当前位置:文档之家› 人教版高数必修五第6讲:等比数列的概念、性质(学生版)

人教版高数必修五第6讲:等比数列的概念、性质(学生版)

等比数列的概念、性质

__________________________________________________________________________________ __________________________________________________________________________________

教学重点: 掌握并理解等比数列的概念及性质,通项公式的求解,等比数列与指数函数的关系 教学难点: 理解等比数例性质及与指数函数的关系

1. 等比数列的概念

一般地,如果一个数列从第_______项起,每一项与它的前一项的比都等于同一个常数,那么这个数列叫做等比数列,这个常数叫做等比数列的_________,公比通常用__________表示。

2. 等比数列的通项公式

____________________

3. 等比中项

如果三个数,,x G y 组成等比数列,那么G 叫做x 和y 的等比中项,其中___________

4. 等比数列的性质

(1)公比为q 的等比数列的各项同乘以一个不为零的数m ,所得数列仍是等比数列,公比仍为q

(2)若,,,,m n p q m n p q N ++=+∈,则__________________

(3)若等比数列{}n a 的公比为q ,则1n a ??????是以

_________

为公比的等比数列 (4)等比数列{}n a 中,序号成等差数列的项构成等比数列

(5)若{}n a 与{}n b 均为等比数列,则{}n n a b 也为等比数列

5. 等比数列与指数函数的关系

等比数列{}n a 的通项公式111n n n a a a q q q

-== 当0q >且1q ≠时,x y q =是一个指数函数,设1a c q

=则n n a cq =,等比数列{}n a 可以看成是函数x y cq =,因此,等比数列{}n a 各项所对应的点是函数x y cq =的图像上的一群孤立的点。

根据指数函数的性质,我们可以得到等比数列的增减性的下列结论:

(1) 等比数列{}n a 递增?{10

1a q >> 或{10

01a q <<<

(2) 等比数列{}n a 递减? {10

01a q ><< 或{10

1

a q <> (3) 等比数列{}n a 为常数列?1q =

(4) 等比数列{}n a 为摆动数列?0q <

类型一: 等比数列的判定及通项公式的求解

例1.(2014重庆)对任意等比数列{}n a ,下列说法一定正确的是()

A.数列{}1n a +不可能是等比数列

B.数列{}n ka (k 为常数) 一定是等比数列

C.若0n a >,则{}ln n a 一定是等差数列

D.数列{}

2n a 是等比数列,其公比与数列{}n a 的公比相等

练习1.对任意等比数列{}n a ,下列说法一定正确的是()

A.139,,a a a 成等比数列

B.236,,a a a 成等比数列

C.248,,a a a 成等比数列

D.369,,a a a 成等比数列

练习2.已知数列{}n a 中,()111,212n n a a a n -==+≥

(1) 证明:数列{}1n a + 是等比数列

(2) 求n a

例2.已知等比数列{}n a 中,0,n a >且1322,4a a a ==+,求 n a

练习3.已知等比数列{}n a 中,3103,384a a ==,求7a

练习4.若等比数列{}n a 满足116,n n n a a += 则公比为 ()

A.2

B.4

C.8

D.16

类型二: 等比数列的性质

例3.(2015广东梅州摸底)在等比数列{}n a 中,0,n a >且21431,9,a a a a =-=-则45a a += ()

A.27

B.16

C.81

D.36

练习5.已知各项均为正数的等比数列{}n a 中,1237895,10,a a a a a a == 则456a a a = ()

A. B.7 C.6

D.

练习6.已知数列{}n a 为等比数列,若4610,a a += 则1737392a a a a a a ++ 的值为()

A.10

B.20

C.60

D.100

例4.若等比数列{}n a 的各项均为正数,且510119122,a a a a e += 则12320ln ln ln ...ln a a a a ++++=

解析:因为等比数列{}n a 中,1011912a a a a = 所以由510119122a a a a e += 可解得51011a a e = 所以

()()()1051220122010111011ln ln ...ln ln ...ln 10ln 10ln 50a a a a a a a a a a e +++=???=?=?== 练习7.若等比数列{}n a 满足241,2

a a = 则2135a a a = ________________ 练习8.在各项均为正数的等比数列{}n a 中,若28641,2,a a a a ==+ 则6a 的值是_________ 类型三:等比数列与指数函数的关系;等差数列与等比数列的结合

例5.已知等比数列{}n a 中,246,54,a a ==求5a

练习9.已知{}n a 是等差数列,公差0d ≠ 且139,,a a a 成等比数列,则1392410a a a a a a ++=++ () A.716 B.916 C.1116 D.1316

练习10.设{}n a 为公比的等比数列,若2012a 和2013a 是方程24830x x -+=的两根,则20142015a a += ______________

例6.(2015山西太原质检)设等差数列{}

n a 的公差不为0,19,a d =若k a 是1a 与2k a 的等比中项,则k = ()

A.2

B.4

C.6

D.8

练习11.各项均为正数的等比数列{}

n a 的公比1q ≠且2311,,2a a a 成等差数列,则234345

a a a a a a ++++的值为()

练习12.已知,,a b c 成等比数列,如果,,a x b 和,,b y c 都成等差数列,则a c x y

+= __________

1. 公差不为零的等差数列{a n },a 2,a 3,a 7成等比数列,则它的公比为( )

A .-4

B .-14 C.14

D .4 2. 若2a ,b,2c 成等比数列,则函数y =ax 2+bx +c 的图象与x 轴的交点个数是( )

A .0

B .1

C .2

D .0或2

3. 若等比数列的首项为98,末项为13,公比为23

,则这个数列的项数为( ) A .3 B .4 C .5 D .6

4. 在等比数列{a n }中,a 4+a 5=10,a 6+a 7=20,则a 8+a 9等于( )

A .90

B .30

C .70

D .40

5. 对任意等比数列{a n },下列说法一定正确的是( )

A .a 1,a 3,a 9成等比数列

B .a 2,a 3,a 6成等比数列

C .a 2,a 4,a 8成等比数列

D .a 3,a 6,a 9成等比数列

6. 等比数列{a n }各项为正数,且3是a 5和a 6的等比中项,则a 1·a 2·…·a 10=( )

