当前位置:文档之家› 油田水分析方法

油田水分析方法

油田水分析方法
油田水分析方法

(一)油田水质常规分析

通过水质检验,可以分析出三元复合驱采出液的主要成分。因此,对三元复合驱采出液中水进行pH 、阴离子含量、阳离子含量和聚丙烯酰胺含量进行测定。

1、三元采出液水中阳离子的测定

原子吸收分光光度法测定阳离子含量

原子吸收光谱法原理。原子吸收光谱法又称原子吸收分光光度法,利用气态基态原子对于同一种原子发射出来的特征光谱辐射具有吸收能力的原理。原子或者离子外层电子吸收特定波长的光后会发生能级跃迁。又因为不同原子或者离子的不同的电子跃迁所吸收光的波长不同,所以发射光经过分光以后形成的单色光如果被吸收,则溶液中含有特定的原子或者离子。吸收的强度可以用来标定溶液的浓度。

原子吸收分光光度法测定阳离子浓度。配制不同浓度的标准溶液,在原子特征吸收光谱下,根据标准溶液的吸光度值绘制浓度——吸光度标准曲线。测量液样中相应离子的吸光度,在标准曲线上查得相应离子浓度。

2、三元采出液水中阴离子的测定

滴定法测定水中阴离子的含量。

(1)氯离子含量测定。

基本原理:在pH 值为6.0-8.5的介质中,硝酸银离子与氯离子反应生成白色沉淀。过量的银离子与铬酸钾指示剂生成砖红色铬酸银沉淀,根据硝酸银离子的消耗量计算氯离子含量。

测定方法:用大肚移液管取定体积水样于三角瓶中,加水至总体积为50-60mL ,用硝酸溶液(φHNO 3=50%)调节试样pH 值至6.0-8.5,加1mL 铬酸钾指试剂。用硝酸银标准溶液滴至生成淡砖红色悬浮物为终点。用同样的方法做空白实验。计算氯离子含量公式如下:

301-10)/(cl ?-=

V V V C L mmol C )(硝硝硝

3

01-1035.45)/(cl ??-=V V V C L mg )(硝硝硝ρ 式中:C 硝——硝酸银标准溶液的浓度,mol/L ;

V1硝——硝酸银标准溶液的消耗量,mL;

V0硝——空白试验时,硝酸银标准溶液的消耗量,mL;

V——样品体积(原水水样),mL;

35.45——与1.00mL硝酸银标准溶液(CAgNO3=1.000mol/L)完全反应所需要的氯离子的质量,mg。

(2)碳酸根、碳酸氢根、氢氧根离子含量测定。

基本原理:用盐酸标准溶液滴定水样,依次用酚酞和甲基橙溶液为指示剂,用两次滴定所消耗盐酸标准溶液的体积,计算碳酸根、碳酸氢根和氢氧根离子的含量。

测定方法:用大肚移液管取50g水样于三角瓶中,加2-3滴酚酞指示剂。若水样出现红色,则用盐酸标准溶液滴至红色刚消失,所消耗的盐酸标准溶液的体积(mL)记作V l盐。再加3-4滴甲基橙指示剂,水样呈黄色,则继续用盐酸标准溶液滴至溶液由黄色突变为橙红色,所消耗的盐酸标准溶液的体积(mL),记作V2盐。若加酚酞指示剂后水样呈无色,则继续加甲基橙指示剂至水样呈黄色,用盐酸标准溶液滴定至橙红色为终点。

3、三元采出液水中聚合物含量的测定

实验室内采用淀粉-碘化镉法测定水中聚丙烯酰胺的浓度。

基本原理:聚丙烯酰胺的降解效果采用酰胺基的去除表示,酰胺基的测定采用淀粉-碘化镉比色法。采用淀粉-碘化镉比色法测定HPAM浓度,分析实验体系的HPAM的含量。该方法是利用霍夫曼重排的第一步反应,用溴与酰胺基作用生成N-溴代酰胺,多余的溴用还原剂掩蔽剂除去。生成的N-溴代酰胺水解产生次溴酸,相互间能保持平衡,次溴酸能定量的将碘离子氧化成碘,碘遇淀粉变蓝,根据420nm下的吸光度进行定量分析。

测定方法:

(1)相关药品溶液的配制:

聚丙烯酰胺溶液:称取0.2g部分水解HPAM粉末在搅拌情况下加入800mL 蒸馏水中,待完全溶解后移入1000mL容量瓶中,用蒸馏水稀释至刻度。

缓冲溶液:称取25g三水合醋酸钠溶于800mL的蒸馏水中,加入0.5g水合硫酸铝,用冰醋酸调节pH值至 4.0,倒入1000mL容量瓶中,稀释至刻度备用。

淀粉-碘化镉试剂:称取11g碘化镉溶于400mL蒸馏水中,加热煮沸10min

后稀释至800mL,在加入 2.5g可溶性淀粉,煮沸2min,用滤纸过滤,倒入1000mL容量瓶中,稀释至刻度备用。

还原-掩蔽剂:称取良好未变质的七水合硫酸亚铁40g和氟化氢铵40g,溶于1000mL的蒸馏水中,转入洁净塑料瓶中备用(配10g比例,保质期6-7天)。

(2)聚丙烯酰胺浓度的测定:配制100mg/L聚丙烯酰胺标准溶液,取10个25mL比色管,加入缓冲溶液 2.5mL,并依次加入0、0.5、1.0、1.5、2.0、2.5、3.0、3.5、4.0、5.0mL的标准溶液,用蒸馏水分别稀释至10mL刻度线,混匀后加入2mL3%的溴水,反应8min后加入2.5mL澄清的还原-掩蔽剂,反应2min后加入5mL淀粉-碘化镉试剂,用蒸馏水稀释至刻度,6min后用722型光栅分光光度计,以空气作参比,(1cm)比色皿在波长420nm处测定吸光度,记录并读数。

水质分析常用的方法和仪器

水质分析的方法与水中待测定成分的性质和含量有关系。常用的水质分析方法化学法、气相色谱法、离子色谱法、原子吸收法、原子荧光法、电极法等。其中化学法包括重量法、容量滴定法和光度法三种,容量滴定法又可分为沉淀滴定、氧化还原滴定、络合滴定和酸碱滴定等,光度法又可分为比浊法、比色法、紫外分光光度法、红外分光光度法和可见光光度法等。表9—4列出了以上这些方法在水质分析中的应用举例。 为了方便迅速地得到检测结果,现在各种水质分析项目的检测有向仪器方法发展的趋势,但水质的常规分析还是以化学法为主,只有待测成分含量较少、使用普通化学分析法无法准确测量时,才考虑使用仪器法,而且仪器法往往也需要用化学法予以校正。 为了取得准确可靠的数据,污水处理厂分析化验室必须配备一些必要的仪器设备。 (1)精密仪器:分析天平、分光光度计、生物显微镜、pH计、DO分析仪、气相色谱仪、浊度计、余氯测定仪、BOD5测定仪、CODc,测定仪、原子吸收分光光度计等。 (2)电气设备:BOD5培养箱、电冰箱、恒温箱、可调高温ˉ、六联电ˉ、恒温水浴箱、电烘箱、电动离心机、蒸馏水器、高压蒸汽灭菌锅、磁力搅拌器等。 (3)玻璃仪器:烧杯、量筒、量杯、酸式滴定管、碱式滴定管、移液管、刻度吸管、DO瓶、

