当前位置:文档之家› 电感和电容对交流的影响

电感和电容对交流的影响

电感和电容对交流的影响
电感和电容对交流的影响

Buck电路电感电容参数选择

(注:以下公式仅针对CCM模式) 1.占空比 (Vi-Vo)*Ton/L=Vo*Toff/L D=Vo/Vi D—占空比 2.电感 dIL= (Vi-Vo)*Ton/L dIL== L=5(Vi-Vo)Vo*T/(Vi*Io) IL_avg = Io IL_peak= IL_rms=ILavg*(1+12) L电感量的选取原则使电感纹波电流为电感电流的20%(可根据应用改变)dIL—电感纹波电流峰峰值 IL_avg—电感电流平均值 IL_peak—电感峰值电流 IL_rms—电感电流有效值 3.xx二极管 Id_peak= Vrd=Vi Id_peak—续流二极管峰值电流

Vrd—续流二级管反向耐压(Ton期间) 4.开关管 Isw_peak= Vsw_peak =Vi Isw_peak—开关管峰值电流 Vsw_peak—开关管耐压(Toff期间) 5.输出电容 Icin_rms = [(Io-Iin)D+Iin(1-D)] Ico_rms=dIL/ 电容选取:耐压、纹波电流、电容量 Icin_rms—输入电容的纹波电流有效值 Ico_rms—是输出电容的纹波电流有效值 技术资料,仅供参考 这里具体采用上海芯龙半导体有限公司降压IC举例说明 电源管理IC降压型电路电感应用XL4003 ①((Vi-Vo)/L)*D=(Vo/L)*(1-D)已知输入电压Vi,输出电压Vo,求出D;22 D=Vo/Vi ②Io 为设定值已知输出电流Io; ③Ton=T*D 求出Ton ④((Vi-Vo)/L)Ton=dI=*Io可求出L. L=((Vi-Vo) *Ton)/*Io)

开关电源电感的选取

为开关电源选择合适的电感 电感是开关电源中常用的元件,由于它的电流、电压相位不同,所以理论上损耗为零。电感常为储能元件,也常与电容一起用在输入滤波和输出滤波电路上,用来平滑电流。电感也被称为扼流圈,特点是流过其上的电流有“很大的惯性”。换句话说,由于磁通连续特性,电感上的电流必须是连续的,否则将会产生很大的电压尖峰。 电感为磁性元件,自然有磁饱和的问题。有的应用允许电感饱和,有的应用允许电感从一定电流值开始进入饱和,也有的应用不允许电感出现饱和,这要求在具体线路中进行区分。大多数情况下,电感工作在“线性区”,此时电感值为一常数,不随着端电压与电流而变化。但是,开关电源存在一个不可忽视的问题,即电感的绕线将导致两个分布参数(或寄生参数),一个是不可避免的绕线电阻,另一个是与绕制工艺、材料有关的分布式杂散电容。 杂散电容在低频时影响不大,但随频率的提高而渐显出来,当频率高到某个值以上时,电感也许变成电容特性了。如果将杂散电容“集”为一个电容,则从电感的等效电路可以看出在某一频率后所呈现的电容特性。 当分析电感在线路中的工作状况或者绘制电压电流波形图时,不妨考虑下面几个特点: 1. 当电感L 中有电流I 流过时,电感储存的能量为: E=0.5×L×I2 (1) 2. 在一个开关周期中,电感电流的变化(纹波电流峰峰值)与电感两端电压的关系为: V=(L×di)/dt (2) 由此可看出,纹波电流的大小跟电感值有关。 3. 就像电容有充、放电电流一样,电感器也有充、放电电压过程。电容上的电压与电流的积分(安·秒)成正比,电感上的电流与电压的积分(伏·秒)成正比。只要电感电压变化,电流变化率di/dt 也将变化;正向电压使电流线性上升,反向电压使电流线性下降。 计算出正确的电感值对选用合适的电感和输出电容以获得最小的输出电压纹波而言非常重要 从图1 可以看出,流过开关电源电感器的电流由交流和直流两种分量组成,因为交流分量具有较高的频率,所以它会通过输出电容流入地,产生相应的输出纹波电压dv=di×RESR。这个纹波电压应尽可能低,以免影响电源系统的正常操作,一般要求峰峰值为10mV~500mV。 纹波电流的大小同样会影响电感器和输出电容的尺寸,纹波电流一般设定为最大输出电流的10%~30%,因此对降压型电源来说,流过电感的电流峰值比电源输出电流大5%~15%。 降压型开关电源的电感选择 为降压型开关电源选择电感器时,需要确定最大输入电压、输出电压、电源开关频率、最大

电感和电容对交流电的影响

电感与电容对交流电得影响 一、电感对交流电得影响 实验:电感线圈 通直流、阻交流 原因:直流电,线圈对直流阻碍为其线电阻 交流电,电流时刻发生变化,线圈中产生自感电动势 感抗:电感对交流电得阻碍作用Rg =2/, f为交流电频率,L为电感得自感系数,“通低频,阻高 频” 应用:①低频扼流圈丄很大,对低频交流电有很大得阻碍作用,对高频交流电阻碍作用更大 ②高频扼流圈,L小,对低频交流电阻碍很小,对高频交流电阻碍大 思考:交流电路中直导线绕成线圈,电流如何变?(I减少) 2 50IIZ 5001b 二、电容对交流电得阻碍作用 直流,灯不亮

R Q = ----- 容抗:电容器对交流电得阻碍作用2",这里f就是交流电频率,C为电容器电容。

同步测试 1、如图所示,输入端db既有直流成分,乂有交流成分,以下说法中正确得就是(L得直流电阻不为零)() A.直流成分只能从L通过 B.交流成分只能从R通过 C.通过R得既有直流成分乂有交流成分 D.通过L得直流成分比通过R得直流成分必定要大 2、如图所示得电路中,正弦交流电源电压得有效值为220 V,则关于交流电压表得示数,以下说法中正确得就是() -220V 厂 B.大于220 V 厂 D.等于零 A.等于220 V C.小于220 V

