22+++-= (单位:米,秒), 求证质点受恒力而运动,并求力的方向大小。

解:∵j i dt r d a ?6?12/22+== , j i a m F ?12?24+== 为一与时间无关的恒矢量,∴质点受恒力而运动。

F=(242+122)1/2=125N ,力与x 轴之间夹角为:

'34265.0/?===arctg F arctgF x y α

2-18 质量为m 的质点在o-xy 平面内运动,质点的运动学方程为:

j t b i t a r ?sin ?cos ωω+= ,a,b,ω为正常数,证明作用于质点的合力总指向原点。

证明:∵r j t b i t a dt r d a 2222)?sin ?cos (/ωωωω-=+-== r m a m F

2ω-==, ∴作用于质点的合力总指向原点。

2-19在图示的装置中两物体的质量各为m 1,m 2,物体之间及物体与桌面间的摩擦系数都为μ,求在力F 的作用下两物体的加速度及绳内张力,不计滑轮和绳的质量及轴承摩擦,绳不可

伸长。

解:以地为参考系,隔离m 1,m 2,受力及运动情况如图示,其中:f 1=μN 1=μm 1g , f 2=μN 2=μ(N 1+m 2g)=μ(m 1+m 2)g. 在水平方向对两个质点应用牛二定律:

②①a m T g m m g m F a m g m T 221111)(=-+--=-μμμ

①+②可求得:g m m g

m F a μμ-+-=

2

112

将a 代入①中,可求得:2

111)

2(m m g m F m T +-=

μ

2-20天平左端挂一定滑轮,一轻绳跨过定滑轮,绳的两端分别系上质量为m 1,m 2

的物体(m 1≠m 2),天平右端的托盘上放有砝码. 问天平托盘和砝码共重若干,天平才能保持平衡?不计滑轮和绳的质量及轴承摩擦,绳不伸长。

解:隔离m 1,m 2及定滑轮,受力及运动情况如图示,应用牛顿第二定律:

f 1 N 1 m 1

g T

a

F

N 2 m 2g

T

a

N 1 f 1 f 2

T'

T'

'2''2211T T a m T g

m a m g m T ==-=-②① 由①②可求得:

2

12121212,2'm m g

m m T m m g m m T +=

+=

所以,天平右端的总重量应该等于T ,天平才能保持平衡。

2-21 一个机械装置如图所示,人的质量为m 1=60kg ,人所站的底板的质量为m 2=30kg 。设绳子和滑轮的质量以及滑轮轴承的摩擦力都可略去不计,若想使所站着的底板在空中静止不动,此人应以多大的力量拉绳子?此时人对升降机的压力是多大?

解:装置的各部分和人的受力如图所示,据题意有:

112233

2312

13231200

T T T T T T N N T T T T T T N m g T N m g ?'''===?

?''===?

'''+--=??

'+-=? 解方程组得:31

212

1()41(3)4

T m m g N m m g

?=+????=-??

代入数据得:3220.5367.5T N

N N =??=?,即人应以220。5N 的力量拉绳子?此时人对升降机的压

力是367.5N 。

2-22 桌面上有一质量m 1=1kg 的木板,板上放一个质量为m 2=2kg 的物体。已知物体和板之间的滑动摩擦系数μ2=0.4,静摩擦系数为μ0=0.5,板和桌面间的滑动摩擦系数μ1=0.3。

(1)今以水平力拉板,物体和板一起以加

速度a=1m/s 2运动,计算物体和板以及板和桌面间的相互作用力;

(2)若使板从物体下抽出,至少需用多大的力?

解:以地为参考系,隔离m 1、m 2,其受力与运动情况如图所示,

f N 1 a 1

a 2 x

y

(1)物体和板之间的最大静摩擦力可提供的最大加速度大于a=1m/s 2,所以它们之间无相对运动。

111

222

2

120

f m a f N N N m

g μ=??

=??--=?解方程组并代入数据得: 1228.82f N f N =??=? 所以物体和板以及板和桌面间的相互作用力分别为2N 和8.82N 。

(2)其中,N 1'=N 1,f 1'=f 1=μ0N 1,f 2=μ2N 2,选图示坐标系o-xy ,对m 1,m 2分别应用牛顿二定律,有

011111

012222212

00N m a N m g F N N m a N N m g μμμ=??-=??

--=?

?--=? 解方程组,得 ()1020121222/a g

a F m g m g m g m μμμμ==---

要把木板从下面抽出来,必须满足12a a >,即

01212220F m g m g m g m g

μμμμ--->()()()()02120.50.3129.823.52F m m g N μμ∴>++=+?+?= 即要把木板从下面抽出来,沿水平方向必须用大于23.52N 的力。

2.23沿铅直向上发射玩具火箭的推力随时间变化如图所示,火箭质量为2kg ,t=0时。

解:根据推力F-t 图像,可知F=4.9t (t ≤20),令F=mg 即4.9t=2×9.8,t=4s ,因此,火箭发射可分为三个阶段:为第一阶段,由于推力小于重力,火箭静止,v=0,y=0;t=4为第二阶段,火箭作变加速直线运动,设t=20s 时,y = y 1,;t ≥20s 为第三阶段,火箭只受重力作用,作竖直上抛运动,设达最大 高度时的坐标 y=y 2.

第二阶段的动力学方程为:F- mg = m dv/dt

/ 4.9/29.8dv F mdt gdt tdt dt =-=-

()0

4

4

4.9/29.820v

t t

dv tdt dt

t =-≤?

??

()24.9/49.84 4.920v t t t =-+?≤

20

题图

1

max 220

20

20

2

4

4

4

1(20)314/(4.9/49.84 4.9)4.9/49.84 4.91672y v v m s

dy vdt t t dt dy t dt tdt dt

y m

====-+?∴=-+?=????

第三阶段运动学方程

)2()20(9.4)20(314),1()20(8.931421---=---=t t y y t v

令v=0,由(1)求得达最大高度y 2时所用时间(t-20)=32,代入(2)中,得y 2-y 1=5030 y 2=y max =5030+1672=6702(m)

2.24汽车质量为1.2×10kN ,在半径为100m 的水平圆形弯道上行驶,公路内外侧倾斜15°,沿公路取自然坐标,汽车运动学方程为s=0.5t 3+20t (m),自t=5s 开始匀速运动,试求公路面作用于汽车与前进方向垂直的摩擦力的大小,并指出是由公路内侧指向外侧还是由外侧直向内侧?

解:以地为参考系,把汽车视为质点,受力及运动情况如图示: v=ds/dt=1.5t 2+20,v| t=5 =1.5×52+20=57.5m/s ,a n =v 2/R=57.52/100=33 设摩擦力f 方向指向外侧,取图示坐标o-xy ,应用牛顿第二

律:

ααααααααcos sin cos sin sin cos sin cos f ma N ma f N f mg N mg f N n n

+==--==+

②/①得:)sin /()cos (αααf mg f ma tg n -+=

α

αααααααtg a gtg m f f ma tg f mgtg n n sin cos )

(,

cos sin +-=

+=-

0,043.3033158.9<∴<-=-?=-f tg a gtg n α ,说明摩擦力方向与我们事先假设方向相反,指向内侧。

2.25 一辆卡车能够沿着斜坡以15km/h 的速率向上行驶,斜坡与水平面夹角的正切tg α=0.02,所受阻力等于卡车重量的0.04,如果卡车以同样的功率匀速下坡,卡车的速率是多少?

解:设卡车匀速上坡时,速率为v, 牵引力为F, 功率为N,由质点平衡方程有,F = (0.04+sin α)mg ,∴N = Fv = (0.04+sin α)mgv

设卡车匀速下坡时,速率为v ’,牵引力为F',功率为N', 由质点平衡方程有 F'+ mg sin α= 0.04mg, F'=(0.04-sin α)mg, ∴N'= (0.04-sin α)mgv'.

