当前位置:文档之家› 参比电极的作用和安装要求

参比电极的作用和安装要求

参比电极的作用和安装要求
参比电极的作用和安装要求

参比电极的作用和安装要求

参比电极或者半电池都是测量电解质中金属点位的一种重要装置。在整个阴极保护系统中测量各个部位的电位电流量都是非常重要的。结构-土壤之间电位是相对于一个电极进行测量。经常提到的结构对电解质的电位实际上是结构和参比电极测得的电位。电解质本身是没有电位的,结构对电解质的电位可以测量,与所用的参比电极无关。因此,在研究如何测量沿结构的电位时,必须考虑参比电极。

在阴极保护施工中进行电位测量的大部分环境中,使用标准氢电极半电池是不方便的。作为替代,使用其他的特定离子浓度溶液中的金属电极。参比电极必须是稳定的,而且所采用的参比电极对已经采集的数据要有重现性。

硫酸铜参比电极是测量埋地结构以及淡水环境中结构电位最常使用的参比电极。这种硫酸铜参比电极的组织结构是将铜棒浸泡在饱和的硫酸铜溶液中,溶液放在整个参比电极底部的带有多孔塞的不导电圆筒中。饱和溶液中的铜离子防止铜棒的腐蚀并稳定参比电极,这种构造和原理的参比电极因为其架构简单,构造小,便于在工程地上携带被称为便携式参比电极。

参比电极的产生主要是为了检测各种不同材质金属的电极电位,起一个基础参照的作用。在阴极保护工程中普遍使用的是饱和硫酸铜参比电极,因为它的电极电位有非常好的重复性可以多次使用,它的稳定性又可以保证参量的,而且构造简单,经济实惠。

参比电极是阴极保护系统不可缺少的一个非常重要的部分。参比

电极的质量直接影响到整个阴极保护系统的整个施工和检测的数据

是否准确。因此在阴极保护施工前一定要选择质量要求比较好的参比电极:首先是参比电极应该具有重复性可以作为多次使用,自身极化小,稳定性强,使用寿命长。参比电极对环境也有一定的要求,应尽量做好不容易被周围环境污染损坏,也不能污染周围被测量环境。参比电极的电位波动应该小于10mV。在实验室中,采用氢电极电位作为零电位,应为它制作起来比较麻烦,维护比较困难,因此现在工程上很少使用这种,大多数都会选择硫酸铜参比电极。

电极有很多种,在实验室中以氢电极的电位作为基础,其他电极的电位与之相比较都有不同的电位值:铜/硫酸铜参比电极(CSE)0.300V;饱和甘汞电极(SCE)0.241V;饱和氯化银电极(KCI)0.250V;锌电极(Zn)-0.80V。

电位差计的原理和使用

实验八 电位差计的原理和使用 【实验目的】 1.掌握电位差计的工作原理和正确使用方法,加深对补偿法测量原理的理解和运用。 2.训练简单测量电路的设计和测量条件的选择。 【实验仪器】 UJ31型直流电位差计、SS1791双路输出直流稳压电源、标准电池、标准电阻、AC15/5灵敏电流计、FJ31型直流分压箱、滑线变阻器、直流电阻箱、待校验电表、待测干电池、待测电阻、开关和导线等。 【实验原理】 如图5.8.1所示,电位差计的工作原理是根据电 压补偿法,先使标准电池E n 与测量电路中的精密电阻R n 的两端电势差U st 相比较,再使被测电势差(或电压)E x 与准确可变的电势差U x 相比较,通过检流计G 两次指零来获得测量结果。电压补偿原理也可从电势差计的“校准”和“测量”两个步骤中理解。 校准:将K 2打向“标准”位置,检流计和校准电路联接,R n 取一预定值,其大小由标准电池E S 的电动势确定;把K 1合上,调节R P ,使检流计G 指零,即E n = IR n ,此时测量电路的工作电流已调好为 I = E n /R n 。校准工作电流的目的:使测量电路中的R x 流过一个已知的标准电流I o ,以保证R x 电阻盘上的电压示值(刻度值)与其(精密电阻R x 上的)实际电压值相一致。 测量:将K 2打向“未知”位置,检流计和被测电路联接,保持I o 不变(即R P 不变),K 1合上,调节R x ,使检流计G 指零,即有E x = U x = I o R x 。 由此可得x n n x R R E E = 。由于箱式电位差计面板上的测量盘是根据R x 电阻值标出其对应的电压刻度值,因此只要读出R x 电阻盘刻度的电压读数,即为被测电动势E x 的测量值。 所以,电位差计使用时,一定要先“校准”,后“测量”,两者不能倒置。 【实验装置】 1. UJ31型电位差计 UJ31型箱式电位差计是一种测量低电势的电位差计,其测量范围为 mV .V 1171-μ(1K 置1?档)或mV V 17110-μ(1K 置10?档)。使用 图5.8.1 电位差计的工作原理 图5.8.2 UJ31型电位差计面板图 + - -++- + -标准 检流计 5.7-6.4V 未知1 未知2 K 1 R P2 R P3 R P1 R n K 2 I II III 1.01×10 ×1 未知1 未知2 标准断断粗 中 细 ×1 ×0.1 ×0.001 粗细短路

标准电极电势表

标准电极电势表 标准电极电势可以用来计算化学电池或原电池的电化学势或电极电势。本表中所给出的电极电势以标准氢电极为参比电极,溶液中离子有效浓度为1mol/L ,气体分压为100kPa ,温度为298K ,所有离子的数据都在水溶液中测得。[1][2][3][4][5][6][7][8][9]单击每栏上方的符号可将数据按元素符号或标准电极电势值排序。 注:(s ) – 固体;(l ) – 液体;(g ) – 气体;(aq ) – 水溶液;(Hg ) – 汞齐。 半反应 E° (V)[注 1] 来源 Ba + + e ? Ba(s ) ?4.38 [10][1][3] Sr + + e ? Sr(s ) ?4.10 [11][1][3] Ca + + e ? Ca(s ) ?3.8 [11][1][3] Pr 3+ + e ? Pr 2+ ?3.1 [11] ?N 2(g ) + H + + e ? HN 3(aq ) ?3.09 [6] Li + + e ? Li(s ) ?3.0401 [5] N 2(g ) + 4?H 2O + 2?e ? 2?NH 2OH (aq ) + 2?OH ? ?3.04 [6] Cs + + e ? Cs(s ) ?3.026 [5] Ca(OH) 2(s ) + 2?e ? Ca(s ) + 2 OH ? ?3.02 [11] Rb + + e ? Rb(s ) ?2.98 [4] K + + e ? K(s ) ?2.931 [5]