ITT — AAAA J- 一 *b T C R A. 图屮中R 得到得就是交流成分 B. 图乙中R 得到得就是高频成分 C. 图乙中R 得到得就是低频成分 D. 图丙中R 得到得就是直流成分 二、综合题 6、收音机得音量控制电路部分如图所示,调节滑动变阻器得滑片P 可控制扬声器得音量, 但收音机直接收到得信号有干扰,即有直流与高频信号,为此需要用电容器G 、G 应分别 用较大得还就是较小得电容器? 上直流Ip L^R ;低频I 展开答案 6G 用电容较大得电容器,G 选用电容较小得电容器。 课外拓展 三相交流电发电机原理如图所示,其中AX 、BY 、CZ 三组完全相同得线圈,它们排列在圆周上位置彼 此差120°角度,当磁铁以角速度3匀速转动时,每个线圈中都会产生一个交变电动势,它们位相彼 此 竺 为3 ,因而有 1~H —O 扬 声 器

电容和电感区别

电容 电容(或电容量, Capacitance)指的是在给定电位差下的电荷储藏量;记为C,国际单位是法拉(F)。一般来说,电荷在电场中会受力而移动,当导体之间有了介质,则阻碍了电荷移动而使得电荷累积在导体上;造成电荷的累积储存,最常见的例子就是两片平行金属板。也是电容器的俗称。 电容(或称电容量)是表征电容器容纳电荷本领的物理量。我们把电容器的两极板间的电势差增加1伏所需的电量,叫做电容器的电容。电容器从物理学上讲,它是一种静态电荷存储介质(就像一只水桶一样,你可以把电荷充存进去,在没有放电回路的[1]情况下,刨除介质漏电自放电效应/电解电容比较明显,可能电荷会永久存在,这是它的特征),它的用途较广,它是电子、电力领域中不可缺少的电子元件。主要用于电源滤波、信号滤波、信号耦合、谐振、隔直流等电路中。 电容的符号是C。 C=εS/d=εS/4πkd(真空)=Q/U 在国际单位制里,电容的单位是法拉,简称法,符号是F,常用的电容单位有毫法(mF)、微法(μF)、纳法(nF)和皮法(pF)(皮法又称微微法)等, 换算关系是: 1法拉(F)= 1000毫法(mF)=1000000微法(μF) 1微法(μF)= 1000纳法(nF)= 1000000皮法(pF)。 电子电路中,只有在电容器充电过程中,才有电流流过,充电过程结束后,电容器是不能通过直流电的,在电路中起着“隔直流”的作用。电路中,电容器常被用作耦合、旁路、滤波等,都是利用它“通交流,隔直流”的特性。那么交流电为什么能够通过电容器呢?我们先来看看交流电的特点。交流电不仅方向往复交变,它的大小也在按规律变化。电容器接在交流电源上,电容器连续地充电、放电,电路中就会流过与交流电变化规律一致(相位不同)的充电电流和放电电流。 电容器的选用涉及到很多问题。首先是耐压的问题。加在一个电容器的两端的电压超过了它的额定电压,电容器就会被击穿损坏。一般电解电容的耐压分档为6.3V,10V,16V,25V,50V等。 电感 电感是指线圈在磁场中活动时,所能感应到的电流的强度,单位是“亨利”(H)。也指利用此性质制成的元件。 电感器(电感线圈)和变压器均是用绝缘导线(例如漆包线、纱包线等)绕制而成的电磁感应元件,也是电子电路中常用的元器件之一,相关产品如共模滤波器等。 电感简介 diàn’gǎn [INDUCTOR] ,复数:INDUCTORS 电感器(电感线圈)和变压器均是用绝缘导线(例如漆包线、纱包线等)绕制而成的电磁感应元件,也是电子电路中常用的元器件之一,相关产品如共模滤波器等。 编辑本段自感与互感 自感

电容电感的选择及EMI 中的应用

电容电感的选择及EMI中的应用 电容电感的选择及EMI中的应用 云母电容: 用金属箔或者在云母片上喷涂银层做电极板,极板和云母一层一层叠合后,再压铸在胶木粉或封固在环氧树脂中制成。它的特点是介质损耗小,绝缘电阻大、温度系数小,适宜用于高频电路。 陶瓷电容: 用陶瓷做介质,在陶瓷基体两面喷涂银层,然后烧成银质薄膜做极板制成。它的特点是体积小,耐热性好、损耗小、绝缘电阻高,但容量小,适宜用于高频电路。 铁电陶瓷电容容量较大,但是损耗和温度系数较大,适宜用于低频电路。 薄膜电容: 结构和纸介电容相同,介质是涤纶或者聚苯乙烯。涤纶薄膜电容,介电常数较高,体积小,容量大,稳定性较好,适宜做旁路电容。 聚苯乙烯薄膜电容,介质损耗小,绝缘电阻高,但是温度系数大,可用于高频电路。 金属化纸介电容 结构和纸介电容基本相同。它是在电容器纸上覆上一层金属膜来代替金属箔,体积小,容量较大,一般用在低频电路中。 油浸纸介电容: 它是把纸介电容浸在经过特别处理的油里,能增强它的耐压。它的特点是电容量大、耐压高,但是体积较大。 铝电解电容: 它是由铝圆筒做负极,里面装有液体电解质,插入一片弯曲的铝带做正极制成。还需要经过直流电压处理,使正极片上形成一层氧化膜做介质。它的特点是容量大,但是漏电大,稳定性差,有正负极性,适宜用于电源滤波或者低频电路中。使用的时候,正负极不要接反。 钽、铌电解电容: 它用金属钽或者铌做正极,用稀硫酸等配液做负极,用钽或铌表面生成的氧化膜做介质制成。它的特点是体积小、容量大、性能稳定、寿命长、绝缘电阻大、温度特性好。用在要求较高的设备中。 半可变电容: 也叫做微调电容。它是由两片或者两组小型金属弹片,中间夹着介质制成。调节的时候改变两片之间的距离或者面积。它的介质有空气、陶瓷、云母、薄膜等。 可变电容: 它由一组定片和一组动片组成,它的容量随着动片的转动可以连续改变。把两组可变电容装在一起同轴转动,叫做双连。可变电容的介质有空气和聚苯乙烯两种。空气介质可变电容体积大,损耗小,多用在电子管收音机中。聚苯乙烯介质可变电容做成密封式的,体积小,多用在晶体管收音机中。 NPO(COG):电气性能最稳定,基本上不随温度、电压与时间的改变面改变,适用于对稳定性要求高的高频电路;