试管、比色管、冷凝管、橡皮奶头吸管、蒸馏水瓶、碘量瓶、洗气瓶、具塞锥形瓶、广口瓶、试剂瓶、称量瓶、容量瓶、分液?斗、圆底烧瓶、平底烧瓶、锥形瓶、凯式烧瓶、玻璃蒸发皿、平皿、?斗、玻璃棒、玻璃管、玻璃珠、干燥器、酒精灯等。 (4)其他设备:扭力天平、滴定管架、冷凝管架、?斗架、分液?斗架、比色管架、烧瓶夹、酒精喷灯、定量滤纸、定性滤纸、定时钟表、操作台、医用手套、温度计、采样瓶、搪瓷盘、防护眼镜、洗瓶刷、滴定管刷、牛角匙、白瓷板、标签纸、灭火器、急救药箱等。

油田注水水质标准

创作编号: GB8878185555334563BT9125XW 创作者:凤呜大王* 油田注水水质标准 一、油田注水水质标准 不同的行业,不同的应用领域,对所用水源水质有相应的要求。油田注水的目的是通过一系列注水管网、注水设备及注水井将水注入进层,使地层保持能量,提高采油速度和原油采收率。因此,油田注水的水质要求有其特殊性,在水质指标方面,与其他行业的侧重点不同。根据油田注水的特殊用途,对油田注水水质的要求或油田注水水质处理应达到的指标主要包括以下三个方面。 1、注入性 油田注入水的注入性是指注入注入进层(储层)的难易程度。在储层物性(如渗透率、孔隙结构等)相同的条件下,悬浮固体含量低、固相颗粒粒径小、含油量低、胶体含量少的注入水易注入地层,其注入性好。 2、腐蚀性 油田注水的实施经历以下过程: 注水水源污水处理站注水站注

水井 在油田注水的实施过程中,在地面,涉及到注水设备(如注水泵),注水装置(如沉降罐、过滤罐等),注水管网;在地下,涉及到注水井油套管等,这些设备、管网、装置等大多是金属材质。因此,注入水的腐蚀性不仅会影响注水开发的正常运行,而且还会影响油田注水开发的生产成本。 影响注入水腐蚀性的主要因素有:PH值、含盐量、溶解氧、CO2、H2S、细菌和水温。 3、配伍性 油田注入水注入地层(储层)后,如果作用结果不影响注水效果或不使储层的物理性质如渗透率变差,则称油田注入水与储层的配伍性好,否则,油田注入水与储层的配伍性差。 油田注入水与储层的配伍性,主要表现为结垢和矿物敏感性两个方面,它们都会造成储层伤害,影响注水量、原油产量及原油采收率。 二、油田注水水质指标 1、悬浮物 一方面,注入水中的悬浮物会沉积在注水井井底,造成细菌大量繁殖,腐蚀注水井油套管,缩短注水井使用寿命;另一方面,造成注水地层堵塞,使注水压力上

油田污水处理技术发展趋势

油田污水处理技术发展趋势 在原油生产的过程中会产生大量的污水,如果这部分污水不经过处理就排放到外界环境中,会给外界环境产生极大的污染。在另一方面,目前我国政府十分重视环境保护以及水资源保护工作,在这一背景下,油气生产公司只有采取一切措施对污水进行处理才符合我国的相关要求,处理后的污水不但可以排放到外界环境中,而且还可以用于油井回注,由此可见,污水处理可以为油气生产企业带来一定的经济利益。目前,油田污水处理技术已经取得了较大的进步,但是各种污水处理技术仍然存在一定的缺陷,针对此问题,本次研究首先对污水处理的重要性以及发展现状进行简单分析,在此基础上,提出污水处理技术的未来发展趋势,为推动污水处理技术的进一步发展奠定基础。 一、油田污水处理重要性分析 我国属于世界石油大国之一,经过多年的发展,石油已经成为我国经济发展的动力,目前,新能源正在如火如荼的发展,但是仍然无法动摇石油资源的地位。对于石油产业而言,其产业链相对较长,产业链的任何一部分都会对社会产生较大的影响。我国的石油产业已经进入到了成熟阶段,大多数油田已经进入到了开发的中后期阶段,在原油开发的中后期阶段中,原油的含水量相对较高,原油被开采出地面以后需要对其进行油水分离,进而会产生大量的污水,污水的组成十分复杂,部分污水中含有大量的重金属离子,这部分离子会对土壤产生极大的破坏。在原油生产过程中,还有一定污水称之为含油污水,所谓含油污水主要指的是含有原油的污水,这部分污水的排水量相对较大,也会对周围的环境产生较大的破坏。为了推动我国能源的可持续发展,同时达到环境保护的基本目标,对油田的污水进行处理十分重要。 二、油田污水处理技术现状 油田污水处理主要指的是采取一切方法将污水中的有害成分除去,或者将有害成分的含量降至某一标准,使得污水可以得到循环利用或者可以达到排放标准。目前,我国油田在进行污水处理的过程中所采取的方法相对较多,针对污水中有害成分的不同,可以采取不同的污水处理方法。 物理分离是油田常见的污水处理方法,该种方法就是采用物理手段将污水中的水分和悬浮物分离,一般情况下,物理分离方法所使用的设备都相对较为简单,设备的操作难度相对较低,其中,重力分离技术、气浮分离技术都属于物理分离技术。重力分离技术主要是利用水分子与油分子密度的不同,进而将两者分离,该种分离方法可以对油田污水进行大量处理。气浮分离技术主要是在污水中充入一定量的气体,进而使得污水中产生一定量的气泡,原油可以附着于气泡上,然后被气泡携带出水面,该种方法进行油水分离的效果相对较好。 由于物理分离技术很难将污水中的有害物质全部除去,因此,大多数油田也引进了化学处理技术,所谓的化学处理技术就是向污水中添加一定量的化学试剂,通过化学反应的方式将污水中的有害物质除去,常见的化学处理技术有絮凝技术、缓蚀技术、阻垢技术以及电脱技术。絮凝技术主要是对污水进行过滤之前,向污水中加入一定量的试剂,进而可以使得有害物质呈现出絮状结构存在于污水中,此时受到重力的影响,絮状物将会下沉,然后通过污水过滤就可以将其除去,该种方法还可以用于污水中的细菌处理。污水中含有部分腐蚀性物质会对金属产生腐蚀,腐蚀产物也属于有害物质,通过向污水中加入一定量的缓蚀剂,能有效避免污水的腐蚀作用,防止污水中的有害物质增加,该项技术就是缓蚀技术。通过对污水中的成分进行分析后发现,污水中含有大量的碳酸盐,这部分物质会在物体的表面形成垢,通过向污水中加入一定量的阻垢剂能有效避免出现结垢现象。电脱技术主要是通过电化学的方式对污水中的有害成分进行处理,其主要原理就是向污水中增加电流,通过氧化还原反应的方式将污水中有机物或某些重金属离子除去。