A .39

B .310

C .311

D .312

7. 在等比数列{a n }中,若a 3a 5a 7a 9a 11=243,则a 29a 11

的值为( ) A .9 B .1 C .2 D .3

_________________________________________________________________________________ _________________________________________________________________________________

基础巩固

1. 已知等比数列{a n }中,有a 3a 11=4a 7,数列{b n }是等差数列,且b 7=a 7,则b 5+b 9等于( )

A .2

B .4

C .8

D .16

2. 在等比数列{a n }中,a n >a n +1,且a 7·a 11=6,a 4+a 14=5,则a 6a 16

等于( ) A.32 B.23 C.16

D .6 3. 已知{a n }是等比数列,a 2=2,a 5=14

,则公比q 等于( ) A .-12 B .-2 C .2 D.12

4. 已知等比数列{a n }满足a 1+a 2=3,a 2+a 3=6,则a 7=( )

A .64

B .81

C .128

D .243

5. 如果-1,a ,b ,c ,-9成等比数列,那么( )

A .b =3,ac =9

B .b =-3,ac =9

C .b =3,ac =-9

D .b =±3,ac =9

6. 已知等比数列{a n }中,a 3=3,a 10=384,则该数列的通项a n =__________.

7. 已知等比数列前3项为12,-14,18

,则其第8项是________. 8. 已知等比数{a n }中,a 1=127

,a 7=27,求a n . 9. 在各项均为正数的等比数列{a n }中,a 2=1,a 8=a 6+2a 4,则a 6的值是________.

10. 已知等比数列{a n }的公比q =-13,则a 1+a 3+a 5+a 7a 2+a 4+a 6+a 8

等于________. 11. 已知数列{a n }为等比数列.

(1)若a 1+a 2+a 3=21,a 1a 2a 3=216,求a n ;

(2)若a 3a 5=18,a 4a 8=72,求公比q .

能力提升

12. 设{a n }是由正数组成的等比数列,公比q =2,且a 1·a 2·a 3·…·a 30=230,那么a 3·a 6·a 9·…·a 30等于

( )

A .210

B .220

C .216

D .215

13. 如果数列{a n }是等比数列,那么( )

A .数列{a 2n

}是等比数列 B .数列{2a n }是等比数列

C .数列{lg a n }是等比数列

D .数列{na n }是等比数列

14. 在等比数列{a n }中,公比为q ,则下列结论正确的是( )

A .当q >1时,{a n }为递增数列

B .当0

C .当n ∈N +时,a n a n +2>0成立

D .当n ∈N +时,a n a n +2a n +4>0成立

15. 等比数列{a n }中,|a 1|=1,a 5=-8a 2,a 5>a 2,则a n =( )

A .(-2)n -1

B .-(-2)n -1

C .(-2)n

D .-(-2)n

16. 各项都是正数的等比数列{a n }的公比q ≠1,且a 2,12a 3,a 1成等差数列,则a 3+a 4a 4+a 5

的值为( ) A.1-52 B.5+12 C.5-12 D.5+12或5-12

17. 在等比数列{a n }中,a n >0,且a 2=1-a 1,a 4=9-a 3,则a 4+a 5的值为( )

A .16

B .27

C .36

D .81

18. 若正数a ,b ,c 依次成公比大于1的等比数列,则当x >1时,log a x ,log b x ,log c x ( )

A .依次成等差数列

B .依次成等比数列

C .各项的倒数依次成等差数列

D .各项的倒数依次成等比数列

19. 在8和5 832之间插入5个数,使它们组成以8为首项的等比数列,则此数列的第5项是__________.

20. 从盛满20 L 纯酒精的容器里倒出1升后用水添满,再倒出1 L 混合溶液,再用水添满,这样连续进行,一共倒5次,这时容器里有纯酒精约__________L(结果保留3位有效数字).

21. 已知2a =3,2b =6,2c =12,则a ,b ,c ( )

A .成等差数列不成等比数列

B .成等比数列不成等差数列

C .成等差数列又成等比数列

D .既不成等差数列又不成等比数列

22. 公差不为零的等差数列{a n }中,2a 3-a 27+2a 11=0,数列{b n }是等比数列,且b 7=a 7,则b 6b 8=________.

23. 在3和一个未知数间填上一个数,使三数成等差数列,若中间项减去6则成等比数列,则此未知数是__________.

24. {a n }为等比数列,且a 1a 9=64,a 3+a 7=20,求a 11.

25. 设{a n }是各项均为正数的等比数列,b n =log 2a n ,若b 1+b 2+b 3=3,b 1·b 2·b 3=-3,求此等比数列的通项公式a n .

26. 等差数列{a n }的前n 项和为S n ,已知S 3=a 22,且S 1,S 2,S 4成等比数列,求{a n }的通项公式.

27. 在等比数列{a n }中,

(1)若a 4=27,q =-3,求a 7;

(2)若a 2=18,a 4=8,求a 1和q ;

(3)若a 5-a 1=15,a 4-a 2=6,求a 3.

28. 在等比数列{a n }中,a 2=3,a 5=81.

(1)求a n ;

(2)设b n =log 3a n ,求数列{b n }的前n 项和S n .

29. 设数列{a n }的前n 项和记为S n ,已知a 1=1,a n +1=

n +2n S n

(n =1,2,3…). 求证:数列{S n n

}是等比数列.

