当前位置:文档之家› 模拟调制技术及其应用

模拟调制技术及其应用

模拟调制技术及其应用

O 引言

通信信号调制方式自动识别是信号分析领域中一个比较重要的研究方向,尤其是在军事通信领域有着很大的应用前景。随着电子对抗技术研究的不断深人,迫切需要进行调制信号自动识别技术的研究,它被广泛应用于:信号确认,干扰识别,无线电侦听,电子对抗,信号监测和威胁分析等领域。当前最具吸引力的实现是软件无线电以及其它可重构系统。

常用的自动识别的方法有理论决策法和模式识别法两种,理论决策法是采用假设检验理论解决信号分类问题,通常根据信号的统计特性,基于耗费函数最小化原则导出统计检验量(主要特征量),并设置合适的门限识别信号。A.K.Nan.di

利用特征参数γ

max

、δap、δdp,P识别AM、DSB、LSB、USB、FM、VSB、AM.FM 七种模拟调制方式,由于计算参数曲与需要提取对噪声敏感的非折叠相位信息,因此在低信噪比时识别准确率较低,文中指出在信噪比低于10dB时,识别准确率很低。Y.T.Chan仅利用R参数识别AM,FM,SSB,DSB信号,需要设置三个门限值,且相邻两个门限值之间相差很小,因此在低信噪比时识别效果也不好。在实际的军事通信系统中,AM、DSB、LSB、USB、FM五种模拟调制方式为常用的调制方式,因此可以根据这五种信号的特点,提出在低信噪比时有较高识别准确率的识别流程。本文针对低信噪比时通信信号模拟调制方式的特点,提出了一种基于决策理论的模拟调制方式识别流程,该流程综合运用y~,P,R三个特征参数对AM、DSB、LSB、USB、FM五种模拟调制方式进行识别。由于无相位信息参数,仅利用对噪声不敏感的瞬时幅度与谱对称信息,因此可以在低信噪比时对模拟通信信号进行识别,结合信号的线性平滑处理技术或小波门限消噪法对输人数据进行处理,可以进一步提高识别正确率。

1 特征参数的提取与识别流程设计

通信信号的调制信息包含在信号的瞬时幅度、相位、频率的变化之中,不同的信号其频谱也呈现不同的特征,通过提取瞬时幅度、相位、频率以及频谱的参数统计特征,可以识别不同的通信信号。本文根据AM、DSB、LSB、USB、FM五种

模拟调制方式的特点,提取的特征参数为γ

max ,R,P,其中γ

max

,R对应信号

的瞬时幅度特征,P对应频谱对称性特征。在一定的信噪比条件下,根据提取的三个特征参数值,通过设置合理的判决门限,就可以识别出这五种调制方式,判别准则如下:

(1)零中心归一化瞬时幅度谱密度的最大值γ

max

γ

max =max|FFT(A

cn

(i))|2/N

式中, N

s 为取样点数,A

cn

(i)为零中心归一化瞬时幅度,由下式计算:A (f)=A(i)

/m ,A (i)=^A ( )一1,而m。=ΣA(i)为瞬时幅度A(i)的平均值,用平均值来

对瞬时幅度进行归一化的目的是为了消除信道增益的影响。

利用该参数可实现FM 信号与其他四种信号的区分。对FM 信号其瞬时幅度约为常数,其零中心归一化瞬时幅度A cn (i)值基本为零,对应其谱密度值很小。对AM 、

DSB 、USB 、LSB 信号,其零中心归一化瞬时幅度A cn (i)不为零,对应谱密度也不

为零。因此在大信噪比情况下选择合适的门限值t(γ

max )即可很好地区分FM(γmax t(γmax

))。但在小信噪比条件下,由于噪声对信号的影响较大,识别正确率较低,本文利用线性平滑的方法或小波消噪法对输入信号处理(见下文低信噪比时对识别结果的改善),提高识别正确率。

(2)谱线对称度参数P :

P=(P L —P U )/(P L + P U )

式中PL=互l s(i)l ,P =互l s(i+ +1)l ,S(i)=F 刀(s(n))为信号s(t)的傅立叶变换(频谱)。 = · 一1, 为载频, 为采样频率,为采样点数。

特征参数P 是信号频谱对称性的量度,用来区分AM ,DSB 信号与LSB ,USB 信号。AM 和DSB 信号其频谱满足对称性,其P 值很小,在无噪声的理想情况下P=0。LSB ,USB 信号其频谱不满足对称性,在无噪声的理想情况下,LSB 信号只有下边带,P U =0,则P=1,而USB 信号只有上边带,P L =0,则P=-1。在实际情况下,由于噪

声的影响,各信号的P 值与理想情况有变化,但通过选择合适的门限值t(|P|),就可用P 参数区分AM ,DSB 信号(|P|t(|P|),P>0),

USB(|P|>t(|P|),P<0)信号。

(3)信号包络平方的方差与均值平方之比R :

R=δ2/μ2

本文仅用特征参数R 区分AM 与DSB 信号,只需设置一个门限值,因此可以提高识别正确率。当输入为AM 信号时,接收信号为:Y(t)=A(K+m ·x(t))cos(2πf c t)十n(t),

式中θ,为初始相位,x(t)服从高斯分布,且E( (t))=0,vat( (t))=口2 ,n(t)为高斯白噪声,均值为0,方差为口乞,与s(t)信号不相关。对AM 信号 R=22q)r (12q

4rq q 2r 21++++++

r 为载噪比,q 为已调信号功率与噪声功率之比。AM 信号的R 值随信噪比的增加而逐渐减小。

对DSB 信号,令K=0,m=1,则 R=22q)(1q2q

21++

既是已调信号功率与噪声功率之比,也是信噪比。对(5)求导可知,DSB 信号的R 是q 的单调递

增函数,当q→+∞时,R=2。因此选择合适的门限值t(R),就可用来区分AM(Rt(R))。

调制识别的流程图如图1所示,其中t(·)表示相应参数的门限。

图1 模拟信号调制识别流程图

2 低信噪比条件下对识别结果改善的方法

低信噪比时,由于噪声对信号的影响较大,识别正确率较小,为了提高信号在低信噪比时识别正确率,可以利用信号的平滑处理与小波消噪的方法对信号进行处理,减小噪声对特征参数的影响。

