当前位置:文档之家› 检测达林顿管的方法

检测达林顿管的方法

检测达林顿管的方法
检测达林顿管的方法

铅酸蓄电池由于其制造成本低,容量大,价格低廉而得到了广泛的使用。但是,若使用不当,其寿命将大大缩短。影响铅酸蓄电池寿命的因素很多,而采用正确的充电方式,能有效延长蓄电池的使用寿命。

研究发现:电池充电过程对电池寿命影响最大,放电过程的影响较少。也就是说,

绝大多数的蓄电池不是用坏的,而是“充坏”的。由此可见,一个好的充电器对

蓄电池的使用寿命具有举足轻重的作用。

1蓄电池充电理论基础

上世纪60年代中期,美国科学家马斯对开口蓄电池的充电过程作了大量的试验研

究,并提出了以最低出气率为前提的,蓄电池可接受的充电曲线,如图1所示。

实验表明,如果充电电流按这条曲线变化,就可以大大缩短充电时间,并且对电

池的容量和寿命也没有影响。原则上把这条曲线称为最佳充电曲线,从而奠定了

快速充电方法的研究方向[1,2]。

图1最佳充电曲线

由图1可以看出:初始充电电流很大,但是衰减很快。主要原因是充电过程中产生了极化现象。在密封式蓄电池充电过程中,内部产生氧气和氢气,当氧气不能被及时吸收时,便堆积在正极板(正极板产生氧气),使电池内部压力加大,电池温度上升,同时缩小了正极板的面积,表现为内阻上升,出现所谓的极化现象。

蓄电池是可逆的。其放电及充电的化学反应式如下:

很显然,充电过程和放电过程互为逆反应。可逆过程就是热力学的平衡过程,为保障电池能够始终维持在平衡状态之下充电,必须尽量使通过电池的电流小一些。理想条件是外加电压等于电池本身的电动势。但是,实践表明,蓄电池充电时,外加电压必须增大到一定数值才行,而这个数值又因为电极材料,溶液浓度等各种因素的差别而在不同程度上超过了蓄电池的平衡电动势值。在化学反应中,这种电动势超过热力学平衡值的现象,就是极化现象。

一般来说,产生极化现象有3个方面的原因。

1)欧姆极化充电过程中,正负离子向两极迁移。在离子迁移过程中不可避免地受到一定的阻力,称为欧姆内阻。为了克服这个内阻,外加电压就必须额外施加一定的电压,以克服阻力推动离子迁移。该电压以热的方式转化给环境,出现所谓的

欧姆极化。随着充电电流急剧加大,欧姆极化将造成蓄电池在充电过程中的高温。

2)浓度极化电流流过蓄电池时,为维持正常的反应,最理想的情况是电极表面的反应物能及时得到补充,生成物能及时离去。实际上,生成物和反应物的扩散速度远远比不上化学反应速度,从而造成极板附近电解质溶液浓度发生变化。也就是说,从电极表面到中部溶液,电解液浓度分布不均匀。这种现象称为浓度极化。

3)电化学极化这种极化是由于电极上进行的电化学反应的速度,落后于电极上电子运动的速度造成的。例如:电池的负极放电前,电极表面带有负电荷,其附近溶液带有正电荷,两者处于平衡状态。放电时,立即有电子释放给外电路。电极表面负电荷减少,而金属溶解的氧化反应进行缓慢Me-e→Me+,不能及时补充电极表面电子的减少,电极表面带电状态发生变化。这种表面负电荷减少的状态促进金属中电子离开电极,金属离子Me+转入溶液,加速Me-e→Me+反应进行。总有一个时刻,达到新的动态平衡。但与放电前相比,电极表面所带负电荷数目减少了,与此对应的电极电势变正。也就是电化学极化电压变高,从而严重阻碍了正常的充电电流。同理,电池正极放电时,电极表面所带正电荷数目减少,电极电势变负。

这3种极化现象都是随着充电电流的增大而严重。

2充电方法的研究

2.1常规充电法

常规充电制度是依据1940年前国际公认的经验法则设计的。其中最著名的就是“安培小时规则”:充电电流安培数,不应超过蓄电池待充电的安时数。实际上,常规充电的速度被蓄电池在充电过程中的温升和气体的产生所限制。这个现象对蓄电池充电所必须的最短时间具有重要意义。

一般来说,常规充电有以下3种。

2.1.1恒流充电法

恒流充电法是用调整充电装置输出电压或改变与蓄电池串联电阻的方法,保持充电电流强度不变的充电方法,如图2所示。控制方法简单,但由于电池的可接受电流能力是随着充电过程的进行而逐渐下降的,到充电后期,充电电流多用于电解水,产生气体,使出气过甚,因此,常选用阶段充电法。

图2恒流充电曲线

2.1.2阶段充电法AaIp46^ .!5dm PUs' g `xY1MEU8ksN`[ |(,@66wenxoFKsJp6 u hcd'G uIxFE @& U *

此方法包括二阶段充电法和三阶段充电法。

1)二阶段法采用恒电流和恒电压相结合的快速充电方法,如图3所示。首先,以恒电流充电至预定的电压值,然后,改为恒电压完成剩余的充电。一般两阶段之间的转换电压就是第二阶段的恒电压。

图3二阶段法曲线

2)三阶段充电法在充电开始和结束时采用恒电流充电,中间用恒电压充电。当电流衰减到预定值时,由第二阶段转换到第三阶段。这种方法可以将出气量减到最少,但作为一种快速充电方法使用,受到一定的限制。

2.1.3恒压充电法

充电电源的电压在全部充电时间里保持恒定的数值,随着蓄电池端电压的逐渐升高,电流逐渐减少。与恒流充电法相比,其充电过程更接近于最佳充电曲线。用恒定电压快速充电,如图4所示。由于充电初期蓄电池电动势较低,充电电流很大,随着充电的进行,电流将逐渐减少,因此,只需简易控制系统。

论文铅酸蓄电池充电方法的研究来自https://www.doczj.com/doc/503823575.html,免费论文网

图4恒压充电法曲线

这种充电方法电解水很少,避免了蓄电池过充。但在充电初期电流过大,对蓄电池寿命造成很大影响,且容易使蓄电池极板弯曲,造成电池报废。

鉴于这种缺点,恒压充电很少使用,只有在充电电源电压低而电流大时采用。例如,汽车运行过程中,蓄电池就是以恒压充电法充电的。

2.2快速充电技术

为了能够最大限度地加快蓄电池的化学反应速度,缩短蓄电池达到满充状态的时间,同时,保证蓄电池正负极板的极化现象尽量地少或轻,提高蓄电池使用效率。快速充电技术近年来得到了迅速发展。

下面介绍目前比较流行的几种快速充电方法。这些方法都是围绕着最佳充电曲线进行设计的,目的就是使其充电曲线尽可能地逼进最佳充电曲线。

2.2.1脉冲式充电法

这种充电法不仅遵循蓄电池固有的充电接受率,而且能够提高蓄电池充电接受率,从而打破了蓄电池指数充电接受曲线的限制,这也是蓄电池充电理论的新发展。

脉冲充电方式首先是用脉冲电流对电池充电,然后让电池停充一段时间,如此循环,如图5所示。充电脉冲使蓄电池充满电量,而间歇期使蓄电池经化学反应产生的氧气和氢气有时间重新化合而被吸收掉,使浓差极化和欧姆极化自然而然地得到消除,从而减轻了蓄电池的内压,使下一轮的恒流充电能够更加顺利地进行,使蓄电池可以吸收更多的电量。间歇脉冲使蓄电池有较充分的反应时间,减少了析气量,提高了蓄电池的充电电流接受率[5]。

图5脉冲式充电曲线

2.2.2REFLEXTM快速充电法

这种技术是美国的一项专利技术,它主要面对的充电对象是镍镉电池。由于它采用了新型的充电方法,解决了镍镉电池的记忆效应,因此,大大降低了蓄电池的快速充电的时间。铅酸蓄电池的充电方法和对充电状态的检测方法与镍镉电池有很大的不同,但它们之间可以相互借鉴[3]。