地层水

地层水 简述 地层水或称油层水是指油藏边部和底部的边水和底水、层间水以及与原油同层的束缚水的总称。束缚水是油藏形成时残余在孔隙中的水,它与油气共存但不参与流动,因此称为束缚水。 地层水是与石油天然气紧密接触的地层流体,边水和底水常作为驱油的动力,而束缚水尽管不流动,但它在油层微观孔隙中的分布特征直接影响着油层含油饱和度[1]。 地层水的性质 化学组成 地层水在地层中长期与岩石和原油接触,通常含有相当多的金属盐类,如钾盐、钠盐、钙盐、镁盐等,尤其以钾盐、钠盐最多,故称为盐水。地层水中含盐是它有别于地面水的最大特点。地层水中的含盐量的多少用矿化度来表示[2]。 地层水溶液中: 1) 常见的阳离子为Na+、K+、Ca2+、Mg2+, 2) 常见的阴离子为Cl-、SO42-、HCO3-及CO32-、NO3-、Br-、I- 3) 不同种类的微生物,其中最常见的是非常顽固的厌氧硫酸还原菌,它们助长了油井套管的腐蚀,在注水过程中导致地层堵塞。这些微生物的来源尚不十分清楚,它们可能存在于封闭油藏中,或由于钻井而带入地层。4) 微量有机物质,如环烷酸、酯肪酸、胺酸、腐植酸和其它比较复杂的有机化合物等。因为这些有机酸对注入水洗油能力有直接影响,所以,在油田注水的水质选择上要对它们予以重视。 矿化度 代表水中矿物盐的总浓度,用mg/L或ppm(百万分之一)来表示。地层水的总矿化度表示水中正、负离子含量之总和。 原始地层条件下,高矿化度的地层水处于饱和溶液状态,当由地层流至地面时,会因为温度、压力降低,导致盐从地层水中析出,严重时还可在井筒中结盐,给生产带来困难。 离子毫克当量浓度

: 离子毫克当量浓度等于某离子的浓度除以该离子的当量。 例如,已知氯离子(Cl—)的浓度为7896mg/L,而氯离子的化合当量=35.3,则氯离子的毫克当量浓度=7896/35.3=225.6毫克当量/升。 硬度 地层水的硬度是指地层水中钙、镁等二价阳离子含量的大小。在使用化学驱(如注入聚合物或活性剂等)时,水的硬度太高,注入化学剂会产生沉淀而影响驱替效果。所以,在油田生产中必须对地层水的矿化度、硬度有清楚的认识。 水型分类 关于地层水的分类方法有多种,各种分类法的目的都是力图达到即使水的化学成分系统化,又可使分类与成因联系起来,但至今还没有一个完全令人满意的方法。对油田水而言,常采用的是苏林分类法。 (1)硫酸钠(Na2SO4)水型:代表大陆冲刷环境条件下形成的水,一般来说,此水型是环境封闭性差的反映,该环境不利于油气聚集和保存。地面水多半为该水型。 (2)重碳酸钠(NaHCO3)水型:代表大陆环境条件下形成的水型,该水型水在油田中分布很广,它的出现可作为含油良好的标志。 (3)氯化镁(MgCl2)水型:代表海洋环境下形成的水。该水型一般多存在于油、气田内部。 (4)氯化钙(CaCl2)水型:代表深层封闭构造环境下形成的水,环境封闭性好,有利于油、气聚集和保存,是含油气良好的标志。

水分析化学复习重点

知识点 [1] 水分析化学的地位及作用 [2] 水分析化学分析方法的分类 1.水中污染物包括 无机:金属离子Ca2+、Mg2+ + 重金属离子:Pb2+、Fe3+、Mn2+、Cd2+、Hg2+等有机:酚、农药、洗涤剂等 以上污染物都需要水分析方法去定量 2.分析方法包括 ①重量分析——称重的办法 用途:残渣分析 ②化学分析——借助化学反应 a.酸碱滴定——质子传递(最基础的滴定分析) 用途:检验碱度、酸度 b.络合滴定——络合反应M+Y → MY 用途:测定 Ca2+、Mg2+、Fe3+、Al3+ 另外,络合反应可用于掩蔽技术,消除非测定离子的干扰 c.沉淀分析——沉淀反应Ag++Cl-→AgCl 用途:测定水中Cl- d.氧化还原滴定——氧化还原反应(特点:电子转移) 用途:测COD等有机污染指标 氧化还原反应也用于废水的化学处理,(如脱CN-,CN-+ClO2→N2) ③仪器分析 a.吸收光谱法用途:分析有机分子、无机离子 b.色谱法:气相色谱用途:如氯仿测定 液相色谱用途:如多环芳烃测定 离子色谱用途:如阴离子测定

c.原子吸收法用途:金属元素测定 d.电化学分析法用途:pH值的测定 [3]水质指标与水质标准 1.水质指标 物理 化学 微生物学 一、物理指标(特点:不涉及化学反应,参数测定后水样不发生变化) ①水温②臭味(臭阈值)文字描述 ③色度: 表色(悬浮性物质、胶体核溶解性物质共同引起,定性描述) 真色(胶体和溶解性物质引起,定量测量) 色度的测定方法:标准比色法(目视比色法) a.用具塞比色管配制标准色阶 (Pt—Co色阶,K2PtCl6+CoCl2,稳定性高,1mgPt/L定义为1度) b. 未知水样置于同规格比色管中(如混浊先静置澄清),俯视与标准色阶对比 ④浊度:由悬浮物及胶体物质引起的水样的浑浊程度,是混凝工艺重要的控制指标。 浊度的测定方法 a.目视比浊法:用具塞比色管配制标准浊度阶,1mg漂白土/L定义为1度,水样俯视对比 b.分光光度法:680nm分光光度计测定 标准浊度单位(硫酸肼/L和六次甲基四胺/L形成甲聚合物为1度,测定结果单位FTU) c.散射法,浊度仪(也以甲聚合物为标准浊度单位,测定结果单位NTU) ⑤残渣(总残渣=可滤残渣 + 不可滤残渣),重量法测定 ⑥电导率,电导率仪测定 ⑦UVA254:反映水中有机物含量