2.1 利用信号的平滑技术改进结果

模拟调制技术

重庆工程学院教案 课程名称:数字通信技术 课程代码:201303011 任课教师:张洪梅 授课班级:1301001、1303201 授课时间:2014-2015学年第1学期

重庆工程学院教案

cos ωct相乘,从频谱上看,相当于把?(t)的频谱搬移到ωc处。设?(t)的傅里叶变换(也可称为频谱)为F (ω),则有 这称为调制定理,是调制技术的理论基础。其示意图如下图所示。 图3-1 调制的示意图 三、调制的功能 调制的功能主要体现在以下几个方面: 四、调制的分类

教学小结:调制的基本概念。 作业布置: 教学后记 重庆工程学院教案

周课次第3周第6次课学时2学时教学地点第六教学楼113 教学任务 名称 模拟线性调制 教学目标 【含知识、技 能、素养目标】 掌握模拟线性调制中的幅度调制 教学条件多媒体教学 教学重点幅度调制 教学难点幅度调制 主要教学环节、方法及内容设计 时间 (分)一、幅度调制的一般模型 图3-2 幅度调制的一般模型 m(t)为调制信号,sm (t)为已调信号,h (t)为滤波器的冲激响应,则已调信号的时域和 频域一般表达式分别为 由以上表达式可见,对于幅度调制信号,在波形上,它的幅度随基带信号规律而变化; 在频谱结构上,它的频谱完全是基带信号频谱在频域内的简单搬移。由于这种搬移是线性 的,因此幅度调制通常又称为线性调制,相应地,幅度调制系统也称为线性调制系统。

二、常规双边带调幅(AM) 1. AM信号的调制 若假设滤波器为全通网络(H (ω)=1),调制信号m (t)叠加直流A0 后再与载波相乘,则输出的信号就是常规双边带调幅(AM)信号。AM 调制器模型 图3-3 AM调制的模型 AM 信号的典型波形和频谱分别如图3-5 (a)、(b)所示,图中假定调制信号m (t)的上限频率为ωH。显然,调制信号m (t)的带宽Bm= ?H。 图3-4 AM调制频谱 AM 信号是带有载波的双边带信号,它的带宽为基带信号带宽的两倍,即 2.AM 信号的解调 调制过程的逆过程叫做解调。AM 信号的解调是把接收到的已调信号SAM (t)还原为调制信号m (t)。AM 信号的解调方法有两种:相干解调和包络检波解调。 (1)相干解调,如图3-5所示

数字信号调制与解调技术论文---副本

数字信号调制与解调技术 张海超(天津712) 摘要 调制技术是把基带信号变换成传输信号的技术。它将模拟信号抽样量化后,以二进制数字信号“1”或“0”对光载波进行通断调制,并进行脉冲编码(PCM)。数字调制的优点是抗干扰能力强,中继时噪声及色散的影响不积累,因此可实现长距离传输。它的缺点是需要较宽的频带,设备也复杂。 调制技术又分为模拟调制技术与数字调制技术,其主要区别是:模拟调制是对载波信号的某些参量进行连续调制,在接收端对载波信号的调制参量连续估值,而数字调制是用载波信号的某些离散状态来表征所传送信息,在接收端只对载波信号的离散调制参量进行检测。与模拟调制系统中的调幅、调频和调相相对应,数字调制系统中也有幅度键控(ASK)、移频键控(FSK)和移相键控(PSK)三种方式,其中移相键控调制方式具有抗噪声能力强、占用频带窄的特点,在数字化设备中应用广泛,具体的数字调制方式有2FSK、2ASK、2PSK、QPSK、QAM、GSMK、MSK等。 数字调制的优点是抗干扰能力强,中继时噪声及色散的影响不积累,因此可实现长距离传输。在现在文明高速发展的今天,人们越来越离不开数字信息,数字通信也越来越重要,因此数字调制解调技术越来越被广泛应用。 由于信道资源的紧张与人们越来越希望更快的通信速度与更好通信质量的要求的矛盾,将来必然还要寻找更加好的调制技术,它要求功率效率高,频带利用率高,并且易于实现,节能低碳,环保。激光调制通信、卫星通信、非恒包络调制等都是研究方向。数字调制解调的发展,必定会有力地推进通信、数字技术等各个领域的进步。 关键字:数字、调制方式、解调方式

一、概述 调制是将各种基带信号转换成适于信道传输的调制信号(已调信号或频带信号),就是用基带信号去控制载波信号的某个或几个参量的变化,将信息荷载在其上形成已调信号传输,而解调是调制的反过程,通过具体的方法从已调信号的参量变化中将恢复原始的基带信号。 调制技术分为模拟调制技术与数字调制技术,其主要区别是:模拟调制是对载波信号的某些参量进行连续调制,在接收端对载波信号的调制参量连续估值,而数字调制是用载波信号的某些离散状态来表征所传送信息,在接收端只对载波信号的离散调制参量进行检测。 1934年美国学者李佛西提出脉冲编码调制(PCM)的概念,从此之后通信数字化的时代应该说已经开始了,但是数字通信的高速发展却是20世纪70年代以后才开始的。随着时代的发展,用户不再满足于听到声音,而且还要看到图像;通信终端也不局限于单一的电话机,而且还有传真机和计算机等数据终端。现有的传输媒介电缆、微波中继和卫星通信等将更多地采用数字传输。常用的数字调制技术有2ASK(Amplitude Shift Keying,幅移键控)、4ASK、8ASK、BIT/SK(Phase Shift Keying,相移键控)、QPSK、8PSK、2FSK、4FSK等,频带利用率从1bit/s/Hz~3bit/s/Hz。更有将幅度与相位联合调制的QAM(Quadrature Amplitude Modulation,正交振幅调制)技术,目前数字微波中广泛使用的256QAM,其频带利用率可达8bit/s/Hz,8倍于2ASK或BIT/SK。此外,还有可采用减小相位跳变的MSK等特殊的调制技术,为某些专门应用环境提供了强大的工具。近年来,四维调制等高维调制技术的研究也得到了迅速发展,并已应用于高速MODEM中,为进一步提高传输效率奠定了基础。 数字通信所能够达到的传输效率远远高于模拟通信,调制技术的种类也远远多于模拟通信,大大提高了用户根据实际应用需要选择系统配置的灵活性,除此之外,数字调制抗干扰能力强,中继时噪声及色散的影响不积累,因此可实现长距离传输。在现在文明高速发展的今天,人们越来越离不开数字信息,数字通信也越来越重要,因此数字调制解调技术越来越被广泛应用。