半反应E° (V)[注 1]来源Mg+ + e? Mg(s) ?2.93 [10] Ba2+ + 2?e? Ba(s) ?2.912 [5] ? La(s) + 3OH??2.90 [5] La(OH) Fr+ + e? Fr(s) ?2.9 [11] Sr2+ + 2?e? Sr(s) ?2.899 [5] ? Sr(s) + 2?OH??2.88 [11] Sr(OH) Ca2+ + 2?e? Ca(s) ?2.868 [5] Eu2+ + 2?e? Eu(s) ?2.812 [5] Ra2+ + 2?e? Ra(s) ?2.8 [5] Yb2+ + 2?e? Yb(s) ?2.76 [11][1] Na+ + e? Na(s) ?2.71 [5][9] Sm2+ + 2?e? Sm(s) ?2.68 [11][1] No2+ + 2?e? No(s) ?2.50 [11] ?Hf(s) + 4?OH??2.50 [11] HfO(OH)

3电化学三电极体系

3电化学三电极体系https://www.doczj.com/doc/504065147.html,work Information Technology Company.2020YEAR

.3电化学三电极体系 电化学传感器中用得最多的是三电极体系,对应的三个电极分别是工作电极、参比电极和辅助电极。三个电极组成两个回路,工作电极和辅助电极(对电极)组成的回路,用来测电流;工作电极和参比电极组成的回路,用来测电极的电位。图1.2是电化学传感器中常用的三电极体系示意图, 辅助电极又叫对电极(counter electrode ),它在整个体系中的作用是与工作电极形成回路,保持电流的畅通稳定,就好比电路里需同时具备火线和零线一样,由此可见,对电极在电化学测试体系中不可或缺。对电极保证电化学反应发生在工作电极上但又不会影响工作电极上的反应。对电极的表面积比工作电极的表面积要大,这样就能降低加在对电极上的电流密度,使它在检测过程中不容易被极化。常用的对电极材料有Ag, Pt, Ni等。

参比电极(reference electrode)是指具有己知恒定电位,且接近理想不极化的电极,基本上没有电流通过它。在电化学检测的三电极体系中,参比电极一方面在热力学上提供参比,另一方方面则是将工作电极隔离起来。为了满足电化学检测体系的需要,参比电极必须是良好的可逆电极,且电极电势要符合能斯特方程,在很小的电流流经过后,电极的电势能快速回到原状,当然电势的稳定和重现性必须很好。常用的参比电极主要有三种:标准氢电极(normal hydrogenelectrode , NHE );甘汞电极(calomel electrode ) }}0 g' 20};银/氯化银电极(Ag/AgCI协”,’‘]。其中的甘汞电极和银/氯化银电极在实验室最为常用。甘汞电极的电极反应是:Hg2Cl2 + 2e二2Hg十 2C1",而银/氯化银电极的电极反应则是AgCI + e一Ag +Cl",从反应式中可看出,二者的电位皆与氯离子的浓度有关。在本课题中所使用的三电极系统中,参比电极均为银/氯化银电极。 所研究的反应发生在工作电极(working electrode)上,各种能导,一匕的材料都能用作工作电极,既可以是固体,也可以是液体。虽然对_!_作电极的材料没有很明确的限制,但是对_f作电极本身有一定的要求。最堪本的一矛a--是工作电极自身所发生的反应不会影响到所研究的电化学反应,并且电极的工作电位窗口要尽可能宽;最一暇要的是电极必须不能与溶剂或者电解质组分发生反应;电极的表面应该呈光滑镜面状态,表面面积不能太大,而且就算沾染到污物,也能通过简单的预处理使电极表面达到使用要求。固体电极使用较为广泛的有玻碳电极[f6} }l、铂电极[[g}、金电极[9-川、碳糊电极

电动势的测定及其应用(实验报告)

实验报告 电动势的测定及其应用 一.实验目的 1.掌握对消法测定电动势的原理及电位差计,检流计及标准电池使用注意事项及简单原理。 2.学会制备银电极,银~氯化银电极,盐桥的方法。 3.了解可逆电池电动势的应用。 二.实验原理 原电池由正、负两极和电解质组成。电池在放电过程中,正极上发生还原反应,负极则发生氧化反应,电池反应是电池中所有反应的总和。 电池除可用作电源外,还可用它来研究构成此电池的化学反应的热力学性质,从化学热力学得知,在恒温、恒压、可逆条件下,电池反应有以下关系: △r G m =-nFE 式中△r G m 是电池反应的吉布斯自由能增量;n 为电极反应中电子得失数;F 为法拉第常数;E 为电池的电动势。从式中可知,测得电池的电动势E 后,便可求得△r G m ,进而又可求得其他热力学参数。但须注意,首先要求被测电池反应本身是可逆的,即要求电池的电极反应是可逆的,并且不存在不可逆的液接界。同时要求电池必须在可逆情况下工作,即放电和充电过程都必须在准平衡状态下进行,此时只允许有无限小的电流通过电池。因此,在用电化学方法研究化学反应的热力学性质时,所设计的电池应尽量避免出现液接界,在精确度要求不高的测量中,常用“盐桥”来减小液接界电势。 为了使电池反应在接近热力学可逆条件下进行,一般均采用电位差计测量电池的电动势。原电池电动势主要是两个电极的电极电势的代数和,如能分别测定出两个电极的电势,就可计算得到由它们组成的电池电动势。 附【实验装置】(阅读了解) UJ25型电位差计 UJ25型箱式电位差计是一种测量低电势的电位差计,其测量范围为 mV .V 1171-μ(1K 置1?档)或 mV V 17110-μ(1K 置10?档) 。使用V V 4.6~7.5外接工作电源,标准电池和 灵敏电流计均外接,其面板图如图5.8.2 所示。调节工作电流(即校准)时分别调节1p R (粗调)、2p R (中调)和3p R (细 调)三个电阻转盘,以保证迅速准确地调 节工作电流。n R 是为了适应温度不同时标准电池电动势的变化而设置的,当温 图5.8.2 UJ31型电位差计面板图 + - -++- + -标准 检流计 5.7-6.4V 未知1 未知2 K 1 R P2 R P3 R P1 R n K 2 I II III 1.01×10 ×1 未知1 未知2 标准断断粗 中 细 ×1 ×0.1 ×0.001 粗细短路

