当前位置:文档之家› 勾股定理

勾股定理

勾股定理
勾股定理

渗透数学文化,课堂更精彩

——例谈基于文化的勾股定理教学

古楼中心学校--胡丽玲

勾股定理是直角三角形的重要性质,它把三角形有一个直角的“形”的特点,转化为三边之间的“数”的关系,从而解决了许多直角三角形中的计算问题;它是数形结合的典范,也是初中数学教学内容重点之一,更因为其超过四百多种的证明方法,使其成为数学上最引人注目的定理之一。

勾股定理的教学蕴藏着浓厚的文化气息,读一读课后的数学故事、数学名题,体会数学家契而不舍的探究精神,感受数学美等等;教材处处告诉人们,数学不仅仅是一堆数字、符号的计算和证明游戏,它也是前人智慧的结晶,千古传承的文化。

对学生来说,用面积的“割补”证明一个定理应该是比较陌生的,尤其觉得不像证明,因此,勾股定理的证明是一个难点。但是,初二学生经过一年的几何学习,已具有初步的观察和逻辑推理能力,他们更希望独立思考和发表自己的见解。因此,教师要创设一种便于学生观察、思考、交流的教学情境,激发兴趣,培育他们学习的热情。

下面,我以新湘教版八年级下册1.2直角三角形的性质和判定《勾股定理》为例,谈谈在课堂上如何渗透数学文化,使学生觉得不再枯燥,数学课堂更精彩。

【教学目标】

知识技能:了解勾股定理的文化背景,体验勾股定理的探索过程.

数学思考:在勾股定理的探索过程中,发展合情推理能力,体会数形结合的思想.解决问题:1.通过拼图活动,体验数学思维的严谨性,发展形象思维.2.在探究活动中,学会与人合作并能与他人交流思维的过程和探究结果.

情感态度:1.通过对勾股定理历史的了解,感受数学文化,激发学习热情.2.在探究活动中,体验解决问题方法的多样性,培养学生的合作交流意识和探索精神.

【教学重点与难点】

1、重点是探索和证明勾股定理.

2、难点是用拼图的方法证明勾股定理.

【教学方法】讲授法、讨论法.

【教学过程】

一、课前充分准备,营造良好的数学文化氛围,激发学习热情。

进行勾股定理这一章节学习之前,我布置了几项预习任务:

(1)搜索勾股定理的有关资料,并互相交流分享;

(2)汇总所得资料,分组讨论什么是勾股定理,它能解决什么问题,它对于我们的日常生活有什么用等等;

(3)每人用纸皮准备4个全等的直角三角形,并测量其三边的长度,看看是否符合勾股定理.

学生所搜集到的资料一部分选用在课堂上,而余下部分连同讨论结果一起展示在班级“学习园地”中。

点评:通过资料搜索、交流探讨、动手实践等形式,既培养了学生交流协助的学习能力,也营造出了一种良好的数学文化氛围。这些举动就是要让学生明白,数学不仅仅是一些数量关系和空间形式,也是人类经过数千年的生产实践沉淀下来的经验,是人类对自然美的另一种追求,它有自己独特的文化内涵,是人类文明发展的重要组成部分。

二、再现“勾股定理”产生发展历程,感受数学家的科学精神,领略数学思想方法。

荷兰数学家弗莱登塔尔认为:每一个学生都可能在一定的指导下,通过自己的实践来获得数学知识。重现“勾股定理”的产生过程,让学生置身其中,自己动手去探究,更有利于对知识的理解和巩固。

在本章“探索勾股定理”中,我是这样让学生置身其中的:

1、提出问题、发现规律

如图l,以已知线段AC,BC作为直角三角形的两条直角边,斜边的长度能确定吗?

如图2,若以已知线段AB 作为斜边,AC 作为一条直角边,另一条直角边的长度也能确定吗?

通过画图和教具展示,学生容易得出结论:如果直角三角形的两边确定,那么第三边也随之确定。

教师适时追问:直角三角形的三条边之间是否存在一个特定的数量关系呢? 引起学生讨论和思考之后,再引入他们搜索的相关资料. 2、古人的发现

毕达哥拉斯是古希腊著名的数学家.相传在2500年以前,他在朋友家做客时,发现若以一块方形磁砖的对角线AB 为边画一个正方形,那么这个正方形面积恰好等于两块磁砖的面积和.他很好奇,于是再以两块磁砖拼成矩形的对角线为边作另一个正方形,又发现这个正方形之面积等于5块磁砖的面积.

(听完这个故事。学生们都很感兴趣,原来数学家参加一次宴会就发现了“勾股定理”,而且听起来一点也不抽象、不复杂,它就在我们身边.此时,教师可趁机提议学生把方格纸看作方砖,亲自动手画一画,初步体验勾股定理所带来的“数形结合”). 教师展示图片

(1)现在请你也观察一下,你能有什么发现吗?

(2)等腰直角三角形是特殊的直角三角形,一般的直角三角形是否也有这样的特点呢?

(3)你有新的结论吗?