第四章模拟调制系统习题答案

第四章 模拟调制系统习题答案 4-1 根据图P4-1所示的调制信号波形,试画出DSB 及AM 信号的波形图,并比较它们分别通 解 由包络检波后波形可知:DSB 解调信号已严重失真,而AM 的解调信号不失真。所以,AM 信号采用包络检波法解调,DSB 信号不能采用包络检波法解调。 4-2 设某信道具有均匀的双边噪声功率谱密度P n (f)=×10-3 W/H Z ,在该信道中传输抑制载波的双边带信号,并设调制信号m(t)的频带限制在5kH Z ,而载波为100kH Z ,调制信号的功率为10kW 。若接收机的输入信号在加至解调器之前,先经过带宽为10kH z 的一理想带通滤波器,试问 (1) 该理想带通滤波器中心频率为多大 (2) 解调器输入端的信噪功率比为多少 (3) 解调器输出端的信噪功率比为多少 (4) 求出解调器输出端的噪声功率谱密度,并用图形表示出来。 解 (1)为了保证信号顺利通过和尽可能的滤除噪声,带通滤波器的带宽等于已调信号宽度,即B=2f m =2×5=10kH Z ,其中心频率应选信号的载波频率100kH Z ,带通滤波器特性为 ()? ? ?≤≤=其它 010595Z z kH f kH k H ω (2) S i =10kW N i =2BP n (f)=2×10×103××10-3 =10W 故输入信噪比 S i /N i =1000 (3) 因有G DSB =2,故输出信噪比 002210002000i i S S N N =?=?=

(4) 根据双边带解调器的输出噪声与输入噪声功率之间的关系,有 W N N i 5.24 10410=== 故 ()()Z n Z m n kH f f p H W f N f P 52 1 105.021/1025.010525.22333 00≤=??= ?=??== --双 其双边谱如右图所示 4-3某线性调制系统的输出信噪比为20dB ,输出噪声功率为10-9 W ,由发射机输出端到解调器输入端之间总的传输损耗为100dB ,试求: ⑴DSB/SC 时的发射机输出功率; ⑵SSB/SC 时的发射机输出功率。 解:设发射机输出功率为S F ,解调器输入功率为S r ,由题意,传输损耗 K =S F /S r =1010 (100dB) 已知S 0/N 0=100 (20dB),N 0=10-9 W ⑴对于DSB 方式,因为G =2, 则 00111005022 i i S S N N ==?= 又N i =4N 0 故S i =50×N i =50×4N 0=200×10-9 =2×10-7 W 所以发射功率S F =KS i =1010×2×10-7=2×103 W ⑵对于SSB ,因为G =1, 则 00 100i i S S N N ==,故S i =100×4N 0=400×10-9=4×10-7W 所以发射功率S F =KS i =1010 ×4×10-7 =4×103 W 4-4试证明:当AM 信号采用同步检波法进行解调时,其制度增益G 与公式的结果相同。 证明:设接收到的AM信号为s AM (t)=[A+m(t)]cos ωc t ,相干载波为c(t)=cos ωc t 噪声为:n i (t)=n c (t)cos ωc t-n s (t)sin ωc t 信号通过解调器 相乘输出:s AM (t) c(t)=[A+m(t)]cos 2 ωc t =A /2+m(t)/2+1/2×[A+m(t)]cos2ωc t 低通输出:A/2 +m(t)/2 隔直流输出:s 0(t)=m(t)/2 噪声通过解调器 相乘输出: [n c (t)cos ωc t-n s (t)sin ωc t] cos ωc t=n c (t)/2+n c (t)/2×cos2ωc t-n s (t)/2×sin2ωc t 低通滤波器输出:n c (t)/2 隔直流输出:n 0(t)=n c (t)/2 输入信号功率:()[]()2 22222 t m A t s E s AM i +==, 输入噪声功率:B n t n N i i 02 )(== 输出信号功率:()()422 00t m t s S == , 输出噪声功率:()()B n t n t n N c 0202 04 14== = () ()[] ()() t m A t m t m A B n B n N S N S G t m i i AM 2 2 22 2 2 1 00414002//2 += +?==∴ 证毕。 4-5 设一宽带频率调制系统,载波振幅为100V ,载频为100MH Z ,调制信号m(t)的频带限制在5kH Z , ()2 25000,500/(.)F m t V k rad sV π==,最大频偏Δf=75KH Z ,并设信道中噪声

第四章模拟通信分解

通信原理电子教案 第4章模拟调制系统 学习目标: 调制的目的、定义和分类; 幅度调制的原理; 线性调制系统的抗噪声性能; 角调制的原理; 模拟调制系统的性能比较; 频分复用(FDM)的基本原理。 重点难点:各种线性调制的时域和频域表示,时域波形和频域结构,调制器和解调器原理框图,抗噪声性能,门限效应;FM与PM的关系,调频指数与最大频偏的定义,卡森公式。 课外作业:4-1,4-2,4-5,4-6,4-,7,4-8,4-11,4-12,4-13,4-14,4-17 本章共分5讲(总第13~17讲) 第十三讲幅度调制的原理(一) 主要内容:AM和DSB的调制原理,已调信号的时域波形和频谱分布;SSB的滤波法调制原理。 引言: 基带信号具有较低的频率分量,不宜通过无线信道传输。因此,在通信系统的发送端需要由一个载波来运载基带信号,也就是使载波信号的某一个(或几个)参量随基带信号改变,这一过程就称为调制。在通信系统的接收端则需要有解调过程。 调制的目的是:(1)将调制信号(基带信号)转换成适合于信道传输的已调