如图6所示,REFLEXTM充电法的一个工作周期包括正向充电脉冲,反向瞬间放电脉冲,停充维持3个阶段[3]。

图6REFLEXTM快速充电法

2.2.3变电流间歇充电法

这种充电方法建立在恒流充电和脉冲充电的基础上,如图7所示。其特点是将恒流充电段改为限压变电流间歇充电段。充电前期的各段采用变电流间歇充电的方法,保证加大充电电流,获得绝大部分充电量。充电后期采用定电压充电段,获得过充电量,将电池恢复至完全充电态。通过间歇停充,使蓄电池经化学反应产生的氧气和氢气有时间重新化合而被吸收掉,使浓差极化和欧姆极化自然而然地得到消除,从而减轻了蓄电池的内压,使下一轮的恒流充电能够更加顺利地进行,使蓄电池可以吸收更多的电量[4]。

图7变电流间歇充电曲线

2.2.4变电压间歇充电法

在变电流间歇充电法的基础上又有人提出了变电压间歇充电法,如图8所示。与变电流间歇充电方法不同之处在于第一阶段的不是间歇恒流,而是间歇恒压。

图8变电压间歇充电曲线

比较图7和图8,可以看出:图8更加符合最佳充电的充电曲线。在每个恒电压充电阶段,由于是恒压充电,充电电流自然按照指数规律下降,符合电池电流可接受率随着充电的进行逐渐下降的特点[4]。

2.2.5变电压变电流波浪式间歇正负零脉冲快速充电法

综合脉冲充电法、ReflexTM快速充电法、变电流间歇充电法及变电压间歇充电法的优点,变电压变电流波浪式正负零脉冲

间歇快速充电法得到发展应用。脉冲充电法充电电路的控制一般有两种:

1)脉冲电流的幅值可变,而PWM(驱动充放电开关管)信号的频率是固定的;

2)脉冲电流幅值固定不变,PWM信号的频率可调。

图9采用了一种不同于这两者的控制模式,脉冲电流幅值和PWM信号的频率均固定,PWM占空比可调,在此基础上加入间歇停充阶段,能够在较短的时间内充进更多的电量,提高蓄电池的充电接受能力。

图9波浪式间歇正负零脉冲快速充电

充到14.4伏算满

12V的电池要用14.4-15.0V的充电器充电

检测达林顿管(DT)的方法

达林顿晶体管DT(Dar1ington Transistor)亦称复合晶体管。它采用复合过接方式,将两只或

更多只晶体管的集电极连在一起,而将第一只晶体管的发射极直接耦合到第二只晶体管的基极,

依次级连而成,最后引出E、B、C三个电极。

图1是由两只NPN或PNP型晶体管构成达林顿管的基本电路。假定达林顿管由N只晶体管(T I-T n)

组成,每只晶体管的放大系数分别这h FE1、h FE2、h FEn。则总放大系数约等于各管放大系数的乘积:

h FE≈h FE1·h FE2……h FEn

因此,达林顿管具有很高的放大系数,值可以达到几千倍,甚至几十万倍。利用它不仅能构成高增益放大器,还能提高驱动能力,获得大电流输出,构成达林顿功率开关管。在光电耦合器中,也有用达林顿管作为接收管的。达林顿管产品大致分成两类,一类是普通型,内部无保护电路,另一类则带有保护电路。下面分别介绍使用万用表检测这两类达林顿管的方法。

1.普通型达林顿管的检测方法

因为达林顿管的E-B电极之间包含多个发射结,所以必须选择万用表R×10k档进行检测,该档可提供较高的测试电压。检测内容包括:①识别电极;②区分NPN型、PNP型;③检查放大能力。下面通过一个实例来阐述测试方法。

被测管为美国Motoro1a公司生产的MPSA6266型达林顿管,它属于中功率、低噪声硅达林顿管,外形如图2所示。主要电参数为:h FE=5000-200000,P CM=600mW,噪声系数N F<2dB。采用塑料封装形式。

为叙述方便,现分别为三只脚管编上序号①、②、③(参见图2)。选择500型万用表R×10k 档。由附录四中查出该档电压比例系数K′=0.18V/格,采用读取电压法时的计算公式为

V=0.18n′(V);电流比例系数K=1.8μA/格,读取电流法计算公式是I=1.8n(μA)。全部测量数据整理成表1。表是带括弧量为测试结论。

分析表1可以判定②为基极,并且被测管属于PNP型。下面进一步识别E、C电极,同时检查管子的放大能力。首先将黑表笔接①,红表笔接③,并用两手分别捏住①、③两脚,电阻值为450kΩ;当用舌舔基极时,可以观察到表针向右侧作大幅度偏转,指于35kΩ处。然后交换两支表笔的位置,再用舌舔基极时,发现表针不动。由此判定:①为发射极,③为集电极,并且此管的放大能力很强。穿透电流I CEO=9μA。

注意事项:不宜用R×1k档检查达林顿管的放大能力。因该档电池电压仅1.5V,很难使管子进入放大区工作。测量时不得用手摸住管壳。

2.改进型达林顿管

普通型达林顿管仍有不足之处。由于其电流增益很高,当温度升高时,前级晶体管的发射结漏电流①将被逐级放大。又因为此电流具有正温度系数,所以器件的热稳定性较差。当环境温度升高、漏电严重时,有可能导致管子误导通现象发生。

改进型达林顿管增加了保护功能,典型电路如图3所示。(a)图为NPN型,(b)图为PNP 型。这类管子在C-E极之间反向并联一只过压保护二极管D(亦称续流二极管)。当负载(例如继电器线圈)突然断电时,可将反向电动势泄放掉,防止内部晶体管被击穿。此外,T1、T2的发射结上还分别并入电阻R1、R2。D、R1和R2全部集成于单片达林顿管之中。

R1、R2是泄放电阻,可以为漏电流提供泄放支路。图T1的发射结漏电流较小,故R1的阻值可适当大些。由T1的漏电流经过放大后加至T2的基极上,加之T2本身亦存在漏电流,使得T2

发射结上的漏电流较大,因此应降低R2的阻值,以满足R1>>R2的关系。设计时通常取R1为几千欧,R2为几十欧,二者相差两个数量级。

还应指出,由于增加了电阻R1、R2,测出的C-E极间击穿电压(V(BR)CEO)已变成集电极-基极击穿电压值。

鉴于器件内部电路中包含D、R1、R2,所以在用万用表检测时必须注意以下事项,所免造成误判断:

第一:在B-C之间的PN结,应具有单向导电性,用读取电压法可测量V BC正向电压值。

第二:在B-E之间有两个PN结,而且并联着电阻R1、R2。由万用表R×10k档提供正向电压时,借助于读取电压法可测出VBE值,并且V BE>V BC;施以反向电压时,发射结截止,测出的就是(R1+R2)电阻之和,大约为几千欧,且阻值恒定,不随电阻档而改变。

第三:在E-C极间并有保护二极管D,因此当E-C间加反向电压时,二极管应导通,采用读取电压法可测其正向压降VF值。

检测放大能力的方法与前面介绍的相同,不再赘述。

注意事项:

某些改进型达林顿管还在R1、R2各并联一只二极管D2、D3,当B-E之间加反向电压时,测出的就不是(R1+R2)电阻之和,而是两只二极管的正向压降之和(V F2+V F3)。

达林顿管的典型应用

2、驱动小型继电器

1、用于大功率开关电路、电机调速、逆变电路

利用cmos电路经过达林顿管驱动高灵敏度继电器的电路,如右上图所示.虚线框内是小功率npn 达林顿管fn020

3、驱动led智能显示屏

led智能显示屏是由微型计算机控制,以led矩阵板作显示的系统,可用来显示各种文字及图案.该系统中的行驱动器和列驱动器均可采用高β、高速低压降的达林顿管.图2是用bd683(或bd677)型中功率npn达林顿管作为列驱动器,而用bd682(或bd678)型pnp达林顿管作行驱动器,控制8×8led矩阵板上相应的行(或列)的像素发光

应注意的是,达林顿管由于内部由多只管子及电阻组成,用万用表测试时,be结的正反向阻值与普通3极管不同.对于高速达林顿管,有些管子的前级be结还反并联1只输入2极管,这时测出be 结正反向电阻阻值很接近;容易误判断为坏管,这个请注意

4、判断达林顿管等效为何种类型的3极管

首先看看第1只管是什么类型的,那么这只达林顿管就是什么类型的,与第2只无关!更加重要的是要看看这两只管构成的达林顿管能不能正常工作,如果工作电流冲突,则直接否定这只管!