令N'= N, 即(0.04+sin α)mgv = (0.04-sin α)mgv',可求得:

v'= v(0.04+sin α)/(0.04-sin α). 利用三角函数关系式,可求得: sin α≈tg α=0.02 ,∴v'=3v =3×15×103/602 m/s = 12.5m/s.

2.26如图所示,质量为m=0.5kg 的木块可在水平光滑直杆上滑动,木块与一不可伸长的轻绳相连,绳跨过一固定的光滑小环,绳端作用着大小不变的力T=50N ,木块在A 点时具有向右的速率v 0=6m/s ,求力T 将木块从A 拉至B 点时的速度。 20.88/

m s

解:以A 为原点建立图示坐标o-x ,木块由A 到B ,只有拉力T 做功:

?

??+--===4

3)4()4(4

4

2

2cos x dx x x T dx T dx F A θJ

x x x d x T

100)35(50|9)4(50|]

9)4[(2]9)4[(]9)4[(402

2/122504

22/1

22

=-?

=+-=+-?-=+-+--=?- 设木块到达B 时的速度为v ,由动能定理:2

021221mv

mv A -= s m v m A v /88.2065.0/1002/222

0≈+?=+=,方向向右

A

B

x

2.26题图

2.27题图

2.27 如图所示,质量为1.2kg 的木块套在光滑铅直杆上,不可伸长的轻绳跨过固定的光滑小环,孔的直径远小于它到杆的距离。绳端作用以恒力F ,F=60N,木块在A 处有向上的速度v 0=2m/s,求木块被拉至B 时的速度。

3.86 m/s.

解:以地为参考系,建立图示坐标A-xy ,木块在由A 到B 的运动过程中受三个力的作用,各力做功分别是:

A N = 0;A W = -mg(y

B -y A )=-1.2×9.8×0.5= -5.88J ;F 大小虽然不变,但方向在运动过程中不断变化,因此是变力做功。

J

F y y d y y d y dy

F dy F dy F A F F F y y y F 43.12)12(605.0)12(5.0|

]

)5.0(5.0[2])5.0(5.0[])5.0(5.0[)5.0(])5.0(5.0[cos 5

.00

2/122

25.00

222/12225.002

2/12225

.00

)5.0(5.05.05.00

5

.002

2=-?=-=-+?-=-+-+-=--+-====

?

??

??---+-θ

由动能定理:2

21

2

21A

B F W N mv mv A A A -=++

代入数据,求得 v B =3.86 m/s.

2.28 质量为m 的物体与轻弹簧相连,最初m 处于使弹簧既未压缩也未伸长的位置,并以速度v 0 向右运动,弹簧的劲度系数为k ,物体与支撑面间的滑动摩擦系数为μ求

证物体能达到的最远距离l

为1)mg

k

l μ=

证明:质点m 由弹簧原长位

置运动到最远位置l ,弹力F 和滑 动摩擦力f 对质点做负功,导致质 点动能由mv 02/2变为0。根据动能定理: A F +A f =0 - mv 02/2 ……①

其中,mgl A kl ldl k A f l

F μ-=-=-=?,2

2

10, 代入①中,并整理,有:kl 2+2μmgl-m v 02=0. 这是一个关于l 的一元二次方程,其根为:

k

v m k g m g m l 24)2(22

02+±-=

μμ,负根显然不合题意,舍去,所以, )11()(2

22

2

021

-+=++-=g m v k k

g

m k

k g m kmv g m l μμμμ

2.29 滑雪运动员自A 自由下落,经B 越过宽为d 的横沟到达平台C 时,其速度vc 刚好在水平方向,已知A 、B 两点的垂直距离为25m.坡道在B 点的切线方向与水平面成30o角,不计摩擦,求:⑴运动员离开B 处的速率v B ;⑵B 、C 的垂直高度差h 及沟宽d ;⑶运动员到达平台时的速率vc.

解:运动员在整个运动过程中,只有重力做功,故机械能守恒,取B 点为势能零点。

∵mgH = mv B 2/2

∴s m gH v B /1.22258.922=??==

运动员由B 到C 作斜抛运动,据题意,C 点即为最高点。由斜抛运动规律可知,v c = v B cos30o = 19.1m/s

∵mv B 2/2 = m v c 2/2+mgh ∴h = (v B 2-v c 2)/2g = 6.3m ;由竖直方向的速度公式可求跨越时间:∵0 = v B sin30o-gt ∴t = v B /2g =1.13s ,由水平方向的位移公式可求得跨越距离 d = v B cos30o

t = 21.6m.

2.30 装置如图所示,球的质量为5kg ,杆AB 长1m ,AC 长0.1m ,A 点距O 点0.5m ,弹簧的劲度系数为800N/m ,杆AB 在水平位置时恰为弹簧自由状态,此时释放小球,小球由静止开始运动,求小球到铅垂位置时的速度,不计弹簧质量及杆的质量,不计摩擦。

解:取小球在水平位置时,势能为零,小球运动到竖直位置时的速度为v ,弹簧原长:51.01.05.0220=+=l ,在小球从水平位置运动到竖直位置的过程中,只有保守内力做功,因而机械能守恒:

2021221)(0l AC OA k AB mg mv -++-=,可求得: s m m

l AC OA k AB g v /28.45/)51.01.05.0(80018.92/)(22

20=-+-??=-+-=

2.31 卢瑟福在一篇文章中写道:可以预言,当α粒子和氢原子相碰时,可使之迅速运动起来.按正碰考虑很容易证明,氢原子速度可达α粒子碰撞前速度的1.6倍,即占入射α粒子能量的64%。试证明此结论(碰撞是完全弹性的,且α粒子质量接近氢原子质量的四倍)。

证明: 设氢原子质量为m,碰前速度为零,碰后速度v H ',α粒子质量为4m,碰前速度为v α,碰后速度为v α'.根据完全弹性碰撞基本公式:

??

?-=+='''

'44αα

ααv v v mv mv mv H H 即 , )2('')1(''44ααααv v v v v v H H -=+= ⑴+⑵×4,得 8 v α= 5v H ', ∴ v H '= 8 v α/5 = 1.6 v α

64.02

2224)6.1(2

/42/'==

=

αααα

v v v m v m E E H H

2.32 m 为静止车厢的质量,质量为M 的机车在水平轨道上自右方以速率v 滑行并与m 碰撞挂钩.挂钩

后前进了距离s 然后静止。求轨道作用于车的阻力。

解:整个过程可分为两个阶段:第一阶段,机车与车厢发生完全非弹性碰撞而获得共同速度v ’

,由于

轨道阻力远小于冲力,可认为质点系动量守恒,

Mv=(M+m)v ’,v ’=Mv/(M+m)

第二阶段,机车与车厢挂钩后,在摩擦阻力的作用下向前移动了s ,速度由v ’变为零,由动能定理,有

– fs = 0 - (M+m) v ’2 /2, 将v ’代入,可求得 )

(222m M s v M f +=

2.33如图所示, 质量为2g 的子弹以500m/s 的速度射向质量为1kg ,用l =1m 长的绳子悬挂着的摆,子弹穿过摆后仍然有100m/s 的速度,问摆沿铅直方向升起若干?