信号(频带信号);(2)实现信道的多路复用,提高信道利用率;(3)减小干扰,提高系统抗干扰能力;(4)实现传输带宽与信噪比之间的互换。 根据调制信号的形式可分为模拟调制和数字调制;根据载波的选择可分为以正弦波作为载波的连续波调制和以脉冲串作为载波的脉冲调制。 本章重点讨论用取值连续的调制信号去控制正弦载波参数的模拟调制。 §4.1 幅度调制(线性调制)的原理 一、幅度调制器的一般模型 幅度调制是用调制信号去控制高频载波的振幅,使其按调制信号的规律而变化。幅度调制器的一般模型如图所示。 图4-1 幅度调制器的一般模型 已调信号的时域和频域表示式: )(]cos )([)(t h t t m t s c m *=ω )()])([2 1 )(ωωωωωωH M M S c c m -++= 幅度调制信号,在波形上,它的幅度随基带信号规律而变化;在频谱结构上,它的频谱完全是基带信号频谱结构在频域内的简单搬移。由于这种搬移是线性的,因此,幅度调制通常又称为线性调制。 在该模型中,适当选择滤波器的特性)(ωH ,便可以得到各种幅度调制信号。 1. 调幅(AM) 在图4-1中,假设)()(t t h δ=,调制信号)(t m 叠加直流0A 后与载波相乘,就可形成调幅(AM)信号。

数字调制技术

数字调制技术 一般情况下,信道不能直接传输由信息源产生的原始信号,信息源产生的信号需要变换成适合信号,才能在信道中传输。将信息源产生的信号变换成适合于信道传输的信号的过程称为调制。在调制电路中,调制信号是数字信号,因此这种调制称为数字调制。数字调制是现代通信的重要方法,它与模拟调制相比有许多优点:数字调制具有更好的抗干扰性能、更强的抗信道损耗及更高的安全性。在数字调制中,调制信号可以表示为符号或脉冲的时间序列,其中每个符号可以有m种有限状态,而每个符号又可采用n比特来表示。主要的数字调制方式包括幅移键控(amplitude shift keying,ASK)、频移键控(frequency shift keying,FSK)、相移键控(phase shift keying,PSK)、多电平正交调幅(multi level quadrature amplitude modulation,mQAM)、多相相移键控(multiphase shift keying,mPSK),也包括近期发展起来的网格编码调制(trellis coded modulation,TCM)、残留边带(vestigial sideband,VSB)调制、正交频分复用(orthogonal frequency division multiplexing,OFDM)调制等。 1.幅移键控 幅移键控就是用数字信号控制高频振荡的幅度,可以通过乘法器和开关电路来实现。幅移键控载波在数字信号1或0的控制下通或断。在信号为1的状态下,载波接通,此时传输信道上有载波出现;在信号为0的状态下,载波被关断,此时传输信道上无载波传送。那么,在接收端就可以根据载波的有无还原出数字信号1和0。移动通信要求调制方式抗干扰能力强、误码性能好、频谱利用率高。二进制幅移键控的抗干扰能力和抗衰落能力差,误码率高于其他调制方式,因此一般不在移动通信中使用。 2. 频移键控 频移键控或称数字频率控制,是数字通信中较早使用的一种调制方式。频移键控广泛应用于低速数据传输设备中。它的调制方法简单、易于实现,解调不需要回复本地载波,可以异步传输,抗噪声和抗衰落能力强。因此,频移键控成为在模拟电话网上传输数据的低速、低成本异步调制解调器的一种主要调制方式。频移键控是用载波的频率来传送数字消息的,即用所传送的数字消息控制载波的

第四章 模拟调制系统习题答案教学文案

第四章模拟调制系统 习题答案

第四章 模拟调制系统习题答案 4-1 根据图P4-1所示的调制信号波形,试画出DSB 及AM 信号的波形图,并比 解 由包络检波后波形可知:DSB 解调信号已严重失真,而AM 的解调信号不失真。所以,AM 信号采用包络检波法解调,DSB 信号不能采用包络检波法解调。 4-2 设某信道具有均匀的双边噪声功率谱密度P n (f)=0.5×10-3 W/H Z ,在该信道中传输抑制载波的双边带信号,并设调制信号m(t)的频带限制在5kH Z ,而载波为100kH Z ,调制信号的功率为10kW 。若接收机的输入信号在加至解调器之前,先经过带宽为10kH z 的一理想带通滤波器,试问 (1) 该理想带通滤波器中心频率为多大? (2) 解调器输入端的信噪功率比为多少? (3) 解调器输出端的信噪功率比为多少? (4) 求出解调器输出端的噪声功率谱密度,并用图形表示出来。 解 (1)为了保证信号顺利通过和尽可能的滤除噪声,带通滤波器的带宽等于已调信号宽度,即B=2f m =2×5=10kH Z ,其中心频率应选信号的载波频率100kH Z ,带通滤波器特性为 ()???≤≤=其它 010595Z z kH f kH k H ω