电感和电容对交流的影响教案

年月日高中物理课堂教学教案

(一)引入新课 在直流电路中,影响电流跟电压关系的只有电阻。在交变电流路中,影响电流跟电压关系 的,除了电阻外,还有电感和电容。电阻器、电感器、电容器是交变电流路中三种基本元件。这节课 我们学习电感、电容对交变电流的影响。 (二)进行新课 1.电感对交变电流的阻碍作用 [演示]电阻、电感对交、直流的影响。实验电路如下图甲、乙所示 演示甲图,电键分别接到交、直流电源上,引导学生观察两次灯的亮度 灯的亮度相同。说明电阻对交流和直流的阻碍作用相同。 演示乙图,电键分别接到交、直流电源上,引导学生观察两次灯的亮度 电键接到直流上,亮度不变;接到交流上时,灯泡亮度变暗。说明线圈对直流电和交变电流的 阻碍作用不同。 线圈对直流电的阻碍作用只是电阻;而对交变电流的阻碍作用除了电阻之外,还 有电感.为什么会产生这种现象呢? 由电磁感应的知识可知,当线圈中通过交变电流时,产生自感电动势,阻碍电流的变化。 电感对交变电流阻碍作用的大小,用感抗来表示。感抗的大小与哪些因素有关? 请同学们阅读教材后回答。 感抗决定于线圈的自感系数和交变电流的频率。线圈的自感系数越大,自感作用 就越大,感抗就越大;交变电流的频率越高,电流变化越快,自感作用越大,感抗越大。 线圈在电子技术中有广泛应用,有两种扼流圈就是利用电感对交变电流的阻碍作 用制成的。出示扼流圈,并介绍其构造和作用。 (1)低频扼流圈 构造:线圈绕在闭合铁芯上,匝数多,自感系数很大。 作用:对低频交变电流有很大的阻碍作用。即“通直流、阻交流”。 (2)高频扼流圈 构造:线圈绕在铁氧体芯上,线圈匝数少,自感系数小。 作用:对低频交变电流阻碍小,对高频交变电流阻碍大。即“通低频、阻高频”。 2?交变电流能够通过电容器 [演示]电容对交、直流的影响。实验电路如图所示: 教学活动学生活动

为DC-DC选择正确的电感和电容

为DC/DC转换器选择正确的电感器与电容器 随着手机、PDA以及其它便携式电子产品在不断小型化,其复杂性同时也在相应提高,这使设计工程师面临的问题越来越多,如电池使用寿命、占板空间、散热或功耗等。 使用DC/DC转换器主要是为了提高效率。很多设计都要求将电池电压转换成较低的供电电压,尽管采用线性稳压器即可实现这一转换,但它并不能达到基于开关稳压器设计的高效率。本文将介绍设计工程师在权衡解决方案的占用空间、性能以及成本时必须要面对的常见问题。 大信号与小信号响应 开关转换器采用非常复杂的稳压方法保持重/轻负载时的高效率。现在的CPU内核电源要求稳压器提供快速而通畅的大信号响应。例如,当处理器从空闲模式切换至全速工作模式时,内核吸收的电流会从几十微安很快地上升到数百毫安。 随着负载条件变化,环路会迅速响应新的要求,以便将电压控制在稳压限制范围之内。负载变化幅度和速率决定环路响应是大信号响应还是小信号响应。我们可根据稳态工作点定义小信号参数。因此,我们一般将低于稳态工作点10%的变化称为小信号变化。 实际上,误差放大器处于压摆范围(slew limit)内,由于负载瞬态发生速度超过误差放大器的响应速度,放大器并不控制环路,所以,在电感器电流达到要求之前,由输出电容器满足瞬态电流要求。 大信号响应会暂时使环路停止工作。不过,在进入和退出大信号响应之前,环路必须提供良好的响应。环路带宽越高,负载瞬态响应速度就越快。 从小信号角度来看,尽管稳压环路可以提供足够的增益和相位裕度,但是开关转换器在线路或负载瞬态期间仍然可能出现不稳定状态和振铃现象。在选择外部元件时,电源设计工程师应意识到这些局限性,否则其设计就有可能遇到麻烦。 电感器选型 以图1所示的基本降压稳压器为例,说明电感器的选型。 对大多数TPS6220x应用而言,电感器的电感值范围为4.7uH~10uH。电感值的选择取决于期望的纹波电流。一般建议纹波电流应低于平均电感电流的20%。如等式1所示,较高的VIN或VOUT也会增加纹波电流。电感器当然必须能够在不造成磁芯饱和(意味着电感损失)情况下处理峰值开关电流。 以增加输出电压纹波为代价,使用低值电感器便可提高输出电流变化速度,从而改善转换器的负载瞬态响应。高值电感器则可以降低纹波电流和磁芯磁滞损耗。 可将线圈总损耗结合到损耗电阻(Rs)中,该电阻与理想电感(Ls)串联,组成了一个如图1所示的简化等效电路。 尽管Rs损耗与频率有关,但在产品说明书中仍对直流电阻(RDC)进行了定义。该电阻取决于所采用的材料或贴片电感器的构造类型,在室温条件下通过简单的电阻测量即可获得。RDC的大小直接影响线圈的温度上升。因此,应当避免长时间超过电流额定值。