常用电子元器件检测方法与技巧

常用电子元器件检测方法与技巧

民常用电子元器件检测方法与技巧元器件的检测是家电维修的一项基本功,如何准确有效地检测元器件的相关参数,判断元器件的是否正常,不是一件千篇一律的事,必须根据不同的元器件采用不同的方法,从而判断元器件的正常与否。特别对初学者来说,熟练掌握常用元器件的检测方法和经验很有必要,以下对常用电子元器件的检测经验和方法进行介绍供对考。 一、电阻器的检测方法与经验: 1固定 1固定电容器的检测 A检测10pF以下的小电容 因10pF以下的固定电容器容量太小,用万用表进行测量,只能定性的检查其是否有漏电,内部短路或击穿现象。测量时,可选用万用表R×10k挡,用两表笔分别任意接电容的两个引脚,阻值应为无穷大。若测出阻值(指针向右摆动)为零,则说明电容漏电损坏或内部击穿。B检测10PF~001μF固定电容器是否有充电现象,进而判断其好坏。万用表选用R×1k挡。两只三极管的β值均为100以上,且穿透电流要小。可选用3DG6等型号硅三极管组成复合管。万用表的红和黑表笔分别与复合管的发射极e和集电极c相接。由于复合三极管的放大作用,把被测电容的充放电过程予以放大,使万用表指针摆幅度加大,从而便于观察。应注意的是:在测试操作时,特别是在测较小容量的电容时,要反复调换被测电容引脚接触A、B两点,才能明显地看到万用表指针的摆动。C对于001μF以上的固定电容,可用万用表的R×10k挡直接测试电容器有无充电过程以及有无内部短路或漏电,并可根据指针向右摆动的幅度大小估计出电容器的容量。 2电解电容器的检测 A因为电解电容的容量较一般固定电容大得多,所以,测量时,应针对不同容量选用合适的量程。根据经验,一般情况下,1~47μF间的电容,可用R×1k挡测量,大于47μF的电容可用R×100挡测量。 B将万用表红表笔接负极,黑表笔接正极,在刚接触的瞬间,万用表指针即向右偏转较大偏度(对于同一电阻挡,容量越大,摆幅越大),接着逐渐向左回转,直到停在某一位置。此时的阻值便是电解电容的正向漏电阻,此值略大于反向漏电阻。实际使用经验表明,电解电容的漏电阻一般应在几百kΩ以上,否则,将不能正常工作。在测试中,若正向、反向均无充电的现象,即表针不动,则说明容量消失或内部断路;如果所测阻值很小或为零,说明电容漏电大或已击穿损坏,不能再使用。C对于正、负极标志不明的电解电容器,可利用上述测量漏电阻的方法加以判别。即先任意测一下漏电阻,记住其大小,然后交换表笔再测出一个阻值。两次测量中阻值大的那一次便是正向接法,即黑表笔接的是正极,红表笔接的是

光敏二极管的检测方法

1.电阻测量法用黑纸或黑布遮住光敏二极管的光信号接收窗口,然后用万用表R×1k档测量光敏二极管的正、反向电阻值。正常时,正向电阻值在10~20kΩ之间,反向电阻值为∞(无穷大)。若测得正、反向电阻值均很小或均为无穷大,则是该光敏二极管漏电或开路损坏。 再去掉黑纸或黑布,使光敏二极管的光信号接收窗口对准光源,然后观察其正、反向电阻值的变化。正常时,正、反向电阻值均应变小,阻值变化越大,说明该光敏二极管的灵敏度越高。 2.电压测量法将万用表置于1V直流电压档,黑表笔接光敏二极管的负极,红表笔接光敏二极管的正极、将光敏二极管的光信号接收窗口对准光源。正常时应有0.2~0.4V电压(其电压与光照强度成正比)。 3.电流测量法将万用表置于50μA或500μA电流档,红表笔接正极,黑表笔接负极,正常的光敏二极管在白炽灯光下,随着光照强度的增加,其电流从几微安增大至几百微安。 1.光敏二极管的简易判别方法 (1)电阻测量法 用万用表1k档,测正向电阻约10kΩ左右。在无光照情况下,反向电阻应为∞,反向电阻不是∞,说明漏电流大;有光照时,反向电阻应随光照增强而减小,阻值小至几kΩ或1kΩ以下。 (2)电压测量法 用万用表1V档(无1V档可用1.5V或3V档),红表笔接光敏二极管的“十”极,黑表笔接“-”极,在光照情况下,其电压应与光照度成比例,一般可达0.2~0.4V。 (3)短路电流测量法 用万用表50mA或500mA电流档,红表笔接光敏二极管的“十”极,黑表笔接“-”极,在白炽灯下(不能用日光灯),应随光照的增强,其电流随之增加。短路电流,可达数十mA~数百mA。 光敏二极管的主要特性参数 ①最高反向工作电压VRM:是指光敏二极管在无光照的条件下,反向漏电流不大于0.1μA时所能承受的最高反向电压值。 ②暗电流ID:是指光敏二极管在无光照及最高反向工作电压条件下的漏电流。暗电流越小,光

LED发光二极管检测方法

1.发光二极管的特点 ? 发光二极管LED(Light-Emitting Diode)是能将电信号转换成光信号的结型电致发光半导体器件。其主要特点是: (1)在低电压(~)、小电流(5~30mA)的条件下工作,即可获得足够高的亮度。 (2)发光响应速度快(10-7~10-9 s),高频特性好,能显示脉冲信息。 (3)单色性好,常见颜色有红、绿、黄、橙等。 (4)体积小。发光面形状分圆形、长方形、异形(三角形等)。其中圆形管子的外径有φ1、φ2、φ3、φ4、φ5、φ8、φ10、φ12、φ15、φ20(mm)等规格,直径1 mm的属于超微型LED。 (5)防震动及抗冲击穿性能好,功耗低,寿命长。由于LED的PN结工作在正向导通状态,本射功耗低,只要加必要的限流措施,即可长期使用,寿命在10万小时以上,甚至可达100万小时。 (6)使用灵活,根据需要可制成数码管、字符管、电平显示器、点阵显示器、固体发光板、LED平极型电视屏等。 (7)容易与数字集成电路匹配。 2.发光二极管的原理 发光二极管内部是具有发光特性的PN结。当PN结导通时,依靠少数载流子的注入以及随后的复合而辐射发光。普通发光二极管的外形、符号及伏安特性如图1所示。LED正向伏安特性曲线比较陡,在正向导通之前几乎有电流。当电压超过开启电压时,电流就急剧上升。因此,LED属于电流控制型半导体器件,其发光亮度L(单位cd/m2,读作坎[德拉]每平方米)与正向电流IF近似成正双,有公式 L =K IFm 式中,K为比例系数,在小电流范围内(IF=1~10mA),m=~。当IF>10mA时,m=1,式()简化成 ?????? L =K IF 即亮度与正向电流成正比。以磷砷化镓黄色LED为例,相对发光强度与正向电流的关系如图2所示。LED的正向电压则与正向电流以及管芯的半导体材料有关。使用时应根据所要求的显示亮度来选取合适的IF值(一般选10mA左右,对于高亮度LED可选1~2mA),既保证亮度适中,也不会损坏LED。若电流过大,就会烧毁LED的PN结。此外,LED的使用寿命将缩短。 由于发光二极管的功耗低、体积小,色彩鲜艳、响应速度快、寿命长,所以常用作收录机、收音机和电子仪器的电平指示器、调谐指示器、电源指示器等。发光二极管在正向导通时有一定稳压作用,还可作直流稳压器中的稳压二极管,提供基准电压,兼作电源指示灯。目前市场上还有一种带反射腔及固定装置的发光二要管(例如BT104-B2、BT102-F),很容易固定在仪器面板上。