解:用v 0,v 分别表示子弹穿过摆前后的速度,u 表示子弹穿过摆后摆的速度,设摆升起的最大高度为h

由动量守恒:MV mv mv +=0,可得

8.0)100500(002.0)(0=-=-=

v v V M m

由能量守恒:Mgh MV =22

1 m g V h 033.0)8.92/(8.02/22=?==

2.34如图所示一质量为200g 的框架,用一弹簧悬挂起来,使弹簧伸长10cm ,今有一质量为200g 的铅快在高30cm 处从静止开始落进框架,求此框架向下移动的最大距离,弹簧质量不计,空气阻力不计。

解:框架静止时,弹簧伸长Δl =0.1m ,由平衡条件mg=k Δl ,求得:k=mg/Δl =0.2×9.8/0.1=19.6N/m

铅块落下h=30cm 后的速度v 0,可由能量守恒方程求出:2

021mv

mgh = s m gh v /42.23.08.9220=??==

设铅快与框架碰后的共同速度为v ,由动量守恒:

s m v v mv mv /21.12/42.2,20210==== 设框架下落的最大距离为x ,由机械能守恒:

mgx

x l k l k v m m 2)()(21

2121-+?=?++,进行整理并代入数据,可得x 的一元二次方程:m x x x 3.0,003.02.02==--

2.35 如图所示,质量为m 1=0.790kg 和m 2=0.800kg 的物体以劲度系数为10N/m 的轻弹簧相连,置于光

滑水平桌面上,最初弹簧自由伸张。质量为m 0=0.01kg 的子弹以速率v 0=100m/s 沿水平方向射于m 1内,问弹簧最多压缩了多少?

解:整个过程可分为两个阶段处理。第一阶段:子弹射入m 1内,发生完全非弹性碰撞,动量守恒,设子弹质量为m 0,子弹与m 1获得的共同速度为v ,则有

m 0v 0 = (m 1+m 0) v ∴v = v 0m 0 / (m 1+m 0) (1)

第二阶段:子弹与m 1以共同速度v 开始压缩弹簧至m 1与m 2有相同的速度V ,压缩结束;在此过程中,由m 0,m 1,m 2组成的质点系,其动量、能量均守恒,设弹簧最大压缩量为l .由动量守恒,有:

)

2()()(0

210

00210102101m m m v m v m m m m m V V m m m v m m ++=

+++=∴++=+

由能量守恒:)3()()(21

202112011kl V m m m v m m +++=+

将⑴、⑵代入⑶中,可求得:

m m m m m m k v m l 25.0)1

1(10

210100≈++-+=

2.36 一10g 的子弹沿水平方向以速率110m/s 击中并嵌入质量为100g 的小鸟体内,小鸟原来站在离地面4.9m 高的树枝上,求小鸟落地处与树枝的水平距离。

解:设鸟被子弹击中后与子弹共有的速度为v ,由动量守恒:

v m m v m )(2101+=

s m v m m v m /101.001.011001.02

10

1==

=

+?+

由平抛运动公式2

21gt

h =,可求得子弹落地时间: s g h t 18.9/9.42/2=?==,所以,水平距离S=vt=10×1=10m

2.37棒球质量为0.14kg ,用棒击棒球的力随时间的变化如图所示,设棒球被击前后速度增量大小为70m/s ,求力的最大值,打击时,不计重力。

解:由F —t 图可知:

max 03

.008.0max

05.008.005.005.00F F t F F t t t -=

≤≤=

≤≤时,当时,当

[斜截式方程y=kx+b ,两点式方程 (y-y 1)/(x-x 1)=(y 2-y 1)/(x 2-x 1)]

由动量定理:?

?

?-+

==?08

.005

.005

.00

08

.00

)08.0(max max dt t tdt Fdt v m F F

可求得F max = 245N

2.38地球质量为6.0×1024kg ,地球与太阳相距149×106km ,视地球为质点,它绕太阳做圆周运动,求地球对于圆轨道中心的角动量。

4022.6510/kgm s

?

解:60

6024365)10149(2100.62

924

2

??????===πωr m mvr L

s kgm /1065.21060

602436514920.6240422?=??????=π 2.39 一个质量为m 的质点在o-xy 平面内运动,其位置矢量为j t b i t a r ?sin ?cos ωω+= ,

其中a 、b 和ω是正常数,试以运动学和动力学观点证明该质点对于坐标原点角动量守恒。

证明:

r

j t b i t a dt v d a j

t b i t a dt r d v 222?sin ?cos /?cos ?sin /ωωωωωωωωω-=--==+-== ⑴运动学观点:

k mab k t mab k t mab L k i

j j i j j i i j t b i t a m j t b i t a v m r L ??sin ?cos ?)?(???,0????)

?cos ?sin ()?sin ?cos (22ωωωωωωωωωωω=+=∴=-?=?=?=?+-?+=?=

显然与时间t 无关,是个守恒量。

⑵动力学观点:

∵0)(22=?-=-?=?=?=r r m r m r a m r F r

ωωτ,∴该质点角动量守恒。

2.40 质量为200g 的小球B

以弹性绳在光滑水平

面上与固定点A 相连。弹性绳的劲度系数为8 N/m ,其自由伸展长度为600mm.最初小球的位置及速度v 0如图所示。当小球的速率变为v 时,它与A 点的距离最大,且等于800mm ,求此时的速率v 及初速率v 0.

解:设小球B 的质量m=0.2kg,原来与固定点A 的距离r 0=0.4m,当速率为v 时,与A 点距离r =0.8m,弹性绳自由伸展的长度为d =0.6m.

小球B 的速率由v 0→v 的过程中,作用在小球B 上的力对过A 点轴的力矩之和始终为零,因而小球对A 点的角动量守恒,有

r 0mv 0sin30o= rmv (最大距离时,)v r

⊥ (1)

另外,在此过程中,只有保守内力(绳的弹力)做功,因而能量守恒,

)2()(221

2212

02

1mv

d r k mv +-=

为求解方便,将⑴⑵化简,并代入已知数据可得:

)'2(6.1)'

1(42

2

00v v v v +==

解此方程组,求得:v 0 ≈1.3 m/s v ≈0.33 m/s

2.41两个滑冰运动员的质量各为70kg ,以6.5m/s 的速率沿相反方向滑行,滑行路线间的垂直距离为10m ,当彼此交错时,各抓住10m 绳索的一端,然后相对旋转。⑴在抓住绳索一端之前,各自对绳索中心的角动量是多少?抓住之后是多少?⑵它们各自收拢绳索,到绳长为5m 时,各自的速率如何?⑶绳长为5m 时,绳内张力多大?⑷二人在收拢绳索时,各自做了多少功〉⑸总动能如何变化?

解:设每个运动员的质量为m=70kg ,收绳前相对绳中心O 的距离为d = d 1= 5m ,速率为v=v 1=6.5m/s ;当把绳收拢为d = d 2= 2.5m 时, 速率v=v 2

⑴对绳中心o 点的角动量各为

L=mv 1d 1=70×6.5×5=2275kgm 2/s (抓住绳索前后角动量相同)

⑵把两个运动员视为一个质点系,在收绳过程中,质点系对o 轴的角动量守恒,有2m v 1d 1 = 2m v 2 d 2∴v 2 = v 1d 1/d 2 = 6.5×5/2.5 =13 m/s

⑶把某一运动员视为质点,作为研究对象,由牛顿第二定律,绳中张力F = m v 22/d 2 = 70×132 /2.5 = 4732 N

⑷由质点动能定理,每人所做的功均为:

J

v v v v m mv

mv A 4436)5.613)(5.613(70))((2

1

121221

2

1212

221=+-?=+-=-=

⑸总动能增大了ΔE k = 2×4436 = 8872 J

大学物理第2章质点动力学习题解答

大学物理第2章质点动力学习题解答 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第2章 质点动力学习题解答 2-17 质量为2kg 的质点的运动学方程为 j t t i t r ?)133(?)16(22+++-= (单位:米,秒), 求证质点受恒力而运动,并求力的方向大小。 解:∵j i dt r d a ?6?12/22+== , j i a m F ?12?24+== 为一与时间无关的恒矢量,∴质点受恒力而运动。 F=(242+122)1/2=125N ,力与x 轴之间夹角为: '34265.0/?===arctg F arctgF x y α 2-18 质量为m 的质点在o-xy 平面内运动,质点的运动学方程为: j t b i t a r ?sin ?cos ωω+= ,a,b,ω为正常数,证明作用于质点的合力总指向原点。 证明:∵r j t b i t a dt r d a 2222)?sin ?cos (/ωωωω-=+-== r m a m F 2ω-==, ∴作用于质点的合力总指向原点。 2-19在图示的装置中两物体的质量各为m 1,m 2,物体之间及物体与桌面间的摩擦系数都为μ,求在力F 的作用下两物体的加速度及绳内张力,不计滑轮和绳的质量及轴承摩擦,绳不可伸长。 解:以地为参考系,隔离m 1,m 2,受力及运动情况如图示,其中:f 1=μN 1=μm 1g , f 2=μN 2=μ(N 1+m 2g)=μ(m 1+m 2)g. 在水平方向对两个质点应用牛二定律: ②①a m T g m m g m F a m g m T 221111)(=-+--=-μμμ ①+②可求得:g m m g m F a μμ-+-= 2 112 将a 代入①中,可求得:2 111) 2(m m g m F m T +-= μ f 1 N 1 m 1T a F N 2 m 2 T a N 1 f 1 f 2