三电极体系

三电极体系 电极(electrode)是与电解质溶液或电解质接触的电子导体或半导体,为多相体系。电化学体系借助于电极实现电能的输入或输出,电极是实施电极反应的场所。一般电化学体系分为二电极体系和三电极体系,用的较多的是三电极体系。相应的三个电极为工作电极、参比电极和辅助电极。 工作电极: 又称研究电极,是指所研究的反应在该电极上发生。一般来讲,对工作电极的基本要求是:工作电极可以是固体,也可以是液体,各式各样的能导电的固体材料均能用作电极。(1) 所研究的电化学反应不会因电极自身所发生的反应而受到影响,并且能够在较大的电位区域中进行测定; (2) 电极必须不与溶剂或电解液组分发生反应; (3) 电极面积不宜太大,电极表面最好应是均一平滑的,且能够通过简单的方法进行表面净化等等。 工作电极的选择:通常根据研究的性质来预先确定电极材料,但最普通的“惰性”固体电极材料是玻碳(铂、金、银、铅和导电玻璃)等。采用固体电极时,为了保证实验的重现性,必须注意建立合适的电极预处理步骤,以保证氧化还原、表面形貌和不存在吸附杂质的可重现状态。在液体电极中,汞和汞齐是最常用的工作电极,它们都是液体,都有可重现的均相表面,制备和保持清洁都较容易,同时电极上高的

氢析出超电势提高了在负电位下的工作窗口记被广泛用于电化学分析中。 辅助电极:又称对电极,辅助电极和工作电极组成回路,使工作电极上电流畅通,以保证所研究的反应在工作电极上发生,但必须无任何方式限制电池观测的响应。由于工作电极发生氧化或还原反应时,辅助电极上可以安排为气体的析出反应或工作电极反应的逆反应,以使电解液组分不变,即辅助电极的性能一般不显著影响研究电极上的反应。但减少辅助电极上的反应对工作电极干扰的最好办法可能是用烧结玻璃、多孔陶瓷或离子交换膜等来隔离两电极区的溶液。 为了避免辅助电极对测量到的数据产生任何特征性影响,对辅助电极的结构还是有一定的要求。如与工作电极相比,辅助电极应具有大的表面积使得外部所加的极化主要作用于工作电极上。辅助电极本身电阻要小,并且不容易极化,同时对其形状和位置也有要求。 参比电极: 是指一个已知电势的接近于理想不极化的电极。参比电极上基本没有电流通过,用于测定研究电极(相对于参比电极)的电极电势。在控制电位实验中,因为参比半电池保持固定的电势,因而加到电化学池上的电势的任何变化值直接表现在工作电极/电解质溶液的界面上。实际上,参比电极起着既提供热力学参比,又将工作电极作为研究体系隔离的双重作用。

参比电极使用维护方法综述

参比电极使用维护综述 参比电极是决定指示电极电位的重要因素, 作为一个理想的参比电极应具备 以下条件:①能迅速建立热力学平衡电位,这就要求电极反应是可逆的。②电极 电位是稳定的,能允许仪器进行测量。常用的参比电极有甘汞电极和银 -氯化银 电极。 参比电极的使用及维护 1?使用时应拔去加液口橡皮塞,以使盐桥溶液借重力作用维持一定流速渗漏 于与待测溶液通路。玻璃加液口和橡皮塞应该经常插洗保存。 2. 测量时,参比电极盐桥液面应高于待测界面(2~3)cm ,以防止待测液向甘 汞电极内扩散,如待测液中含有氯化物、硫化物、络合剂、银盐和过氯酸盐等向 内扩散,都将影响参比电极的电位。 3. 参比电极的溶液中应防止气泡产生,以免测量回路断路。 4. 参比电极的电解液要经常加入,及时补充,其浓度要按照说明书的要求配 制,如是饱和氯化钾溶液作盐桥时要维持有过量氯化钾晶体, 氯化 钾晶体的饱和溶液的瓶放入温水待氯化钾溶解后再补入, 化钾即会 析出。 5. 甘汞电极的电极电位有较大的负温度系数和热滞后性, 止 甘汞电极温度大幅度波动。克服这种缺点办法,通常在甘汞电极下 部加一伸长 的盐桥管,而使电极处于室温下,而盐桥溶液的温度与待测溶液相同。 精确测量 时将甘汞电极置于恒温槽内操作时只要把盛有 冷却后在电极内氯 在测量时要尽量防

6?参比电极的液接部毛孔经常会被堵塞,电极阻抗增高,往往引起指示值波动。在这种情况下,应不时括去积垢或更换电极。只有在液接部不被沾污和保持流畅的情况下,才能保持其正确测量。 7?甘汞电极使用温度不宜超过70 C,如果测定场合水温超过70 C,应使用银-氯化银电极。 8?关于银-氯化银电极有一点值得一提,即银-氯化银电极对光敏感,而许多使用它作内参比的玻璃电极具有透明杆子,如果标定时,它们是暴露在日光下的,然后浸入溶液测量时,离开日光照射,这样会造成几mV电位的漂移。如果在电极杆上,套上一个黑色的聚乙稀管,这个问题即可解决。 9?固体参比电极,在电极前端帽子中应盛有KCL溶液,不可使其干涸,使用前应将电极竖直放置在盛有KCL溶液容器中数小时。 参比电极的检查方法 1、内阻检查方法:参比电极的内阻一般小于10K Q,检查时可采用实验室电导率 仪,电导率仪的插座一端接参比电极,另一端接一根金属丝,把参比电极与金属丝同时浸入溶液中,其内阻应小于10K Q.如内阻很大说明液接界部分堵塞,电极需要处理。 2、电极电位检查:使用一支好的参比电极,与被怀疑性能不良的参比电极接入pH 计输入端,二支电极同时浸入KCL溶液(或pH=4。00缓冲液),假如二支电极型号相同,其电位差应小于3mv或电位变化小于1mv。如果电位差大于3mv或电位变化大于 1mv,电极应该更换或再生