等差等比数列的性质总结

等差等比数列的性质总结-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

一、等差数列 1.等差数列的定义:d a a n n =--1(d 为常数)(2≥n ); 2.等差数列通项公式: *11(1)()n a a n d dn a d n N =+-=+-∈ , 首项:1a ,公差:d ,末项:n a 推广: d m n a a m n )(-+=. 从而m n a a d m n --=; 3.等差中项 (1)如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项.即:2 b a A += 或b a A +=2 (2)等差中项:数列{}n a 是等差数列)2(211-≥+=?+n a a a n n n 212+++=?n n n a a a 4.等差数列的前n 项和公式: 1()2n n n a a S +=1(1)2n n na d -=+211()22 d n a d n =+-2An Bn =+ (其中A 、B 是常数,所以当d ≠0时,S n 是关于n 的二次式且常数项为0) 特别地,当项数为奇数21n +时,1n a +是项数为2n+1的等差数列的中间项 ()()()12121121212 n n n n a a S n a +++++= = +(项数为奇数的等差数列的各项和等于项数乘以中间 项) 5.等差数列的判定方法 (1) 定义法:若d a a n n =--1或d a a n n =-+1(常数*∈N n )? {}n a 是等差数列. (2) 等差中项:数列{}n a 是等差数列)2(211-≥+=?+n a a a n n n 212+++=?n n n a a a . ⑶数列{}n a 是等差数列?b kn a n +=(其中b k ,是常数)。 (4)数列{}n a 是等差数列?2n S An Bn =+,(其中A 、B 是常数)。 6.等差数列的证明方法 定义法:若d a a n n =--1或d a a n n =-+1(常数*∈N n )? {}n a 是等差数列. 7.提醒: (1)等差数列的通项公式及前n 和公式中,涉及到5个元素:1a 、d 、n 、n a 及n S ,其中1a 、d 称作为基本元素。只要已知这5个元素中的任意3个,便可求出其余2个,即知3求2。 (2)设项技巧: ①一般可设通项1(1)n a a n d =+- ②奇数个数成等差,可设为…,2,,,,2a d a d a a d a d --++…(公差为d ); ③偶数个数成等差,可设为…,3,,,3a d a d a d a d --++,…(注意;公差为2d ) 8..等差数列的性质: (1)当公差0d ≠时, 等差数列的通项公式11(1)n a a n d dn a d =+-=+-是关于n 的一次函数,且斜率为公差d ; 前n 和211(1)()222 n n n d d S na d n a n -=+=+-是关于n 的二次函数且常数项为0.

等差等比数列的性质总结

一、等差数列 1.等差数列的定义:d a a n n =--1(d 为常数)(2≥n ); 2.等差数列通项公式: * 11(1)()n a a n d dn a d n N =+-=+-∈ , 首项:1a ,公差:d ,末项:n a 推广: d m n a a m n )(-+=. 从而m n a a d m n --=; 3.等差中项 (1)如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项.即:2 b a A += 或b a A +=2 (2)等差中项:数列{}n a 是等差数列)2(211-≥+=?+n a a a n n n 212+++=?n n n a a a 4.等差数列的前n 项和公式: 1()2n n n a a S += 1(1)2n n na d -=+211 ()22 d n a d n =+-2An Bn =+ (其中A 、B 是常数,所以当d ≠0时,S n 是关于n 的二次式且常数项为0) 特别地,当项数为奇数21n +时,1n a +是项数为2n+1的等差数列的中间项 ()()()12121121212 n n n n a a S n a +++++= = +(项数为奇数的等差数列的各项和等于项数乘以中间项) 5.等差数列的判定方法 (1) 定义法:若d a a n n =--1或d a a n n =-+1(常数* ∈N n )? {}n a 是等差数列. (2) 等差中项:数列{}n a 是等差数列)2(211-≥+=?+n a a a n n n 212+++=?n n n a a a . ⑶数列{}n a 是等差数列?b kn a n +=(其中b k ,是常数)。 (4)数列{}n a 是等差数列?2 n S An Bn =+,(其中A 、B 是常数)。 6.等差数列的证明方法 定义法:若d a a n n =--1或d a a n n =-+1(常数* ∈N n )? {}n a 是等差数列. 7.提醒: (1)等差数列的通项公式及前n 和公式中,涉及到5个元素:1a 、d 、n 、n a 及n S ,其中1a 、d 称作为基本元素。只要已知这5个元素中的任意3个,便可求出其余2个,即知3求2。 (2)设项技巧: ①一般可设通项1(1)n a a n d =+- ②奇数个数成等差,可设为…,2,,,,2a d a d a a d a d --++…(公差为d ); ③偶数个数成等差,可设为…,3,,,3a d a d a d a d --++,…(注意;公差为2d ) 8..等差数列的性质: (1)当公差0d ≠时, 等差数列的通项公式11(1)n a a n d dn a d =+-=+-是关于n 的一次函数,且斜率为公差d ; 前n 和211(1)()222 n n n d d S na d n a n -=+ =+-是关于n 的二次函数且常数项为0. (2)若公差0d >,则为递增等差数列,若公差0d <,则为递减等差数列,若公差0d =,则为常数列。 (3)当m n p q +=+时,则有q p n m a a a a +=+,特别地,当2m n p +=时,则有2m n p a a a +=. 注:12132n n n a a a a a a --+=+=+=???,

(完整版)等比数列的概念与性质练习题

等比数列的概念与性质练习题 1.已知等比数列}{n a 的公比为正数,且3a ·9a =22 5a ,2a =1,则1a = A. 2 1 B. 22 C. 2 D.2 2. 如果1,,,,9a b c --成等比数列,那么( ) A 、3,9b ac == B 、3,9b ac =-= C 、3,9b ac ==- D 、3,9b ac =-=- 3、若数列}{n a 的通项公式是1210(1)(32),n n a n a a a =--+++=L 则 (A )15 (B )12 (C )-12 D )-15 4.在等比数列{a n }中,a 2=8,a 5=64,,则公比q 为( ) A .2 B .3 C .4 D .8 5..若等比数列{a n }满足a n a n +1=16n ,则公比为 A .2 B .4 C .8 D .16 6.若互不相等的实数,,a b c 成等差数列,,,c a b 成等比数列,且310a b c ++=,则a = A .4 B .2 C .-2 D .-4 7.公比为32等比数列{}n a 的各项都是正数,且31116a a =,则162log a =( ) A.4 B.5 C.6 D.7 8.在等比数列{}n a 中,5,6144117=+=?a a a a ,则 =10 20 a a ( ) A. 32 B.23 C. 32或23 D. -32或-23 9.等比数列{}n a 中,已知121264a a a =,则46a a 的值为( ) A .16 B .24 C .48 D .128 10.实数12345,,,,a a a a a 依次成等比数列,其中1a =2,5a =8,则3a 的值为( ) A. -4 B.4 C. ±4 D. 5 11.等比数列 {}n a 的各项均为正数,且5647a a a a +=18,则3132310log log log a a a +++L = A .12 B .10 C .8 D .2+3log 5 12. 设函数()()() * 2 ,311N n x n x x f ∈≤≤-+-=的最小值为n a ,最大值为n b ,则2n n n n c b a b =-是( ) A.公差不为零的等差数列 B.公比不为1的等比数列 C.常数列 D.既不是等差数列也不是等比数列 13. 三个数c b a ,,成等比数列,且0,>=++m m c b a ,则b 的取值范围是( ) A. ??????3, 0m B. ??????--3,m m C . ??? ??3,0m D. [)?? ? ???-3,00,m m 14.已知等差数列}{n a 的公差0≠d ,且931,,a a a 成等比数列,则 10 429 31a a a a a a ++++的值为 . 15.已知1, a 1, a 2, 4成等差数列,1, b 1, b 2, b 3, 4成等比数列,则 =+2 2 1b a a ______.