学生自己画图,并观察图片,分组交流讨论. (安排学生代表上讲台板演) 3、师引导生总结:

三个正方形面积的关系可以转化为直角三角形三条边之间的关系,并用自己的语言叙述出来:任何直角三角形,其斜边的平方等于两直角边平方之和。 此为著名的 “毕达哥拉斯定理” 也称为 勾股定理。 教师引入《周髀算经>>1--记载着的周公问商高用矩的故事,

在中国古代,人们把弯曲成直角的手臂的上半部分称为“勾”,下半部分称为“股”.我国古代学者把直角三角形较短的直角边称为“勾”,较长的直角边称为“股”,斜边称为“弦”.勾股定理又称为“勾股弦定理”.

4、定理故事

在法国和比利时,勾股定理又叫“驴桥定理”,还有的国家称勾股定理为“平方定理”。为了庆祝这一定理的发现,毕达哥拉斯学派杀了一百头牛酬谢供奉神灵,因此这个定理又有人叫做“百牛定理”?? 5、我也能证明勾股定理

在讲到证明勾股定理时,教师不急于将教材的证法一一列举,可通过学生自己动手做模型、教师运用多媒体动态探究等形式,使生硬的课堂讲授变成轻松有趣的探究活动。让学生参与教学、自主探究学习的结果。

师:同学们能用课前准备的4个全等的直角三角形纸皮拼出一个大的正方形吗? 学生们兴致很高,但由于各人准备的三角形大小规格不一,摆出的形状也不尽相同,有的只是摆出了矩形.

弦 股

师:很好,同学们都有自己的答案了,而且方法各异,哪些方法对于任意规格的4个全等直角三角形都能拼出正方形的呢?

学生互相对比,讨论热烈,最后得出两种拼法,如图3、图4.

图3 图4

师:其中图4是2002年在北京召开了第24届国际数学家大会,它是最高水平的 全球性数学科学学术会议,被誉为数学界的“奥运会”.这就是本届大会的会徽 的图案.你见过这个图案吗?这个图案是我国汉代数学家赵爽在证明勾股定理时 用到的,被称为“赵爽弦图”同学们,让我们也来试一试吧?

(由于前面安排了动手探索拼图活动,学生们对用自己拼出来的图证明勾股定理

兴趣很高.教师抓住时机,引导学生用“面积相等”推导出2

22c b a =+,让生

台上板书过程,师生一起纠正。并且可适时介绍数形结合、拼凑、转换等数学思想方法,使数学文化教育落到实处.)

除了以上集体证明之外,我向生介绍了“青朱出入图”的无字证明过程。 同学们都感叹这种证法神奇,不需要任何的演算和推理过程,仅仅通过图形的割补就能证明直角三角形的三边关系;同时,他们也被数学文化的博大新奇所感染.

我还组织安排了“证法大搜索,大家齐交流”活动.并将一些图形张贴于公布栏,供生课外时间去研究探讨。一星期后再将不同证法张贴。如欧几里德证法、加菲尔德证法、达芬奇证法等等.

点评:充分揭示数学知识的产生、发展的全过程,不仅仅让学生看到活跃的前台,还应让他们了解丰富的后台.数学知识是一种发现,也是一项发明;大到一门学科,小到一个符号,总是在一定的文化背景下出于某一种思考.因此,在日常教学中,我们应该努力还原、再现这一发现或发明过程,让学生参与其中,感受数学文化的奥妙和数学家契而不舍的探究精神.同时,我们还应该注重各种数学思想的推广和应用,使得数学真正成为“有血有肉、有灵魂,看得见、用得着的生命学科”.

三、利用“勾股定理”展现数学美,给学生以数学美的熏陶

体会数学的美,不必开专门的课程,因为数学处处展现美.只需在平日的教学中点拨提醒一下,就能让学生感受到数学独特新奇的美.

勾股定理的2

22c b a =+公式很美,简洁、对称;有关勾股定理的图形很美,例

如弦图(如图6),简洁大方,像一只转动的风车,它被选作2002年世界数学家大会(北京)的会标;又如1955年希腊专门为纪念毕达哥斯定理发行的一枚美丽邮票(如图7);再如毕达哥拉斯树(如图8),像数学文化的生命之树,生生不息等等.

图6 图7 图8

点评:数学文化中,蕴含着人类对美的追求。直线的刚劲平稳、曲线的对称柔和,还有勾股定理、黄金分割等等,正如数理哲学家罗素所说:“数学如果正确看待它,不但拥有真理,而且具有至高的美.”这种美,正是数学家们将自己的劳动成果按他们的美学观以自己最满意的形式总结出来并献给人类的美,具有特殊的美学价值.在教学中引导学生发现美、感知美不仅能陶冶情操、提高素养,而且有助于开发智力,促进学生的全面发展.

四、生活中的“勾股定理”,惑知数学源自生活、用于生活

勾股定理及其逆定理的应用,是本章的重点内容.这部分内容如果能结合生活体现勾股定理,更能增加定理的人文气息,能让定理更贴近生活,揭示人类在勾股定理活动中的烙印.

在谈到生活中的勾股定理时,我发现通过前面的一系列活动,学生们的思维更活跃,观察更细致,思路更广阔了.

1、如图:一块长约80 m、宽约60 m的长方形草坪,被几个不自

觉的学生沿对角线踏出了一条斜“路”,这种情况在生活中时有

发生.请问同学们:

(1)这几位同学为什么不走正路,走斜“路”?

(2)他们知道走斜“路”比正路少走几步吗?