8.9 电感线圈和电容器的并联谐振电路

8.9 电感线圈和电容器的并联谐振电路 考纲要求:掌握并联谐振的条件、特点及其应用。 教学目的要求:掌握电感线圈和电容器并联谐振的条件、特点和应用。 教学重点:电感线圈和电容器并联谐振的条件、特点和应用。 教学难点:电感线圈和电容器并联谐振的条件、特点和应用。 课时安排:2节课型:复习 教学过程: 【知识点回顾】 一、并联谐振的条件: 推导过程: ∴条件: 二、并联谐振的频率 ω0= R= 。 三、谐振时电路的特点 (1)阻抗特点:。 推导过程: |Z0|= (2)电流特点:。 I0= 。 电感和电容上的电流接近相等,并为总电流的Q倍。 电路的品质因数Q = 。 并联谐振和串联谐振的谐振曲线形状相同,选择性和通频带也一样。 四、并联谐振的应用

要使L、C回路两端得到f0的信号电压,则必须调节回路中的电容C,使L、C回路在频率f0处谐振,这样L、C回路对f0信号呈现阻抗最大,并为纯电阻性,所以各电路上的电压是与电阻大小成正比,故f0信号的电压将在L、C回路两端有最大值,而其他频率信号的电压由于L、C回路失谐后的阻抗小于谐振时的阻抗,故在它两端所分配的电压将小于f0信号的电压。 【课前练习】 一、判断题 1、电感线圈与电容器的并联电路与RLC串联电路的谐振条件相同,都是X L=X C. ( ) 2、RLC串联谐振电路适用于信号源内阻较小的情况,而电感线圈与电容器构成的并联谐振电路适用于信号源内阻较大的情况。 ( ) 3、电感线圈与电容器构成的并联谐振电路用作选频电路时,品质因数越高,通频带就越宽,选择性就越好。 ( ) 二、选择题 1、电感线圈与电容器并联的正弦交流电路的谐振频率为f0,若交流电源的频率升高,则电路呈 ( ) A.阻性 B感性 C.容性 D.条件不足,无法确定 三、填空题 1、如图所示,在电感线圈与电容器并联的电路中,已知 u=2202sin 314t V,R=8Ω, X L=6Ω,Xc=22Ω,则各仪 表读数为A1 ,A2 ,A 。 四、分析计算题 1、在图示正弦交流电路中,已知u =2202sin 314t V,i1=22sin(314t-45O)A,i2=11 2sin(314t+90 O)A,试求各仪表读数及参数R、L、C。 2、在电感线圈和电容器组成的并联谐振电路中,若已知谐振时阻抗是10kΩ,电感是0.02 mH,电容是200 pF,求电阻和电路的品质因数。 【巩固练习】 1、在下图所示的两个电路中,若要在输入信号源中选出频率为f1的信号电压加得到负载RL 上,则A、B两点间应接入怎样的谐振电路,其应满足什么条件?

DCDC转换器如何选择电感与电容

随着手机、PDA以及其它便携式电子产品在不断小型化,其复杂性同时也在相应提高,这使设计工程师面临的问题越来越多,如电池使用寿命、占板空间、散热或功耗等。 使用DC/DC转换器主要是为了提高效率。很多设计都要求将电池电压转换成较低的供电电压,尽管采用线性稳压器即可实现这一转换,但它并不能达到基于开关稳压器设计的高效率。本文将介绍设计工程师在权衡解决方案的占用空间、性能以及成本时必须要面对的常见问题。 大信号与小信号响应 开关转换器采用非常复杂的稳压方法保持重/轻负载时的高效率。现在的CPU内核电源要求稳压器提供快速而通畅的大信号响应。例如,当处理器从空闲模式切换至全速工作模式时,内核吸收的电流会从几十微安很快地上升到数百毫安。 随着负载条件变化,环路会迅速响应新的要求,以便将电压控制在稳压限制范围之内。负载变化幅度和速率决定环路响应是大信号响应还是小信号响应。我们可根据稳态工作点定义小信号参数。因此,我们一般将低于稳态工作点10%的变化称为小信号变化。 实际上,误差放大器处于压摆范围(slew limit)内,由于负载瞬态发生速度超过误差放大器的响应速度,放大器并不控制环路,所以,在电感器电流达到要求之前,由输出电容器满足瞬态电流要求。

大信号响应会暂时使环路停止工作。不过,在进入和退出大信号响应之前,环路必须提供良好的响应。环路带宽越高,负载瞬态响应速度就越快。 从小信号角度来看,尽管稳压环路可以提供足够的增益和相位裕度,但是开关转换器在线路或负载瞬态期间仍然可能出现不稳定状态和 振铃现象。在选择外部元件时,电源设计工程师应意识到这些局限性,否则其设计就有可能遇到麻烦。 电感器选型 以图1所示的基本降压稳压器为例,说明电感器的选型。 对大多数TPS6220x应用而言,电感器的电感值范围为4.7uH~10uH。电感值的选择取决于期望的纹波电流。一般建议纹波电流应低于平均电感电流的20%。如等式1所示,较高的V IN或V OUT也会增加纹波电流。电感器当然必须能够在不造成磁芯饱和(意味着电感损失)情况下处理峰值开关电流。 以增加输出电压纹波为代价,使用低值电感器便可提高输出电流变化速度,从而改善转换器的负载瞬态响应。高值电感器则可以降低纹波电流和磁芯磁滞损耗。