桩基声测管堵管原因及解决方法

声测管堵管原因 1 副笼刚度较低,声测管在施工作业时碰撞变形根据设计桩长超过52米的桩基采用超声波检测法检桩,这时桩基钢筋笼分主副笼两段,主笼定长31米,31米钢筋主笼下的副笼只有加强圈、声测管和三根接地钢筋组成,强度和刚度均不是很大。 2 在钢筋笼运输装卸过程中,磕碰使声测管容易受到撞击导致变形;在钢筋笼下放过程中,由于桩孔倾斜或吊放不居中,经常发生声测管与孔壁撞击的现象;在导管下放或桩基灌注时偶尔也会发生导管撞击声测管的现象发生,导致声测管出现弯曲变形现象。 3 声测管接头连接方式不当桩基声测管接头方式采用插入式接头连接,这种连接方式刚度不足,上下两节声测管的连接拉力全靠铁丝提供,如遇撞击,铁丝就会变形或断掉,套管之间的塑料垫和渗入的混凝土浆就会横亘在上下两道管之间,形成堵管现象。 插入式连接方式顺序如下: 声测管--绑扎铁丝--耳套--接头--声测管 声测管插入式接头为保障施工质量和进度,我作业区改用用法兰式连接接头,法兰接头由一对法兰、一个垫片及若干个螺栓螺母组成。垫片放在两法兰密封面之间,拧紧螺母后,垫片表面上的比压达到一定数值后产生变形,并填满密封面上凹凸不平处,使连接处严密不漏。事实证明,法兰连接密封性很强,大大减少了混凝土浆体进入声测管体的几率,从而使声测管接头处堵管情况也减少很多。 法兰式连接顺序如下: 声测管--法兰接头--声测管 4 接头位置如果连接不紧密,法兰螺丝未全部拧紧时,两个法兰之间就可能存在空隙,施工过程中混凝土浆体就易渗入,形成滞凝的浆体,堵塞管道。 5 下完钢筋笼后,声测管没有注入净水,混凝土浆体或污水如果渗入声测管,硬化后形成很难疏通的堵塞。 6 钢筋笼下放之后,声测管上部端口未及时封闭或者封闭不完全,致使泥浆、杂物等漏入引起堵管现象。 7 声测管漏出地面过高,搬移钻机时碰掉声测管盖子或者将其弄断,又没来得及采取措施堵封就有泥浆、杂物等渗入,导致堵管。 8 破桩头时,剥出声测管后将声测管帽子弄折或者将声测管截断后未及时封堵,导致有混凝土碎块等杂物掉入,导致卡管。 3 疏通工具声测管常用疏通工具包括: 1 声测管疏通水泵包括(高压)水泵、抽水管、冲洗管、电线等。 2 声测管堵塞冲击工具、、包括手摇轱辘、直径4mm长100m钢丝绳、3.2cm粗钢錾子(40cm、50、100cm长各一个) 、80m长钢绞线一捆、3.5m、2m、1m的螺纹22钢筋(一端焊接螺丝孔,便于钢丝绳固定)各一根。 声测管疏通冲击工具备注:钢錾子用法与图中螺纹钢筋一样,钢錾子前段锐利,冲击力较强,而螺纹钢不易卡管。钢绞线冲击效果较好,但操作起来比较困难。 4 处理措施 1 顶部堵塞的情况不及时封闭声测管上口,导致混凝土浆体流入,就会出现声测管上口堵塞或实心的情况,这种实心部分都是含有一定沙或小石子的水泥浆体,如果声测管中注水充分,浆体呈流塑状,用高压水泵或一般水泵即可冲洗干净;如声测管中没注水,浆体硬化,这种堵管一般不会很长,准备3.5m、2m、1m的螺纹22钢筋和40cm长的錾子各一根,粗细配套的锚具和夹片一套,大锤一个,按深度递进的方式先后用40cm錾子、1m、2m和3.5m 的螺纹22钢筋冲击堵塞部分,2m和3.5m的钢筋由于长度较长,可先用锚具锚固,大锤击打锚具的方式将钢筋打入,为防止夹片受振动脱落,夹片用铁丝扎在一起,并在夹片下部用

实验二极管和三极管的识别与检测实验报告

实验 二极管和三极管的识别与检测 一、实验目的 1.熟悉晶体二极管、三极管的外形及引脚识别方法。 2.熟悉半导体二极管和三极管的类别、型号及主要性能参数。 3.掌握用万用表判别二极管和三极管的极性及其性能的好坏。 二、实验仪器 1.万用表 2.不同规格、类型的半导体二极管和三极管若干。 三、实验步骤及内容 1.利用万用表测试晶体二极管 (1)鉴别正负极性 机械万用表及其欧姆档的内部等效电路如图所示。 图中E 为表内电源,r 为等效内阻,I 为被测回路中的实际电流。由图可见,黑表笔接表内电源的正端,红表笔接表内电源的负端。将万用表欧姆档的量程拨到100?R 或K R 1?档,并将两表笔分别接到二极管的两端如图所示,即红表笔接二极管的负极,而黑表笔接二极管的正极,则二极管处于正向偏置状态,因而呈现出低电阻,此时万用表指示的电阻通常小于几千欧。反之,若将红表笔接二极管的正极,而黑表笔接二极管的负极,则二极管被反向偏置,此时万用表指示的电阻值将达几百千欧。 电阻小电阻大 (2)测试性能 将万用表的黑表笔接二极管正极,红表笔接二极管负极,可测得二极管的正向电阻,此电阻值一般在几千欧以下为好。通常要求二极管的正向电阻愈小愈好。将红表笔接二极管正极,黑表笔接二极管负极,可测出反向电阻。一般要求二极管的反向电阻应大于二百千欧以上。 若反向电阻太小,则二极管失去单向导电作用。如果正、反向电阻都为无穷大,表明管子已断路;反之,二者都为零,表明管子短路。 2.利用万用表测试小功率晶体三极管 (1)判定基极和管子类型 由于基极与发射极、基极与集电极之间,分别是两个PN 结,而PN 结的反向电阻值很大,正向电阻值很小,因此,可用万用表的100?R 或K R 1?档进行测试。先将黑表笔接晶体管的某一极,然后将红表笔先后接其余两个极,若两次测得的电阻都很小,则黑表笔接的为NPN 型管子基极,如图所示,若测得电阻都很大,则黑表笔所接的是PNP 型管子的基极。若两次测得的阻值为一大一小,则黑表笔所接的电极不是三极管的基极,应另接一个电极重新测量,以便确定管子的基极。