(2) S i =10kW N i =2BP n (f)=2×10×103×0.5×10-3=10W 故输入信噪比 S i /N i =1000 (3) 因有G DSB =2,故输出信噪比 002210002000i i S S N N =?=?= (4) 根据双边带解调器的输出噪声与输入噪声功率之间的关系,有 W N N i 5.24 10410=== 故 ()()Z n Z m n kH f f p H W f N f P 52 1105.021/1025.010525.2233300≤=??=?=??==--双 其双边谱如右图所示 4-3某线性调制系统的输出信噪比为20dB ,输出噪声功率为10-9W ,由发射机输出端到解调器输入端之间总的传输损耗为100dB ,试求: ⑴DSB/SC 时的发射机输出功率; ⑵SSB/SC 时的发射机输出功率。 解:设发射机输出功率为S F ,解调器输入功率为S r ,由题意,传输损耗 K =S F /S r =1010 (100dB) 已知S 0/N 0=100 (20dB),N 0=10-9W ⑴对于DSB 方式,因为G =2, 则00111005022 i i S S N N ==?= 又N i =4N 0 故S i =50×N i =50×4N 0=200×10-9=2×10-7W 所以发射功率S F =KS i =1010×2×10-7=2×103W ⑵对于SSB ,因为G =1, 则00 100i i S S N N ==,故S i =100×4N 0=400×10-9=4×10-7W 所以发射功率S F =KS i =1010×4×10-7=4×103W 4-4试证明:当AM 信号采用同步检波法进行解调时,其制度增益G 与公式(4.2-55)的结果相同。 证明:设接收到的AM信号为s AM (t)=[A+m(t)]cos ωc t ,相干载波为 c(t)=cos ωc t 噪声为:n i (t)=n c (t)cos ωc t-n s (t)sin ωc t 信号通过解调器 相乘输出:s AM (t) c(t)=[A+m(t)]cos 2ωc t =A /2+m(t)/2+1 /2×[A+m(t)]cos2ωc t 低通输出:A/2 +m(t)/2

各种数字调制方法对比

调制是所有无线通信的基础,调制是一个将数据传送到无线电载波上用于发射的过程。如今的大多数无线传输都是数字过程,并且可用的频谱有限,因此调制方式变得前所未有地重要。 如今的调制的主要目的是将尽可能多的数据压缩到最少的频谱中。此目标被称为频谱效率,量度数据在分配的带宽中传输的速度。此度量的单位是比特每秒每赫兹(b/s/Hz)。现在已现出现了多种用来实现和提高频谱效率的技术。 幅移键控(ASK)和频移键控(FSK) 调制正弦无线电载波有三种基本方法:更改振幅、频率或相位。比较先进的方法则通过整合两个或者更多这些方法的变体来提高频谱效率。如今,这些基本的调制方式仍在数字信号领域中使用。 图1显示了二进制零的基本串行数字信号和用于发射的信号以及经过调制后的相应AM和FM信号。有两种AM信号:开关调制(OOK)和幅移键控(ASK)。在图1a中 ,载波振幅在两个振幅级之间变化,从而产生ASK调制。在图1b中,二进制信号关断和导通载波,从而产生OOK调制。 图1:三种基本的数字调制方式仍在低数据速率短距离无线应用中相当流行: 幅移键控(a)、开关键控(b)和频移键控(c)。在载波零交叉点发生二进制状态变化时,这些波形是相 干的。 AM在与调制信号的最高频率含量相等的载波频率之上和之下产生边带。所需的带宽是最高频率含量的两倍,包括二进制脉冲调制信号的谐波。 频移键控(FSK)使载波在两个不同的频率(称为标记频率和空间频率,即fm和fs)之间变换(图1c)。FM会在载波频率之上和之下产生多个边带频率。产生的带宽是最高调制频率(包含谐波和调制指数)的函数,即: m = Δf(T) Δf是标记频率与空间频率之间的频率偏移,或者: Δf = fs –fm T是数据的时间间隔或者数据速率的倒数(1/bit/s)。

通信原理第三章(模拟调制原理)习题及其答案

第三章(模拟调制原理)习题及其答案【题3-1】已知线性调制信号表示式如下: (1)cos cos c t w t Ω(2)(10.5sin)cos c t w t +Ω 式中, 6 c w=Ω。试分别画出它们的波形图和频谱图。 【答案3-1】 (1)如图所示,分别是cos cos c t w t Ω的波形图和频谱图 设 () M S w是cos cos c t w t Ω的傅立叶变换,有 ()[()() 2 ()()] [(7)(5)(5)(7)] 2 M c c c c S w w w w w w w w w w w w w π δδ δδ π δδδδ =+Ω+++Ω- +-Ω++-Ω- =+Ω+-Ω++Ω+-Ω (2)如图所示分别是(10.5sin)cos c t w t +Ω的波形图和频谱图:

设 () M S w是(10.5sin)cos c t w t +Ω的傅立叶变换,有 ()[()()] [()() 2 ()()] [(6)(6)] [(7)(5) 2 (7)(5)] M c c c c c c S w w w w w j w w w w w w w w w w j w w w w πδδ π δδ δδ πδδ π δδ δδ =++- ++Ω+++Ω- --Ω+--Ω- =+Ω+-Ω ++Ω+-Ω --Ω-+Ω 【题3-2】根据下图所示的调制信号波形,试画出DSB及AM信号的波形图,并比较它们分别通过包络检波器后的波形差别。 t m(t) 【答案3-2】 AM波形如下:

通过低通滤波器后,AM 解调波形如下: DSB 波形如下: 通过低通滤波器后,DSB 解调波形如下: 由图形可知,DSB 采用包络检波法时产生了失真。 【题3-3】已知调制信号()cos(2000)cos(4000)m t t t ππ=+载波为 4cos10t π,进行单边带调制,试确定单边带信号的表达式,并画出频谱图。 【答案3-3】 可写出上边带的时域表示式

《通信原理》——现代数字调制技术

第9章现代数字调制技术 对数字调制技术的设计和改进,一般主要在以下几个方面: (1)在现有的带宽内,尽可能提高传输信息的速率,即提高频带利用率。 (2)压缩信号功率谱主瓣的宽度。数字信号很多具有无限的带宽,实际传输中只能对其进行带限,即保留信号功率谱的主瓣。压缩主瓣宽度能压缩信号占用带宽,同样也能提高频带利用率。 (3)提高功率谱集中程度,抑制旁瓣功率,减少带外辐射。即尽可能使信号功率谱集中在主瓣中,减少相互之间的频带干扰。 (4)抗多径效应,抗码间串扰,提高纠错能力等。多经效应指的是信号在传输过程中,通过了两条或更多的信道达到接收方(典型的,例如移动通信中无线电波的多点反射),这样接收方收到的信号实际上是经过多条路径传输来的信号的叠加。由于多条信道之间在距离、信道频率特性、衰减以及移动速度等方面存在的差别,造成多径信号各分量到达接收方时间和幅度、相位等都不同,由此造成了信号在时域上展宽、在频域上产生多普勒频移等失真。 (5)综合考虑系统的复杂程度、实现难度和成本等。