电感和电容对交变电流的影响

电感和电容对交变电流的影响 教学目标 知识目标 1、理解为什么电感对交变电流有阻碍作用. 2、知道用感抗来表示电感对交变电流阻碍作用的大小,知道感抗与哪些因素有关. 3、知道交变电流能通过电容器.知道为什么电容器对交变电流有阻碍作用. 4、知道用容抗来表示电容对交变电流阻碍作用的大小,知道容抗与哪些因素有关. 能力目标 使学生理解如何建立新的物理模型而培养学生处理解决新问题能力. 情感目标 1、通过电感和电容对交流电的阻碍作用体会事物的相对性与可变性. 2、让学生充分体会通路与断路之间的辩证统一性. 3、培养学生尊重事实,实事求是的科学精神和科学态度. 教学建议 教材分析 本节着重说明交流与直流的区别,有利于加深学生对交变电流特点的认识.教学重点突出交流与直流的区别,不要求深人讨论感抗和容抗的问题.可结合学校的实际情况,尽可能多用实验说明问题,不必在理论上进行讨论. 教法建议 1、根据电磁感应的知识,学生不难理解感抗的概念和影响感抗大小的因素.教学中要注意适当复习或回忆已学过的有关知识,让学生自然地得出结论.这样既有利于理解新知识,又可以培养学生的能力,使学生学会如何把知识联系起来,形成知识结构,进而独立地获取新知识. 2、对交变电流可以"通过"电容器的道理,课本用了一个形象的模拟图,结合电容器充、放电的过程加以说明,使学生有所了解即可.对于容抗的概念和影响容抗大小的因素,课本是直接给出的,让学生知道就可以了,不要作更深的讨论. 3、本节最后,结合实际说明了电容的广泛存在,可以适当加以扩展和引伸,以开阔学生思路和引导学生在学习中注意联系实际问题.

教学设计方案 电感和电容对交变电流作用 教学目的: 1、了解电感对电流的作用特点. 2、了解电容对电流的作用特点. 教学重点:电感和电容对交变电流的作用特点. 教学难点:电感和电容对交变电流的作用特点. 教学方法:启发式综合教学法 教学用具:小灯泡、线圈(有铁芯)、电容器、交流电源、直流电源. 教学过程: 一、引入: 在直流电流电路中,电压、电流和电阻的关系遵从欧姆定律,在交流电路中,如果电路中只有电阻,例如白炽灯、电炉等,实验和理论分析都表明,欧姆定律仍适用.但是如果电路中包括电感、电容,情况就要复杂了. 二、讲授新课: 1、电感对交变电流的作用: 实验:把一线圈与小灯泡串联后先后接到直流电源和交流电源上,观察现象: 现象:接直流的亮些,接交流的暗些. 引导学生得出结论:接交流的电路中电流小,间接表明电感对交流有阻碍作用. 为什么电感对交流有阻碍作用? 引导学生解释原因:交流通过线圈时,电流时刻在改变.由于线圈的自感作用,必然要产生感应电动势,阻碍电流的变化,这样就形成了对电流的阻碍作用. 实验和理论分析都表明:线圈的自感系数越大、交流的频率越高,线圈对交流的阻碍作用就越大.

电容和电感对交流电路的影响

引入新课: 我们学习了电路的知识和常见的三种电子元件──电阻、电容和电感。电阻对电流有阻碍作用,电感和电容对电流有什么影响?引出课题。 展示电路板:请同学们观察电路、元件连接情况,并画出电路图。哪位同学上台前将电路图画在黑板上。 教师板书:板书课题。 新课教学: ●探究一:对直流电的影响 教师设疑:请同学们猜想:接通直流电源,3个小 灯泡亮暗情况? 学生假设:留1分钟时间让学生思考讨论作出猜想 假设。 实验论证:学生上前台操作实验,演示给全体同学。 实验现象:由学生回答观察到的实验现象。 实验现象分析:学生分析,教师引导。 得出结论:学生总结;教师点化,精练语言。 教师板书:影响:直流 C 隔直流 L 通直流 ●探究二:对交流电的影响 教师设疑:请同学们猜想:接通交流电源,3个小灯泡亮暗情况? 学生假设:留1分钟时间让学生思考讨论作出猜想假设。 实验论证:学生上前台操作实验,演示给全体同学。提醒学生观察。 实验现象:由学生回答观察到的实验现象。 实验现象分析:学生分析,教师引导。 得出结论:学生总结;教师点评分析,精练语言。 教师板书:影响:交流 C 通交流 L 阻交流 ●教师设疑:L 2、L 3 的亮度为何小于L 1 的亮度? 师生合作交流:学生分析,教师进行正确引导,引出容抗和感抗两个概念。 教师板书:容抗和感抗 ●教师设疑:请同学们猜想:感抗和容抗与哪些因素有关? 学生假设:留1分钟时间让学生思考讨论作出猜想假设。 教师提问:教师鼓励学生主动起立回答问题;学生回答自己的猜想假设;教师表扬学生。 教师板书:容抗:C f 感抗:L f 实验论证1──容抗与电容有关:学生上前台操作实验,演示给全体同学;教师指导学生实验操作。 实验现象分析:根据观察分析讨论并得出结论。 教师板书:C越大容抗越小 实验论证2──感抗与自感系数有关:学生上前台操作实验,演示给全体同学;教师指导学生实验操作。 实验现象分析:根据观察分析讨论并得出结论。

8.8 电感线圈和电容器的并联电路

8.8 电感线圈和电容器的并联电路 考纲要求:了解提高功率因数的意义,并掌握提高功率因数的方法以及并联电容器电容的计算。 教学目的要求:1、掌握电感线圈和电容器的并联电路中电压和电流的计算。 2、掌握感性负载提高功率因数的方法。 教学重点:电感线圈和电容器的并联电路中电压和电流的计算。 教学难点:感性负载提高功率因数的方法。 课时安排:4节课型:复习 教学过程: 【知识点回顾】 一、电感线圈和电容器的并联电路 电容器中所通过的电流为I C= 。 电感线圈支路中所通过的电流为I1= 其中I1R= , I1L= 电路中的总电流I= 电压和总电流的相位差Φ= 注意:当f很小时,电路呈性;当f很大时,电路呈性; 当f为特定值时,电路呈性。 二、功率因数 P 1.定义:。cos S 2.提高功率因数的意义 (1)。 (2)。3.提高功率因数的方法 。 4.可得出计算最佳电容值的公式: C =