等差数列、等比数列知识点梳理

等差数列和等比数列知识点梳理 第一节:等差数列的公式和相关性质 1、等差数列的定义:对于一个数列,如果它的后一项减去前一项的差为一个定值,则称这个数列为等差数列,记:d a a n n =--1(d 为公差)(2≥n ,*n N ∈) 2、等差数列通项公式: 1(1)n a a n d =+-,1a 为首项,d 为公差 推导过程:叠加法 推广公式:()n m a a n m d =+- 变形推广:m n a a d m n --= 3、等差中项 (1)如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项.即:2 b a A +=或 b a A +=2 (2)等差中项: 数列{}n a 是等差数列)2(211-≥+=?+n a a a n n n 212+++=?n n n a a a 4、等差数列的前n 项和公式: 1()2n n n a a S += 1(1) 2n n na d -=+ 211 ()22 d n a d n =+-2An Bn =+ 前N 相和的推导:当m n p q +=+时,则有q p n m a a a a +=+,特别地,当2m n p +=时,则有2m n p a a a +=。(注:12132n n n a a a a a a --+=+=+=???,)当然扩充到3项、4项……都是可以的,但要保证等号两边项数相同,下标系数之和相等。

5、等差数列的判定方法 (1) 定义法:若d a a n n =--1或d a a n n =-+1(常数*∈N n )? {}n a 是等差数列. (2)等差中项:数列{}n a 是等差数列 )2(211-≥+=?+n a a a n n n 212+++=?n n n a a a (3)数列{}n a 是等差数列?b kn a n +=(其中b k ,是常数)。 (4)数列{}n a 是等差数列?2n S An Bn =+,(其中A 、B 是常数)。 6、等差数列的证明方法 定义法或者等差中项发? {}n a 是等差数列. 7、等差数列相关技巧: (1)等差数列的通项公式及前n 和公式中,涉及到5个元素:1a 、d 、n 、 n a 及n S ,其中1a 、d 称作为基本元素。只要已知这5个元素中的任意3个,便可求出其余2个,即知3求2。 (2)设项技巧: ①一般可设通项1(1)n a a n d =+- ②奇数个数成等差,可设为…,2,,,,2a d a d a a d a d --++…(公差为d ); ③偶数个数成等差,可设为…,3,,,3a d a d a d a d --++,…(注意;公差为2d ) 8、等差数列的性质: (1)当公差0d ≠时,等差数列的通项公式11(1)n a a n d dn a d =+-=+-是关于n 的一次函数,且斜率为公差d ;前n 和211(1)()222 n n n d d S na d n a n -=+=+-是关于n 的二次函数且常数项为0。

等比数列的概念和通项公式(教学设计)

《等比数列》(第1课时)教学设计 授课地点:武威八中 授课时间:20XX年4月22日 授课人:武威六中杨志隆 一、教学目标 知识与技能 1.理解等比数列的概念; 2.掌握等比数列的通项公式; 3.会应用定义及通项公式解决一些实际问题。 过程与方法 培养运用归纳类比的方法去发现并解决问题的能力。通过实例,归纳并理解等比数列的概念,探索并掌握等比数列的通项公式,培养学生严密的思维习惯。情感态度与价值观 充分感受数列是反映现实生活的模型,体会数学是来源于现实生活,并应用于现实生活的,数学是丰富多彩的而不是枯燥无味的,提高学习的兴趣。 二、教学重点、难点 教学重点: 等比数列的概念及通项公式; 教学难点: 通项公式的推导及初步应用。 三、教学方法 发现式教学法,类比分析法 四、教学过程 (一)旧知回顾,情境导入 1. 回顾等差数列的相关性质 设计意图:通过复习等差数列的相关知识,类比学习本节课的内容,用熟知的等差数列内容来分散本节课的难点,为等比数列的学习做铺垫。 2.情境展示

情境1:“一尺之棰,日取其半,万世不竭。” 情境2:一张纸的折叠问题 把以上实例表示为数学问题,并引导学生通过观察、联想,得到两个数列: ① ??????16 1,81,41,21,1 ② 1,2,4,8,16,32,64?????? 设计意图:让学生通过观察,得到两个数列的共同特点:从第二项起,每一项与它前面一项的比都等于同一个常数.由此引入等比数列。 (二)概念探究 1.引导学生通过联想并类比等差数列给出该数列的名称:等比数列 2.归纳总结,形成等比数列的概念. 一般地,如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,这个数列就叫等比数列,这个常数叫做等比数列的公比(引导学生经过类比等差数列的定义得出)。同时给出等比中项的定义,并和等差中项做比较,加深学生对概念的理解。 3.对等比数列概念的深化理解 给出几个数列让学生判断是否是等比数列,以加深对概念的理解。 问题1:等比数列的项可以为零吗? 问题2:等比数列的公比可以为零吗? 问题3:若0>q ,等比数列的项有什么特点?0

等差、等比数列以及数列求和专题(汇编)

§6.2 等差数列 一.课程目标 1.理解等差数列的概念; 2.掌握等差数列的通项公式与前n 项和公式; 3.能在具体的问题情境中识别数列的等差关系,并能用等差数列的有关知识解决相应的问题; 4.了解等差数列与一次函数的关系. 二.知识梳理 1.定义 如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示. 数学语言表达式:a n +1-a n =d (n ∈N *,d 为常数),或a n -a n -1=d (n ≥2,d 为常数). 2.通项公式 若等差数列{a n }的首项是a 1,公差是d ,则其通项公式为a n =a 1+(n -1)d . 3.前n 项和公式 等差数列的前n 项和公式:2 2111)() (n n a a n d n n na S +=-+=其中n ∈N *,a 1为首项,d 为公差,a n 为第n 项). 3.等差数列的常用性质 已知数列{a n }是等差数列,S n 是{a n }的前n 项和.