第2章 质点动力学

第2章 质点动力学 一、选择题 1. 如图1所示,物体在力F 作用下作直线运动, 如果力F 的量值逐渐减小, 则该物体的 (A) 速度逐渐减小, 加速度逐渐减小 (B) 速度逐渐减小, 加速度逐渐增大 (C) 速度继续增大, 加速度逐渐减小 (D) 速度继续增大, 加速度逐渐增大 [ ] 2. 一物体作匀速率曲线运动, 则 (A) 其所受合外力一定总为零 (B) 其加速度一定总为零 (C) 其法向加速度一定总为零 (D) 其切向加速度一定总为零 [ ] 3. 对一运动质点施加以恒力, 质点的运动会发生什么变化? (A) 质点沿着力的方向运动 (B) 质点仍表现出惯性 (C) 质点的速率变得越来越大 (D) 质点的速度将不会发生变化 [ ] 4. 用细绳系一小球使之在竖直平面内作圆周运动, 小球在任意位置 (A) 都有切向加速度 (B) 都有法向加速度 (C) 绳子的拉力和重力是惯性离心力的反作用力 (D) 绳子的拉力和重力的合力是惯性离心力的反作用力 [ ] 5. 如图2所示,三艘质量均为0m 的小船以相同的速度v 鱼贯而行.今从中间船上同时以速率u (与速度v 在同一直线上)把两个质量均为m 的物体分别抛到前后两船上. 水和空气的阻力均不计, 则抛掷后三船速度分别为 (A) v ,v ,v (B) u +v ,v ,u -v (C) u m m m 0++ v ,v ,u m m m +-v (D) u m m m 0++ v ,v ,u m m m 0 +-v [ ] 6. 质量为m 的铁锤竖直落下, 打在木桩上并停下. 设打击时间为?t , 打击前铁锤速率为 v ,则在打击木桩的时间内, 铁锤所受平均合外力的大小为 (A) t m ?v (B) mg t m -?v (C) mg t m +?v (D) t m ?v 2 [ ] 7. 用锤压钉不易将钉压入木块, 用锤击钉则很容易将钉击入木块, 这是因为 (A) 前者遇到的阻力大, 后者遇到的阻力小 (B) 前者动量守恒, 后者动量不守恒 (C) 后者锤的动量变化大, 给钉的作用力就大 (D) 后者锤的动量变化率大, 给钉的作用力就大 [ ] 8. 质点系的内力可以改变 (A) 系统的总质量 (B) 系统的总动量 图1 图2 v

大学物理质点动力学习题答案

习 题 二 2-1 质量为m 的子弹以速率0v 水平射入沙土中,设子弹所受阻力与速度反向,大小与速度成正比,比例系数为k ,忽略子弹的重力,求:(1)子弹射入沙土后,速度大小随时间的变化关系; (2)子弹射入沙土的最大深度。 [解] 设任意时刻子弹的速度为v ,子弹进入沙土的最大深度为s ,由题意知,子弹所受的阻力 f = - kv (1) 由牛顿第二定律 t v m ma f d d == 即 t v m kv d d ==- 所以 t m k v v d d -= 对等式两边积分 ??-=t v v t m k v v 0 d d 0 得 t m k v v -=0ln 因此 t m k e v v -=0 (2) 由牛顿第二定律 x v mv t x x v m t v m ma f d d d d d d d d ==== 即 x v mv kv d d =- 所以 v x m k d d =- 对上式两边积分 ??=-00 0d d v s v x m k 得到 0v s m k -=- 即 k mv s 0 = 2-2 质量为m 的小球,在水中受到的浮力为F ,当它从静止开始沉降时,受到水的粘滞阻力为f =kv (k 为常数)。若从沉降开始计时,试证明小球在水中竖直沉降的速率v 与时间的关系为 [证明] 任意时刻t 小球的受力如图所示,取向下为y 轴的正方向,开始沉降处为坐标原点。由牛顿第二定律得 即 t v m ma kv F mg d d ==-- 整理得 m t kv F mg v d d =--

对上式两边积分 ? ?=--t v m t kv F mg v 00 d d 得 m kt F mg kv F mg -=---ln 即 ??? ? ??--= -m kt e k F mg v 1 2-3 跳伞运动员与装备的质量共为m ,从伞塔上跳出后立即张伞,受空气的阻力与速率的平方成正比,即2kv F =。求跳伞员的运动速率v 随时间t 变化的规律和极限速率T v 。 [解] 设运动员在任一时刻的速率为v ,极限速率为T v ,当运动员受的空气阻力等于运动员及装备的重力时,速率达到极限。 此时 2 T kv mg = 即 k mg v = T 有牛顿第二定律 t v m kv mg d d 2=- 整理得 m t kv mg v d d 2= - 对上式两边积分 mgk m t kv mg v t v 21d d 00 2??=- 得 m t v k mg v k mg = +-ln 整理得 T 22221 111v e e k mg e e v kg m t kg m t kg m t kg m t +-=+-= 2-4 一人造地球卫星质量m =1327kg ,在离地面61085.1?=h m 的高空中环绕地球作匀速率圆周运动。求:(1)卫星所受向心力f 的大小;(2)卫星的速率v ;(3)卫星的转动周期T 。 [解] 卫星所受的向心力即是卫星和地球之间的引力 由上面两式得() () () N 1082.710 85.110 63781063788.9132732 63 2 32 e 2 e ?=?+??? ?=+=h R R mg f (2) 由牛顿第二定律 h R v m f +=e 2

《理论力学》动力学典型习题+答案

《动力学I 》第一章 运动学部分习题参考解答 1-3 解: 运动方程:θtan l y =,其中kt =θ。 将运动方程对时间求导并将0 30=θ代入得 34cos cos 22lk lk l y v ====θ θθ 938cos sin 22 3 2lk lk y a =-==θ θ 1-6 证明:质点做曲线运动,所以n t a a a +=, 设质点的速度为v ,由图可知: a a v v y n cos ==θ,所以: y v v a a n = 将c v y =,ρ 2 n v a = 代入上式可得 ρ c v a 3 = 证毕 1-7 证明:因为n 2 a v =ρ,v a a v a ?==θsin n 所以:v a ?= 3 v ρ 证毕 1-10 解:设初始时,绳索AB 的长度为L ,时刻t 时的长度 为s ,则有关系式: t v L s 0-=,并且 222x l s += 将上面两式对时间求导得: 0v s -= ,x x s s 22= 由此解得:x sv x -= (a ) (a)式可写成:s v x x 0-= ,将该式对时间求导得: 2 02 v v s x x x =-=+ (b) 将(a)式代入(b)式可得:32 20220x l v x x v x a x -=-== (负号说明滑块A 的加速度向上) 1-11 解:设B 点是绳子AB 与圆盘的切点,由于绳子相对圆盘无滑动,所以R v B ω=,由于绳子始终处 于拉直状态,因此绳子上A 、B 两点的速度在 A 、B 两点连线上的投影相等,即: θcos A B v v = (a ) 因为 x R x 2 2cos -= θ (b ) 将上式代入(a )式得到A 点速度的大小为: 2 2 R x x R v A -=ω (c ) 由于x v A -=,(c )式可写成:Rx R x x ω=--22 ,将该式两边平方可得: 222222)(x R R x x ω=- 将上式两边对时间求导可得: x x R x x R x x x 2232222)(2ω=-- 将上式消去x 2后,可求得:2 22 42) (R x x R x --=ω 由上式可知滑块A 的加速度方向向左,其大小为 2 22 42) (R x x R a A -=ω 1-13 解:动点:套筒A ; 动系:OA 杆; 定系:机座; 运动分析: 绝对运动:直线运动; 相对运动:直线运动; 牵连运动:定轴转动。 根据速度合成定理 r e a v v v += 有:e a cos v v =?,因为AB 杆平动,所以v v =a , o v o v a v e v r v x o v x o t