【课前练习】 一、判断题 1、感性负载并联电容后,总电流一定减小。 ( ) 2、在感性负载两端并联电容器可以减小电路的无功功率。 ( ) 二、填空题 1、如图所示,正弦交流电路中若ωC 2>L 1,有效值I 1=4A,I 2=3A ,则总电流有效值为 ,电路呈 性。 2、图所示的交流电路中,当K 断开时,电流表的读数为2A ,当K 闭合后电流表的读数不变,则容抗Xc 为 ;若改变电容的大小,安培表的读数将随之改变;若将电容器的容量由K 闭合时的值逐渐变小直至为零,则安培表的读数将先 又 ,最后 。 第1题图 第2题图 三、选择题 1、电感线圈与电容器并联的正弦交流电路,R=X L =10Ω,欲使电路的功率因数cos Φ=0.707,则Xc 等于 ( ) A .5Ω B.10Ω C .15Ω D .20Ω 2、如图所示的交流电路中 ( ) A A1的读数一定大于A2 A3的读数 B .A2A3的读数可能相等 C A1的读数可能等于A2 A3的读数之和 D .A1 A2 A3的读数不可能相等 第2题图 3、在电感性负载两端并联一只适当容量的电容器的目的是: ( ) A.提高电感性负载的功率因数,使负载中的电流下降。 B .提高电路的功率因数,使总电流下降。 C 提高电感性负载的功率因数,使负载消耗的功率下降。 D .电感性负载的功率因数不变,使负载中的电流下降。 四、计算题 1、某个既有电阻又有电感的线圈接在u=220sin (314t+300)V 的电源上,此时线圈中流 过的电流i=5sin (314t-300)A ,试求: ①线圈的平均功率。 ②线圈的电阻R 和电感L 。 ③若将电路的功率因数提高到0.9,试问应并联多大的电容C?此时电路中的电流I 应为多 少?(Φ= cos -10.9=25. 840, tg25.840=0. 484)

Buck电路电感电容参数选择

(注:以下公式仅针对CCM模式) 1.占空比(Vi-Vo)*Ton/L=Vo*Toff/L D=Vo/Vi D—占空比 2.电感 dIL= (Vi-Vo)*Ton/L dIL== L=5(Vi-Vo)Vo*T/(Vi*Io) IL_avg = Io IL_peak= IL_rms=ILavg*(1+12) L 电感量的选取原则使电感纹波电流为电感电流的 20%(可根据应用改变) dlL—电感纹波电流峰峰值 IL_avg-电感电流平均值 IL_peak—电感峰值电流 IL_rms—电感电流有效值 3.xx 二极管 Id_peak= Vrd=Vi ld_peak—续流二极管峰值电流 Vrd —续流二级管反向耐压(Ton期间)

4.开关管 Isw_peak= Vsw_peak =Vi lsw_peak—开关管峰值电流 Vsw_peak—开关管耐压(Toff期间) 5.输出电容 lcin_rms = [(lo-lin)D+lin(1-D)] lco_rms=dlL/ 电容选取:耐压、纹波电流、电容量 Icin」ms—输入电容的纹波电流有效值 lco_rms—是输出电容的纹波电流有效值 技术资料,仅供参考 这里具体采用上海芯龙半导体有限公司降压IC举例说明 电源管理IC降压型电路电感应用XL4003 ?( (Vi-Vo)/L)*D二(Vo/L) *(1-D)已知输入电压Vi,输出电压Vo,求出D;22 D=Vo/Vi ②Io 为设定值已知输出电流Io; ③Ton=T*D 求出Ton ④((Vi-Vo)/L)Ton二dl=*lo 可求出L. L=((Vi-Vo) *Ton)/*Io) 举例说明输入电压12V,输出电压5V,输出电流3A, F=300KHz计算电感;

详解滤波电容的选择及计算

详解滤波电容的选择及计算

电源滤波电容的选择与计算 电感的阻抗与频率成正比,电容的阻抗与频率成反比.所以,电感可以阻扼高频通过,电容可 以阻扼低频通过.二者适当组合,就可过滤各种频率信号.如在整流电路中,将电容并在负载 上或将电感串联在负载上,可滤去交流纹波.。电容滤波属电压滤波,是直接储存脉动电压来 平滑输出电压,输出电压高,接近交流电压峰值;适用于小电流,电流越小滤波效果越好。 电感滤波属电流滤波,是靠通过电流产生电磁感应来平滑输出电流,输出电压低,低于交流电压有效值;适用于大电流,电流越大滤波效果越好。电容和电感的很多特性是恰恰相反的。 一般情况下,电解电容的作用是过滤掉电流中的低频信号,但即使是低频信号,其频率也分为了好几个数量级。因此为了适合在不同频率下使用,电解电容也分为高频电容和低频电容(这里的高频是相对而言)。 低频滤波电容主要用于市电滤波或变压器整流后的滤波,其工作频率与市电一致为50Hz; 而高频滤波电容主要工作在开关电源整流后的滤波,其工作频率为几千Hz到几万Hz。当我

们将低频滤波电容用于高频电路时,由于低频滤波电容高频特性不好,它在高频充放电时内阻较大,等效电感较高。因此在使用中会因电解液的频繁极化而产生较大的热量。而较高的温度将使电容内部的电解液气化,电容内压力升高,最终导致电容的鼓包和爆裂。 电源滤波电容的大小,平时做设计,前级用4.7u,用于滤低频,二级用0.1u,用于滤高频, 4.7uF的电容作用是减小输出脉动和低频干扰,0.1uF的电容应该是减小由于负载电流瞬时 变化引起的高频干扰。一般前面那个越大越好,两个电容值相差大概100倍左右。电源滤波,开关电源,要看你的ESR(电容的等效串联电阻)有多大,而高频电容的选择最好在其自谐振频率上。大电容是防止浪涌,机理就好比大水库防洪能力更强一样;小电容滤高频干扰,任何器件都可以等效成一个电阻、电感、电容的串并联电路,也就有了自谐振,只有在这个自谐振频率上,等效电阻最小,所以滤波最好! 电容的等效模型为一电感L,一电阻R和电容C的串联, 电感L为电容引线所至,电阻R代表电容的有功