(1)通项公式的推广:*),()(N m n d m n a a m n ∈-+= (2)若m +n =p +q (m ,n ,p ,q ∈N *),则有q p n m a a a a +=+。特别的,当p n m 2=+时,p n m a a a 2=+ (3)等差数列{a n }的单调性:当d >0时,{a n }是递增数列;当d <0时,{a n }是递减数列;当d =0时,{a n }是常数列. (4)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列. (5)若}{},{n n b a 是等差数列,则}{n n qb pa +仍是等差数列. 4.与等差数列各项和相关的性质 (1)若}{n a 是等差数列,则}{n S n 也是等差数列, 其首项与}{n a 的首项相同,公差为}{n a 的公差的 2 1。 (2)数列m m m m m S S S S S 232--,,…也是等差数列. (3)关于非零等差数列奇数项与偶数项的性质。 a .若项数为n 2,则1 +==-n n a a S S nd S S 偶奇奇偶, 。 b .若项数为12-n ,则n a n n S )(1-=偶,n na S =奇,1 += =-n n S S a S S n 偶奇奇偶, 。 (4)若两个等差数列}{},{n n b a 的前n 项和分别为n n T S ,,则 1 21 2--=n n n n T S b a 5.等差数列的前n 项和公式与函数的关系: (1)n d a n d S )(2 212-+= ,数列{a n }是等差数列? S n =An 2+Bn (A ,B 为常数). (2)在等差数列{a n }中,a 1>0,d <0,则S n 存在最大值;若a 1<0,d >0,则S n 存在最小值.

等比数列的概念与性质

等比数列的概念与性质 一、知识归纳 1. ________________________________________________________________ 等比数列的概念:一般的,____________________________________________________________ ,那么这个数列 叫做等比数列,这个常数叫做,公比通常用字母q表示。即 a n J 2. 若a,G,b成等比数列,则G叫做a与b的___________ 。此时G=_____________ . 3. 等比数列的通项公式为: __________________________ 。 4. 首项为正数的等比数列的公比q =1时,数列为 ___________ 数列;当q ::: 0时,数列为 数列;当0 :::q ::: 1时,数列为___ 数列;当q时,数列为_______________ 数列。5. 等比数列性质: 在等比数列{a.}中,若m ? n二P q ,则a m a^a p a q 6. 等比数列的前n项和 当q =1 时,S n 二_____________ ;

当q =1 时,S n 二_______________ . 7用函数的观点看等比数列: (1)等比数列的通项公式是 ____________ 二、经典题目 1、判断正误: ① 1,2,4,8,16是等比数列; 1 1 1 ②数列1, — ,,,…是公比为2的等比数列; 2 4 8 a b . ③若,则a,b,c成等比数列; ④若= n n ? N ,则数列On 成等比数列; a n ⑤0,2,4,8,16 是等比数列; 2.判断下列数列玄[是否为等比数列: (1)a n =(-1 厂(W N* ; (3)a n= n 2n,n N* () () () ()(). ⑵ a n+2 n:N* ; (4)a n 二-1,n N* 思考:如何证明(判断)一个数列是等比数列?

等比数列的概念(教案)

等比数列的概念 亳州三中 范图江 一、教学目标 1、 体会等比数列特性,理解等比数列的概念。 2、 能根据定义判断一个数列是等比数列,明确一个数列是等比数列的限定条件。 3、 能够运用类比的思想方法得到等比数列的定义,会推导出等比数列的通项公式。 二、教学重点、难点 重点:等比数列定义的归纳及应用,通项公式的推导。 难点:正确理解等比数列的定义,根据定义判断或证明某些数列为等比数列,通项公式的推导。 三、教学过程 1、 导入 复习等差数列的相关内容: 定义:*1,()n n a a d n N +-=∈ 通项公式:()*1(1),n a a n d n N =+-∈ 等差数列只是数列的其中一种形式,现在来看这两组数列1、2、4、8……, 1、1 2、14、18 …… 问:这两组数列中,各组数列的各项之间有什么关系 2、 探究发现,建构概念 问:与等差数列的概念相类比,可以给出这种数列的概念吗是什么 <1>定义:如果一个数列从地2项起,每一项与前一项的比值都等于同一个常数,则称此数列为的不过比数列。这个常数就叫做公比,用q 表示。 <2>数学表达式:*1,()n n a q n N a +=∈ 问:从等比数列的定义及其数学表达式中,可以看出什么也就是,这个公式在什么条件下成立 结论1 等比数列各项均不为零,公比0q ≠。 带领学生看45P 页的实例,目的是让学生知道等比数列在现实生活中的应用,从而知道其重要性。 3、 运用概念 例1 判断下列数列是否为等比数列: (1)1、1、1、1、1; (2)0、1、2、4、8; (3)1、11 1124816 -、、-、.