各种二极管、三极管检测方法

各种二极管、三极管检测方法 一、二极管的检测方法与经验 1 检测小功率晶体二极管 A 判别正、负电极 (a) 观察外壳上的的符号标记。通常在二极管的外壳上标有二极管的符号,带有三角形箭头的一端为正极,另一端是负极。 (b) 观察外壳上的色点。在点接触二极管的外壳上,通常标有极性色点(白色或红色)。一般标有色点的一端即为正极。还有的二极管上标有色环,带色环的一端则为负极。 (c)以阻值较小的一次测量为准,黑表笔所接的一端为正极,红表笔所接的一端则为负极。 B 检测最高工作频率fM。晶体二极管工作频率,除了可从有关特性表中查阅出外,实用中常常用眼睛观察二极管内部的触丝来加以区分,如点接触型二极管属于高频管,面接触型二极管多为低频管。另外,也可以用万用表R×1k 挡进行测试,一般正向电阻小于1K的多为高频管。 C 检测最高反向击穿电压VRM。对于交流电来说,因为不断变化,因此最高反向工作电压也就是二极管承受的交流峰值电压。需要指出的是,最高反向工作电压并不是二极管的击穿电压。一般情况下,二极管的击穿电压要比最高反向工作电压高得多(约高一倍)。 2 检测玻封硅高速开关二极管 检测硅高速开关二极管的方法与检测普通二极管的方法相同。不同的是,这种管子的正向电阻较大。用R×1k电阻挡测量,一般正向电阻值为5K~10K ,反向电阻值为无穷大。 3 检测快恢复、超快恢复二极管 用万用表检测快恢复、超快恢复二极管的方法基本与检测塑封硅整流二极管的方法相同。即先用R×1k挡检测一下其单向导电性,一般正向电阻为45K 左右,反向电阻为无穷大;再用R×1挡复测一次,一般正向电阻为几,反向电阻仍为无穷大。 4 检测双向触发二极管 A 将万用表置于R×1K挡,测双向触发二极管的正、反向电阻值都应为无穷大。若交换表笔进行测量,万用表指针向右摆动,说明被测管有漏电性故障。 将万用表置于相应的直流电压挡。测试电压由兆欧表提供。测试时,摇动兆欧表,万用表所指示的电压值即为被测管子的VBO值。然后调换被测管子的两个引脚,用同样的方法测出VBR值。最后将VBO与VBR进行比较,两者的绝对值之差越小,说明被测双向触发二极管的对称性越好。 5 瞬态电压抑制二极管(TVS)的检测 A 用万用表R×1K挡测量管子的好坏 对于单极型的TVS,按照测量普通二极管的方法,可测出其正、反向电阻,一般正向电阻为4KΩ左右,反向电阻为无穷大。 对于双向极型的TVS,任意调换红、黑表笔测量其两引脚间的电阻值均应为无穷大,否则,说明管子性能不良或已经损坏。 6 高频变阻二极管的检测 A 识别正、负极 高频变阻二极管与普通二极管在外观上的区别是其色标颜色不同,普通二

桩基声测管数量设置及检测方法

桩基声测管数量设置及检测方法 超声波检测管数量是根据桩径及重要程度来设置: 如果单桩桩径在1m以下的,那么就要求设置2根声超声波检测管。 如果是单桩桩径在1m~2m之间,那么就需要设置3根超声波检测管。 如果是单桩桩径在2m以上的,那么根据相关要求就需要设置4根超声波检测管。 根据工程的具体情况,可以全部桩基设置,也可以部分桩基设置,一般都以相关设计要求为准。 关于超声波检测管材质,一般为钢管,连接方式一般分为钳压式、螺纹式、套筒式、法兰式等,一般设计图纸中都会对相关的型号进行标注,如果没有特别的标注,就要根据项目的具体情况,来选择合适的连接方式(不同的连接方式,其优缺点各不相同)。 在超声波检测管的安装过程中,检测管是随钢筋笼下放的,在下放钢筋笼时进行连接,在连接完成后需要灌水检查是否漏水,如果出现漏水的情况,就要马上进行解决,在最初的时候就要杜绝出现这类问题,避免后期出现检测管堵塞这种问题。待最后一节检测管安装完成,灌水检查完毕后,在检测管的顶部进行加盖封闭好。 一般情况下,超声波检测管的底端最好与钢筋笼底平齐,特别是嵌岩桩,如果桩底沉渣超标,这样的设置就将桩基沉渣超标检测出来。

一般来说,桩基检测可分为动测,声测和钻芯三种。各占比例以当地下发文件为准。 现场各种检测方法都占一定比例,以声测为主,动测为补充,声测有问题则必须钻芯。如果在检测过程中发现了问题,可以灵活调动。至于桩基的检测数量,是以相关文件规定的要求为准。 在检测过程中,如果是果嵌岩桩桩底检测出来有问题,比较麻烦。所以如果是果嵌岩就需要在检测过程中特别注意,避免后期因检测出现问题,而影响整个项目的工期。 在这里需要特别说明,有些工地需要在超声波检测管设置的过程中,在超声波检测管的底部预留几个小孔,用胶带缠起来,作为以后高压压浆的通道。但这样的一种方法是很难保证后期的注浆效果的,而且这种方法本身就存在一定的问题,如果是需要后期注浆,可以使用专门的金属注浆管。

(完整版)二极管共阴共阳极检测方法

LED数码有共阳和共阴两种,把这些LED发光二极管的正极接到一块(一般是拼成一个8字加一个小数点)而作为一个引脚,就叫共阳的,相反的,就叫共阴的,那么应用时这个脚就分别的接VCC和GND。再把多个这样的8字装在一起就成了多位的数码管了。 图1 多位数码管 LED数码有共阳和共阴两种,把些LED发光二极管的正极接到一块(一般拼成一个8字加一个小数点)而作为一个引脚,就叫共阳的,相反的,就叫共阴的,那么应用时这个脚就分别的接VCC和GND。再把多个这样的8字装在一起就成了多位的数码管了。 找公共共阴和公共共阳首先,我们找个电源(3到5伏)和1个1K(几百的也欧的也行)的电阻,VCC串接个电阻后和GND接在任意2个脚上,组合有很多,但总有一个LED会发光的找到一个就够了,,然后用GND不动,VCC(串电阻)逐个碰剩下的脚,如果有多个LED (一般是8个),那它就是共阴的了。

相反用VCC不动,GND逐个碰剩下的脚,如果有多个LED(一般是8个),那它就是共阳的了。 一、LED数码管的检测方法 1. 用二极管档检测 将数字万用表置于二极管档时,其开路电压为+2.8V。用此档测量LED数码管各引脚之间是否导通,可以识别该数码管是共阴极型还是共阳极型,并可判别各引脚所对应的笔段有无损坏。 (1)检测已知引脚排列的LED数码管 检测接线如图5-42所示。将数字万用表置于二极管档,黑表笔与数码管的h点(LED的共阴极)相接,然后用红表笔依次去触碰数码管的其他引脚,触到哪个引脚,哪个笔段就应发光。若触到某个引脚时,所对应的笔段不发光,则说明该笔段已经损坏。 (2)检测引脚排列不明的LED数码管 有些市售LED数码管不注明型号,也不提供引脚排列图。遇到这种情况,可使用数字万用表方便地检测出数码管的结构类型、引脚排列以及全笔段发光性能。 下面举一实例,说明测试方法。被测器件市一只彩色电视机用来显示频道的LED数码管,体积为20mm×10mm×5mm,字形尺寸为8mm×4.5mm,发光颜色为红色,采用双列直插式,共10个引脚。

各种常用二极管的检测方法

各种常用二极管的检测方法 半导体二极管又称为晶体二极管,具有明显的单向导电性,是各种电器设备中应用较为广泛的一种半导体元器件,也是日常维修中经常碰到的一种元器件,常见的有普通二极管、稳压二极管、发光二极管、光敏二极管等。 1.普通二极管的检测 (1)小功率锗二极管的正向电阻为300Ω~500Ω,硅二极管为1kΩ或更大些。锗二极管的反向电阻为几十千欧,硅二极管的反向电阻在500kΩ以上(大功率的其值要小些)。 (2)根据二极管的正向电阻小,反向电阻大的特点可判断二极管的极性。将万用表拨到欧姆挡(一般用R×100Ω或R×lkΩ挡,不要用R×1Ω挡或R×10k Ω挡。因为R×1Ω挡使用电流太大,容易将管子烧毁;而 R×10kΩ挡使用的电压太高,可能击穿管子)。用表笔分别与二极管的两极性相连,测出两阻值,在所测得阻值较小的一次,与黑表笔相连的一端即为二极管的正极。同理,在所测得阻值较大的一次,与黑表笔相接的一端为二极管的负极。如果测得的反向电阻很小,说明二极管内部短路;若正向电阻很大,则说明管子内部断路。在这两种情况下二极管就需报废。 (3)硅二极管一般正向压降为 0.6V~0.7V,锗二极管的正向压降为 0.1V~0.3V,所以测量一下二极管的正向导通电压,便可判断被测二极管是硅管还是锗管,其方法是在干电池的一端串一个电阻(1kΩ),同时按极性与二极管相接,使二极管正向导通,这时用万用表测量二极管两端的管压降,如果是0.6V~0.7V 即为硅管,如为0.1V~0.3V 即为锗管;若用在路动态测量则更为方便。 2.稳压二极管的测量 (1)一般使用万用表的低阻挡测量稳压二极管,由于表内电池为 1.5V,这个电压不足以使稳压二极管反向击穿,因而使用低阻挡测量稳压二极管正反向电阻,其阻值应和普通二极管一样。 (2)稳压二极管的稳压值V_z 的测量。测量时,必须使管子进入反向击穿区,所以电源电压要大于被测管的稳定电压,这样,就必须用万用表的高阻挡(R×10k Ω挡),这时表内电池是电压较高的叠层电池,当万用表量程置于高阻挡后,测 其反向电阻,若实测阻值为Rx,则稳压二极管的稳压值为: 式中,n-所用挡次的倍率数,如所用万用表的最高电阻挡是Rx10k,则n=10000 。 R_0-是万用表的中心阻值。 E_0-是所用万用表最高电阻挡的电池电压值。 例:用MF50 型万用表测一只2CWl4,Ro=10 Ω,最高电阻挡为R ×10k 挡,Eo=15V,实测反 向电阻为75k Ω,则其稳压值是: 如果实测阻值非常大(接近于无穷),表示被测管的稳压值Vz 大于 Eo,无法将其击穿。如果实测阻值很小(0或只有几欧),则是表笔接反,只要将表笔互换就可以。 3.发光二极管的测量