电容、电感产生的相位差理解

电容、电感产生的相位差理解 对于正弦信号,流过一个元器件的电流和其两端的电压,它们的相位不一定是相同的。这种相位差是如何产生的呢?这种知识非常重要,因为不仅放大器、自激振荡器的反馈信号要考虑相位,而且在构造一个电路时也需要充分了解、利用或避免这种相位差。下面探讨这个问题。 首先,要了解一下一些元件是如何构建出来的;其次,要了解电路元器件的基本工作原理;第三,据此找到理解相位差产生的原因;第四,利用元件的相位差特性构造一些基本电路。 一、电阻、电感、电容的诞生过程 科学家经过长期的观察、试验,弄清楚了一些道理,也经常出现了一些预料之外的偶然发现,如伦琴发现X射线、居里夫人发现镭的辐射现象,这些偶然的发现居然成了伟大的科学成就。电子学领域也是如此。 科学家让电流流过导线的时候,偶然发现了导线发热、电磁感应现象,进而发明了电阻、电感。科学家还从摩擦起电现象得到灵感,发明了电容。发现整流现象而创造出二极管也是偶然。 二、元器件的基本工作原理 电阻——电能→热能 电感——电能→磁场能,&磁场能→电能 电容——电势能→电场能,&电场能→电流 由此可见,电阻、电感、电容就是能源转换的元件。电阻、电感实现不同种类能量间的转换,电容则实现电势能与电场能的转换。 1、电阻 电阻的原理是:电势能→电流→热能。 电源正负两端贮藏有电势能(正负电荷),当电势加在电阻两端,电荷在电势差作用下流动——形成了电流,其流动速度远比无电势差时的乱序自由运动快,在电阻或导体内碰撞产生的热量也就更多。 正电荷从电势高的一端进入电阻,负电荷从电势低的一端进入电阻,二者在电阻内部进行中和作用。中和作用使得正电荷数量在电阻内部呈现从高电势端到低电势端的梯度分布,负电荷数量在电阻内部呈现从低电势端到高电势端的梯度分布,从而在电阻两端产生了电势差,这就是电阻的电压降。同样电流下,电阻对中和作用的阻力越大,其两端电压降也越大。 因此,用R=V/I来衡量线性电阻(电压降与通过的电流成正比)的阻力大小。 对交流信号则表达为R=v(t)/i(t)。 注意,也有非线性电阻的概念,其非线性有电压影响型、电流影响型等。

详解滤波电容的选择及计算

电源滤波电容的选择与计算 电感的阻抗与频率成正比,电容的阻抗与频率成反比.所以,电感可以阻扼高频通过,电容可 以阻扼低频通过.二者适当组合,就可过滤各种频率信号.如在整流电路中,将电容并在负载 上或将电感串联在负载上,可滤去交流纹波.。电容滤波属电压滤波,是直接储存脉动电压来平滑输出电压,输出电压高,接近交流电压峰值;适用于小电流,电流越小滤波效果越好。电感滤波属电流滤波,是靠通过电流产生电磁感应来平滑输出电流,输出电压低,低于交流电压有效值;适用于大电流,电流越大滤波效果越好。电容和电感的很多特性是恰恰相反的。 一般情况下,电解电容的作用是过滤掉电流中的低频信号,但即使是低频信号,其频率也分为了好几个数量级。因此为了适合在不同频率下使用,电解电容也分为高频电容和低频电容(这里的高频是相对而言)。 低频滤波电容主要用于市电滤波或变压器整流后的滤波,其工作频率与市电一致为50Hz;而高频滤波电容主要工作在开关电源整流后的滤波,其工作频率为几千Hz到几万Hz。当我们将低频滤波电容用于高频电路时,由于低频滤波电容高频特性不好,它在高频充放电时内阻较大,等效电感较高。因此在使用中会因电解液的频繁极化而产生较大的热量。而较高的温度将使电容内部的电解液气化,电容内压力升高,最终导致电容的鼓包和爆裂。 电源滤波电容的大小,平时做设计,前级用4.7u,用于滤低频,二级用0.1u,用于滤高频,4.7uF的电容作用是减小输出脉动和低频干扰,0.1uF的电容应该是减小由于负载电流瞬时变化引起的高频干扰。一般前面那个越大越好,两个电容值相差大概100倍左右。电源滤波,开关电源,要看你的ESR(电容的等效串联电阻)有多大,而高频电容的选择最好在其自谐振频率上。大电容是防止浪涌,机理就好比大水库防洪能力更强一样;小电容滤高频干扰,任何器件都可以等效成一个电阻、电感、电容的串并联电路,也就有了自谐振,只有在这个自谐振频率上,等效电阻最小,所以滤波最好! 电容的等效模型为一电感L,一电阻R和电容C的串联, 电感L为电容引线所至,电阻R代表电容的有功功率损耗,电容C. 因而可等效为串联LC回路求其谐振频率,串联谐振的条件为WL=1/WC,W=2*PI*f,从而得到此式子f=1/(2pi*LC).,串联LC回路中心频率处电抗最小表现为纯电阻,所以中心频率处起到滤波效果.引线电感的大小因其粗细长短而不同,接地电容的电感一般是1MM为10nH左右,取决于需要接地的频率.