分析 (1)数列的首项为1,公比为1,所以是等比数列; (2)等比数列中的各项均不为零,所以不是等比数列; (3)数列的首项为1,公比为12- ,所以是等比数列. 注 成等比数列的条件:11;20;30n n n a q a q a +=≠≠. 练习47P 1、判断下列数列是否为等比数列: (1)1、2、1、2、1; (2)-2、-2、-2、-2; (3)11111392781--、、、、; (4)2、1、12、14、0. 分析 (1)3122122 a a a a ==,,比值不等于同一个常数,所以不是等比数列; (2)首项是-2,公比是1,所以是等比数列; (3)首项是1,公比是13 -,所以是等比数列; (4)数列中的最后一项是零,所以不是等比数列. 例2 求出下列等比数列中的未知项: (1)2,a ,8; (2)- 4,b ,c ,12 . 分析 在做这种题的时候,可以根据等比数列的定义,列出一个或多个等式来求解。 (1)8442a a a ==-,解得或; (2)22442,,1122b c b b c b c b c c c b ?=?-?=-=??????=-=????=??化简得解得. 例3等比数列{}n a 中, ①a 3=4,a 5=16,求a n ②a 1=2,第二项与第三项的和为12,求第四项。 随堂练习 P23练习题。 思考 由前面的练习5,等比数列{}n a 的首项为1a ,公比为q , 212321234321, , , a a q a a q a q a a q a q a q ====== …… 以此类推,可以得到n a 用1a 和q 表示的数学表达式吗

等比数列的概念与性质练习题

等比数列的概念与性质练习题 1.已知等比数列}{n a 的公比为正数,且3a ·9a =22 5a ,2a =1,则1a = A. 2 1 B. 22 C. 2 D.2 2. 如果1,,,,9a b c --成等比数列,那么( ) A 、3,9b ac == B 、3,9b ac =-= C 、3,9b ac ==- D 、3,9b ac =-=- 3、若数列}{n a 的通项公式是1210(1)(32),n n a n a a a =--+++=则 (A )15 (B )12 (C )-12 D )-15 4.在等比数列{a n }中,a 2=8,a 5=64,,则公比q 为( ) A .2 B .3 C .4 D .8 5..若等比数列{a n }满足a n a n +1=16n ,则公比为 A .2 B .4 C .8 D .16 6.若互不相等的实数,,a b c 成等差数列,,,c a b 成等比数列,且310a b c ++=,则a = A .4 B .2 C .-2 D .-4 7.公比为32等比数列{}n a 的各项都是正数,且31116a a =,则162log a =( ) A.4 B.5 C.6 D.7 8.在等比数列{}n a 中,5,6144117=+=?a a a a ,则 =10 20 a a ( ) A. 32 B.23 C. 32或23 D. -32或-23 9.等比数列{}n a 中,已知121264a a a =,则46a a 的值为( ) A .16 B .24 C .48 D .128 10.实数12345,,,,a a a a a 依次成等比数列,其中1a =2,5a =8,则3a 的值为( ) A. -4 B.4 C. ±4 D. 5 11.等比数列 {}n a 的各项均为正数,且5647a a a a +=18,则3132310log log log a a a ++ += A .12 B .10 C .8 D .2+3log 5 12. 设函数()()() * 2 ,311N n x n x x f ∈≤≤-+-=的最小值为n a ,最大值为n b ,则2n n n n c b a b =-是( ) A.公差不为零的等差数列 B.公比不为1的等比数列 C.常数列 D.既不是等差数列也不是等比数列 13. 三个数c b a ,,成等比数列,且0,>=++m m c b a ,则b 的取值范围是( ) A. ??????3, 0m B. ??????--3,m m C . ??? ??3,0m D. [)?? ? ???-3,00,m m 14.已知等差数列}{n a 的公差0≠d ,且931,,a a a 成等比数列,则 10 429 31a a a a a a ++++的值为 . 15.已知1, a 1, a 2, 4成等差数列,1, b 1, b 2, b 3, 4成等比数列,则 =+2 2 1b a a ______.

等差数列及等比数列的性质总结

等差数列与等比数列总结 一、等差数列: 一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列叫做等差数列,这个常数叫做等差数列的公差,公差常用小写字母d 表示; 等差中项,如果2 b a A += ,那么A 叫做a 与b 的等差中项;如果三个数成等差数列,那么等差中项等于另两项的算术平均数; 等差数列}{a n 的通项公式:)N n (d )1-n (a a 1n *∈+=; 等差数列}{a n 的递推公式:)2n (d a a 1n n ≥+=-; 等差数列}{a n 的前n 项和公式:n S =2n )a a (n 1?+=d 2)1-n (n na 1?+ = 中12na n )2d -a (n )2d (=?+?; 【等差数列的性质】 1、d )1-n (a a m n += 【说明】n 11m a d )1-n (a d )m -n (d )1-m (a d )m -n (a =+=++=+ 2、若m 、n 、p 、q *∈N ,且m+n=p+q ,则有q p n m a a a a +=+ 【说明】q p 11n m a a )2-q p (a 2d )2-n m (a 2a a +=++=++=+ 3、md 成等差数列,公差为、 a 、a 、a m 2k m k k ??++ 【说明】md a -a a -a m k m 2k k m k =??==+++ 4、k )1-n (nk k 2k 3k k 2k S -S S -S ,S -S ,S ??成等差数列,公差为d n 2 【说明】d n )a a a (-)a a a (S -)S -S (2n 21n 22n 1n n n n 2=+??+++??++=++, ) a a a (-)a a a ()S -S (-)S -S (n 22n 1n n 32n 21n 2n 2n n 2n 3+??+++??++=++++??=,d n 2 5、数列}{a n 成等差数列Bn An S ,a a a 2, q pn a 2n 1n 1-n n n +=+=+=?+

等比数列概念优秀教案

等比数列的概念教案 教学目标 1.理解等比数列的定义,并能以方程思想作指导,理解和运用它的通项公式. 2.逐步体会类比、归纳的思想,进一步培养学生概括、抽象思维等能力. 3.培养学生严密的思维习惯,促进个性品质的良好发展. 教学重点和难点 重点:等比数列要领的形成及通项公式的应用. 难点:对要领的深刻理解. 教学过程设计 (一)引入新课 师:前面我们已经研究了一类特殊的数列──等差数列,今天我们一起研究第二类新的数列──等比数列. (板书)三等比数列 (二)讲解新课 师:等比数列与等差数列在名字上非常类似,只有一字之差,一个是差,一个是比,你能否仿照等差数列,举列说明你对等比数列的理解. (要求学生能主动的用类比思想,通过具体例子说明对概念的理解) 生:数列1,3,9,27,… 师:你为什么认为它是等比数列呢? 生:因为这个数列相邻两项的比都是相等的,所以是等比数列. (先引导学生用自己的语言描述等比数列的特征,但暂时不作评论,以防限制其他学生的思维) 师:这是你对等比数列的理解,不过这个例子中的项是一项比一项大,能否再举一个一项比一项小的.