9.1 偏移四相相移键控 9.1.1 QPSK信号的缺点 理想方波信号带宽无限,带限信号引起包络起伏; 当信号发生相位跳变时,会造成包络起伏; QPSK的相位星座存在180度的跳变,造成零包络。 QPSK信号的星座图 滤波引起的包络起伏相位跳变

9.1.2 偏移四相相移键控(OQPSK)的特点 恒包络数字调制技术又称交错正交相移键控,参差四相相移键控,双二相相移键控。 用两路二进制信号合成一路四相信号,两路基带信号错开半个码元周期,其表达式为 因为码元周期,故而不会出现“对角线”的跳变,而是沿着四边变化,从而抑止了零包络现象。 OQPSK的星座图和相位变化 OQPSK的调制和解调电路

模拟调制系统.doc

第四章模拟调制系统 4.1 引言 由消息变换过来的原始信号具有频率较低的频谱分量,这种信号大多不 适宜直接传输。必须先经过在发送端调制才便于信道传输。而在接收端解调。 所谓调制,就是按原始信号(基带信号、调制信号)的变化规律去改变 载波某些参数的过程。 ①将基带信号频谱搬移到载频附近,便于 发送接收; 调制的作用: ②实现信道复用,即在一个信道中同时传 输多路信息信号; ③利用信号带宽和信噪比的互换性,提高 通信系统的抗干扰性。 常用调制方式分类: 连续波调制 模拟调制 数字调制幅度调制 频率调制 振幅键控(ASK) 频移键控(FSK) 脉冲幅度调制 模拟调制脉冲宽度调制 脉冲位置调制脉冲调制 数字调制脉冲编码调制(PCM)增量调制(?M) 4.2 幅度调制(线性调制)原理 幅度调制是高频正弦载波的幅度随调制信号作线性变化的过程。 一、线性调制器的一般模型 所谓线性调制:波形上,幅度随基带信号呈正比例变化; 频率上,简单搬移。 但是,已调信号和基带信号之间非线性。

58

s t A cos t c 正弦型载波: 振幅载波角频率 基带调制信号(消息信号):m t M 用消息信号(调制信号)m t 去调制正弦型载波s t A cos c t ,或者说正弦载波的幅度随消息信号作线性变化。 已调信号:m t A cos A t c 2 M M c c 已调信号的频谱,s m t ~ 已调信号 可看出M 频率 搬移了。 第一章讲过,消息信号m t 类比货物,A t cos(可看成幅度 A 1) c 类比火车,货物m t 承载在火车带通滤波器 h t s m t c os t 上,发送给接收方,类比到 c cos t c 达站上海车站,到站后卸货,即接 图:线性调制器的一般模型 收机解调。 已调信号s t m 的产生方法如图:(即线性调制器的一般模型)带通滤波器的传递函数:H ,带通滤波器的冲激响应:H h t 线性调制器的输出: 时域表示: s m t m t cos c t h t 频域表示: 1 S m 2 M M H c c 在该模型中,适当地选择带通滤波器的传递函数,可得到不同的幅度调制信号: 普通调幅AM 双边带信号(DSB—SC)

模拟通信调制解调技术的仿真实现

南昌工程学院 《通信原理》课程设计 题目模拟通信调制解调技术的仿真实现—— 相角调制——频率调制 课程名称通信系统原理 系院信息工程学院 专业09通信工程 班级一班 学生姓名 学号 设计地点电子信息楼B405 指导教师侯友国 设计起止时间:2012年6月4日至2012年6月15日

目录 一、需求分析 (2) 二、系统总体设计 (2) 三、系统详细设计 (4) 1.解调过程分析 (4) 四、调试与维护 (5) 频率调制的Matlab演示源程序 (5) 六、参考文献 (8) 七、指导教师评阅(手写) (9)

)(K π <

模拟调制系统概述

第四章数字信号的基带传输 由消息转换过来的原始信号所具有的频带称为基本频带(或基带)。对基带信号的频谱不做搬移的传输称为基带传输。 一、数字基带信号的基本波形 1.单极性不归零码 图例。 1和0分别对应于正电压(或负电压)和零电压,只能用于极短距离传送。 ①有直流成分;②判决电平在1/2处,较难稳定;③同步问题不能解决;④ 需要解决接地(零电平)问题。 2.双极性不归零码 图例。 1和0分别对应于正电压和负电压,可用于低速数据传送如RS-232。①统计平均1和0出现各一半时无直流成分;②判决电平为0电平,容易稳定;③不需要解决接地(零电平)问题;④同步问题仍然不能解决;⑤1和0不等概率分布时有直流成分。 3.单极性归零码 图例。 1对应于一个宽度τ小于码元宽度T的正脉冲,0无脉冲,τ/T称为占空比。 可提取同步信号。 4.双极性归零码 图例。 1和0分别对应于一个宽度τ小于码元宽度T的正脉冲和负脉冲。相邻脉冲必有零电平,可提取同步信号。 5.差分码 图例。 以相邻码元电平极性的改变表示1,否则表示0。(“1”差分码) 6.多进制码 每一个码元可表示若干二进制数。如四进制码。 图例。

二、数字基带信号的线路编码 对原始基带信号作编码转换时需要遵循的原则: ?无直流分量,尽量在中频带; ?包含定时信息; ?与信源统计特性无关; ?一定的错误检测能力; ?误码增殖小; ?转换设备简单; ?传输效率高。 1.曼彻斯特码 每个码元用两个连续且极性相反的脉冲来表示,比如用“正+负”脉冲表示1,用“负+正”脉冲表示0。直流分量被完全消除,在连续1和连续0都有码元间隔。 图例。 2.差分曼彻斯特码 图例。 每个码元用两个连续且极性相反的脉冲来表示,以相邻码元电平极性的改变表示0,否则表示1。(“0”差分双相码) 3.CMI码(Coded Mark Inversion) 用“负+正”脉冲(编码01)表示0,用“负+负”脉冲(00)“正+正”脉冲(11)表示1。规定接续的码元1(不管是否有0将它们隔开)须由交替反转的00或11表示。 图例。 4.Miller码(或延迟调制Delay Modulation) 1在码元周期中点跳变,单个零不跳变,连续两个0则在码元周期交界处跳变。 图例。 三、码间串扰 图例:基带信号的传输模型。