常用金属的电极电位

标准电极电位是以标准氢原子作为参比电极,即氢的标准电极电位值定为0,与氢标准电极比较,电位较高的为正,电位较低者为负。如氢的标准电极电位H2←→H+ 为 一般标准电极电位以298K(即25摄氏度) 常见金属的标准电极电位: 石墨的标准电极电位为 + V 一价金Au+ +e = Au原子价标准电极电位为 + 1.692 V 三价金Au3+ + 3e=Au原子价标准电极电位为 + 1.498 V 钯Pd2+2e=Pd的标准电极电位为 + 0.830 V 三价铑 Rh3+ + 3e=Rh 的标准电极电位为 + 0.800 V 银 Ag+ +e=Ag的标准电极电位为 + 0.799 V 钌Rh3+ + 3e = Rh的标准电极电位为 + 0.790 V 汞 Hg2/2+ + 2e 的标准电极电位为 + 0. 789 V 铜 Cu2+ + 2e 的标准电极电位为 + V 氯化银的标准电极电位为 + 0. 222 V 氢2H+ + 2e = H2的标准电极电位为V

铁Fe3++3e=Fe的标准电极电位为- V 铅 Pb2+ + 2e=Pb 的标准电极电位为- V 锡 Sn2+ + 2e=Sn 的标准电极电位为- V 钼 Mo3+ + 3e=Mo 的标准电极电位为- V 镍 Ni2+ + 2e=Ni 的标准电极电位为- V 钴 Co2+ + 2e=Co 的标准电极电位为- V 铟 In3+ + 3e=In 的标准电极电位为- V 镉 Cd2+ + 2e 的标准电极电位为- V 铁 Fe2+ + 2e=Fe的标准电极电位为- V 镍硼Ni-B镀层的自腐蚀电位为,比Ni-B-PTFE的自腐蚀电位要高,而Ni-B-PTFE复合镀层的自腐蚀电位为左右 铬 Cr3+ + 3e = Cr 的标准电极电位为-0. 74 V 锌Zn2+ + 2e 的标准电极电位为-0. 763 V 钨 W 的标准电极电位为- 1. 05 V 锰 Mn2+ + 2e 的标准电极电位为- V 钛 Ti2+ + 2e 的标准电极电位为- V 铝 Al3+ + 3e 的标准电极电位为- V 镁 Mg2+ + 2e 的标准电极电位为- V 钕 Nd 是一种活性极强的金属,标准平衡电位为- V 1氢 H 3锂Li 4铍Be 5硼 B 6碳 C

参比电极

Ag/Ag2SO4用于铅酸蓄电池 Cd电极常用于电池制造中以控制正负极板质量,Hg/Hg2SO4常用于实验室的准确测量中[1]。它的缺点是价高、易碎和易造成环境污染。 Ag2SO4电极在文献中报道极少,几乎没有关于Ag2SO4参比电极的介绍。至今此电极尚未有作为铅酸电池中参比电极应用的报道。其主要原因可能是Ag2SO4的溶解度太高所致,Ag+离子可能会污染铅酸电池的电解质溶液。Ag2SO4在硫酸溶液中的溶解度为0.03mol/1000gH2O[2]。但是现在已经有合适的隔膜材料,可阻挡扩散污染。 Pb/PbSO4电极对Ag/Ag2SO4参比电极的电极电位: 此反应 在标准情况下(25℃、1bar)Pb/PbSO4与Ag/Ag2SO4参比电极之间的电位差为 ,E0与硫酸浓度无关。 已知Ag/Ag2SO4参比电极比Hg/Hg2SO4参比电极(同溶液)要正0.0384V,此值也与硫酸浓度无关。 PbO2/PbSO4电极对Ag/Ag2SO4参比电极的电极电位: △G0=-199.42kJ E0=1.0334V 式中a s为硫酸活度,a w为水的活度。 例如,在5mol硫酸中,PbO2/PbSO4对于同液Ag/Ag2SO4的电极电位,计算为1.0881V,如酸浓度为1mol,计算为0.9173V(硫酸平均活度系数用)

内径为3mm的薄壁尼龙管,(可用聚丙烯管代替),低部紧塞AGM,此要AGM塞长15mm,其上放上Ag、Ag2SO4、少量SiO2成胶剂和少量AR级的硫酸溶液。加入的酸量刚好把Ag2O全部转化为Ag2SO4。 此活性混合物在尼龙管中干燥(中间插银丝),将银丝与上部接头焊好,用环氧树脂封固。使用前,AGM塞和活性混合物用含合适浓度的硫酸浸泡100h以上(15mm长的AGM 需要100h来平衡酸浓度),也可将需要的酸量加入活性物上部(用针管注入),参比电极中吸收的硫酸约200mg(35%的硫酸)。 用此电极在铅酸电池中Ag2SO4会少量扩散进入电池,按fick定律估算,总量小于1mg/年。 此电极牢固,防撞击,电位重现性在1~2mV内。 用法:可在电池盖上钻一小孔放入酸中,或VRLA电池的AGM上,参比电极尖端位置对电位稍有影响。 硫酸银电极 Ag2SO4+2e=2Ag+ SO42- E Ag2SO4= E Ag2SO40-0.0591/2loga SO42- =0.653 有严格定义的电极电位,易于制备做成各种式样的电极,电位的可重现性达±1mV,电极的结构牢固,可以防震,且无毒性物质,在高温时稳定。 对于同样的硫酸溶液中的铅蓄电池负极(Pb/PbSO4电极)对Ag/Ag2SO4参比电极的电极电位为-1.009V(25℃),它与硫酸的浓度无关,已由实验证实。PbO2/PbSO4正极对Ag/Ag2SO4参比电极的电位,符合下列的关系式((25℃)。 式中a s为硫酸活度,a w为水的活度。此式也可由实验

常用金属的电极电位

标准电极电位的概念 标准电极电位是以标准氢原子作为参比电极,即氢的标准电极电位值定为0,与氢标准电极比较,电位较高的为正,电位较低者为负。如氢的标准电极电位H2←→H+ 为0.000 一般标准电极电位以298K(即25摄氏度) 常见金属的标准电极电位: 石墨的标准电极电位为 + 3.700 V 一价金Au+ +e = Au原子价标准电极电位为 + 1.692V 三价金Au3+ + 3e=Au原子价标准电极电位为 + 1.498 V 钯Pd2+2e=Pd的标准电极电位为 + 0.830V 三价铑 Rh3+ + 3e=Rh 的标准电极电位为 + 0.800V 银 Ag++e=Ag的标准电极电位为 + 0.799 V 钌Rh3+ + 3e = Rh的标准电极电位为 + 0.790V 汞Hg2/2+ + 2e 的标准电极电位为+ 0. 789 V 铜Cu2++ 2e 的标准电极电位为 + 0.337 V 氯化银的标准电极电位为 + 0. 222 V 氢2H+ + 2e = H2的标准电极电位为0.000V