大学物理第二章(质点动力学)习题答案

习题二 2-1 质量为m得子弹以速率水平射入沙土中,设子弹所受阻力与速度反向,大小与速度成正比,比例系数为k,忽略子弹得重力,求:(1)子弹射入沙土后,速度大小随时间得变化关系; (2)子弹射入沙土得最大深度。 [解] 设任意时刻子弹得速度为v,子弹进入沙土得最大深度为s,由题意知,子弹所受得阻力f= - kv (1) 由牛顿第二定律 即 所以 对等式两边积分 得 因此 (2) 由牛顿第二定律 即 所以 对上式两边积分 得到 即 2-2 质量为m得小球,在水中受到得浮力为F,当它从静止开始沉降时,受到水得粘滞阻力为f=kv(k为常数)。若从沉降开始计时,试证明小球在水中竖直沉降得速率v与时间得关系为 [证明] 任意时刻t小球得受力如图所示,取向下为y轴得正方向,开始沉降处为坐标原点。由牛顿第二定律得 即 整理得 对上式两边积分 得 即 2-3 跳伞运动员与装备得质量共为m,从伞塔上跳出后立即张伞,受空气得阻力与速率得平方成正比,即。求跳伞员得运动速率v随时间t变化得规律与极限速率。 [解] 设运动员在任一时刻得速率为v,极限速率为,当运动员受得空气阻力等于运动员及装备得重力时,速率达到极限。 此时 即 有牛顿第二定律 整理得 对上式两边积分 得 整理得 2-4 一人造地球卫星质量m=1327kg,在离地面m得高空中环绕地球作匀速率圆周运动。求:(1)卫星所受向心力f得大小;(2)卫星得速率v;(3)卫星得转动周期T。 [解] 卫星所受得向心力即就是卫星与地球之间得引力

由上面两式得()() () N 1082.71085.110 63781063788.9132732 6 3 2 32 e 2 e ?=?+??? ?=+=h R R mg f (2) 由牛顿第二定律 ()() s m 1096.61327 1085.11063781082.736 33e ?=?+???=+= m h R f v (3) 卫星得运转周期 ()() 2h3min50s s 1043.710 96.61085.1106378223 3 63e =?=??+?=+=ππv h R T 2-5 试求赤道上方得地球同步卫星距地面得高度。 [解] 设同步卫距地面高度为h ,距地心为R +h ,则 所以 代入第一式中 解得 2-6 两个质量都就是m 得星球,保持在同一圆形轨道上运行,轨道圆心位置上及轨道附近都没有其它星球。已知轨道半径为R ,求:(1)每个星球所受到得合力;(2)每个星球得运行周期。 [解] 因为两个星球在同一轨道上作圆周运动,因此,她们受到得合力必须指向圆形轨道得圆心,又因星球不受其她星球得作用,因此,只有这两个星球间得万有引力提供向心力。所以两个星球必须分布在直径得两个端点上,且其运行得速度周期均相同 (1)每个星球所受得合力 (2) 设运动周期为T 联立上述三式得 所以,每个星球得运行周期 2-7 2-8 2-9 一根线密度为得均匀柔软链条,上端被人用手提住,下端恰好碰到桌面。现将手突然松开,链条下落,设每节链环落到桌面上之后就静止在桌面上,求链条下落距离s 时对桌面得瞬时作用力。 [解] 链条对桌面得作用力由两部分构成:一就是已下落得s 段对桌面得压力,另一部分就是正在下落得段对桌面得冲力,桌面对段得作用力为。显然 时刻,下落桌面部分长s 。设再经过,有落在桌面上。取下落得段链条为研究对象,它在时

质点动力学习题解答1

作业05(质点动力学3) 1..21t t >。 2. 人造地球卫星绕地球做椭圆轨道运动,卫星轨道近地点和远地点分别为A 和B ,用L 和K E 分别表示卫星对地心的角动量及动能,则应有[ ]。 A . K B KA B A E E L L >>, B. KB KA B A E E L L >=, C. KB KA B A E E L L <=, D. KB KA B A E E L L <<, 答:[B ] 解:人造地球卫星绕地球做椭圆轨道运动时,它们之间的引力沿着径向,因此角动量守恒 B A L L = 同时,由角动量的定义 B B A A v r v r = 由于B A r r <,所以B A v v > 因此 KB B A KA E mv mv E =>=222 121 3. 体重相同的甲乙两人,分别用双手握住跨过无摩擦滑轮绳子两端。忽略滑轮和绳子的质量。当它们由同一高度向上爬时,相对于绳子,甲的速率是乙的两倍,则到达顶点的情况是 [ ]。 A . 甲先到达 B. 乙先到达 C. 同时到达 答:[C ] 解:由于此二人受到的力相同,质量相同,则加速度就相同。同时到达。 4. 一质点在如图所示的坐标平面内作圆周运动,有一力)(0j y i x F F +=作用在质点上,该质点从坐标原点运动到)2,0(R 位置的过程中,此力F 对它做的功为_____。 答: 2 02R F A = 解:如图首先进行坐标变换,即将坐标原点移到圆周轨道的圆心/o 处,实际上,就是将x 轴平移R 。在新的坐标系中,圆周轨道θ角处(矢径r ),质点受到的力为 ] )1(sin [cos ])([)(0//00j i R F j R y i x F j y i x F F ++=++=+=θθ 在新的坐标系中,矢径为 j R i R r θθsin cos += θθθRd j i r d )cos sin ( +-= 元功表示为 θ θθθθθθd R F Rd j i j i R F r d F dA cos )cos sin (])1(sin [cos 200=+-?++=?= 所以,质点从坐标原点运动到)2,0(R 位置的过程中,F 对它做的功为 2022 /2/02cos R F d R F dA A ===??-θθππ 5. 一个半径为R 的水平圆盘以恒定角速度ω作匀速转动,一质量为m 的人要从圆盘边缘走到圆盘中心处,圆盘对他做的功为_______。

力学习题第二章质点动力学(含答案)

第二章质点动力学单元测验题 一、选择题 1.如图,物体A和B的质量分别为2kg和1kg,用跨过定滑轮的细线相连,静 止叠放在倾角为θ=30°的斜面上,各接触面的静摩擦系数均为μ=0.2,现有一沿斜面向下的力F作用在物体A上,则F至少为多大才能使两物体运动. A.3.4N; B.5.9N; C.13.4N; D.14.7N 答案:A 解:设沿斜面方向向下为正方向。A、B静止时,受力平衡。 A在平行于斜面方向:F m g sin T f f 0 A12 B在平行于斜面方向:1sin0 f m g T B 静摩擦力的极值条件:f1m g cos, B f m m g 2(B A)cos 联立可得使两物体运动的最小力F min满足: F min (m B m A)g sin (3m B m A )g cos=3.6N 2.一质量为m的汽艇在湖水中以速率v0直线运动,当关闭发动机后,受水的阻力为f=-kv,则速度随时间的变化关系为 A.v k t =v e m; B. v= -t k t v e m 0; C. v=v + k m t ; D. v=v - k m t 答案:B 解:以关闭发动机时刻汽艇所在的位置为原点和计时零点,以v0方向为正方向建立坐标系. 牛顿第二定律: dv ma m kv dt 整理: d v v k m dt