(3)他们这样做值得吗?适时对学生进行行为规范教育.

2、古代有关勾股定理的典型问题“红莲出水”

波平如镜一湖面,半尺高处出红莲;

鲜艳多姿湖中立,猛遭狂风吹一边.

红莲斜卧水淹面,距根生处两尺远;

渔翁发现忙思考,湖水深浅有多少?

师总结:

1.在很久以前,古埃及人就运用勾股定理的原理在绳上打结,把全长分成长度为3,4,5的三段,然后用来形成直角三角形.

2.用勾股定理能计算距离、测量高度,其逆定理能检验宜角,这对于生活中一些不便于直接度量或精确判断的工作给予了很大的帮助.(教师创造情景与学生共同应用)

3.我国著名数学家华罗庚教授曾提出把“数形关系”(勾股定理)带到其它星球,作为地球人与其它星球上的人“进行第一次谈话”的语言.而在20世纪80年代,美国发射的旨在寻找地球外高级生命的“旅行者一号”卫埋.上面记录着地球上的各种语言、乐曲及图形符号。其中就有勾股定理的表达式和勾股图肜.

(点评:数学的文化意义不仅在于知识本身和它的内涵,更由于它的应用价值,

只有用于社会实践、融入大众文化的学科才是有生命力的科学.因此.觉得“学有所用,学得有趣;生活巾有数学,数学就在身边”,是数学文化教学的重要意义所在.)

五、作业布置

教材16页 A组第3、4题

随着新课标的进一步实施.数学文化已经逐渐成为热门话题.但是如何在日常教学当中渗透数学文化。如何让学乍接受数学文化,还是令许多一线教师心里没底.本文我用“勾股定理”举例,尝试将数学文化引入课堂,使教学更精彩.这仅仅是抛金引玉,推广数学文化教学还需广大教育工作者共同努力.当数学的文化内涵真正融入课堂时,数学会更加平易近人、更加容易理解、更美.数学教育的明天也一定会更好!

附件:勾股定理的证明

【证法1】(课本的证明)

做8个全等的直角三角形,

设它们的两条直角边长分别为a 、b ,斜边长为c ,

再做三个边长分别为a 、b 、c 的正方形,把它们像上图那样拼成两个正方形.

从图上可以看到,这两个正方形的边长都是a + b ,所以面积相等. 即

ab

c ab b a 21

4214222?+=?++, 整理得 222c b a =+.

【证法2】(邹元治证明)

以a 、b 为直角边,以c 为斜边做四个全等的直角三角形,则每个直角三角

形的面积等于ab 21. 把这四个直角三角形拼成如图所示形状,使A 、E 、B 三点

在一条直线上,B 、F 、C 三点在一条直线上,C 、G 、D 三点在一条直线上.

∵ Rt ΔHAE ≌ Rt ΔEBF,

∴ ∠AHE = ∠BEF .

∵ ∠AEH + ∠AHE = 90o, ∴ ∠AEH + ∠BEF = 90o. ∴ ∠HEF = 180o―90o= 90o.

∴ 四边形EFGH 是一个边长为c 的

正方形. 它的面积等于c2. ∵ Rt ΔGDH ≌ Rt ΔHAE, ∴ ∠HGD = ∠EHA . ∵ ∠HGD + ∠GHD = 90o, ∴ ∠EHA + ∠GHD = 90o. 又∵ ∠GHE = 90o,

∴ ∠DHA = 90o+ 90o= 180o.

∴ ABCD 是一个边长为a + b 的正方形,它的面积等于()2

b a +.

∴ ()2

2

21

4c ab b a +?=+. ∴ 2

22c b a =+.

【证法3】(赵爽证明)

以a 、b 为直角边(b>a ),以c 为斜边作四个全等直角三角形,则每个直角

三角形的面积等于ab 21

. 把这四个直角三角形拼成如图所示形状.

∵ Rt ΔDAH ≌ Rt ΔABE, ∴ ∠HDA = ∠EAB .

∵ ∠HAD + ∠HAD = 90o, ∴ ∠EAB + ∠HAD = 90o,

∴ ABCD 是一个边长为c 的正方形,它的面积等于c2. ∵ EF = FG =GH =HE = b ―a , ∠HEF = 90o.

∴ EFGH 是一个边长为b ―a 的正方形,它的面积等于()2

a b -.

∴ ()2

2

214c a b ab =-+?.

∴ 2

22c b a =+.

【证法4】(1876年美国总统Garfield 证明)

以a 、b 为直角边,以c 为斜边作两个全等的直角三角形,则每个直角三角

形的面积等于ab 21. 把这两个直角三角形拼成如图所示形状,使A 、E 、B 三点

在一条直线上.

∵ Rt ΔEAD ≌ Rt ΔCBE,

∴ ∠ADE = ∠BEC .

∵ ∠AED + ∠ADE = 90o, ∴ ∠AED + ∠BEC = 90o. ∴ ∠DEC = 180o―90o= 90o. ∴ ΔDEC 是一个等腰直角三角形,

它的面积等于221c

.又∵ ∠DAE = 90o, ∠EBC = 90o,∴ AD ∥BC .∴ ABCD 是

一个直角梯形,它的面积等于()221b a +.∴ ()2

2212122

1c ab b a +?=+. ∴ 2

22c b a =+.