铁Fe3++3e=Fe的标准电极电位为- 0.037V 铅 Pb2+ + 2e=Pb 的标准电极电位为- 0.126 V 锡 Sn2+ + 2e=Sn 的标准电极电位为- 0.136 V 钼 Mo3+ + 3e=Mo 的标准电极电位为-0.220V 镍 Ni2+ + 2e=Ni 的标准电极电位为-0.250V 钴 Co2+ + 2e=Co 的标准电极电位为-0.277 V 铟 In3+ + 3e=In 的标准电极电位为-0.342V 镉 Cd2+ + 2e 的标准电极电位为-0.403V 铁Fe2+ + 2e=Fe的标准电极电位为- 0.440V 镍硼Ni-B镀层的自腐蚀电位为-0.5V,比Ni-B-PTFE的自腐蚀电位要高,而Ni-B-PTFE复合镀层的自腐蚀电位为-0.63V左右 铬 Cr3+ + 3e = Cr 的标准电极电位为-0. 74 V 锌Zn2++ 2e 的标准电极电位为- 0. 763 V 钨 W 的标准电极电位为- 1. 05 V 锰 Mn2+ + 2e的标准电极电位为- 1.179V 钛 Ti2+ + 2e 的标准电极电位为- 1.630 V 铝 Al3+ + 3e 的标准电极电位为- 1.663V 镁 Mg2+ + 2e 的标准电极电位为- 2.363 V 钕 Nd 是一种活性极强的金属,标准平衡电位为- 2.431 V 1氢 H 3锂Li 4铍Be 5硼 B 6碳 C

参比电极

参比电极 PH复合电极到底是什么意思? 复合电极是什么啊,什么意思,PH电极又是怎么回事?经常客户会问到我们这个问题,就在我们帮他们选型的时候,加了一些术语就不好理解了,所以搞电极这一块的朋友,还得把这些问题弄清楚才行啊。 我们把pH玻璃电极和参比电极组合在一起的电极就称为pH复合电极, 即pH计的复合电极。外壳为塑料的就称为塑壳pH复合电极。外壳为玻璃的就称为玻璃pH复合电极。复合电极的最大优点是合二为一,使用方便。pH复合 电极的结构主要由电极球泡、玻璃支持杆、内参比电极、内参比溶液、外壳、外参比电极、外参比溶液、液接界、电极帽、电极导线、插口等组成。 1)电极球泡:它是由具有氢功能的锂玻璃熔融吹制而成,呈球形,膜厚在0.1~0.2mm左右,电阻值250兆欧(25℃)。 2)玻璃支持管:是支持电极球泡的玻璃管体,由电绝缘性优良的铅玻璃制成,其膨胀系数应与电极球泡玻璃一致。 3)内参比电极:为银/氯化银电极,主要作用是引出电极电位,要求其电 位稳定,温度系数小。 4)内参比溶液:零电位为7pH的内参比溶液,是中性磷酸盐和氯化钾的混 合溶液,玻璃电极与参比电极构成电池建立零电位的pH值,主要取决于内参 比溶液的pH值及氯离子浓度。 5)电极塑壳:电极塑壳是支持玻璃电极和液接界,盛放外参比溶液的壳体,由聚碳酸酯塑压成型。 6)外参比电极:为银/氯化银电极,作用是提供与保持一个固定的参比电势,要求电位稳定,重现性好,温度系数小。 7)外参比溶液:为 3.3mol/L的氯化钾凝胶电解质,不易流失,无需添加。 8)砂芯液接界:液接界是构通外参比溶液和被测溶液的连接部件,要求渗 透量稳定。 9)电极导线:为低噪音金属屏蔽线,内芯与内参比电极连接,屏蔽层与外 参比电极连接。 总结这九点,是对电极的构造进行了系统的描述。从里到外,了解这些,电极的原理就好容易理解一些了。

几电极体系简介

1)二电极体系 如果确定辅助电极的电极电位在测试过程中是不发生变化或者变化可以忽略不计时,我们就不必使用参比电极,也就是两电极体系。用两个工作电极进行测试,测试的是超级电容器体系的整体性能。 2)三电极体系 为了消减候工作电极和辅助电极(对电极)的电极电位在测试过程中发生变化的影响。(克服iR 降) 有三个电极,一个工作电极(研究电极),一个参比电极,一个辅助电极(对电极),用于测量和监控参比电极和工作电极之间的电势差有很高的输入阻抗,参比电极上几乎没有电流经过,电流在工作电极和辅助电极之间通过。因此,可以比较准确的测定相对参比电极的电位变化,可以对研究电极进行性能测试。测试的是单电极的性能,而不是整个电池体系。 参比电极的选择:银—氯化银电极具有非常良好的电极电位重演性、稳定性,由于它是固体电极,故使用方便,应用很广。甘汞电极是实验室最常用的参比电极。对于超级电容器的三电极体系测试绝大多数使用甘汞电极作为参比电极,也有Ni/NiOH的,Ag/AgCl也有,有人认为是这些之中比较好的。 盐桥的主要作用是: 当参比电极室和研究电极室相通,两室内电解质溶液发生交换时,参比电极的一侧电解质将参与研究电极上的反应而使得参比电极室内的浓度发生变化(如饱和的溶液变为非饱和的溶液),故而要隔开这种离子交换,由于表面张力的作用,鲁金毛细管可以是使参比电极与工作电极尽可能的接近,从而降低溶液的电势降iR,使工作电极上的电势的测定尽可能的准确。 3) 四电极体系 为了克服电极极化和环境波动的影响。设计出四电极测试体系,它利用一对外电极将激励电流导入液体,并测量一对内电极上的电压。主要采用的是交流阻抗法,测试电阻。工作电极和对电极相距20cm,中间两个电极是检测电极.相隔10cm。

各类参比电极的适用范围

各类参比电极的适用范围 各类参比电极的适用范围 用具有适当输入阻抗的直流电压表、测试线和一支稳定的参比电极,例如饱和铜/硫酸铜参比电极(CSE)、银/氯化银电极(Ag/AgCl)或饱和氯化钾(KCL)甘汞电极,就可以进行管道对电解质电位测量。当电解质是土壤或淡水时,一般用CSE测量,但它不适用于海水中。当在高氯环境下使用CSE时,在确认读数的有效性之前,必须对CSE的稳定性进行检查。银/氯化银电极通常用于海水环境中,饱和氯化钾甘汞电极更多的用于实验室中。然而,多面聚合物胶质饱和KCL甘汞电极也可使用,但需要适当增加对环境的接触面积。 各类参比电极的适用范围 用具有适当输入阻抗的直流电压表、测试线