地层水分类

NaHCO3一般属于开放型地层水;Cacl2型一般属于封闭型地层水。 复杂断块油田内部,平面上或不同地层可能具有不同的水型,具有不同的地质意义。 油田水的分类必须解决的实质性问题应包括:①油田水化学标志及其与非油田水的区别;②不同类型油田水的特征及区别。自1911年美国帕斯梅尔提出第一个油田水分类方案至今,对油田水分类方案虽然作过多次修改和补充,但基本上都是以Na+、Mg2+、Ca2+和Cl-、SO42-、HCO3-的含量及其组合关系作为分类基础。在各分类方案中,以苏林(B.A.ЩУЛИН)分类较为简明,也为国内外广泛采用,现在国内各个油田基本采用苏林分类。 苏林认为,天然水就其形成环境而言,主要是大陆水和海水两大类。大陆水含盐度低(一般小于500mg/l),其化学组成具有HCO3->SO42->Cl-,Ca2+>Na+<Mg2+的相互关系,且Na+>Cl-,Na+/Cl-(当量比)>1。海水的含盐度较高(一般约为35,000mg/l),其化学组成具有Cl->SO42->HCO3-,Na+>Mg2+<Ca2+,且Cl->Na+,Na+/Cl-(当量比)<1的特点。大陆淡水中以重碳酸钙占优势,并含有硫酸钠;而海水中不存在硫酸钠。

苏林就是根据上述认识,以Na+/Cl-、(Na+-Cl-)/SO42-和(Cl--Na+)/Mg2+这三个成因系数,将天然水划分成四个基本类型。 裸露的地质构造中的地下水可能属于硫酸钠型,与地表大气降水隔绝的封闭水则多属于氯化钙型,两者之间的过渡带为氯化镁型。在油气田地层剖面的上部地层水以重碳酸钠型为主;随着埋藏加深,过渡为氯化镁型;最后成为氯化钙型。有时重碳酸钠型直接被氯化钙型所替代,缺少过渡型。油田水的水化学类型以氯化钙型为主,重碳酸钠型次之,硫酸钠型和氯化镁型较为罕见。 苏林分类存在的问题在于:①把地下水的成因完全看成是地表水渗入形成的,没有考虑其它成因水的加入,还有自然界经常发生的水的混合作用以及由此而产生的水中成分的多种分异和组合;②将本来具有成因联系作为一个整体的大量无机组分,简化成仅是天然水盐类成分的分类,过于简单;③忽略了水中气体成分及微量元素等一些具有标型性质的组分,同时缺少作为区分油田水与非油田水的特征参数。随着油气勘探的进展和对油田水地球化

水质分析常用的分析方法

金标准水质检测项目相关检测方法分别如下: 1【pH值】水质pH值的测定玻璃电极法GB/T6920-1986 2【溶解氧】水质溶解氧的测定电化学探头法GB/T11913-1989碘量法《水和废水监测分析方法》(第四版)国家环保总局2002年 3【臭和味】文字描述法《水和废水监测分析方法》(第四版)国家环保总局2002年 4【侵蚀性二氧化碳】甲基橙指示剂滴定法《水和废水监测分析方法》(第四版)国家环保总局2002年 5【酸度】酸度指示剂滴定法《水和废水监测分析方法》(第四版)国家环保总局2002年 6【碱度(总碱度、重碳酸盐和碳酸盐)】酸碱指示剂滴定法《水和废水监测分析方法》(第四版)国家环保总局2002年 7【色度】水质色度的测定GB/T11903-1989 8【浊度】水质浊度的测定GB/T13200-1991 9【悬浮物(SS)】水质悬浮物的测定重量法GB/T11901-1989 10【总可滤残渣】重量法《水和废水监测分析方法》(第四版)国家环保总局2002年 11【总残渣】重量法《水和废水监测分析方法》(第四版)国家环保总局2002年12【全盐量(溶解性固体)】水质全盐量的测定重量法HJ/T51-1999 13【总硬度(钙和镁总量)】水质钙和镁总量的测定EDTA滴定法 GB/T7477-1987 14【高锰酸盐指数】水质高锰酸盐指数的测定GB/T11892-1989 15【化学需氧量(COD)】水质化学需氧量的测定重铬酸盐法 GB/T11914—1989 16【生物需氧量】水质生物需氧量的测定稀释与接种法GB/T7488—1987 17【氨氮】水质铵的测定纳氏试剂比色法GB/T7479-1987 水杨酸-次氯酸盐光度法《水和废水监测分析方法》(第四版)国家环保总局2002年 18【硝酸盐氮】水质硝酸盐氮的测定酚二磺酸分光光度法GB/T7480-1987 水质硝酸盐氮的测定紫外分光光度法HJ/T346-2007 19【亚硝酸盐氮】水质亚硝酸盐氮的测定分光光度法GB/T7493-1987 20【六价铬】水质六价铬的测定二苯碳酸二肼分光光度法GB/T7467-1987 21【总氮】水质总氮的测定碱性过硫酸钾消解紫外分光光度法》 GB/T11894-1989 22【总磷】水质总磷的测定钼酸铵分光光度法GB/T11893-1989 23【磷酸盐】钼酸铵分光光度法《水和废水监测分析方法》(第四版)国家环保总局(2002年) 24【硝基苯类】还原-偶氮光度法《水和废水监测分析方法》(第四版)国家环保总局(2002年) 25【苯胺类】水质苯胺类化合物的测定N-(1-萘基)乙二胺偶氮分光光度法GB/T11889-1989 26【游离氯】水质游离氯和总氯的测定N,N-二乙基-1,4-苯二胺滴定法GB/T11897-1989

油田采出水处理工艺概述

油田采出水处理工艺概述 摘要:我国油田广泛采用采出水有效回注对油田进行高效开采,因此,油田采出水处理技术的发展对油田的再开发和可持续发展意义重大。本文概述油田采出水处理的发展历程,并对油田采出水处理的现状和水处理存在的问题进行阐述,并提出建议,以期为油田水处理的发展提出帮助。 关键词:油田采出水水处理现状及问题 一、概述 我国大部分油田采用注水开发方式,随着油田的不断开发,油井采水液的含水率不断上升,一些区块的含水率已达80%以上,对采出水进行处理、有效回注成为解决油田污水既经济又实用的途径[1,2]。目前,含油采出水已成为油田主要的注水水源,尤其是在延长油田等缺水油区。随着油田外围低渗透油田和表外储层的连续开发,为保证油田的高效注采开发,对油田注水水质的要求不断提高。因此,油田水处理技术已成为我国石油生产中一项重要技术。 二、采出水处理工艺 1.采出水处理现状 油田采出水成分比较复杂,含油量及油在水中存在形式有差异,且常与其它污水混合处理,单一采出水处理设备处理效果不佳;在实际应用中,通常是两三种水处理设备联合使用,才能确保出水水质达到回注标准。另外,不同油田的生产方式、环保要求及净化水的用途等不同,造成油田采出水处理工艺技术的差别比较明显。 2.采出水处理的发展历程 在油田采出水处理工艺中,通常采用“预处理+深度处理”方式处理。进入深度处理设备前的一系列处理方法称为预处理,包含一级处理与二级处理。常见的一级处理有重力分离、浮选及离心分离,主要除去浮油及颗粒固体;二级处理主要有过滤、粗粒化、化学处理等,主要是破乳和去除分散油。深度处理有超滤、活性炭吸附、生化处理等,主要去除溶解油。 采出水处理工艺具有明显的时代特征,主要分四个阶段: 2.1沉降除油+石英砂过滤 油田开发初期(1978~1985年),原油脱水采用两段电化学处理流程;污水处理工艺采用自然浮升、混凝沉降、压力过滤等流程,采出水主要以排放为主。