【证法5】(梅文鼎证明)

做四个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c . 把它们拼成如图那样的一个多边形,使D 、E 、F 在一条直线上. 过C 作AC

的延长线交DF 于点P .

∵ D 、E 、F 在一条直线上, 且Rt ΔGEF ≌ Rt Δ∴ ∠EGF = ∠BED ,

∵ ∠EGF + ∠GEF = 90°, ∴ ∠BED + ∠GEF = 90°,

∴ ∠BEG =180o―90o= 90o. 又∵ AB = BE = EG = GA = c ,

∴ ABEG 是一个边长为c 的正方形. ∴ ∠ABC + ∠CBE = 90o. ∵ Rt ΔABC ≌ Rt ΔEBD, ∴ ∠ABC = ∠EBD .

∴ ∠EBD + ∠CBE = 90o. 即 ∠CBD= 90o.

又∵ ∠BDE = 90o,∠BCP = 90o,

BC = BD = a .

∴ BDPC 是一个边长为a 的正方形. 同理,HPFG 是一个边长为b 的正方形. 设多边形GHCBE 的面积为S ,则

,21222ab S b a ?+=+

ab

S c 21

22?+=, ∴ 2

22c b a =+. 【证法6】(项明达证明)

做两个全等的直角三角形,设它们的两条直角边长分别为a 、b (b>a ) ,斜边长为c . 再做一个边长为c 的正方形. 把它们拼成如图所示的多边形,使E 、A 、C 三点在一条直线上. 过点Q 作QP ∥BC ,交AC 于点P .

过点B 作BM ⊥PQ ,垂足为M ;再过点

F 作FN ⊥PQ ,垂足为N . ∵ ∠BCA = 90o,QP ∥BC , ∴ ∠MPC = 90o, ∵ BM ⊥PQ , ∴ ∠BMP = 90o, ∴ BCPM 是一个矩形,即∠MBC = 90o.

∵ ∠QBM + ∠MBA = ∠QBA = 90o,

∠ABC + ∠MBA = ∠MBC = 90o, ∴ ∠QBM = ∠ABC ,

又∵ ∠BMP = 90o,∠BCA = 90o,BQ = BA = c , ∴ Rt ΔBMQ ≌ Rt ΔBCA .

同理可证Rt ΔQNF ≌ Rt ΔAEF . 从而将问题转化为【证法4】(梅文鼎证明). 【证法7】(欧几里得证明)

做三个边长分别为a 、b 、c

H 、C 、

B 三点在一条直线上,连结 BF 、CD . 过

C 作CL ⊥DE , 交AB 于点M ,交DE 于点

L . ∵ AF = AC ,AB = AD , ∠FAB = ∠GAD , ∴ ΔFAB ≌ ΔGAD ,

∵ ΔFAB 的面积等于221a

, ΔGAD 的面积等于矩形ADLM 的面积的一半,

∴ 矩形ADLM 的面积 =2

a .

同理可证,矩形MLEB 的面积 =2

b .

∵ 正方形ADEB 的面积

= 矩形ADLM 的面积 + 矩形MLEB 的面积 ∴ 222b a c += ,即 2

22c b a =+.

【证法8】(利用相似三角形性质证明)

如图,在Rt ΔABC 中,设直角边AC 、BC 的长度分别为a 、b ,斜边AB 的长为c ,过点C 作CD ⊥AB ,垂足是D .

在ΔADC 和ΔACB 中, ∵ ∠ADC = ∠ACB = 90o, ∠CAD = ∠BAC , ∴ ΔADC ∽ ΔACB . AD ∶AC = AC ∶AB ,

即 AB AD AC ?=2. 同理可证,ΔCDB ∽ ΔACB ,从而有 AB BD BC ?=2

.

∴ ()222AB AB DB AD BC AC =?+=+,即 2

22c b a =+.

【证法9】(杨作玫证明)

做两个全等的直角三角形,设它们的两条直角边长分别为a 、b (b>a ),斜边长为c . 再做一个边长为c 的正方形. 把它们拼成如图所示的多边形. 过A 作AF ⊥AC ,AF 交GT 于F ,AF 交DT 于R . 过B 作BP ⊥AF ,垂足为P . 过D 作DE 与CB 的延长线垂直,垂足为E ,DE 交AF 于H .

∵ ∠BAD = 90o,∠PAC = 90o, ∴ ∠DAH = ∠BAC . 又∵ ∠DHA = 90o,∠BCA = 90o, AD = AB = c ,

∴ Rt ΔDHA ≌ Rt ΔBCA .

∴ DH = BC = a ,AH = AC = b . 由作法可知, PBCA 是一个矩形, 所以 Rt ΔAPB ≌ Rt ΔBCA . 即PB =

CA = b ,AP= a ,从而PH = b ―a . ∵ Rt ΔDGT ≌ Rt ΔBCA ,

Rt ΔDHA ≌ Rt ΔBCA . ∴ Rt ΔDGT ≌ Rt ΔDHA .

∴ DH = DG = a ,∠GDT = ∠HDA . 又∵ ∠DGT = 90o,∠DHF = 90o,

∠GDH = ∠GDT + ∠TDH = ∠HDA+ ∠TDH = 90o, ∴ DGFH 是一个边长为a 的正方形.