课题:电感和电容对电路的影响

课题5.3 电感和电容对交变电流的影响 教学目的:(一)知识与技能 1.理解为什么电感对交变电流有阻碍作用。 2.知道用感抗来表示电感对交变电流阻碍作用的大小,知道感抗与哪些因素有关。 3.知道交变电流能通过电容器.知道为什么电容器对交变电流有阻碍作用。 4.知道用容抗来表示电容对交变电流的阻碍作用的大小.知道容抗与哪些因素有关。 1.培养学生独立思考的思维习惯。 2.培养学生用学过的知识去理解、分析新问题的习惯。 (三)情感、态度与价值观 培养学生有志于把所学的物理知识应用到实际中去的学习习惯。 教学重点: 1.电感、电容对交变电流的阻碍作用。 2.感抗、容抗的物理意义。 教学难点: 1.感抗的概念及影响感抗大小的因素。 2.容抗概念及影响容抗大小的因素。 教学方法: 本节课的内容比较抽象,故做好演示实验是关键,在做好演示实验的基础上分析理解感抗的 概念及影响感抗大小的因素和容抗概念及影响容抗大小的因素。 教学过程: (一)引入新课 在直流电路中,影响电流跟电压关系的只有电阻。在交变电流路中,影响电流跟电压关系的,除了电阻外,还有电感和电容。电阻器、电感器、电容器是交变电流路中三种基本元件。这 节课我们学习电感、电容对交变电流的影响。 (二)进行新课 1.电感对交变电流的阻碍作用 [演示]电阻、电感对交、直流的影响。实验电路如下图甲、 乙所示: 演示甲图,电键分别接到交、直流电源上,引导学生观察两 次灯的亮度 灯的亮度相同。说明电阻对交流和直流的阻碍作用相同。 演示乙图,电键分别接到交、直流电源上,引导学生观察两次灯的亮度 电键接到直流上,亮度不变;接到交流上时,灯泡亮度变暗。说明线圈对直流电和交变电流 的阻碍作用不同。 线圈对直流电的阻碍作用只是电阻;而对交变电流的阻碍作用除了电阻之外,还有电感.为什么会产生这种现象呢? 由电磁感应的知识可知,当线圈中通过交变电流时,产生自感电动势,阻碍电流的变化。 电感对交变电流阻碍作用的大小,用感抗来表示。感抗的大小与哪些因素有关?请同学们阅 读教材后回答。 感抗决定于线圈的自感系数和交变电流的频率。线圈的自感系数越大,自感作用就越大,感抗就越大;交变电流的频率越高,电流变化越快,自感作用越大,感抗越大。 线圈在电子技术中有广泛应用,有两种扼流圈就是利用电感对交变电流的阻碍作用制成的。 出示扼流圈,并介绍其构造和作用。 (1)低频扼流圈

电感线圈和电容器的并联谐振电路

课前复习 1.谐振条件及谐振频率2.谐振特点(4点)

3.选择性与通频带的关系 第七节 电感线圈和电容器的并联谐振电路 一、电感线圈和电容器的并联电路 1.电路 2.相量图:以端电压为参考相量 3.讨论 (1)当电源频率很低时,电感支路中阻抗较小,结果电路中电流较大。 (2)当电源频率很高时,电容支路中阻抗较小,结果电路中电流仍较大。 (3)在上述频率之间总会有一频率使电感支路中电流与电容器中电流大小近似相等,相位近似相反,电路中电流很小,且与端电压同相,这种情况叫做并联谐振。 二、电感线圈和电容器的并联谐振电路 1.谐振时的相量图 2.谐振的条件 (1)推导I C I RL sin j C X U 2 2L X R U +2 2 L L X R X + 整理后可得 (2)电路发生谐振的条件 ω0C 2 2 020L R L ωω+——电路发生谐振的条件

(3)谐振频率ω02 2 1L R LC - 当ω0L >>R 时, ω0>>R/L, ω0 LC 1 ;f 0 LC π21 3.谐振时电路的特点 (1)电路的阻抗最大,且为纯电阻 |Z 0| RC L (2)电路中电流最小,且与端电压同相 I 0 Z U L URC (3)电感和电容上的电流接近相等,并为总电流的Q 倍。在一般情况下,ω0L R ,R 可忽略不计,则 I C I RL L X U 220L U ωR L 0ωR R L 0ωLCR L U 2=R L 0ωRC L U =Q I 0 Q =R L 0ω—— 电路的品质因数 并联谐振和串联谐振的谐振曲线形状相同,选择性和通频带也一样。 例1:如图所示电感线圈与电容器构成的LC 并联谐振电路,已知R = 10 W ,L = 80 mH ,C = 320 pF 。 试 求:(1) 该电路的固有谐振频率f 0、与谐振阻抗|Z 0|;(2) 若已知谐振状态下总电流I = 100 mA ,则电感L 支路与电容C 支路中的电流I L 0、I C 0为多少? 解:(1) mA I Q I I K R Q Z R L Q MHZ LC f s rad LC C L 51051010050)2(2525000105050 10 10801025.6110 320108021 21 /1025.61032010801 1)1(3600022066012 6 0612 60=?=??==≈Ω =Ω=?===???===???= = ?=???==-------ωππω 例2 在图示的并联谐振电路,已知谐振角频率为5×103 rad/s ,品质因素为100,谐振时阻抗为2K Ω,求电路的参数R 、L 和C 。 解:因为在一般情况下,ωL>>R ,所以 LC 10 = ω 即 RC L R L R L R Z = =+=2202 2020ωω 则 R Q Z 20=

BOOST电路的电感选择

BOOST升压电路的电感、电容计算 已知参数: 输入电压:12V --- Vi 输出电压:18V ---Vo 输出电流:1A --- Io 输出纹波:36mV --- Vpp 工作频率:100KHz --- f ************************************************************************ 1:占空比 稳定工作时,每个开关周期,导通期间电感电流的增加等于关断期间电感电流的减少,即Vi*don/(f*L)=(Vo+Vd-Vi)*(1-don)/(f*L),整理后有 don=(Vo+Vd-Vi)/(Vo+Vd),参数带入,don=0.572 2:电感量 先求每个开关周期内电感初始电流等于输出电流时的对应电感的电感量 其值为Vi*(1-don)/(f*2*Io),参数带入,Lx=38.5uH, deltaI=Vi*don/(L*f),参数带入,deltaI=1.1A 当电感的电感量小于此值Lx时,输出纹波随电感量的增加变化较明显, 当电感的电感量大于此值Lx时,输出纹波随电感量的增加几乎不再变小,由于增加电感量可以减小磁滞损耗,另外考虑输入波动等其他方面影响取L=60uH, deltaI=Vi*don/(L*f),参数带入,deltaI=0.72A, I1=Io/(1-don)-(1/2)*deltaI,I2= Io/(1-don)+(1/2)*deltaI, 参数带入,I1=1.2A,I2=1.92A 3:输出电容: 此例中输出电容选择位陶瓷电容,故ESR可以忽略 C=Io*don/(f*Vpp),参数带入, C=99.5uF,3个33uF/25V陶瓷电容并联

相关主题
文本预览
相关文档 最新文档