积分得:v= - v e k t m 3.质量分别为m和m( 12m m)的两个人,分别拉住跨在定滑轮(忽略质量)21 上的轻绳两边往上爬。开始时两人至定滑轮的距离都是h.质量为m的人经过t 1 秒爬到滑轮处时,质量为m的人与滑轮的距离为 2 m m1m-m1 1; C.1(h gt2)2h gt 1 2 A.0; B.h+; D.(+) m m2m2 222 答案:D 解:如图建立坐标系,选竖直向下为正方向。设人与绳之间的静摩擦力为f,当 质量为m的人经过t秒爬到滑轮处时,质量为m的人与滑轮的距离为h',对二者12 分别列动力学方程。 对m: 1 f m g m a m 11m1 1 dv m 1 dt 对m: 2 f m g m a m 22m2 2 dv m 2 dt 将上两式对t求积分,可得: fdt m gt m v m 11m1 1dy m 1 dt fdt m gt m v m 22m2 2dy m 2 dt 再将上两式对t求积分,可得: 1 fdt m gt 0m h 22 11 2 1 fdt m gt m h m h 22 222 2

第二章 质点动力学

普通物理
黄 武 英
第二章
一.牛顿第一定律
质点动力学
三.牛顿第三定律
§2.1 牛顿定律
二.牛顿第二定律
§2.2 常见的力
一.万有引力 五.四种基本力 二.重力 三.弹力 四.摩擦力
牛顿定律应用举例
§2.3 单位制和量纲 §2.4 动量定理和动量守恒定律 §2.5 动能定理和功能原理 §2.6 能量守恒定律 §2.7 角动量定理和角动量守恒定律
物理与电子信息学院
§2.4 动量定理和动量守恒定律
一、质点的动量定理 二、动量定理的应用 三、质点系的动量定理 四、质心运动定理 五、质点系的动量守恒定律 六、变质量物体的运动方程
§2.5 动能定理和功能原理
一、动能及功的定义 三、功率 五、保守力和非保守力 六、质点的功能原理 七、质点系的动能定理和功能原理 二、动能定理
四、功的计算举例
§2.6 能量守恒定律
一、机械能守恒定律 二、守恒定律(机械能与动量) 的综合应用 三、能量转化及守恒定律 四、碰撞
§2.7角动量守恒定律
一、力矩 二、角动量 三、角动量守恒定律
四、动能定理
K rb G K 2 2 1 Wab = ∫K f ? dr = 1 2 mVb ? 2 mVa
ra
本章小结 G G dp d (mv ) G 一、牛顿第二定律 = =F dt dt
二、质点系的动量定理
五、质点系的功能原理和机械能守恒定律
Ekb + E pb ? ( Eka + E pa ) = W外 + W非保守内力
则: E kb + E pb = E ka + E pa 六、角动量定理和角动量守恒定律 K K dL 角动量定理 M= G dt 若 M =0 (条件)
功能原理
若外力和非保守内力都不作功或所作的总功为零(条件) 机械能守恒定律
G I =

t2
t1
G G G F合外 dt = ∑ mi vi (t 2 ) ? ∑ mi vi (t1 )
i i
三、质点系的动量守恒定律 若系统不受外力作用,或所受外力的矢量和为零(条件) n K K K K 则: ∑ miVi=m1V1 + m2V2 + " mnVn = 恒量
i =1
G

dL =0 dt
G L = 常矢量
角动量守恒定律

反应动力学习题及答案

反应动力学习题 一、 判断题: 1催化剂只能改变反应的活化能,不能改变反应的热效应。 ............. () 2、 质量作用定律适用于任何化学反应 ........................... () 3、 反应速率常数取决于反应温度,与反应物、生成物的浓度无关。 ........ () 二、 选择题: 1?若反应:A + B T C 对A 和B 来说都是一级的,下列叙述中正确的 ^是????( )。 (A)此反应为一 级反应; (B)两种反应物 中,当其中任一种的浓度增大2倍,都将使反应速 率增大2倍; (C)两种反应物 的浓度同时减半,则反应速率也将减半; (D)该反应速率 系数的单位为s -1。 2.反应 A + B T 3D 的 E a (正)=m kJ mol -1, E a (逆)=n kJ mol -1 ,则反应 的厶r H m = ....... ( )) 1 1 1 1 (A) ( m^n) kJ md ; (B) (n-m) kJ mol ; (C) (m-3n) kJ mol ; (D) (3 n-m) kJ mol 。 3. 下? 列关于讣 催化齐U 的 叙述中,错 误的是 ....................... .......... ()。 (A) 在 几 个 反 应 中,某 催化剂可选择地加快其中某- 「反应的反应 速 率; (B) 催 化 剂 使 正、 逆反 应速率增大 的倍数相同; (C) 催 化 剂 不 能 改变反应的始态和 终态; (D) 催 化 剂 可 改 变某一 -反应的正向 与逆向的反应速 率之比。 4. 当速率常数的单位为 mol -1 dm 3 s -1时,反应级数为 ........................... () (A ) 一级; (B )二级; (C )零级; (D )三级 5. 对于反应2A + 2B T C 下列所示的速率表达式正确的是 ....................... ( ) (C) 6. 反应2A + B T D 的有关 实验数据在表中给出,此反应的速率常数 k/mol -2dm 6min -1约 为 ...................................................................... ( ) 初始浓度 最初速率 -3 -3 -3 -1 [A] /mol dm [B]/mol dm v/mol dm min -2 0.05 0.05 4.2 >102 -2 0.10 0.05 8.4 10 -1 0.10 0.10 3.4 10 2 2 3 3 (A) 3.4 11 (B) 6.7 11 (C) 3.4 11 (D) 6.7 11 7. 催化剂是通过改变反应进行的历程来加速反应速率。这一历程影响 .......... ( ) (A )增大碰撞频率; (B )降低活化能; (C )减小速率常数; (D )增大平衡常数值。 8. ................................................................................................................................................ 下列叙 述中正确的是 ................................................................... ( ) (A) _2 " [B] =3 " t (D)

第2章 质点动力学习题解答

第2章质点动力学习题解答 2-1 如图所示,电梯作加速度大小为a 运动。物体质量为m ,弹簧的弹性系数为k ,?求图示三种情况下物体所受的电梯支持力(图a 、b )及电梯所受的弹簧对其拉力(图c )。 解:(a )ma mg N =- )(a g m N += (b )ma N mg =- )(a g m N -= (c )ma mg F =- )(a g m F += 2-2 如图所示,质量为10kg 物体,?所受拉力为变力2132+=t F (SI ) ,0=t 时物体静止。该物体与地面的静摩擦系数为20.0=s μ,滑动摩擦系数为10.0=μ,取10=g m/s 2, 求1=t s 时,物体的速度和加速度。 解:最大静摩擦力 )(20max N mg f s ==μ max f F >,0=t 时物体开始运动。 ma mg F =-μ,1.13.02+=-= t m mg F a μ 1=t s 时,)/(4.12s m a = dt dv a = ,adt dv =,??+=t v dt t dv 02 01.13.0 t t v 1.11.03+= 1=t s 时,)/(2.1s m v =