∴ GF = FH = a . TF ⊥AF ,TF = GT ―GF = b ―a .

∴ TFPB 是一个直角梯形,上底TF=b ―a ,下底BP= b ,高FP=a +(b ―a ). 用数字表示面积的编号(如图),则以c 为边长的正方形的面积为

543212S S S S S c ++++= ①

()[]()[]a b a a b b S S S -+?-+=

++21

438 =

ab b 212-, 985S S S +=, ∴

824321

S ab b S S --

=+=

812

S S b -- . ② 把②代入①,得

98812212S S S S b S S c ++--++=

= 922

S S b ++ = 22a b +. ∴ 2

22c b a =+.

【证法10】(李锐证明)

设直角三角形两直角边的长分别为a 、b (b>a ),斜边的长为c . 做三个边长分别为a 、b 、c 的正方形,把它们拼成如图所示形状,使A 、E 、G 三点在一条直线上. 用数字表示面积的编号(如图).

∵ ∠TBE = ∠ABH = 90o, ∴ ∠TBH = ∠ABE .

又∵ ∠BTH = ∠BEA = 90o,

BT = BE = b ,

∴ Rt ΔHBT ≌ Rt ΔABE . ∴ HT = AE = a . ∴ GH = GT ―HT = b ―a .

又∵ ∠GHF + ∠BHT = 90o,

∠DBC + ∠BHT = ∠TBH + ∠

∴ ∠GHF = ∠DBC .

∵ DB = EB ―ED = b ―a ,

∠HGF = ∠BDC = 90o,

∴ Rt ΔHGF ≌ Rt ΔBDC . 即 27S S =. 过Q 作QM ⊥AG ,垂足是M . 由∠BAQ = ∠BEA = 90o,可知 ∠ABE = ∠QAM ,而AB = AQ = c ,所以Rt ΔABE ≌ Rt ΔQAM . 又Rt ΔHBT ≌ Rt ΔABE . 所以Rt ΔHBT ≌ Rt ΔQAM . 即 58S S =.

由Rt ΔABE ≌ Rt ΔQAM ,又得QM = AE = a ,∠AQM = ∠BAE .

∵ ∠AQM + ∠FQM = 90o,∠BAE + ∠CAR = 90o,∠AQM = ∠BAE , ∴ ∠FQM = ∠CAR .

又∵ ∠QMF = ∠ARC = 90o,QM = AR = a , ∴ Rt ΔQMF ≌ Rt ΔARC . 即64S S =.

∵ 543212S S S S S c ++++=,612S S a +=,8732

S S S b ++=, 又∵ 27S S =,58S S =,64S S =,

R

8736122S S S S S b a ++++=+ =52341S S S S S ++++

=2

c , 即 2

22c b a =+.

【证法11】(利用切割线定理证明)

在Rt ΔABC 中,设直角边BC = a ,AC = b ,斜边AB = c . 如图,以B 为圆心a 为半径作圆,交AB 及AB 的延长线分别于D 、E ,则BD = BE = BC = a . 因为∠BCA = 90o,点C 在⊙B 上,所以AC 是⊙B 的切线. 由切割线定理,得

AD AE AC ?=2

=()()BD AB BE AB -+ =()()a c a c -+

= 22a c -,

即2

22a c b -=, ∴ 2

22c b a =+.

【证法12】(利用多列米定理证明)

在Rt ΔABC 中,设直角边BC = a ,AC = b ,斜边AB = c (如图). 过点A 作AD ∥CB ,过点B 作BD ∥CA ,则ACBD 为矩形,矩形ACBD 内接于一个圆. 根据多列米定理,圆内接四边形对角线的乘积等于两对边乘积之和,有

BD AC BC AD DC AB ?+?=?, ∵ AB = DC = c ,AD = BC = a ,

AC = BD = b ,

∴ 222AC BC AB +=,即 2

22b a c +=,

∴ 222c b a =+.

【证法13】(作直角三角形的内切圆证明)

在Rt ΔABC 中,设直角边BC = a ,AC = b ,斜边AB = c . 作Rt ΔABC 的内切圆⊙O ,切点分别为D 、E 、F (如图),设⊙O 的半径为r .

∵ AE = AF ,BF = BD ,CD = CE ,

∴ ()()()BF AF CD BD CE AE AB BC AC +-+++=-+

= CD CE += r + r = 2r,

即 r c b a 2=-+, ∴ c r b a +=+2.

∴ ()()2

2

2c r b a +=+,

即 ()

2

22242c rc r ab b a ++=++,

ab S ABC 21=

?,

∴ ABC S ab ?=42,

E

又∵ AO C BO C

AO B ABC S S S S ????++= = br

ar cr 212121++ = ()r c b a ++21

= ()r c c r ++221

= rc r +2,

∴ (

)

ABC S rc r ?=+442

∴ ()ab rc r

242

=+,

∴ 22222c ab ab b a +=++, ∴ 2

22c b a =+.

【证法14】(利用反证法证明)

如图,在Rt ΔABC 中,设直角边AC 、BC 的长度分别为a 、b ,斜边AB 的长为c ,过点C 作CD ⊥AB ,垂足是D .

假设222c b a ≠+,即假设 2

22AB BC AC ≠+,则由

AB AB AB ?=2=()BD AD AB +=BD AB AD AB ?+?