和一支稳定的参比电极,例如饱和铜/硫酸铜参比电极(CSE)、银/氯化银电极(Ag/AgCl)或饱和氯化钾(KCL)甘汞电极,就可以进行管道对电解质电位测量。当电解质是土壤或淡水时,一般用CSE测量,但它不适用于海水中。当在高氯环境下使用CSE时,在确认读数的有效性之前,必须对CSE的稳定性进行检查。银/氯化银电极通常用于海水环境中,饱和氯化钾甘汞电极更多的用于实验室中。然而,多面聚合物胶质饱和KCL甘汞电极也可使用,但需要适当增加对环境的接触面积。 各类参比电极的适用范围 用具有适当输入阻抗的直流电压表、测试线和一支稳定的参比电极,例如饱和铜/硫酸铜参比电极(CSE)、银/氯化银电极(Ag/AgCl)或饱和氯化钾(KCL)甘汞电极,就可以进行管道对电解质电位测量。当电解质是土壤或淡水时,一般用CSE测量,但它不适用于海水中。当在高氯环境下使用CSE时,在确

认读数的有效性之前,必须对CSE的稳定性进行检查。银/氯化银电极通常用于海水环境中,饱和氯化钾甘汞电极更多的用于实验室中。然而,多面聚合物胶质饱和KCL甘汞电极也可使用,但需要适当增加对环境的接触面积。 各类参比电极的适用范围 用具有适当输入阻抗的直流电压表、测试线和一支稳定的参比电极,例如饱和铜/硫酸铜参比电极(CSE)、银/氯化银电极(Ag/AgCl)或饱和氯化钾(KCL)甘汞电极,就可以进行管道对电解质电位测量。当电解质是土壤或淡水时,一般用CSE测量,但它不适用于海水中。当在高氯环境下使用CSE时,在确认读数的有效性之前,必须对CSE的稳定性进行检查。银/氯化银电极通常用于海水环境中,饱和氯化钾甘汞电极更多的用于实验室中。然而,多面聚合物胶质饱和KCL甘汞电极也可使用,但需要适当增加对环境的接触面积。

标准电极电势表(全)

在酸性溶液中(298K) 电对方程式E/V Li(I)-(0)Li++e-=Li-Cs(I)-(0)Cs++e-=Cs-Rb(I)-(0)Rb++e-=Rb- K(I)-(0)K++e-=K-Ba(II)-(0)Ba2++2e-=Ba-Sr(II)-(0)Sr2++2e-=Sr-Ca(II)-(0)Ca2++2e-=Ca-Na(I)-(0)Na++e-=Na-La(III)-(0)La3++3e-=La-Mg(II)-(0)Mg2++2e-=Mg-Ce(III)-(0)Ce3++3e-=Ce- H(0)-(-I)H2(g)+2e-=2H--Al(III)-(0)AlF63-+3e-=Al+6F--Th(IV)-(0)Th4++4e-=Th-Be(II)-(0)Be2++2e-=Be- U(III)-(0)U3++3e-=U-Hf(IV)-(0)HfO2++2H++4e-=Hf+H2O-Al(III)-(0)Al3++3e-=Al-Ti(II)-(0)Ti2++2e-=Ti-Zr(IV)-(0)ZrO2+4H++4e-=Zr+2H2O-Si(IV)-(0)[SiF6]2-+4e-=Si+6F--Mn(II)-(0)Mn2++2e-=Mn-Cr(II)-(0)Cr2++2e-=Cr-Ti(III)-(II)Ti3++e-=Ti2+- B(III)-(0)H3BO3+3H++3e-=B+3H2O-*Ti(IV)-(0)TiO2+4H++4e-=Ti+2H2O-Te(0)-(-II)Te+2H++2e-=H2Te-Zn(II)-(0)Zn2++2e-=Zn-Ta(V)-(0)Ta2O5+10H++10e-=2Ta+5H2O-Cr(III)-(0)Cr3++3e-=Cr-Nb(V)-(0)Nb2O5+l0H++10e-=2Nb+5H2O-As(0)-(-III)As+3H++3e-=AsH3- U(IV)-(III)U4++e-=U3+-Ga(III)-(0)Ga3++3e-=Ga-

标准氢电极

标准氢电极 品名:氢标准电极 拼音:qingbiaozhundianji 英文名称:standard hydrogen electrode 说明:由于单个电极的电势无法确定,故规定任何温度下标准状态的氢电极的电势为零,任何电极的电势就是该电极与标准氢电极所组成的电池的电势,这样就得到了“氢标”的电极势。标准状态是指氢电极的电解液中的氢离子活度为1,氢气的压强为0.1兆帕(约1大气压)的状态,温度为298.15K。 这只是一种假定的理想状态,通常是将镀有一层海绵状铂黑的铂片,浸入到H+浓度为1.0mol/L的酸溶液中,在298.15K时不断通入压力为100kPa的纯氢气,使铂黑吸附H2气至饱和,这是铂片就好像是用氢制成的电极一样。 实际测量时需用电势已知的参比电极替代标准氢电极,如甘汞电极、氯化银电极等。它们的电极势是通过与氢电极组成无液体接界的电池,通过精确测量用外推去求得的。 电极电势 一,电极电势的产生—双电层理论 德国化学家能斯特(H.W.Nernst)提出了双电层理论(electron double l ayer theory)解释电极电势的产生的原因。当金属放入溶液中时,一方面金属晶体中处于热运动的金属离子在极性水分子的作用下,离开金属表面进入溶液。金属性质愈活泼,这种趋势就愈大;另一方面溶液中的金属离子,由于受到金属表面电子的吸引,而在金属表面沉积,溶液中金属离子的浓度愈大,这种趋势也愈大。在一定浓度的溶液中达到平衡后,在金属和溶液两相界面上形成了一个带相反电荷的双电层(electron double layer),双电层的厚度虽然很小(约为10-8厘米数量级), 但却在金属和溶液之间产生了电势差。通常人们就把产生在金属和盐溶液之间的双电层间的电势差称为金属的电极电势(electrode potential),并以此描述电极得失电子能力的相对强弱。电极电势以符号E Mn+/ M表示, 单位为V(伏)。如锌的电极电势以EZn2+/ Zn 表示, 铜的电极电势以ECu2+/Cu 表示。 电极电势的大小主要取决于电极的本性,并受温度、介质和离子浓度等因素的影响。 2.标准电极电势 为了获得各种电极的电极电势数值,通常以某种电极的电极电势作标准与其它各待测电极组成电池,通过测定电池的电动势, 而确定各种不同电极的相对电极电 势E值。1953年国际纯粹化学与应用化学联合会(IUPAC)的建议,采用标准氢电极作为标准电极,并人为地规定标准氢电极的电极电势为零。 (1)标准氢电极电极符号: Pt|H2(101.3kPa)|H+(1mol.L-1) 电极反应: 2H+ + 2e = H2(g)