LED发光二极管工作原理及检测方法

LED发光二极管工作原理及检测方法 发光二极管LED(Light-EmittingDiode)是能将电信号转换成光信号的结型电致发光半导体器件。 1、发光二极管LED主要特点 (1)在低电压(1.5~2.5V)、小电流(5~30mA)的条件下工作,即可获得足够高的亮度。 (2)发光响应速度快(10-7~10-9 s),高频特性好,能显示脉冲信息。 (3)单色性好,常见颜色有红、绿、黄、橙等。 (4)体积小。发光面形状分圆形、长方形、异形(三角形等)。其中圆形管子的外径有φ1、φ2、φ3、φ4、φ5、φ8、φ10、φ12、φ15、φ20(mm)等规格,直径1mm的属于超微型LED。 (5)防震动及抗冲击穿性能好,功耗低,寿命长。由于LED的PN结工作在正向导通状态,本射功耗低,只要加必要的限流措施,即可长期使用,寿命在10万小时以上,甚至可达100万小时。 (6)使用灵活,根据需要可制成数码管、字符管、电平显示器、点阵显示器、固体发光板、LED 平极型电视屏等。 (7)容易与数字集成电路匹配。 2.发光二极管的原理 发光二极管内部是具有发光特性的PN结。当PN结导通时,依靠少数载流子的注入以及随后的复合而辐射发光。普通发光二极管的外形、符号及伏安特性如图1 所示。LED正向伏安特性曲线比较陡,在正向导通之前几乎有电流。当电压超过开启电压时,电流就急剧上升。因此,LED属于电流控制型半导体器件,其发光亮度L(单位cd/m2,读作坎德拉每平方米)与正向电流IF近似成正双,有公式L =K IFm 式中,K为比例系数,在小电流范围内(IF=1~10mA),m=1.3~1.5。当IF>10mA时,m=1,式(L =K IF 即亮度与正向电流成正比。以磷砷化镓黄色LED为例,相对发光强度与正向电流的关系如图2所示。LED的正向电压则与正向电流以及管芯的半导体材料有关。使用时应根据所要求的显示亮度来选取合适的IF值(一般选10mA左右,对于高亮度LED可选1~2mA),既保证亮度适中,也不会损坏LED。若电流过大,会烧毁LED的PN结。此外,LED的使用寿命将缩短。 由于发光二极管的功耗低、体积小,色彩鲜艳、响应速度快、寿命长,所以常用作收录机、收音

声测管安装规程

混凝土灌注桩用钢薄壁超声波检测管安装规范 1、基桩检测与声测管的埋设布置应符合JTG/T F81-01的规定。 2、声测管自进入工地现场后起,在装卸、搬运、安装过程中,要避免使声测管管体扭曲、挤压变形。声测管要存放在有遮雨设施的场地,避免管体生锈。进场安装的声测管,首先要对管体进行检验,扭曲变形的声测管不允许进入安装程序。 3、声测管可直接固定在钢筋笼的内侧,固定点的间距不超过2米,其中声测管底端和接头部位必须设固定点,对于无钢筋笼的部位,声测管可用钢筋支架固定。 4、声测管与钢筋笼的固定方式,优先采用钢管卡子,卡接压紧声测管后,卡子与钢筋焊接,固定点声测管与钢筋笼的绑扎方法:先把铁丝在钢筋上缠绕两圈,然后以编辫子的方法编至70-80㎜长,再把铁丝叉开捆住声测管,然后拧紧铁丝(所有固定点的铁丝绑法都按此方法)。如采用推插式声测管,在安装声测管时,定位耳要平行对直,并且在上下管推插到位后(刻度线3㎜内),用绑丝将上下定位耳绑紧,使密封圈连接区域不承受拉力;如采用钳压式(液压式)声测管,在安装声测管时,待上下管推插到位后(刻度线3㎜内),把专用的液压工具模头的环状凹部对准承插口(或接头)端部内装有橡胶圈的环状凸部,将对接部位管材同时压紧至六边形状,检查压紧度并用量规确认尺寸是否正确,量规可完全卡入六边形部位,即表示压紧已经到位。 5、钢筋笼放入桩孔时应防止扭曲,管与管平行垂直,声测管随钢筋笼分段安装,每埋设一节均应向声测管内加注清水,声测管安装完毕后应加盖或加塞封闭,以免浇注混凝土时落入异物,堵塞孔道。 6、声测管埋设深度应在灌注桩的底部以上50㎜-150㎜,声测管的上端应高于灌注桩顶面300㎜-500㎜,同一根桩的声测管外露高度相同。 7、在灌注基桩浇注混凝土之前,应检查声测管内的水位,如管内的水不满,则应补充灌满。 8、若声测管需割断,应采用切割机切断,并对管口进行打磨除刺,不得用点焊机烧断。 9、焊接钢筋时,应避免焊液流溅到声测管管体上或接头上。

万用表检测发光二极管的方法

万用表检测发光二极管的方法 1.用万用表检测普通发光二极管 A.用指针式万用表R×10k档,测量发光二极管的正、反向电阻值。正常时,正向电阻值(黑表笔接正极时)约为几十至200kΩ,反向电阻值为∞(无穷大)。在测量正向电阻值时,较高灵敏度的发光二极管,管内会发微光。若用万用表R×1k档测量发光二极管的正、反向电阻值,则会发现其正、反向电阻值均接近∞(无穷大),这是因为发光二极管的正向压降约在2V左右(部分发光二极管压降在3V左右,如白色发光二极管等),而万用表R×1k档内电池的电压值为1.5V,故不能使发光二极管正向导通。 B、用指针式万用表的R×10k档对一只220μF/25V电解电容器充电(黑表笔接电容器正极,红表笔接电容器负极),再将充电后的电容器正极接发光二极管正极、电容器负极接发光二极管负极,若发光二极管有很亮的闪光,则说明该发光二极管完好。 C、用3V直流电源,在电源的正极串接1只47Ω电阻后接发光二极管的正极,将电源的负极接发光二极管的负极,正常的发光二极管应发光。或将1节1.5V 电池串接在万用表的黑表笔(将万用表置于R×10或R×100档,黑表笔接电池负极,等于与表内的1.5V电池串联),将电池的正极接发光二极管的正极,红表笔接发光二极管的负极,正常的发光二极管应发光。 D、如果有两块指针万用表(最好同型号)。用一根导线将其中一块万用表的“+”接线柱与另一块表的“-”接线柱连接。余下的“-”笔接被测发光管的正极(P区),余下的“+”笔接被测发光管的负极(N区)。两块万用表均置×1 0Ω挡。正常情况下,接通后发光二极管就能正常发光。若亮度很低,甚至不发光,可将两块万用表均拨至×1Ω若,若仍很暗,甚至不发光,则说明该发光二极管性能不良或损坏。应注意,不能一开始测量就将两块万用表置于×1Ω,以免电流过大,损坏发光二极管。 2、万用表检测红外发光二极管 红外发光二极管的正向压降一般为1.3~2.5V,可用指针式万用表R×10k档测量红外发光管的正、反向电阻。正常时,正向电阻值约为15~40kΩ(此值越小越好);反向电阻大于500kΩ。若测得正、反向电阻值均接近零,则说明该红外发光二极管内部已击穿损坏。若测得正、反向电阻值均为无穷大,则说明该