可知 AD AB AC ?≠2,或者 BD AB BC ?≠2

. 即 AD :AC ≠AC :AB ,或者 BD :BC ≠BC :AB .

在ΔADC 和ΔACB 中, ∵ ∠A = ∠A , ∴ 若 AD :AC ≠AC :AB ,则 ∠ADC ≠∠ACB . 在ΔCDB 和ΔACB 中, ∵ ∠B = ∠B ,

∴ 若BD :BC ≠BC :AB ,则 ∠CDB ≠∠ACB . 又∵ ∠ACB = 90o,

∴ ∠ADC ≠90o,∠CDB ≠90o.

这与作法CD ⊥AB 矛盾. 所以,2

22AB BC AC ≠+的假设不能成立. ∴ 2

22c b a =+.

【证法15】(辛卜松证明)

设直角三角形两直角边的长分别为a 、b ,斜边的长为c . 作边长是a+b 的正方形ABCD . 把正方形ABCD 划分成上方左图所示的几个部分,则正方形ABCD

D D

C

的面积为

()ab b a b a 22

22++=+;把正方形ABCD 划分成上方右图所示的几个部分,则正方形ABCD 的面积为 ()2

2

21

4c ab b a +?=+ =2

2c ab +.

∴ 2

2222c ab ab b a +=++,

∴ 2

22c b a =+. 【证法16】(陈杰证明)

设直角三角形两直角边的长分别为a 、b (b>a ),斜边的长为c . 做两个边长分别为a 、b 的正方形(b>a ),把它们拼成如图所示形状,使E 、H 、M 三点在一

条直线上. 用数字表示面积的编号(如图).

在EH = b 上截取ED = a ,连结DA 、DC ,

则 AD = c .

∵ EM = EH + HM = b + a , ED = a ,

∴ DM = EM ―ED = ()a b +―a = b .

又∵ ∠CMD = 90o,CM = a ,

∠AED = 90o, AE = b , ∴ Rt ΔAED ≌ Rt ΔDMC . ∴ ∠EAD = ∠MDC ,DC = AD = c . ∵ ∠ADE + ∠ADC+ ∠MDC =180o,

∠ADE + ∠MDC = ∠ADE + ∠EAD = 90o, ∴ ∠ADC = 90o.

∴ 作AB ∥DC ,CB ∥DA ,则ABCD 是一个边长为c 的正方形. ∵ ∠BAF + ∠FAD = ∠DAE + ∠FAD = 90o, ∴ ∠BAF=∠DAE .

连结FB ,在ΔABF 和ΔADE 中,

∵ AB =AD = c ,AE = AF = b ,∠BAF=∠DAE , ∴ ΔABF ≌ ΔADE .

∴ ∠AFB = ∠AED = 90o,BF = DE = a . ∴ 点B 、F 、G 、H 在一条直线上. 在Rt ΔABF 和Rt ΔBCG 中, ∵ AB = BC = c ,BF = CG = a , ∴ Rt ΔABF ≌ Rt ΔBCG .

∵ 54322S S S S c +++=, 6212S S S b ++=, 732S S a +=, 76451S S S S S +===, ∴ 621732

2S S S S S b a ++++=+

=()76132S S S S S ++++

=5432S S S S +++ =2c

∴ 2

22c b a =+.

勾股定理经典例题解析版

类型一:勾股定理的直接用法 1、在Rt△ABC中,∠C=90° (1)已知a=6,c=10,求b,(2)已知a=40,b=9,求c;(3)已知c=25,b=15,求a. 思路点拨:写解的过程中,一定要先写上在哪个直角三角形中,注意勾股定理的变形使用。 解析:(1) 在△ABC中,∠C=90°,a=6,c=10,b= b=9,c=°,a=40,(2) 在△ABC中,∠C=90 (3) 在△ABC中,∠C=90°,c=25,b=15,a= 举一反三 【变式】:如图∠B=∠ACD=90°, AD=13,CD=12, BC=3,则AB的长是多少? °ACD=90 【答案】∵∠13, CD=12 = AD 222 ∴AC-=ADCD 22-=1312 =25 =5 ∴AC =3 °且BC又∵∠ABC=90 ∴由勾股定理可得 -222 ACBC AB= 22 =53- =16 = 4 AB∴ 4. 的长是∴AB 类型二:勾股定理的构造应用

. BC的长中,、如图,已知:在,,. 求: 2 ,则有角的直角三角形,为此作于D,想到构造含思路点拨:由条件 的DC的长,进而求出BC,再由勾股定理计算出AD、,. 长 ,则因:作,D于解析 (∴的两个锐角互余) 中,如果一个锐角等于∴(在,

. 那么它所对的直角边等于斜边的一半) 根据勾股定理,在中, . 根据勾股定理,在中, . . ∴ . 求证: . P于,,如图,已知:】1【变式举一反三 解析:连结BM,根据勾股定理,在中, . 中,则根据勾股定理有而在