标准电极电势表

标准电极电势表 目录[隐藏] 电极电势的产生—双电层理论 定义 公式 电极电势内容 标准电极电势表 [编辑本段] 电极电势的产生—双电层理论 德国化学家能斯特(H.W.Nernst)提出了双电层理论(electron double lay er theory)解释电极电势的产生的原因。当金属放入溶液中时,一方面金属晶体中处于热运动的金属离子在极性水分子的作用下,离开金属表面进入溶液。金属性质越活泼,这种趋势就越大;另一方面溶液中的金属离子,由于受到金属表面电子的吸引,而在金属表面沉积,溶液中金属离子的浓度越大,这种趋势也越大。在一定浓度的溶液中达到平衡后,在金属和溶液两相界面上形成了一个带相反电荷的双电层(electron double layer),双电层的厚度虽然很小(约为10-8厘米数量级), 但却在金属和溶液之间产生了电势差。通常人们就把产生在金属和盐溶液之间的双电层间的电势差称为金属的电极电势(electrode potential),并以此描述电极得失电子能力的相对强弱。电极电势以符号E Mn+/ M表示, 单位为V(伏)。如锌的电极电势以EZn2+/ Zn 表示, 铜的电极电势以ECu2+/Cu 表示。 电极电势的大小主要取决于电极的本性,并受温度、介质和离子浓度等因素的影响。 [编辑本段] 定义 标准电极电势是可逆电极在标准状态及平衡态时的电势,也就是标准态时的电极电势. 标准电极电势有很大的实用价值,可用来判断氧化剂与还原剂的相对强弱,判断氧化还原反应的进行方向,计算原电池的电动势、反应自由能、平衡常数,计算其他半反应的标准电极电势,等等。将半反应按电极电势由低到高排序,可以得到标准电极电势表,可十分简明地判断氧还反应的方向. [编辑本段] 公式

电极电势的应用

?无机及分析化学?课程单元教学设计 ──?电极电势的应用? 一、教案头: 本次课题:电极电势的应用 二、教学设计 第一部分:组织教学和复习上次课主要内容(时间:5分钟) ①考勤 ②标准电极电势的测定及利用Nernst方程计算电极电势 第二部分:学习新内容(时间:38分钟) 步骤一告知,宣布本次课的教学内容、目标(时间:3分钟)

课件演示本次课的标题:电极电势的应用 教师讲述引入:我们在上次课中学习了电极电势的知识,电极电势除了可以计算原电池电动势以外,还有其它的一些应用,这节课我们就要一起学习电极电势的这些应用。 教学内容: 一、氧化剂、还原剂的相对强弱 二、氧化还原反应进行的方向 三、氧化还原反应进行的程度 四、元素电势图及其应用 教学目的:通过学习能能根据标准电极电势大小判断氧化剂、还原剂的相对性强弱:判断反应进行的方向,能利用元素电势图判断能否发生歧化反应或逆歧化反应、掌握E?与K?的互算。 步骤二讲授新课(时间:30分钟) 一、判断氧化剂、还原剂的相对强弱 教师讲述:E?小的电对对应的还原型物质还原性强 E?大的电对对应的氧化型物质氧化性强 深化对上述知识点的理解:讲解例题9-11 巩固练习:P127简答题第四题 二、判断氧化还原反应进行的方向 教师讲述:E?值大的的氧化态(O)氧化E?值小的还原态(R) 深化对上述知识点的理解:讲解例题9-12、例题9-12 巩固练习:P127简答题第四题 三、氧化还原反应进行的程度

教师指出:氧化还原反应的平衡常数K Θ与标准电极电势E Θ 的关系 ) -E (E 0.0592 0.0592¨ ¨lg -+==Z ZE K E ?越大,电势差越大,K ?也越大,所以K ?能判断氧化还原反应程度 深化理解:K Θ与E Θ关系之互算 例题9-14、 例题9-15已知298K 时下列电极反应的E ?值: 试求AgCl 的溶度积常数。 能力训练:有关K Θ与E Θ关系之互算的计算 (1) 0.2222V )aq (Cl Ag(s) e (s) AgCl 0.7991V Ag(s) e )aq (Ag =++=+---+E E g(s)A )L 1.0mol (g A )L 1.0mol (Cl AgCl(s) g(s)A 11-+--??解:设计一个原电池: 1 (s) AgCl )aq (Cl )aq (Ag )aq (Cl Ag(s) e (s) AgCl Ag(s) e )aq (Ag sp K K = ++++-+---+10-sp sp ¨101.80 7449.90.0592V 0.5769V 0.0592V ¨ lg - 0.0592V ¨ lg 0.5769V 0.222V 0.7991V ) Ag /AgCl ()Ag /Ag ( ¨ ?======+=-=+K ZE K ZE K E E E 24224)aq (6H )aq (O C 5H )aq (2MnO ++++-例:求反应