数字调制技术及其应用

摘要 我们知道,数字化时代音视频是人们用来传递信息、交流感情的主要方式。为了远距离传输这些信号,我们可以借助于无线电波。但利用无线电波通信时,需满足一个基本条件,即:欲发射信号的波长必须与发射天线的几何尺寸相比拟,该信号才能通过天线有效地发射出去。对于频率较低的信号来说,所需的天线尺寸很大,甚至有些不现实。因此,要想把低频率的音视频信号通过天线发射出去,我们可以将信源产生的原始低频率信号经过调制将其组合到更高频率的载波上。 关键字:数字调制,ADSL,GSM手机,DTV

数字调制技术及其应用 0 数字调制技术 数字调制一般指调制信号是数字的,而载波是连续波的调制方式。调制的过程就是按调制信号的变化规律去改变载波某些参数的过程。若正弦振荡的载波用Asin(2πft+φ)来表示,使其幅度A、频率f或相位φ随调制信号而变化,从而就可在载波上进 行调制。 数字幅度调制又称为振幅键控(Amplitude ShiftKeying,ASK),即载波的振幅随着原始数字信号而变化,例如数字信号“1”用有载波输出表示,数字信号“0”用无载波表示,如图1(a)所示。数字频率调制又称为频移键控(Frequency ShiftKeying,FSK),即载波的频率随着原始数字信号而变化,例如数字信号“1”用频率f1 表示,数字信号“0”用频率f2 表示,如图1(b)所示。 数字相位调制又称为相移键控(Phase ShiftKeying,PSK),即载波的初始相位随着原始数字信号而变化,例如数字信号“1”对应于相位180°,数字信号“0”对应于相位0°,如图1(c)所示。 以上我们讨论了数字调制的三种基本方式:数字幅度调制、数字频率调制和数字相位调制。 这三种数字调制方式是数字调制的基础。然而,这三种数字调制方式都存在某些不足,如频谱利用率低、抗多径衰落能力差、功率谱衰减慢、带外辐射严重等。为了改善这些不足,近几十年来人们陆续提出一些新的数字调制技术,以适应各种新的通信系统的要求。这些调制技术的研究,主要是围绕着寻找频带利用率高,同时抗干扰能力强的调制方式而展开的。现代数字调制技术主要有:正交振幅调制(QAM)、四相移键控(QPSK)、正交频分复用调制(OFDM)、高斯滤波最小频移键控(GMSK)、无载波振幅/相位调制(CAP)、离散多音频调制(DMT)、多电平正交幅度调制(MQAM)、多电平残留边带调制(MVSB )及正交频分复用调制(OFDM)等。 1 数字调制技术的应用 1.1 数字调制技术在ADSL上的应用

模拟调制技术及其应用

模拟调制技术及其应用 O 引言 通信信号调制方式自动识别是信号分析领域中一个比较重要的研究方向,尤其是在军事通信领域有着很大的应用前景。随着电子对抗技术研究的不断深人,迫切需要进行调制信号自动识别技术的研究,它被广泛应用于:信号确认,干扰识别,无线电侦听,电子对抗,信号监测和威胁分析等领域。当前最具吸引力的实现是软件无线电以及其它可重构系统。 常用的自动识别的方法有理论决策法和模式识别法两种,理论决策法是采用假设检验理论解决信号分类问题,通常根据信号的统计特性,基于耗费函数最小化原则导出统计检验量(主要特征量),并设置合适的门限识别信号。A.K.Nan.di 利用特征参数γ max 、δap、δdp,P识别AM、DSB、LSB、USB、FM、VSB、AM.FM 七种模拟调制方式,由于计算参数曲与需要提取对噪声敏感的非折叠相位信息,因此在低信噪比时识别准确率较低,文中指出在信噪比低于10dB时,识别准确率很低。Y.T.Chan仅利用R参数识别AM,FM,SSB,DSB信号,需要设置三个门限值,且相邻两个门限值之间相差很小,因此在低信噪比时识别效果也不好。在实际的军事通信系统中,AM、DSB、LSB、USB、FM五种模拟调制方式为常用的调制方式,因此可以根据这五种信号的特点,提出在低信噪比时有较高识别准确率的识别流程。本文针对低信噪比时通信信号模拟调制方式的特点,提出了一种基于决策理论的模拟调制方式识别流程,该流程综合运用y~,P,R三个特征参数对AM、DSB、LSB、USB、FM五种模拟调制方式进行识别。由于无相位信息参数,仅利用对噪声不敏感的瞬时幅度与谱对称信息,因此可以在低信噪比时对模拟通信信号进行识别,结合信号的线性平滑处理技术或小波门限消噪法对输人数据进行处理,可以进一步提高识别正确率。 1 特征参数的提取与识别流程设计 通信信号的调制信息包含在信号的瞬时幅度、相位、频率的变化之中,不同的信号其频谱也呈现不同的特征,通过提取瞬时幅度、相位、频率以及频谱的参数统计特征,可以识别不同的通信信号。本文根据AM、DSB、LSB、USB、FM五种 模拟调制方式的特点,提取的特征参数为γ max ,R,P,其中γ max ,R对应信号 的瞬时幅度特征,P对应频谱对称性特征。在一定的信噪比条件下,根据提取的三个特征参数值,通过设置合理的判决门限,就可以识别出这五种调制方式,判别准则如下: (1)零中心归一化瞬时幅度谱密度的最大值γ max : γ max =max|FFT(A cn (i))|2/N 式中, N s 为取样点数,A cn (i)为零中心归一化瞬时幅度,由下式计算:A (f)=A(i) /m ,A (i)=^A ( )一1,而m。=ΣA(i)为瞬时幅度A(i)的平均值,用平均值来