2-3 一质点质量为2.0kg ,在O x y 平面内运动, ?其所受合力j t i t F 232+=(SI ) ,0=t 时,速度j v 20=(SI ),位矢i r 20=。求:(1)1=t s 时,质点加速度的大小及方向;(2) 1=t s 时质点的速度和位矢。 解:j t i t m F a +== 22 3 22 3 t a x =,00=x v ,20=x ?? =t v x dt t dv x 020 23,2 3 t v x = ???==t x t x dt t dt v dx 03 202,284+=t x t a y =,20=y v ,00=y ? ? =t v y tdt dv y 02 ,22 2 +=t v y ???+==t y t y dt t dt v dy 02 00)22(,t t y 263+= (1)1=t s 时,)/(2 32 s m j i a += (2)j t i t v )22(22 3++= ,1=t s 时,j i v 2521+= j t t i t r )26 ()28(34 +++=,1=t s 时,j i r 613817+= 2-4 质量为m 的子弹以速度0v 水平射入沙土中,设子弹所受阻力与速度反向,大小与速度成正比,比例系数为k ,忽略子弹的重力,求:(1)子弹射入沙土后,速度随时间变化的关系;(2)子弹射入沙土的最大深度。

大学物理第二章质点动力学习题答案

习题二 2-1质量为m 的子弹以速率0v 水平射入沙土中,设子弹所受阻力与速度反向,大小与速度成正比,比例系数为k ,忽略子弹的重力,求:(1)子弹射入沙土后,速度大小随时间的变化关系;(2)子弹射入沙土的最大深度。 [解]设任意时刻子弹的速度为v ,子弹进入沙土的最大深度为s ,由题意知,子弹所受的阻力f =-kv (1)由牛顿第二定律t v m ma f d d == 即t v m kv d d ==- 所以t m k v v d d -= 对等式两边积分 ??-=t v v t m k v v 0d d 0 得t m k v v -=0ln 因此t m k e v v -=0 (2)由牛顿第二定律x v mv t x x v m t v m ma f d d d d d d d d ==== 即x v mv kv d d =- 所以v x m k d d =- 对上式两边积分??=- 000d d v s v x m k 得到0v s m k -=- 即k mv s 0 = 2-2质量为m 的小球,在水中受到的浮力为F ,当它从静止开始沉降时,受到水的粘滞阻力为f =kv (k 为常数)。若从沉降开始计时,试证明小球在水中竖直沉降的速率v 与时间的关系为 [证明]任意时刻t 小球的受力如图所示,取向下为y 轴的正方向, 开始沉降处为坐标原点。由牛顿第二定律得 即t v m ma kv F mg d d ==-- 整理得 m t kv F mg v d d =--

对上式两边积分 ? ?=--t v m t kv F mg v 00 d d 得m kt F mg kv F mg -=---ln 即??? ? ??--= -m kt e k F mg v 1 2-3跳伞运动员与装备的质量共为m ,从伞塔上跳出后立即张伞,受空气的阻力与速率的平方成正比,即2kv F =。求跳伞员的运动速率v 随时间t 变化的规律和极限速率T v 。 [解]设运动员在任一时刻的速率为v ,极限速率为T v ,当运动员受的空气阻力等于运动员及装备的重力时,速率达到极限。 此时2 T kv mg = 即k mg v = T 有牛顿第二定律t v m kv mg d d 2=- 整理得 m t kv mg v d d 2= - 对上式两边积分 mgk m t kv mg v t v 21d d 00 2??=- 得m t v k mg v k mg = +-ln 整理得T 22221 111v e e k mg e e v kg m t kg m t kg m t kg m t +-=+-= 2-4一人造地球卫星质量m =1327kg ,在离地面61085.1?=h m 的高空中环绕地球作匀速率圆周运动。求:(1)卫星所受向心力f 的大小;(2)卫星的速率v ;(3)卫星的转动周期T 。 [解]卫星所受的向心力即是卫星和地球之间的引力 由上面两式得()() () N 1082.71085.110 63781063788.9132732 6 3 2 32 e 2 e ?=?+??? ?=+=h R R mg f

第2章-质点动力学答案

% 2015-2016(2)大学物理A (1)第二次作业 第二章 质点动力学答案 [ A ] 1、【基础训练1 】 一根细绳跨过一光滑的定滑轮,一端挂一质量为M 的物体,另一端被人用双手拉着,人的质量M m 2 1 = .若人相对于绳以加速度a 0向上爬,则人相对于地面的加速度(以竖直向上为正)是 (A) 3/)2(0g a +. (B) )3(0a g --. (C) 3/)2(0g a +-. (D) 0a [解答]: ()()()()00000() ,/3, 2/3 Mg T Ma T mg m a a M m g M m a ma a g a a a g a -=-=+-=++=-∴+=+ 、 [ D ]2、【基础训练3】 图示系统置于以g a 2 1 = 的加速度上升的升降机内,A 、B 两物体质量相同均为m ,A 所在的桌面是水平的,绳子和定滑轮质量均不计,若忽略滑轮轴上和桌面上的摩擦并不计空气阻力,则绳中张力为 (A) mg . (B) mg 2 1. (C) 2mg . (D) 3mg / 4. [解答]: 设绳的张力为T ,F 惯=ma mg ?T +ma =ma‘, T =ma’, mg +mg /2=2ma’. 》 所以 a’=3g/4, T=3mg/4 [ B ] 3、【基础训练5】 光滑的水平桌面上放有两块相互接触的滑块,质量分别为m 1和m 2,且m 1 2F. … [解答]: 2F=(m 1+m 2)a, F+N=m 2a, B A a m 1 m 2F F

药物动力学计算题

1.计算题:一个病人用一种新药,以2mg/h的速度滴注,6小时即终止滴注,问终止后2小时体血药浓度是多少?(已知k=0.01h-1,V=10L) 2.计算题:已知某单室模型药物,单次口服剂量0.25g,F=1,K=0.07h-1,AUC=700μg/ml·h,求表观分布容积、清除率、生物半衰期(假定以一级过程消除)。 3.某药静注剂量0.5g,4小时测得血药浓度为 4.532μg/ml,12小时测得血药浓度为2.266μg/ml,求表观分布容积Vd为多少? 4.某人静注某药,静注2h、6h血药浓度分别为1.2μg/ml和0.3μg/ml(一级动力学),求该药消除速度常数?如果该药最小有效剂量为0.2μg/ml,问第二次静注时间最好不迟于第一次给药后几小时? 5.病人静注复方银花注射剂2m/ml后,立即测定血药浓度为1.2μg/ml,3h为0.3μg/ml,该药在体呈单室一级速度模型,试求t1/2。 6.某病人一次用四环素100mg,血药初浓度为10μg/ml,4h后为 7.5μg/ml,试求t1/2。 7.静脉快速注射某药100mg,其血药浓度-时间曲线方程为:C=7.14e-0.173t,其中浓度C的单位是mg/L,时间t的单位是h。请计算:(1)分布容积;(2)消除半衰期;(3)AUC。

8.计算题:某药物具有单室模型特征,体药物按一级速度过程清除。其生物半衰期为2h,表观分布容积为20L。现以静脉注射给药,每4小时一次,每次剂量为500mg。 求:该药的蓄积因子 第2次静脉注射后第3小时时的血药浓度 稳态最大血药浓度 稳态最小血药浓度 9.给病人一次快速静注四环素100mg,立即测得血清药物浓度为10μg/ml,4小时后血清浓度为7.5μg/ml。求四环素的表观分布体积以及这个病人的四环素半衰期(假定以一级速度过程消除)。 10.计算题:病人体重60kg,静脉注射某抗菌素剂量600mg,血药浓度-时间曲线方程为:C=61.82e-0.5262t,其中的浓度单位是μg/ml,t的单位是h,试求病人体的初始血药浓度、表观分布容积、生物半衰期和血药浓度-时间曲线下面积。 11.计算题:已知某药物具有单室模型特征,体药物按一级速度方程清除,其t1/2=3h,V=40L,若每6h静脉注射1次,每次剂量为200mg,达稳态血药浓度。求:该药的(1)ss C max (2)ss C m in (3)ss C (4)第2次给药后第1小时的血药浓度