. ∴ 又∵(已知), ∴. 中,根据勾股定理有在 , ∴. 【变式2】已知:如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2。求:四边形ABCD的面积。 分析:如何构造直角三角形是解本题的关键,可以连结AC,或延长AB、DC交于F,或延长AD、BC交于点E,根据本题给定的角应选后两种,进一步根据本题给定的边选第三种较为简单。 解析:延长AD、BC交于E。 ∵∠A=∠60°,∠B=90°,∴∠E=30°。 CE=2CD=4,∴AE=2AB=8, 22222BE==8= -4∴BE。=AE=48-AB,

《勾股定理》典型例题

《勾股定理》典型例题 例1 在两千多年前我国古算术上记载有“勾三股四弦五”.你知道它的意思吗? 它的意思是说:如果一个直角三角形的两条直角边长分别为3和4个长度单位,那么它的斜边的长一定是5个长度单位,而且3、4、5这三个数有这样的关系:32+42=52. (1)请你动动脑筋,能否验证这个事实呢?该如何考虑呢? (2)请你观察下列图形,直角三角形ABC 的两条直角边的长分别为AC =7,BC =4,请你研究这个直角三角形的斜边AB 的长的平方是否等于42+72? 解: (1)边长的平方即以此边长为边的正方 形的面积,故可通过面积验证.分别以这个直 角三角形的三边为边向外做正方形,如右 图:AC =4,BC =3, S 正方形ABED =S 正方形FCGH -4S Rt △ABC =(3+4)2-4×2 1×3×4=72-24=25 即AB 2=25,又AC =4,BC =3, AC 2+BC 2=42+32=25 ∴AB 2=AC 2+BC 2 (2)如图(图见题干中图)

S 正方形ABED =S 正方形KLCJ -4S Rt △ABC =(4+7)2-4×2 1×4×7=121-56=65=42+72 例2 下图甲是任意一个直角三角形ABC ,它的两条直角边的边长分别为a 、b ,斜边长为c .如图乙、丙那样分别取四个与直角三角形ABC 全等的三角形,放在边长为a +b 的正方形内. ①图乙和图丙中(1)(2)(3)是否为正方形?为什么? ②图中(1)(2)(3)的面积分别是多少? ③图中(1)(2)的面积之和是多少? ④图中(1)(2)的面积之和与正方形(3)的面积有什么关系?为什么? 由此你能得到关于直角三角形三边长的关系吗? 解: ①图乙、图丙中(1)(2)(3)都是正方形.易得(1)是以a 为边长的正方形, (2)是以b 为边长的正方形,(3)的四条边长都是c ,且每个角都是直角,所以(3)是以c 为边长的正方形. ②图中(1)的面积为a 2,(2)的面积为b 2,(3)的面积为c 2. ③图中(1)(2)面积之和为a 2+b 2. ④图中(1)(2)面积之和等于(3)的面积. 因为图乙、图丙都是以a +b 为边长的正方形,它们面积相等,(1)(2)的面

(完整版)勾股定理典型例题详解及练习(附答案)

典型例题 知识点一、直接应用勾股定理或勾股定理逆定理 例1:如图,在单位正方形组成的网格图中标有AB CD EF、GH四条线段, 其中能构成一个直角三角形三边的线段是() A.CD、EF、 GH C. AB、CD GH B.AB、EF、GH D. AB、CD EF 愿路分乐屮 1)題意分析’本题考查幻股定理及勾股定理的逆定理.亠 2)解題思器;可利用勾脸定理直接求出各边长,再试行判断?』 解答过整屮 在取DEAF中,Af=l, AE=2,根据勾股定理,得昇 EF = Q抡於十£尸° = Q +F二艮 同理HE = 2百* QH. = 1 CD = 2^5 计算发现W十◎血尸=(鸥31即血+曲=GH2,根据勾股定理的逆宦理得到UAAE、EF\ GH为辺的三角形是直毎三角形.故选B. * 縮題后KJ思专:* 1.勾股定理只适用于直角三角形,而不适用于说角三角形和钝角三角形? 因此」辭题时一宦妾认真分析题目所蛤■条件■,看是否可用勾股定理来解口* 2.在运用勾股左理时,要正确分析题目所给的条件,不要习惯性地认为就是斜 迫而“固执”地运用公式川二/十就其实,同样是S6