通信原理第4章课后习题答案

第四章 模拟调制 学习指导 4.1.1 要点 模拟调制的要点主要包括幅度调制、频率调制和相位调制的工作原理。 1. 幅度调制 幅度调制是用调制信号去控制载波信号的幅度,使之随调制信号作线性变化的过程。在时域上,已调信号的振幅随基带信号的规律成正比变化;在频谱结构上,它的频谱是基带信号频谱在频域内的简单平移。由于这种平移是线性的,因此,振幅调制通常又被称为线性调制。但是,这里的“线性”并不是已调信号与调制信号之间符合线性变换关系。事实上,任何调制过程都是一种非线性的变换过程。 幅度调制包括标准调幅(简称调幅)、双边带调幅、单边带调幅和残留边带调幅。 如果调制信号m (t )的直流分量为0,则将其与一个直流量A 0相叠加后,再与载波信号相乘,就得到了调幅信号,其时域表达式为 []()()()AM 0c 0c c ()()cos cos ()cos (4 - 1)s t A m t t A t m t t ωωω=+=+ 如果调制信号m (t )的频谱为M (ω),则调幅信号的频谱为 [][]AM 0c c c c 1 ()π()()()() (4 - 2)2 S A M M ωδωωδωωωωωω=++-+ ++- 调幅信号的频谱包括载波份量和上下两个边带。上边带的频谱结构与原调制信号的频谱结构相同,下边带是上边带的镜像。由波形可以看出,当满足条件 |m (t )| A 0 (4-3) 时,其包络与调制信号波形相同,因此可以用包络检波法很容易恢复出原始调制信号。否则,出现“过调幅”现象。这时用包络检波将发生失真,可以采用其他的解调方法,如同步检波。 调幅信号的一个重要参数是调幅度m ,其定义为 [][][][]00max min 00max min ()() (4 - 4)()()A m t A m t m A m t A m t +-+=+++ AM 信号带宽B AM 是基带信号最高频率分量f H 的两倍。 AM 信号可以采用相干解调方法实现解调。当调幅度不大于1时,也可以采用非相干解调方法,即包络检波,实现解调。 双边带信号的时域表达式为 ()DSB c ()()cos (4 - 5)s t m t t ω= 其中,调制信号m (t )中没有直流分量。 如果调制信号m (t )的频谱为M (ω),双边带信号的频谱为 []DSB c c 1 ()()() (4 - 6)2 S M M ωωωωω= ++-

模拟调制系统中FM的调制与解调汇总

1.绪论 1.1 模拟通信系统概述 随着社会生产力的发展,人们对传递消息的要求越来越高,通信,则承载着这个重要的任务。通信中要进行消息的传递,必须有发送者和接收者,发送者和接收者可以是人也可以是各种通信终端设备。换言之,通信可以在人与人之间,也可以在人与机器活机器与机器之间进行。必须有三大部分:一是发送端;二是接收端;三是收发两端之间的信道。通信系统主要分为模拟通信系统和数字通信系统。模拟通信系统通常由模拟信息源,调制器,信道,解调器与收信者组成。模型如下: 图1-1 模拟通信系统模型图 模拟通信在信道中传输的信号频谱比较窄,因此可通过多路复用使信道的利用率提高,但它的缺点是: 1)传输的信号是连续的,叠加噪声干扰后不易消除,即抗干扰能力较差; 2)不易保密通信; 3)设备不易大规模集成; 4)不适应飞速发展的计算机通信的要求 1.2 模拟信号调制解调 模拟通信系统中,调制与解调是通信系统中的重要环节,它使信号发生本质性的变化。本文主要对线性调制(AM,DSB,SSB)与非线性调制(FM,NBFM)的信号产生(调制)与接受(解调)的基本原理,方法技术加以讨论,并通过System View仿真验证常规双边带调幅(AM),双边带调幅(DSB),单边带调幅(SSB),频率调制(FM),窄带频率调制(NBFM)。通过此软件观察信号的调制与解调过程,并对输出波形进行分析。 模拟调制和解调是实现是实现模拟通信系统的重要组成部分。调制是将原始电信号变换成其频带适合信道传输的信号;解调是在接收端将信道中传输的信号还原成原始的电信

号;经过调制后的信号成为已调信号;发送端调制前和接收端解调后的信号成为基带信号。因此,原始电信号又称为基带信号,而已调信号又称为频带信号。 模拟信号的调制与解调是通信原理课程的经典内容,也是模拟通信时代的核心技术。虽然当代技术已发展为数字通信新时代,但模拟信号的调制与解调理论仍然是通信技术中的基础内容之一。 1.3仿真软件简介 1.3.1 System View软件介绍 1)System View是美国ELANIX公司推出的,基于Windows环境的用于系统仿真分析的可视化软件工具。它界面友好,使用方便。 2)System View是一个信号级的系统仿真软件,主要用于电路与通信系统的设计、仿真,是一个强有力的动态系统分析工具盒,能满足从数字信号处理、滤波器设计、直到复杂的通信系统等不同层次的设计,仿真要求。它可以构造各种复杂的模拟、数字、数模混合及多速率系统,可用于各种线性、非线性控制系统的设计和仿真。 3)System View以模块化和交互式的界面,在大家熟悉的Windows窗口环境下,为用户提供了一个嵌入式的分析引擎。使用System View你只需要关心项目的设计思想和过程,而不必花费大量的时间去编程建立系统仿真模型。用户只需要使用鼠标器点击图标即可完成复杂系统的建模、设计和测试,而不必学习复杂的计算机程序编制,也不必担心程序中是否存在编程错误。 1.3.2 System View仿真系统的特点 1)能仿真大量的应用系统 2)快速方便的动态系统设计与仿真 3)在报告中方便地加入System View的结论 4)提供基于组织结构图方式的设计 5)多速率系统和并行系统 6)完备的滤波器和线性系统设计 7)先进的信号分析和数据块处理 8)可扩展性 9)完善的自我诊断功能。 System View是一个用于电路与通信系统设计、仿真的动态分析工具,它实现了功能的

相关主题
文本预览
相关文档 最新文档