油田污水处理工艺的设计

油田污水处理工艺的设计 摘要:在油田的开发过程中,油气田废水增加严重污染了生态环境。油田污水含有油破乳剂,盐,苯酚,硫和其他环境污染物质,石化工业是高浓度碱渣废水的来源和组成。本文就油田污水处理工艺存在的问题浅论,并着重对油田污水处理工艺进行分析。 关键词:田污水处理;污水处理工艺 1油田污水处理存在的问题 1.1重力沉降和过滤 重力沉降除油率小,解决短期停留时间,除油效果不好。由于水力停留时间短,密度小的颗粒与水流出;罐底污泥不能及时排出,污泥厚度达到设置的喷嘴附近,落絮体颗粒容易流出来的水,悬浮物不能得到有效的解决,使过滤装置的水质量差,导致一个滤波器不能有效地发挥作用,水质波动使污水达标排放不稳定。固体的过程中根据实际情况适当调整以使其达到标准。 1.2低温含油污水处理 随着石油勘探的不断深入,操作温度含油污水处理技术发展和促进生产的流体。由于温度低油水分离效果不好造成水油浓度。所以我们现在必须行动了废水处理工艺进行调整,以适应低温污水处理。 1.3稠油污水处理 油田污水处理和回收并不简单。对低渗透油藏和稠油区块注入水的质量要求非常严格,可以添加水或蒸汽使大部分的污水排放到环境。稠油污水处理仍面临矿山废水的问题,由于其前端油水分离效果不理想,使污水油含量和泥质含量高,水和废水含有大量的人工合成和形成胶体物质,生化需氧量和化学需氧量的比例是非常低的。目前,油田采出液含水率已达90%以上,生活废水约80000立方米,而排放率只有30%左右。提高采油污水处理率和使用有效的深度处理工艺解决了污水排放问题。 1.4三元复合驱油技术 石油被称为工业发展的血液,随着我国工业技术的迅速发展,大多数油田已进入三次采油阶段。在油田行业三元复合模式是最典型的采矿方法,尽管这一技术是优秀的,但它是水,但水含有大量驱油剂,表面活性剂、石油和化学组成。如何解决这些问题,成为了水处理领域和石油领域面临的新课题。 2油田污水处理工艺分析

实验一 用自然电位曲线估计地层水矿化度

实验一 用自然电位曲线估计地层水矿化度 一、 实验目的: 巩固用自然电位法求地层水电阻率以及地层水矿化度的方法,并学会编程计算,并处理实际资料获得正确结果。 二、 实验要求 用图版求出地层水电阻率,并自编程序,在计算机上运算出地层水电阻率和矿化度。 三、 实验场地、用具与设备 计算中心,尺子、像皮和计算机; 四、 实验内容: 1.实验步骤: we mfe R R =X } 1).T(℃)=T0+AH 估计地层温度的梯度校正图板 2).T(℉)=1.8T(℃)+32 摄氏度变成华氏度 3).K=60+0.133T(℉) 计算温度T 下的电化学系数 4). R mfe /R we =10(-SSP/K) 公式 (4.9) 5). R mN =71.4R m18℃ /82 电阻率K 随温度变化(75+7) 18℃ 24℃ 6).R mfN =(2.169-1.1G) R mN 1.073 ……P70图板 7).R mfeN =?? ???+-)77337/()5146(85.0mfN mfN mfN R R R 1.01.0<>m f N m f N R R ……P72图板 8).R weN =mfeN mfe we R R R ? me mfe R R 等效NaCl, 随温度变化很小。 9).???-++-=-+) 337146/()577(1058.0)24.069.0(weN weN R WN R R R weN 12.012.0<>weN weN R R ……P72图板

10).R w =82R wN /(T(℉)+7) ……K与t 关系(N=24℃)地温 11).X=(3.562-log(R wN –0.0123))/0.955 P=10x P 为地层水的矿化度。 其中2)、10)都是电阻率随温度变化的关系式。 等价? ??++=?++=?7)7)/(T )(T R(T F)R() 21.521.5)/(T T 0 R(T 0)(C)R(00 2.公式应用条件: 在比较厚的纯地层,只含水,不含油气,溶液浓度不大: SSP=-Klog(R mfe / R we ) 对等效Nacl 的溶液: R mfe / R we = R mfeN / R weN (N=normal=24℃ ,标准温度) 3.程序流程图 4.用自然电位求Rw 的图版方法: e e m f R K SSP )(R )(log w -= X R R e w e mf =)()( 3.3)(,=X ,出用图板‘求 ’ 地层温度 T=93℃-93×1.8+32=200℉ (R mf ) (R mf )e (用图板2求出) 从图中可知,R w =2.3 换算到2000米井下,R mf =0.69。 (R mf )e =0.55 (R w )e =166.03 .355.0= R w =0.18Ωm 。 五、 实验报告 1说明用自然电位曲线计算地层水电阻率以及地层水矿化度的方法与主要步骤 2.附所编写的程序和计算结果 3.已知条件: 静自然电位:SSP=-70mv 地表温度:T 0 =24℃,水层位置:H=1000m , 地温梯度:A=3℃/100m ,18℃泥浆电阻率:R m18℃ =2.78Ωm ,泥浆比重:G=1.3g/mL