LED发光二极管检测方法

1.发光二极管的特点 发光二极管LED(Light-Emitting Diode)是能将电信号转换成光信号的结型电致发光半导体器件。其主要特点是: (1)在低电压(~)、小电流(5~30mA)的条件下工作,即可获得足够高的亮度。 (2)发光响应速度快(10-7~10-9 s),高频特性好,能显示脉冲信息。 (3)单色性好,常见颜色有红、绿、黄、橙等。 (4)体积小。发光面形状分圆形、长方形、异形(三角形等)。其中圆形管子的外径有φ1、φ2、φ3、φ4、φ5、φ8、φ10、φ12、φ15、φ20(mm)等规格,直径1 mm的属于超微型LED。 (5)防震动及抗冲击穿性能好,功耗低,寿命长。由于LED的PN结工作在正向导通状态,本射功耗低,只要加必要的限流措施,即可长期使用,寿命在10万小时以上,甚至可达100万小时。 (6)使用灵活,根据需要可制成数码管、字符管、电平显示器、点阵显示器、固体发光板、LED平极型电视屏等。 (7)容易与数字集成电路匹配。 2.发光二极管的原理 发光二极管内部是具有发光特性的PN结。当PN结导通时,依靠少数载流子的注入以及随后的复合而辐射发光。普通发光二极管的外形、符号及伏安特性如图1所示。LED正向伏安特性曲线比较陡,在正向导通之前几乎有电流。当电压超过开启电压时,电流就急剧上升。因此,LED属于电流控制型半导体器件,其发光亮度L(单位cd/m2,读作坎[德拉]每平方米)与正向电流IF近似成正双,有公式L =K IFm

式中,K为比例系数,在小电流范围内(IF=1~10mA),m=~。当IF>10mA时,m=1,式()简化成 L =K IF 即亮度与正向电流成正比。以磷砷化镓黄色LED为例,相对发光强度与正向电流的关系如图2所示。LED的正向电压则与正向电流以及管芯的半导体材料有关。使用时应根据所要求的显示亮度来选取合适的IF值(一般选10mA左右,对于高亮度LED可选1~2mA),既保证亮度适中,也不会损坏 LED。若电流过大,就会烧毁LED的PN结。此外,LED的使用寿命将缩短。 由于发光二极管的功耗低、体积小,色彩鲜艳、响应速度快、寿命长,所以常用作收录机、收音机和电子仪器的电平指示器、调谐指示器、电源指示器等。发光二极管在正向导通时有一定稳压作用,还可作直流稳压器中的稳压二极管,提供基准电压,兼作电源指示灯。目前市场上还有一种带反射腔及固定装置的发光二要管(例如BT104-B2、BT102-F),很容易固定在仪器面板上。 LED的输出光谱决定其发光颜色及光辐射纯度,也反映出半导体材料的特性。常见管芯材料有磷化镓(GaP)、砷化镓(GaAsP)、磷砷化镓(GaAlAs)、砷铝化镓(GaN)氮化镓可发蓝光。 3.使用注意事项 (1)管子极性不得接反,一般讲引线较长的为正极,引线较短的是负极。 (2)使用中各项参数不得超过规定极限值。正向电流IF不允许超过极限工作电流IFM值,并且随着环境温度的升高,必须作降额使用。长期使用温度不宜超过75℃。 (3)焊接时间应尽量短,焊点不能在管脚根部。焊接时应使用镊子夹住管脚根部散热,宜用中性助焊剂(松香)或选用松香焊锡丝。 (4)严禁用有机溶液浸泡或清洗。 (5)LED的驱动电路必须加限流电阻,一般可取一百欧至几百欧,视电源电压而定。

最新声波透射法检测及预埋管要求.pdf

基桩预埋管声波透射法检测 1.1声测管的安装埋设 声测管是预留的声波换能器的通道,需预先埋设在灌注桩中。通 常是将声测管固定在钢筋笼架立筋的内侧,随钢筋笼一段段沉入桩孔 中,然后浇注混凝土。 对声测管总的要求是:联结牢靠不脱开,密封良好不漏水,联结 平整不打折,管与管间相互平行,管内无异物保证畅通。 1.2声测管的材料 对声测管的材料要求是:有足够的机械强度,保证在灌注桩混凝 土浇注过程中不会变形;与混凝土粘结良好,不致在声测管和混凝土 间产生剥离缝,影响测试。根据这些要求,钢管(焊接管)是最合适 的材料。 1.3声测管的尺寸 声测管是用管材一段段联结起来的。其口径应当保证换能器能上 下顺畅移动。声测管为57号钢管,俗称2寸管,其外径为60mm,内径为53mm或40号钢管(即 1.5寸管,外径为48mm,内径为41mm)。 1.4声测管的连接 由于钢管均是6m左右一段,需要将一段段钢管联结起来。对联 结的要求是:有足够的强度,保证声测管不致因受力而弯曲脱开;联 结应当有足够的水密性,保证在桩孔中的水压下不漏水。联结方法目 前有以下两种: 1.4.1螺纹联结:每根钢管两端外侧均做成螺纹,另备一外套筒 (有的称缩节),其内壁螺纹与钢管端头外螺纹相配,从而将两段钢 管联结起来。注意加工管头时不能将金属丝等异物留在管内。为保证 水密性,螺纹口应缠生胶带或带漆麻丝。 1.4.2套筒联结:准备一长略大于10cm的钢套筒,套筒直径略大于声测管,将两声测管套起来,用电焊将套筒与声测管上下两端焊结

起来。需要注意的是,既要保证焊结不漏水,又不要将声测管焊通, 阻塞换能器的上下移动。 1.5声测管的安装 1.5.1声测管的数量和布置。 1.5.1.1声测管的数量。声测管的数量由桩径大小决定。依据《建筑基桩检测技术规范》JGJ106—2003规定为:D(桩径)≤800mm,2根;800mm2000mm,不少于4根。 1.5.1.2声测管的布置。 埋设3根声测管时,按等边三角形布置;埋设4根声测管时,按正方形布置。声测管相互保持平行。如下图: a)双管 b)三管 c)四管 声测管埋设示意图 每两根声测管组成一对进行测试,称为一个测试面。埋两根管有 一个测试面;埋三根管有三个测试面;埋四根管有六个测试面。 1.5.2声测管的安装埋设 声测管预先固定在每段钢筋笼内。用点焊或铁丝绑扎的方法固定 在架立筋的内侧(每2m间距设一个固定点,直接焊在架立筋上。对 于无钢筋笼的部位,声测管可用钢筋支架固定)。一段钢筋笼下到桩 孔中后,再吊起后一段钢筋笼,将声测管插入前一段声测管对应的套 筒中,用螺纹或焊结方法将上下声测管联结起来,放下钢筋笼入孔, 在装下一段钢筋笼。为了保证声测管的平行,可以在声测管间点焊钢 筋。