电化学体系三电极介绍

电化学体系三电极介绍 所有电化学体系至少含有浸在电解质溶液中或紧密附于电解质上的两个电极,而且在许多情况下有必要采用隔膜将两电极分隔开。我们将分别介绍电极、隔膜、电解质溶液及电解池的设计与安装。 电极(electrode)是与电解质溶液或电解质接触的电子导体或半导体,为多相体系。电化学体系借助于电极实现电能的输入或输出,电极是实施电极反应的场所。一般电化学体系分为二电极体系和三电极体系,用的较多的是三电极体系。相应的三个电极为工作电极、参比电极和辅助电极。 工作电极: 又称研究电极,是指所研究的反应在该电极上发生。一般来讲,对工作电极的基本要求是:工作电极可以是固体,也可以是液体,各式各样的能导电的固体材料均能用作电极。(1) 所研究的电化学反应不会因电极自身所发生的反应而受到影响,并且能够在较大的电位区域中进行测定; (2) 电极必须不与溶剂或电解液组分发生反应; (3) 电极面积不宜太大,电极表面最好应是均一平滑的,且能够通过简单的方法进行表面净化等等。 工作电极的选择:通常根据研究的性质来预先确定电极材料,但最普通的“惰性”固体电极材料是玻碳(铂、金、银、铅和导电玻璃)等。采用固体电极时,为了保证实验的重现性,必须注意建立合适的电极预处理步骤,以保证氧化还原、表面形貌和不存在吸附杂质的可重现状态。在液体电极中,汞和汞齐是最常用的工作电极,它们都是液体,都有可重现的均相表面,制备和保持清洁都较容易,同时电极上高的氢析出超电势提高了在负电位下的工作窗口记被广泛用于电化学分析中。 辅助电极:又称对电极,辅助电极和工作电极组成回路,使工作电极上电流畅通,以保证所研究的反应在工作电极上发生,但必须无任何方式限制电池观测的响应。由于工作电极发生氧化或还原反应时,辅助电极上可以安排为气体的析出反应或工作电极反应的逆反应,以使电解液组分不变,即辅助电极的性能一般不显著影响研究电极上的反应。但减少辅助电极上的反应对工作电极干扰的最好办法可能是用烧结玻璃、多孔陶瓷或离子交换膜等来隔离两电极区的溶液。

中科院电化学问答答案

2005年电化学和电分析化学 1、标准电极电位和条件电位 各种标准状态下的被测电极与标准氢电极组成原电池,标准氢电极作为阳极(发生那氧化反应)用实验的方法测得的该电池电动势的数值,就是被测电极的标准电极电位。 对于实际体系,在某一特定条件下,该电对的氧化型的总浓度和还原型的总浓度均为1mol/L时的实际电位,就叫条件电位。 2、双电层 当电极插入溶液中后,在电极和溶液之间便有一个界面。如果导体电荷带正电荷,会对溶液中的负离子产生吸引作用,同时对正离子也有一定的排斥作用。结果在电极附近就会聚集很多负离子,叫做吸附层,在吸附层外一微小区域,由于静电引力的存在,也有电荷过剩现象存在,称为扩散层,这种结构就叫做双电层。3、极限电流和扩散电流 在电化学反应中,电解开始后,随着外加电压的继续增大,电流急剧上升,最后当外加电压增加到一定数值时,电流不再增加,达到一个极限值。此时的电流称为极限电流。极限电流与残余电流之差称为扩散电流。 4、半电池的形式电势 5、交流伏安法 在电路里负载两端并联一电压表,电路里串联电流表,通过电压和电流计算出阻抗,包括电容的容抗和电感的感抗。 二简答题 1、何谓循环伏安法?主要用于研究什么?从可逆性角度简述循环伏安曲线有几 类?具体依据及特点? 循环伏安法是以快速线性扫描的形式施加以三角波电压于工作电极上,得到循环伏安曲线的一种方法。 一般用于研究电极过程的可逆性、吸附性以及测定可逆体系标准电极电位,鉴别电极反应产物和研究化学反应控制的各个电极过程。 从可逆性的角度可有三类循环伏安曲线:(1)可逆过程ΔEp= 2.2RT/nF = 56.5/n mv,一般说来,ΔEp与实验条件有关,其数值在55/n ~65/n mv 时,可判断为

电化学原理思考题答案解析

第三章 1.自发形成的双电层和强制形成的双电层在性质和结构上有无不同为什么2.理想极化电极和不极化电极有什么区别它们在电化学中有什么重要用途答:当电极反应速率为0,电流全部用于改变双电层的电极体系的电极称为理想极化电极,可用于界面结构和性质的研究。理想不极化电极是指当电极反应速率和电子反应速率相等时,极化作用和去极化作用平衡,无极化现象,通向界面的电流全部用于电化学反应,可用作参比电极。 3.什么是电毛细现象为什么电毛细曲线是具有极大值的抛物线形状 答:电毛细现象是指界面张力随电极电位变化的现象。溶液界面存在双电层,剩余电荷无论带正电还是负电,同性电荷间相互排斥,使界面扩大,而界面张力力图使界面缩小,两者作用效果相反,因此带电界面的张力比不带电时小,且电荷密度越大,界面张力越小,因此电毛细曲线是具有极大值的抛物线形状。 4.标准氢电极的表面剩余电荷是否为零用什么办法能确定其表面带电状况答:不一定,标准氢电极电位为0指的是氢标电位,是人为规定的,电极表面剩余电荷密度为0时的电位指的是零电荷电位,其数值并不一定为0;因为形成相间电位差的原因除了离子双电层外,还有吸附双电层\ 偶极子双电层\金属表面电位。可通过零电荷电位判断电极表面带电状况,测定氢标电极的零电荷电位,若小于0则电极带正电,反之带负电。 5.你能根据电毛细曲线的基本规律分析气泡在电极上的附着力与电极电位有什么关系吗为什么有这种关系(提示:液体对电极表面的润湿性越高,气体在电极表面的附着力就越小。)6.为什么在微分电容曲线中,当电极电位绝对值较大时,会出现“平台”7.双电层的电容为什么会随电极电位变化试根据双电层结构的物理模型和数学模型型以解释。 8.双电层的积分电容和微分电容有什么区别和联系9.试述交流电桥法测量微分电容曲线的原理。10.影响双电层结构的主要因素是什么为什么 答:静电作用和热运动。静电作用使符号相反的剩余电荷相互靠近,贴于电极表面排列,热运动使荷电粒子外散,在这两种作用下界面层由紧密层和分散层组成。11.什么叫ψ1电位能否说ψ1电位的大小只取决于电解质总浓度而与电解质本性无关ψ1电位的符号是否总是与双电层总电位的符号一致为什么 答:距离电极表面d处的电位叫ψ1电位。不能,因为不同的紧密层d的大小不同,而紧密层的厚度显然与电解质本性有关,所以不能说ψ1电位的大小只取决于电解质总浓度而与电解质本性无关。当发生超载吸附时ψ1电位的符号与双电层总电位的符号不一致。 12.试述双电层方程式的推导思路。推导的结果说明了什么问题 13.如何通过微分电容曲线和电毛细曲线的分析来判断不同电位下的双电层结构答:14.比较用微分电容法和电毛细曲线法求解电极表面剩余电荷密度的优缺点。15.什么是特性吸附哪些类型的物质具有特性吸附的能力答:溶液中的各种粒子还可能因非静电作用力而发生吸附称为特性吸附。大部分无机阴离子,部分无机阳离子以及表面活性有机分子可发生特性吸附。

相关主题
文本预览
相关文档 最新文档