水质分析测定方法

水质分析 一、取样及测定温度 1、取样地点:场内软化站 2、取样:打开水龙头,放水5-10分钟。将取样瓶用水冲洗数次,然后取适量水样,在取样 同时用水银温度计测定其水温。 二、总硬度的测定 1、方法原理 用EDTA测定水的硬度室准确而迅速的方法。当水中有铬黑T指示剂时,它与钙、镁离子结合形成玫瑰红色螯合物。当加入EDTA后,钙、镁离子就与EDTA螯合,使指示剂游离出来,滴定至终点时,溶液呈现铬黑T的纯蓝色。 2、仪器与试剂 一般玻璃仪器 0.01mol/lEDTA标准溶液 0.5%铬黑T指示剂 PH=10氨-氯化铵缓冲溶液 3、测定方法 用量筒量取均匀水样100ml于250ml三角烧瓶中,加入5mlPH=10的氨-氯化铵缓冲溶液,0.5%的铬黑T指示剂6滴,立即用0.01mol/l的EDTA标准溶液滴定,至溶液由红色变为蓝色即为终点。记录消耗EDTA标准溶液的用量。 4、计算 总硬度(CaCO3㎎/l)=f*V1*C*1000*100/V 试中:V1:消耗EDTA的毫升数 C:EDTA浓度mol/l V:所取水样的体积 100:每毫摩尔碳酸钙的毫克数 f:0.01mol的EDTA溶液系数 三、总碱度的测定 1、方法原理 总碱度包括碳酸盐碱度,重碳酸盐碱度,氢氧化物碱度及不挥发性弱酸盐碱度等。均可用酸碱滴定法测定。 2、仪器与试剂 一般玻璃仪器 0.1N硫酸标准溶液 甲基红溴甲酚绿混合指示剂 3、测定方法 用量筒量取均匀水样100ml于250ml三角烧瓶中,加入10滴甲基红溴甲酚绿混合指示剂,用0.1N硫酸标准溶液滴定至由绿色变为灰紫色为终点,记录消耗硫酸标准溶液的用量。 4、计算 总碱度(CaCO3㎎/l)= f*V1*C*1000*50/V 试中:V1:消耗EDTA的毫升数 C:硫酸的浓度mol/l V:所取水样的体积 50:每毫克当量碳酸钙的毫克数

油田含油污水处理工艺

油田含油污水处理工艺 目前我国很多陆地油田都属于渗透性油藏,在油田生产开采中后期阶段,这种情况下都会采取注水开发工艺,而注水工艺的水源主要是来自油田含油污水处理后的净化水,而少量经过生化处理后的水进行外排,但是根据相关水质标准要求,油田含油污水外排一定要达到污水综合排放相关排放标准的具体要求。这就要求油田企业必须要针对污水处理工艺进行不断改进,这样才能满足生产实际需求。 1 污水处理工艺改进 1.1 增加预脱水器 由于目前油田生产规模在不断扩大,导致来液量急剧增加,联合站的原油脱水处理工艺流程经常会处在超负荷运行状态下。针对这种现象,可以通过现有的脱水系统进行扩建改造,在其中引入与脱水器,来针对来液进行预处理,这样就能够有效提升油田脱水处理系统出口处的含油标准,保证整个生产系统实现正常运行。 易脱水处理主要具有以下一些优点:首先,预脱水技术采用了范围相对比较大的油水液面调节技术,从而使得预脱水器实际的分离适应力得到有效提升,能够完全满足油田在不同生产开采阶段油水分离的实际需求。其次,充分运用了中间层洗涤技术。根据来液物性的差异,针对中间层的厚度进行合理控制,以此来充分保证油水实现有效分离。最后,通过设置水力排砂机构,针对脱水器进行定期冲砂处理,这样就能够充分保证实现正常运转。 1.2 污水处理系统改进 在实际进行污水处理的过程中,通常情况下都会采取多个核桃壳过滤器并联运行的方式,并且在每个核桃壳过滤器把顶部设置了相应的加油口,而且在核桃壳过滤器的进出口位置要分别设置相应的取样点。当整个过滤系统在投产使用后,由于进入过滤器内部的油污以及一些胶质物质会对核桃壳滤料产生较大的影响,从而导致滤料出现被污染现象,甚至出现板结或者滤速降低、水质变化等现象,在经过过滤后,水质不能满足实际要求。他这种情况在一些联合站超负荷运行状态下表现得尤为明显,如果来液中含有大量的杂质、乳化液、油污,就会导致在整个处理过程中整体处理质量,甚至在一些情况下经过过滤后的污水水质出现变坏现象。

microsoft powerpoint 实验一 确定地层水矿化度

实验一 用自然电位曲线估计地层水矿化度

一、实验目的与要求 ? 实验目的: 巩固用自然电位法求地层水电阻率的方法,并学会 并掌握这种方法。 ? 实验要求 用图版求出地层水电阻率,并自编程序,在计算机 上运算出地层水电阻率。

一、实验目的与要求实验步骤 ? 1、利用SP计算Rw ? 2、Rw转化为矿化度

? 厚的、纯的、砂岩、水层:V sp =V SSP =E ec ? 利用自然电位曲线确定地层水电阻率时,选择地层厚度 大、泥浆侵入不深、地层泥质含量很低的含水砂岩层。 ? 确定Rw 的原理: 根据已知岩层电阻率、泥浆电阻率、地层厚度和井径等 数据,把自然电位曲线校正到静自然电位,然后用关系式, ? 已知K ec 、R mf 值情况下,便可以求出地层水电阻率R w 。 lg mf ec ec W R E K R = 二、确定地层水电阻率

确定地层水电阻率思路 2、V SSP = E ec lg mf ec ec W R E K R = 1、V SP 校正到V SSP 3、K ec (T ) 4、 =R mf /R w 5、R mf (T) 6、R w (T)=R mf /X 二、确定地层水电阻率 X X

(1)静自然电位V SSP ? 从自然电位曲线上读出幅度值V SP , ? 岩层厚度h 、井径d 、 ? 岩层电阻率R t 、围岩电阻率R s 、 ? 冲冼带电阻率R xo 和泥浆电阻率R m ? 利用图版求出校正系数C(V SP /V SSP ), ? 静自然电位V SSP (或电化学电动势E ec ) ? SP SSP ec V V E v == 求地层水电阻率Rw 的步骤: 二、确定地层水电阻率