第2章 质点动力学

第2章质点动力学 一、质点: 是物体的理想模型。它只有质量而没有大小。平动物体可作为质点运动来处理,或物体的形状大小对物体运动状态的影响可忽略不计是也可近似为质点。 二、力: 是物体间的相互作用。分为接触作用与场作用。在经典力学中,场作用主要为万有引力(重力),接触作用主要为弹性力与摩擦力。 1、弹性力:(为形变量) 2、摩擦力:摩擦力的方向永远与相对运动方向(或趋势)相反。 固体间的静摩擦力:(最大值) 固体间的滑动摩擦力: 3、流体阻力:或。 4、万有引力: 特例:在地球引力场中,在地球表面附近:。 式中R为地球半径,M为地球质量。 在地球上方(较大),。 在地球内部(),。 三、惯性参考系中的力学规律牛顿三定律 牛顿第一定律:时,。牛顿第一定律阐明了惯性与力的概念,定义了

惯性系。 牛顿第二定律: 普遍形式:; 经典形式:(为恒量) 牛顿第三定律:。 牛顿运动定律是物体低速运动()时所遵循的动力学基本规律,是经典力学的基础。 四、非惯性参考系中的力学规律 1、惯性力: 惯性力没有施力物体,因此它也不存在反作用力。但惯性力同样能改变物体相对于参考系 的运动状态,这体现了惯性力就是参考系的加速度效应。 2、引入惯性力后,非惯性系中力学规律: 五、求解动力学问题的主要步骤 恒力作用下的连接体约束运动:选取研究对象,分析运动趋势,画出隔离体示力图,列出 分量式的运动方程。 变力作用下的单质点运动:分析力函数,选取坐标系,列运动方程,用积分法求解。 第2章质点动力学 二、解题示例 【例2-1】如题图2-1a所示一倾角为的斜面放在水平面上,斜面上放一木块,两者间摩擦

质点动力学习题解答

第2章 质点动力学 2-1. 如附图所示,质量均为m 的两木块A 、B 分别固定在弹簧的两端,竖直的放在水平的支持面C 上。若突然撤去支持面C ,问在撤去支持面瞬间,木块A 和B 的加速度为多大? 解:在撤去支持面之前,A 受重力和弹簧压力平衡, F mg =弹,B 受支持面压力向上为2mg ,与重力和弹簧压 力平衡,撤去支持面后,弹簧压力不变,则 A :平衡,0A a =; B :不平衡,22B F mg a g =?=合。 2-2 判断下列说法是否正确?说明理由。 (1) 质点做圆周运动时收到的作用力中,指向圆心的力便是向心力,不指向圆心的力不 是向心力。 (2) 质点做圆周运动时,所受的合外力一定指向圆心。 解:(1)不正确。不指向圆心的力的分量可为向心力。 (2)不正确。合外力为切向和法向的合成,而圆心力只是法向分量。 2-3 如附图所示,一根绳子悬挂着的物体在水平面内做匀速圆周运动(称为圆锥摆),有人在重力的方向上求合力,写出cos 0T G θ-=。另有沿绳子拉力T 的方向求合力,写出cos 0T G θ-=。显然两者不能同时成立,指出哪一个式子是错误的 ,为什么? 解:cos 0T G θ-=正确,因物体在竖直方向上受力平 衡,物体速度竖直分量为0,只在水平面内运动。 cos 0T G θ-=不正确, 因沿T 方向,物体运动有分量,必须考虑其中的一部分提供向心力。应为: 2cos sin T G m r θωθ-=?。 2-4 已知一质量为m 的质点在x 轴上运动,质点只受到 指向原点的引力的作用,引力大小与质点离原点的距离x 的平方成反比,即2k f x =-,k 为比例常数。设质点在x A =时的速度为零,求4A x = 处的速度的大小。 解:由牛顿第二定律:F ma =,dv F m dt =。寻求v 与x 的关系,换元: 2k dv dx dv m m v x dx dt dx -=?=?,

结构动力学例题复习题

第十六章结构动力学 【例16-1】不计杆件分布质量和轴向变形,确定图16-6 所示刚架的动力自由度。 图16-6 【解】各刚架的自由度确定如图中所示。这里要注意以下两点: 1.在确定刚架的自由度时,引用受弯直杆上任意两点之间的距离保持不变的假定。根据这个假定并加入最少数量的链杆以限制刚架上所有质量的位置,则刚架的自由度数目即等于所加链杆数目。 2.集中质量的质点数并不一定等于体系的自由度数,而根据自由度的定义及问题的具体情形确定。

【例16-2】 试用柔度法建立图16-7a 所示单自由度体系,受均布动荷载)t (q 作用的运动方程。 【解】本题特点是,动荷载不是作用在质量上的集中荷载。对于非质量处的集中动荷载的情况,在建立运动方程时,一般采用柔度法较为方便。 设图a 质量任一时刻沿自由度方向的位移为y (向下为正)。把惯性力I 、阻尼力R 及动荷载)(t P ,均看作是一个静荷载,则在其作用下体系在质量处的位移y ,由叠加原理(见图b 、c 、d 及e ),则 )(R I y P D I P +δ+?=?+?+?= 式中,)t (q EI 38454P =?,EI 483 =δ。将它们代入上式,并注意到y m I -=,y c R -=,得 )(48)(38453 4y c y m EI t q EI y --+= 图16-7 经整理后可得 )(t P ky y c y m E =++ 式中,3EI 481k =δ= ,)(8 5)(t q k t P P E =?= )(t P E 称为等效动荷载或等效干扰力。其含义为:)(t P E 直接作用于质量上所产生的位移和 实际动荷载引起的位移相等。图a 的相当体系如图f 所示。 【例16-3】 图16-8a 为刚性外伸梁,C 处为弹性支座,其刚度系数为k ,梁端点A 、D 处分别有m 和 3 m 质量,端点D 处装有阻尼器c ,同时梁BD 段受有均布动荷载)t (q 作用,试建立刚性梁的运动方程。 【解】 因为梁是刚性的,这个体系仅有一个自由度,故它的动力响应可由一个运动方程来表达,方程可以用直接平衡法来建立。 这个单自由度体系可能产生的位移形式如图b 所示,可以用铰B 的运动)t (α作为基本

大学物理_第2章_质点动力学_习题答案

第二章 质点动力学 2-1一物体从一倾角为30的斜面底部以初速v 0=10m·s 1向斜面上方冲去,到最高点后又沿斜面滑下,当滑到底部时速率v =7m·s 1,求该物体与斜面间的摩擦系数。 解:物体与斜面间的摩擦力f =uN =umgcos30 物体向斜面上方冲去又回到斜面底部的过程由动能定理得 22011 2(1) 22 mv mv f s -=-? 物体向斜面上方冲到最高点的过程由动能定理得 201 0sin 302 mv f s mgh f s mgs -=-?-=-?- 20 (2) (31) s g u ∴= - 把式(2)代入式(1)得, () 22 2 20 0.198 3u v v = + 2-2如本题图,一质量为m 的小球最初位于光滑圆形凹槽的A 点,然后沿圆弧ADCB 下滑,试求小球在C 点时的角速度和对圆弧表面的作用力,圆弧半径为r 。 解:小球在运动的过程中受到重力G 和轨道对它的支持力T .取

如图所示的自然坐标系,由牛顿定律得 2 2 sin (1) cos (2) t n dv F mg m dt v F T mg m R αα=-==-= 由,,1ds rd rd v dt dt dt v αα = ==得代入式(), A 并根据小球从点运动到点C 始末条件进行积分有, 90 2 n (sin )2cos 2cos /m cos 3cos '3cos ,e v vdv rg d v gr v g r r v mg mg r mg α αα αωααα α=-===+==-=-? ?得则小球在点C 的角速度为 =由式(2)得 T 由此可得小球对园轨道得作用力为T T 方向与反向 2-3如本题图,一倾角为 的斜面置于光滑桌面上,斜面上放 一质量为m 的木块,两者间摩擦系数为,为使木块相对斜面静止, 求斜面的加速度a 应满足的条件。 解:如图所示

相关主题
文本预览
相关文档 最新文档