师:你对等比数列的理解呢? 生:数列中每一项与前一项的比都是同一个常数. 师:他们对等比数列理解基本相同的,能否再换个样子,举一个例子. (若理解没有什么变化,就不必让学生再重复了) 师:下面再举例子又增加点要求,既然要去研究它,说明它一定有实际应用价值,那么能否再举一个生活中的等比数列例子. 生:如生物学中细胞分裂问题:1个细胞经过一次分裂变为2个细胞,这两个细胞再继续分裂成为4个细胞.这样分裂继续下去,细胞个数从1到2到4到8,把每次分裂后所得细胞个数排列好可形成一个数列1,2,4,8,16,…这个数列就是等比数列. 师:这个例子举得很好,不仅能够发现生活中的数学问题,还能把数学知识应用在其它学科,其实等比数列的应用是非常广泛的,说明它确有很高的研究价值. 说了这么多,也发现了等比数列的特征,能否试着给等比数列下个定义呢? 生:如果一个数列的每一项与前一项的比都等于一个常数,那么这个数列就叫做等比数列. 师:作为定义这种叙述还有一点不足,为保证这样比都作得出来,这每一项应从数列的第二项起,否则第一项没有前一项,也就做不出这个比,调整之后,再找一位同学准确描述一下等比数列. 生:如果一个数列,从第二项起.每一项与前一项的比都等于一个常数,那么这个数列叫做等比数列. 师:好,就把它作为等比数列的定义记录下来. (板书)1.定义如果一个数列,从第二项起,每一项与前一项的比都是同一个常数,那么这个数列叫做等比数列,这个常数叫做公比,记作q.

等比数列性质及其应用知识点总结与典型例题(经典版)

等比数列知识点总结与典型例题 1、等比数列的定义:()()*1 2,n n a q q n n N a -=≠≥∈0且,q 称为公比 2、通项公式: ()11110,0n n n n a a a q q A B a q A B q -== =??≠?≠,首项:1a ;公比:q 推广:n m n m n n n m m a a a q q q a --=?=?=3、等比中项: (1)如果,,a A b 成等比数列,那么A 叫做a 与b 的等差中项,即:2A ab =或A =注意:同号的两个数才有等比中项,并且它们的等比中项有两个( (2)数列{}n a 是等比数列211n n n a a a -+?=? 4、等比数列的前n 项和n S 公式: (1)当1q =时,1n S na = (2)当1q ≠时,()11111n n n a q a a q S q q --= = -- 11''11n n n a a q A A B A B A q q = -=-?=---(,,','A B A B 为常数) 5、等比数列的判定方法: (1)用定义:对任意的n ,都有1 1(0){}n n n n n n a a qa q q a a a ++==≠?或 为常数,为等比数列 (2)等比中项:21111(0){}n n n n n n a a a a a a +-+-=≠?为等比数列 (3)通项公式:()0{}n n n a A B A B a =??≠?为等比数列 6、等比数列的证明方法: 依据定义:若 ()()*1 2,n n a q q n n N a -=≠≥∈0且或1{}n n n a qa a +=?为等比数列 7、等比数列的性质: (2)对任何*,m n N ∈,在等比数列{}n a 中,有n m n m a a q -=。 (3)若* (,,,) m n s t m n s t N +=+∈,则n m s t a a a a ?=?。特别的,当2m n k +=时,得2n m k a a a ?= 注:12132n n n a a a a a a --?=?=??? 等差和等比数列比较:

等比数列的性质(含解析)

等比数列的性质 班级:____________ 姓名:__________________ 1.等比数列x,3x +3,6x +6,…的第四项等于( ) A .-24 B .0 C .12 D .24 2.对任意等比数列{a n },下列说法一定正确的是( ) A .a 1,a 3,a 9成等比数列 B .a 2,a 3,a 6成等比数列 C .a 2,a 4,a 8成等比数列 D .a 3,a 6,a 9成等比数列 3.在等比数列{a n }中,T n 表示前n 项的积,若T 5=1,则( ) A .a 1=1 B .a 3=1 C .a 4=1 D .a 5=1 4.已知等比数列{a n }中,a 3a 11=4a 7,数列{b n }是等差数列,且b 7=a 7,则b 5+b 9等于( ) A .2 B .4 C .8 D .16 5.已知数列{a n }为等差数列,a 1,a 2,a 3成等比数列,a 1=1,则a 2 016=( ) A .5 B .1 C .0 D .-1 6.在正项等比数列{a n }中,a n +1

等比数列的概念及基本运算

第37讲 等比数列的概念及基本运算 1.(2016·湖北省八校第二次联考)在等比数列{a n }中,a 2a 3a 4=8,a 7=8,则a 1=(A) A .1 B .±1 C .2 D .±2 因为a 2a 3a 4=a 33=8,所以a 3=2,即a 1q 2=2, 所以a 1>0,又a 2a 3a 4=a 1q ·a 1q 2·a 1q 3=a 21·a 1q 6=a 21· a 7=8a 21=8,所以a 1=1或a 1=-1(舍去),故选A. 2.(2015·新课标卷Ⅱ)已知等比数列{a n }满足a 1=14 ,a 3a 5=4(a 4-1),则a 2=(C) A .2 B .1 C.12 D.18 由题意可得a 3a 5=a 24=4(a 4-1), 所以a 4=2,所以q 3=a 4a 1 =8,所以q =2. 所以a 2=a 1q =12 . 3.(2017·湖南五市十校联考)已知数列{a n }的前n 项和S n =Aq n +B (q ≠0),则“A =-B ”是“数列{a n }是等比数列”的(B) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 若A =B =0,则S n =0,故数列{a n }不是等比数列; 若数列{a n }是等比数列,当q =1时,S n =A +B ,所以a n =0(n ≥2)与数列{a n }是等比数 列矛盾,所以q ≠1,S n =a 1(1-q n )1-q , 所以A =-a 11-q ,B =a 11-q ,所以A =-B , 因此“A =-B ”是“数列{a n }是等比数列”的必要不充分条件. 4.(2018·华大新高考联盟教学质量测评)在等比数列{a n }中,a 2=2,a 3=33,则 a 11+a 2011a 17+a 2017 =(D) A.29 B.49 C.23 D.89 依题意知等比数列{a n }的公比q =a 3a 2=332 , 故a 11+a 2011a 17+a 2017=a 11+a 2011q 6(a 11+a 2011)=1q 6=89 . 5.已知{a n }为等差数列,公差为1,且a 5是a 3与a 11的等比中项,则a 1= -1 . 因为a 5是a 3与a 11的等比中项,所以a 25=a 3·a 11.