水化学分析方法汇编

水化学分析方法汇编 1. 简分析:简分析用于了解区域地下水化学成份的概貌。分析项目少,但要求快而及时。分析项目除物理性质(温度、颜色、透明度、嗅味、味道等)外,还应定量分析以下各项:pH值、游离二氧化碳、Cl-、SO42-、HCO3-、CO32-、OH?、K+、Na+、Ca2+、Mg2+、总硬度及溶解性固体总量等。通过计算求得水中各主要离子含量及总矿化度。在需要时还作NO2-、NO3-、NH4+、Fe2+、Fe3+、H2S定性分析。简分析适用于初步了解大面积范围内各含水层中地下水的主要化学成分及水质是否适于生活饮用。 2. 全分析:全分析项目多,要求精度高。通常在简分析的基础上选择有代表性的水样进行全分析,以较全面地了解地下水化学成分。其测定项目除简分析项目外,另增加NH4+、T Fe(Fe2+、Fe3+),NO2-、NO3-、F-、PO43-、H2SiO3、CO2、H2S、化学需氧量、悬浮物、灼烧残渣、灼烧减量等项目。上述项目按实际任务可略有增减。 总则 1本标准规定了“地下水标准检验方法”编写的一般要求和原则 1.检验方法中所采用的名词、术语均应符合国家规定的标准。 2.计量单位应符合国家法定计量单位。 3.检验方法中用于稀释或配制试剂的水,在未其它要求时,系指其纯度能满足要求的蒸馏水或去离子水。指明亚沸蒸馏水的,必须是用亚沸石英蒸馏器蒸馏的。 4.试剂与溶液 4.1配制溶液的试剂及溶剂,必须符合检验项目的要求。 4.2检验方法中所用试剂,除已指明规格的外,均指二级(分析纯)以上,当试剂纯度达不到要求需要提纯处理的,在相应项目检验方法中单独列出。 4.3溶液未指明何种溶剂时,均为水溶液。 4.4检验方法中,溶液的浓度有以下表示方式: 4.4.1摩尔浓度(mol/L)以每升溶液中含有溶质的摩尔数表示。 4.4.2当量浓度(N)以每升溶液中含有溶质的当量数表示。对氧化—还原反应中的试剂浓度仍采用当量浓度表示,作为暂时过渡办法。 4.4.3质量溶量百分比浓度(% M/v)系指100mL溶液中含有溶质的克数。如1%氢氧化钠溶液,是100 mL水溶液中含有1gNaOH。 4.4.4体积比浓度(1+1 v/v)系指液体溶质与溶剂的比例。 5.玻璃器皿及仪器

油田水处理(在用)

第一节油田污水的来源 水是石油生成、运移和储集过程中的主要天然伴生物。 石油的开采经历了三次采油阶段: 一次采油:油藏勘探开发初期,原始地层能量将部分油气水液体驱 向井底,举升至地面,以自喷方式开采. 采出液含水率很低 二次采油有注水开发和注气开发等方式。高压水驱动原油。存在问题:经过一段时间注水后注入水将随原油采出,且随开发时间的延长,采出油含水率不断上升。 三次采油注聚合物等驱油。 油田含油污水来源 原油生产过程中的脱出水:原油脱水站、联合站内各种原油储罐的罐底水、含盐原油洗盐后的水。 洗井水为提高注水量、有效保护井下管柱,需定期对注水井进行洗井作业。 为减少油区环境污染,将洗井水建网回收入污水处理站。钻井污水、井下作业污水、油区站场周边工业废水等全部回收处理净化,减少污染,满足环保要求。 原水:未经任何处理的油田污水。 初步净化水:经过自然除油或混凝沉降除油后的污水。 滤后水:经过过滤的污水。 净化水:凡是经过系统处理后的污水都叫净化水。 第二节污水处理利用的意义 1、含油污水不合理处理回注和排放的影响 油田地面设施不能正常运作造成地层堵塞而带来危害造成环境污染,影响油田安全生产 2、油田注水开发生产带来的问题 注入水的水源 油田注水开发初期,注水水源为浅层地下水或地表水(宝贵的清水),过量开采清水会引起局部地层水位下降,影响生态环境。 对环境的影响 随着原油含水量的不断上升,大量含油污水不合理排放会引起受纳水体的潜移性侵害,污染生态环境。 二、腐蚀防护与环境保护 油田含油污水特点: 矿化度高溶解有酸性气体腐蚀处理设施、注水系统溶解氧 三、合理利用污水资源 水源缺乏的办法之一:提高水的循环利用率油田污水经处理后代替地下水进行回注是循环利用水的一种方式。若污水处理回注率100%,即油层中采出的污水和地面处理、钻井、作业过程中排出的污水全部处理回注,则注水量只需要补充由于采油造成地层亏空的水量,因而节约大量清水资源和取水设施的建设费用,提高油田注水开发的总体技术经济效益。 第三节水质标准 一、油田开发对注水水质的要求 油田注水的服务对象:致密岩石组成的油层 要求:保证注水水质,达到“注得上,注得进,注得够” 。 对净化采出水的具体要求:化学组分稳定,不形成悬浮物;严格控制机械杂质和含油;有高洗油能力;腐蚀性小;尽量减少采出水处理费用。 油层条件对注水水质的要求:低渗透油田注水水质标准。 目前,陆上低渗透油藏为35%左右,且每年新探明的石油地质储量中低渗透油层所占的比重越来越大。 二、净化污水回注水质标准 1、注水水质基本要求注水水质确定:根据注入层物性指标进行优选。 具体要求: 对水处理设备、注水设备、输水管线腐蚀性小; 不携带超标悬浮物、有机淤泥、油; 与油层流体配伍性良好,即注入油层后不使粘土发生膨胀和移动。 2、注水水质标准 由于各油田或区块油藏孔隙结构和喉道直径不同,相应的渗透率也不相同,因此,注水水质标准也不相同。下表为石油天然气行业标准《碎屑岩油藏注水水质推荐指标》SY/T5329-94水质主控指标。 3、注水水质辅助性指标 辅助性指标包括: 溶解氧水中溶解氧时可加剧腐蚀。腐蚀率不达标时,应首先检测氧浓度。 油田污水溶解氧浓度<0.05mg/l,特殊情况不超过0.1mg/l;清水中溶解氧含量要小于0.5 mg/l。 硫化氢硫化物含量过高,说明细菌增生严重,引起水中悬浮物增加。油田污水中硫化物含量应小于2.0 mg/l。 侵蚀性二氧化碳=0,稳定 侵蚀性二氧化碳含量>0,可溶解CaCO3垢,但对设施有腐蚀

油田注水水质标准

油田注水水质标准 一、油田注水水质标准 不同的行业,不同的应用领域,对所用水源水质有相应的要求。油田注水的目的是通过一系列注水管网、注水设备及注水井将水注入进层,使地层保持能量,提高采油速度和原油采收率。因此,油田注水的水质要求有其特殊性,在水质指标方面,与其他行业的侧重点不同。根据油田注水的特殊用途,对油田注水水质的要求或油田注水水质处理应达到的指标主要包括以下三个方面。 1、注入性 油田注入水的注入性是指注入注入进层(储层)的难易程度。在储层物性(如渗透率、孔隙结构等)相同的条件下,悬浮固体含量低、固相颗粒粒径小、含油量低、胶体含量少的注入水易注入地层,其注入性好。 2、腐蚀性 油田注水的实施经历以下过程: 注水水源污水处理站注水站注水井在油田注水的实施过程中,在地面,涉及到注水设备(如注水泵),注水装置(如沉降罐、过滤罐等),注水管网;在地下,涉及到注水井油套管等,这些设备、管网、装置等大多是金属材质。因此,注入水的腐蚀性不仅会影响注水开发的正常运行,而且还会影响油田注水开发的生产成本。