二极管的检测方法与经验

二极管的检测方法与经验 四、二极管的检测方法与经验 检测小功率晶体二极管 判别正、负电极 观察外壳上的的符号标记。通常在二极管的外壳上标有二极管的符号,带有三角形箭头的一端为正极,另一端是负极。 观察外壳上的色点。在点接触二极管的外壳上,通常标有极性色点(白色或红色)。一般标有色点的一端即为正极。还有的二极管上标有色环,带色环的一端则为负极。 (c)以阻值较小的一次测量为准,黑表笔所接的一端为正极,红表笔所接的一端则为负极。 检测最高工作频率fM。晶体二极管工作频率,除了可从有关特性表中查阅出外,实用中常常用眼睛观察二极管内部的触丝来加以区分,如点接触型二极管属于高频管,面接触型二极管多为低频管。另外,也可以用万用表R×1k 挡进行测试,一般正向电阻小于的多为高频管。 检测最高反向击穿电压VRM。对于交流电来说,因为不断变化,因此最高反向工作电压也就是二极管承受的交流峰值电压。需要指出的是,最高反向工作电压并不是二极管的击穿电压。一般情况下,二极管的击穿电压要比最高反向工作电压高得多(约高一倍)。 检测玻封硅高速开关二极管 检测硅高速开关二极管的方法与检测普通二极管的方法相同。不同的是,这种管子的正向电阻较大。用R×1k电阻挡测量,一般正向电阻值为~,反向电阻值为无穷大。 检测快恢复、超快恢复二极管 用万用表检测快恢复、超快恢复二极管的方法基本与检测塑封硅整流二极管的方法相同。即先用R×1k挡检测一下其单向导电性,一般正向电阻为左右,反向电阻为无穷大;再用R×1挡复测一次,一般正向电阻为几,反向电阻仍为无穷大。 检测双向触发二极管 将万用表置于R×1k挡,测双向触发二极管的正、反向电阻值都应为无穷大。若交换表笔进行测量,万用表指针向右摆动,说明被测管有漏电性故障。 将万用表置于相应的直流电压挡。测试电压由兆欧表提供。测试时,摇动兆欧表,万用表所指示的电压值即为被测管子的VBO值。然后调换被测管子的两个引脚,用同样的方法测出VBR值。最后将VBO与VBR进行比较,两者的绝对值之差越小,说明被测双向触发二极管的对称性越好。 瞬态电压抑制二极管(TVS)的检测 用万用表R×1k挡测量管子的好坏 对于单极型的TVS,按照测量普通二极管的方法,可测出其正、反向电阻,一般正向电阻为4kΩ左右,反向电阻为无穷大。 对于双向极型的TVS,任意调换红、黑表笔测量其两引脚间的电阻值均应为无穷大,否则,说明管子性能不良或已经损坏。 高频变阻二极管的检测 识别正、负极 高频变阻二极管与普通二极管在外观上的区别是其色标颜色不同,普通二极管的色标颜色一般为黑色,而高频变阻二极管的色标颜色则为浅色。其极性规律与普通二极管相似,即带绿色环的一端为负极,不带绿色环的一端为正极。 测量正、反向电阻来判断其好坏 具体方法与测量普通二极管正、反向电阻的方法相同,当使用500型万用表R×1k挡测量时,正常的高频变阻二极管的正向电阻为~,反向电阻为无穷大。 变容二极管的检测 将万用表置于R×10k挡,无论红、黑表笔怎样对调测量,变容二极管的两引脚间的电阻值均应为无穷大。如果在测量中,发现万用表指针向右有轻微摆动或阻值为零,说明被测变容二极管有漏电故障或已经击穿损坏。对于变容二极管容量消失或内部的开路性故障,用万用表是无法检测判别的。必要时,可用替换法进行检查判断。 单色发光二极管的检测

(完整word版)基桩超声波管埋设方法(声测管)

基桩、连续墙、钢管桩超声波管埋设注意事项参考《建筑基桩检测技术规范》(JGJ 106-2003)及省标《建筑地基基础检测规范》(DBJ15-60-2008)及建委相关文件的规定,并结合本工程的具体特点,应按下列要求布置声测管: 基桩、连续墙埋管数量: 桩直径D≤800mm布置2根管;800mm﹤D≤2000mm,布置不少于3根管,D ﹥2000mm,布置不少于4根管, 埋设方法: 基桩声测管应沿桩截面外侧呈对称形状布置(如图H.0.5所示)。声测管牢固绑扎(或焊接)在钢筋笼内侧。检测管宜选用镀锌钢管或铁管,管内径宜为50~55mm;管的下端应封闭、上端应加盖;声测馆底端应平桩底,管顶端宜高出现地面20~30cm。检测管之间应相互平行,且平直。 地下连续墙单个直槽段中的声测管埋设数量不应少于4根,声测管间距不宜大于1.5m;对于转角槽段,声测管埋设数量不少于3根(如图H.0.6所示)。声测管应沿钢筋笼内侧布置,边管宜靠近槽边。 检测前用钢筋疏通声测管,以确保检测时,检测探头能正常放至管底,疏通后向检测管内注满清水,封口待检查。 检测前应准备的资料: 检测前应具有下列资料:工程地质资料、基础设计资料、施工原始记录(成孔及灌注记录等)和基桩平面布置图。 混凝土强度要求: 受检基桩混凝土强度至少达到设计强度的70%,或不小于15Mpa。

H.0.6 地下连续墙声测管布置图

钢管柱埋管数量及声测管布置图 延长度方向每 隔2m 用钢筋电 焊固定 D≤800mm 800

万用表测试二极管的方法

测试二极管的方法 二极管参数的测试可用晶体管图示仪QT-2,或其它仪器进行测试。 在没有仪器的情况下也可用万用表来简单检查二极管的好坏,但这种检测方法不能测量二极管的参数。 初学者在业余条件下可以使用万用表测试二极管性能的好坏。测试前先万用表的转换开关拨到欧姆档的RX1k档位(注意不要使用RX1档,以免电流过大烧坏二极管),再将红、黑两根表笔短路,进行欧姆调零。 1、正向特性测试 把万用表的黑表笔(表内正极)搭触二极管的正极,,红表笔(表内负极)搭触二极管的负极。若表针不摆到0值而是停在标度盘的中间,这时的阻值就是二极管的正向电阻,一般正向电阻越小越好。若正向电阻为0值,说明管芯短路损坏,若正向电阻接近无穷大值,说明管芯断路。短路和断路的管子都不能使用。 2、反向特性测试 把万用表的红表笔搭触二极管的正极,黑表笔搭触二极管的负极,若表针指在无穷大值或接近无穷大值,管子就是合格的。

(一)普通二极管的检测(包括检波二极管、整流二极管、阻尼二极管、开关二极管、续流二极管)是由一个PN结构成的半导体器件,具有单向导电特性。通过用万用表检测其正、反向电阻值,可以判别出二极管的电极,还可估测出二 1.极性的判别将万用表置于 R×100档或R×1k档,两表笔分别接二极 管的两个电极,测出一个结果后,对调两表 笔,再测出一个结果。两次测量的结果中, 有一次测量出的阻值较大(为反向电阻), 一次测量出的阻值较小(为正向电阻)。在 阻值较小的一次测量中,黑表笔接的是二极 管的正极,红表笔接的是二极管的负极。 2.单向导电性能的检测及好坏的判断通常,锗材料二极管的正向电阻值为1kΩ左右,反向电阻值为300 kΩ左右。硅材料二极管的电阻值为5 kΩ左右,反向电阻值为∞(无穷大)。正向电阻越小越好,反向电阻越大越好。正、反向电阻值相差越悬殊,说明二极管的单向导电特性越好。 若测得二极管的正、反向电阻值均接近0或阻值较小,则说明该二极管内部已击穿短路或漏电损坏。若测得二极管的正、反向电阻值均为无穷大,则说明该二极管已开路损坏。 (二)稳压二极管的检测 1.正、负电极的判别从外形上看,金属封装稳压二极管管体的正极一端为平面形,负极一端为半圆面形。塑封稳压二极管管体上印有彩色标记的一端为负极,另一端为正极。对标志不清楚的稳压二极管,也可以用万用表判别其极性,测量的方法与普通二极管相同,即用万用表R×1k档,将两表笔分别接稳压二极管的两个电极,测出一个结果后,再对调两表笔进行测量。在两次测量结果中,阻值较小那一次,黑表笔接的是稳压二极管的正极,红表笔接的是稳压二极管的负极。 若测得稳压二极管的正、反向电阻均很小或均为无穷大,则说明该二极管已击穿或开路损坏。 2.稳压值的测量用0~30V连续可调直流电源,对于13V以下的稳压

相关主题
文本预览
相关文档 最新文档