等差等比数列的运用公式大全

第六讲:等差、等比数列的运用 1. 等差数列的定义与性质 定义:1n n a a d +-=(d 为常数),()11n a a n d =+- 等差中项:x A y ,,成等差数列2A x y ?=+ 前n 项和()() 1112 2 n n a a n n n S na d +-= =+ 性质:{}n a 是等差数列 m n p q +=+,则m n p q a a a a +=+; {}{}{}12212,,+-n n n a a a 仍为等差数列,232n n n n n S S S S S --,,……仍为等差数列,公差为d n 2; a d a a d -+,, n n a b ,是等差数列,且前n 项和分别为n n S T ,,则 21 21 m m m m a S b T --= }n a 为等差数列2n S an bn ?=+(a b ,为常数,是关于n 的常数项为0的二次函数) n S 的最值可求二次函数2n S an bn =+的最值;或者求出{}n a 中的正、负分界项, 即:当100a d ><,,解不等式组10 0n n a a +≥??≤?可得n S 达到最大值时的n 值. 当 100a d <>,,由1 0n n a a +≤??≥?可得n S 达到最小值时的n 值. 项数为偶数n 2的等差数列{} n a , 有 ),)(()()(11122212为中间两项++-+==+=+=n n n n n n n a a a a n a a n a a n S nd S S =-奇偶, 1 += n n a a S S 偶 奇. 12-n 的等差数列{} n a ,有 )()12(12为中间项n n n a a n S -=-,

等比数列及其性质

§6.3 等比数列 一.课程目标 1.理解等比数列的概念,掌握等比数列的通项公式与前n 项和公式; 2.能在具体的问题情境中识别数列的等比关系,并能用有关知识解决相应的问题; 3.了解等比数列与指数函数的关系. 二.知识梳理 1.等比数列的概念 (1)如果一个数列从第2项起,每一项与它的前一项的比等于同一个非零常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母q (q ≠0)表示. 数学语言表达式:a n a n -1=q (n ≥2,q 为非零常数),或a n +1a n =q (n ∈N *,q 为非零常数). (2)如果三个数a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项,其中G =±ab . 2. 等比数列的通项公式及前n 项和公式 (1)若等比数列{a n }的首项为a 1,公比是q ,则其通项公式为a n =a 1q n - 1; 通项公式的推广:a n =a m q n - m . (2)等比数列的前n 项和公式:当q =1时,S n =na 1;当q ≠1时,S n =a 1(1-q n ) 1-q =a 1-a n q 1-q . 3.等比数列的性质 已知{a n }是等比数列,S n 是数列{a n }的前n 项和. (1)若k +l =m +n (k ,l ,m ,n ∈N *),则有a k ·a l =a m ·a n . (2)数列}{},{),}({n n n n b a a c a c ?≠?0(}{n b 是等比数列),}{2 n a ,}{ n a 1 等也是等比数列。(3)相隔等距离的项组成的数列仍是等比数列,即a k ,a k +m ,a k +2m ,…仍是等比数列,公比为q m . (4)当q ≠-1,或q =-1且n 为奇数时,S n ,S 2n -S n ,S 3n -S 2n 仍成等比数列,其公比为q n . (5)等比数列{a n }的单调性: 当q >1,a 1>0或0<q <1,a 1<0时,数列{a n }是递增数列; 当q >1,a 1<0或0<q <1,a 1>0时,数列{a n }是递减数列; 当q =1时,数列{a n }是常数列. (6)当n 是偶数时,q S S ?=奇偶; 当n 为奇数时,q S a S ?+=偶奇1 三.考点梳理

等比数列的概念-教学设计

《等比数列 (第一课时)》教学设计 教学目标︰ 1、通过实例,理解等比数列的概念 通过从丰富实例中抽象出等比数列的模型,使学生认识到这一类型数列也是现实世界中大量存在的数列模型;同时经历由发现几个具体数列的等比关系,归纳等比数列的定义的过程。 2、探索并掌握等比数列的通项公式及等比中项 通过等差数列的通项公式的推导过程的类比,探索等比数列的通项公式,探索等比数列的通项公式的图象特征及等比中项。 教学重点: 理解等比数列的概念,认识等比数列是反映自然规律的重要的数列模型之一,探索并掌握等比数列的通项公式。 教学难点:等比数列通项公式及其应用 教学过程: 一、复习提问 一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d表示. 1, 3, 5, 7, 9,…; (1)

3, 0, -3, -6, … ; (2) (3) . , , , , 104103102101 ??? 二、创设情境,引入新课 在前几节课中,我们学习了等差数列的定义、等差数列的通项公式及等差中项的定义,今天我们就来学习另外一种特殊的数列,首先看实例。 ● 实例分析1:1细胞分裂:1,2,4,8,… ● 实例分析2:公元前5至前3世纪,中国战国时,《庄子》一书中有“一尺之棰,日取其半,万世不竭”的关于物质无限可分的观点。你能解释这个论述的含义吗? 【学生】思考、讨论,用现代语言叙述。 【老师】 (用现代语言叙述后)如果把“一尺之棰”看成单位“1”,那么得到的数列是什么样的呢? 【学生】发现等比关系,写出一个无穷等比数列:1,,,,,…。 【老师】大家知道计算机病毒的传播是非常快的,速度大的惊人,那么让我们看一个这样的实例。 ● 实例分析3:一种计算机病毒可以查找计算机中的地址薄,通过邮件进行传播。如果把病毒制造者发送病毒称为第一轮,邮件接收者发送病毒称为第二轮,依此类推。假设每一轮每一台计算机都感染20台计算机,那么在不重复的情况下,这种病毒每一轮感染的计算机数构成的数列是什么?

相关主题
文本预览
相关文档 最新文档