影响注入水腐蚀性的主要因素有:PH值、含盐量、溶解氧、CO2、H2S、细菌和水温。 3、配伍性 油田注入水注入地层(储层)后,如果作用结果不影响注水效果或不使储层的物理性质如渗透率变差,则称油田注入水与储层的配伍性好,否则,油田注入水与储层的配伍性差。 油田注入水与储层的配伍性,主要表现为结垢和矿物敏感性两个方面,它们都会造成储层伤害,影响注水量、原油产量及原油采收率。 二、油田注水水质指标 1、悬浮物 一方面,注入水中的悬浮物会沉积在注水井井底,造成细菌大量繁殖,腐蚀注水井油套管,缩短注水井使用寿命;另一方面,造成注水地层堵塞,使注水压力上升,注水量下降,甚至注不进水。 从理论上讲,注入水中悬浮物(固体)的含量越低、粒径越小,其注入性就越好,但其处理难度就越大、处理成本也就大增加。所以,注入水中悬浮物(固体)的含量以及粒径大小指标应从储层实际需要、技术可行性与经济可行性三方面来综合考滤 2、油分

水质分析方法国家标准汇总

https://www.doczj.com/doc/5015965947.html,/search/s_d_%CB%AE%D6%CA%B7%D6%CE%F6%B7%BD%B7%A8%B9%FA%BC %D2%B1%EA%D7%BC%BB%E3%D7%DC_1.htm下载网址 水质分析方法国家标准汇总详细下载目录 水质分析方法国家标准汇总(一) 目录:pH水质自动分析仪技术要求 氨氮水质自动分析仪技术要求 超声波明渠污水流量计 地表水和污水监测技术规范 地下水环境监测技术规范 电导率水质自动分析仪技术要求 高氯废水化学需氧量的测定(碘化钾碱性高锰酸钾法) 高氯废水-化学需氧量的测定(氯气校正法) 高锰酸盐指数水质自动分析仪技术要求 工业废水总硝基化合物的测定(分光光度法) 工业废水总硝基化合物的测定(气相色谱法) 海洋监测规范第一部分:总则 环境甲基汞的测定(气相色谱法) 水质分析方法国家标准汇总(二) 目录:环境中有机污染物遗传毒性检测的样品前处理规范 近岸海域环境功能区划分技术规范 溶解氧(DO)水质自动分析仪技术要求 水和土壤质量有机磷农药的测定(气相色谱法) 水污染物排放总量监测技术规范 水质-1,2-二氯苯、1,4-二氯苯、1,2,4-三氯苯的测定(气相色谱法) 水质-甲基肼的测定(对二甲氨基苯甲醛分光光度法) 水质-pH值的测定(玻璃电极法) 水质-氨氮的测定(气相分子吸收光谱法) 水质-铵的测定(水杨酸分光光度法) 水质-铵的测定(纳氏试剂比色法) 水质-铵的测定(蒸馏和滴定法) 水质-钡的测定(电位滴定法) 水质-钡的测定(原子吸收分光光度法) 水质-苯胺类化合物的测定(N-(1-萘基)乙二胺偶氮分光光度法) 水质-苯并(a)芘的测定(乙酰化滤纸层析荧光分光光度法) 水质-苯系物的测定(气相色谱法) 水质-吡啶的测定(气相色谱法) 水质-丙烯腈的测定(气相色谱法) 水质采样样品的保存和管理技术规定 水质分析方法国家标准汇总(三)(已下载) 目录:水质-采样方案设计技术规定

油田污水处理工艺方案

新疆油田石西污水处理工艺方案设计 我国大部分油田开采都采用注水方式,随着开采时间的增加,原油含水量逐年升高,后期可达90%以上,含有大量注水的原油进入联合站经脱水处理后产生大量含油污水,其主要污染物为油水分离过程中剩余的矿物油和生产过程中投加的高分子聚合物、表面活性剂及无机盐类,同时还含有一些悬浮物和泥砂。采油污水通常经过处理、达到行业标准后回注到地下。回注水中部分是为了满足石油开采的生产需要,部分则属于无效回注。 污水先进入调储罐内,经过自然沉降去除大部分水中浮油和悬浮物,上部污油定期回收,出水 后加入净水剂、混凝剂等多种药剂进入多功能反应器反应,经搅拌、沉降等工序,上清液分为两部分处理。一部分水进入过滤器经过三级过滤后回注。另一部分水则进入生物综合反应器进行生物反应,反应器出水至污泥浓缩罐,在罐内进行污泥浓缩沉降,上清液进行澄清池,达标外排。污泥则由泥浆泵提升至带式压滤机进行脱水处理。 主要设备选型 ①调储罐 设置两座1000m3调储罐,管直径为13.75m,垂高为7.93m。罐内设有中心筒、收油槽、出水槽、溢流管,并设有加热盘管,用于加热污油定期回收。 在调储罐旁边设置一座泵房,内设有2台提升泵,1用1备,单台泵性能参数 为:Q=250m3/h,H=60m,n=2900r/min,N=75KW,配防爆电机。 ②多功能高效反应器 设置2座多功能高效反应器装置(HYS150/0.6型),它是带压设备,罐内反应是一种物理与化学相结合运用的工艺过程。HYS150/0.6型装置主要特点: 1.多功能高效处理反应器集反应、沉降于一体,加药反应在装置内部反应筒内完成。 2.多功能高效处理反应器去除油、悬浮物有明显效果。 3.压力处理设备的效率高、相对体积小、占地面积少。 4.运行安全可靠,操作维护简单、方便。 5.压力密闭隔氧,有利缓减污水对金属设备内部腐蚀。多功能高效处理反应器是我们通过多次调研及经验总结,充分利用射流卷吸的作用,达到合格处理目的。本装置已经成功应用在车排子联合处理站和石南21污水处理站。 ③过滤器 污水经过物化反应后分两部分处理,一部分水(约1000m3/d)进入过滤器经过核桃壳、石英砂等三级过滤后,出水达到回注要求,可以回注。 进水指标:含油≤10mg/l,悬浮物≤10mg/l,COD≤600mg/l。 出水指标:含油≤8mg/l,悬浮物≤3mg/l,COD≤400mg/l。 ④生物综合反应器 另一部分水进入生物综合反应器进行生物反应,在厌氧或缺氧的条件下,厌氧微生物大量繁殖 并利用它们特有的生命过程,将有机物分解并生成甲烷和二氧化碳等最终产物;而在氧气充足的 条件下,好氧微生物大量繁殖,利用它们的代谢过程,将水中的有机物氧化成二氧化碳、水、硝酸盐、磷酸盐和碳酸盐。 生物综合反应器突破常规的厌氧、好氧分段处理模式,通过厌氧-好氧反应器的组合,建立优化的生物反应器,通过负荷合理分配,实现系统高负荷及投资和运行成本优化;通过各反应单元的构造设计与目标控制及微生物的固定化,在生物反应器系统内实现微生物生态系在不同单元的独立分布和多元生物结构以及相应的调控技术,保证系统高效和具有脱氮脱硫的功能及抗冲击负荷的

相关主题
文本预览
相关文档 最新文档