"不一罡就等于餌,疋不一罡就昱斜辺,KABC不一定就是直角三祐

3.直角三第形的判定条件与勾股定理是互逆的.区别在于勾股定理的运用是一个从 卅形s—个三角形是直角三角形)到懺 y =沖十沪)的过程,而直角三角形的判定是一 ①从嗦(一个三角形的三辺满足X二护+酹的条件)到偲个三角形是直角三角形)的过 程.a 4?在应用勾股定理解题叭聲全面地琴虑间题.注意m题中存在的多种可能性,遊免漏辭.初 例玉如圏,有一块直角三角形?椀屈U,两直角迫4CM5沁丸m?现将直角边AC沿直绘AD折蠡便它落在斜边AB上.且点C落到点E处, 则切等于(、* C/) "禎 B. 3cm G-Icni n題童分析,本题着查勾股定理的应用刎 :)解龜思路;車题若直接在△MQ中运用勾股定理是无法求得仞的长的,因为貝知遒一条边卫0的长,由题意可知,AACD和心迓门关于直线KQ对称.因而^ACD^hAED ?进一歩则有应RUm CZAED ED 丄AB,设UD=E2>黄泱,则在Rt A ABO中,由勾股定 理可得^=^(^+^=^83=100,得AB=10cm,在松迟DE 中,W ClO-fl)2= d驚解得尸 九4 解龜后的思琴尸 勾股定理说到底是一个等式,而含有未知数的等式就是方程。所以,在利用勾股定理求线段的长时常通过解方程来解决。勾股定理表达式中有三个量,如果条件中只有一个已知量,必须设法求出另一个量或求出另外两个量之间的关系,这一点是利用勾股定理求线段长时需要明确的思路。 方程的思想:通过列方程(组)解决问题,如:运用勾股定理及其逆定理求线段的长度或解决实际问题时,经常利用勾股定理中的等量关系列出方程来解 决问题等。 例3:一场罕见的大风过后,学校那棵老杨树折断在地,此刻,张老师正和占 明、清华、绣亚、冠华在楼上凭栏远眺。 清华开口说道:“老师,那棵树看起来挺高的。” “是啊,有10米高呢,现在被风拦腰刮断,可惜呀!” “但站立的一段似乎也不矮,有四五米高吧。”冠华兴致勃勃地说。 张老师心有所动,他说:“刚才我跑过时用脚步量了一下,发现树尖距离树根恰好3米,你们能求出杨树站立的那一段的高度吗?” 占明想了想说:“树根、树尖、折断处三点依次相连后构成一个直角三角

中考数学勾股定理知识点-+典型题及解析

中考数学勾股定理知识点-+典型题及解析 一、选择题 1.图中不能证明勾股定理的是( ) A . B . C . D . 2.勾股定理是几何中的一个重要定理,在我国算书《网醉算经》中就有“若勾三,股四,则弦五”的记载.如图1,是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入矩形内得到的,∠BAC=90°,AB=3,BC=5,点D ,E ,F ,G ,H ,I 都在矩形KLMJ 的边上,则矩形KLMJ 的面积为( ) A .121 B .110 C .100 D .90 3.如图,在ABC 中,90A ∠=?,6AB =,8AC =,ABC ∠与ACB ∠的平分线交于点O ,过点O 作⊥OD AB 于点D ,若则AD 的长为( )

A .2 B .2 C .3 D .4 4.已知△ABC 是腰长为1的等腰直角三角形,以Rt △ABC 的斜边AC 为直角边,画第二个等腰Rt △ACD ,再以Rt △ACD 的斜边AD 为直角边,画第三个等腰Rt △ADE ,…,依此类推,第n 个等腰直角三角形的面积是( ) A .2n ﹣2 B .2n ﹣1 C .2n D .2n+1 5.如图,正方形ABCD 和正方形CEFG 边长分别为a 和b ,正方形CEFG 绕点C 旋转,给出下列结论:①BE=DG;②BE⊥DG;③DE 2+BG 2=2a 2+2b 2,其中正确结论有( ) A .0个 B .1个 C .2个 D .3个 6.如图是我国数学家赵爽的股弦图,它由四个全等的直角三角形和小正方形拼成的一个大正方形.已知大正方形的面积是l3,小正方形的面积是1,直角三角形的较短直角边长为a ,较长直角边长为b ,那么()2 a b +值为( ) A .25 B .9 C .13 D .169 7.我国古代数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的三角形,如图所示,已知90A ∠=?正方形ADOF 的边长是2,4BD =,则CF 的长为( ) A .6 B .2 C .8 D .10 8.有一个面积为1的正方形,经过一次“生长”后,在他的左右肩上生出两个小正方形,其中,三个正方形围成的三角形是直角三角形,再经过一次“生长”后,变成了上图,如果继续“生长”下去,它将变得“枝繁叶茂”,请你算出“生长”了2020次后形成的图形中所有的正方形的面积和是( )

初二数学勾股定理压轴题冲刺满分训练

一.填空题(共9小题) 1.△ABC是等腰三角形,腰上的高为8cm,面积为40cm2,则该三角形的周长是cm. 2.如图,在△ABC中,AB=BC=8,AO=BO,点M是射线CO上的一个动点,∠AOC=60°,则当△ABM为直角三角形时,AM的长为. 3.如图,正方形ABDE、CDFI、EFGH的面积分别为25、9、16,△AEH、△BDC、△GFI的面积分别为S1、S2、S3,则S1+S2+S3=. 4.如图,在Rt△ABC中,∠ACB=90,AC=3,BC=4,分别以AB、AC、BC为边在AB同侧作正方形ABEF,ACPQ,BDMC,记四块阴影部分的面积分别为S1、S2、S3、S4,则S1+S2+S3+S4=. 5.如图,Rt△ABC中,∠ACB=90°,AC=2,BC=.分别以AB,AC,BC为边,向外作正方形ABDE,正方形ACFG,正方形BCMN,连接GE,DN.则图中阴影的总面积是.

6.有一棵9米高的大树,树下有一个1米高的小孩,如果大树在距地面4米处折断(未完全折断),则小孩至少离开大树米之外才是安全的. 7.如图,A在线段BG上,ABCD和DEFG都是正方形,面积分别为7平方厘米和11平方厘米,则△CDE的面积等于平方厘米. 8.等腰△ABC的底边BC=8cm,腰长AB=5cm,一动点P在底边上从点B开始向点C以0.25cm/秒的速度运动,当点P运动到PA与腰垂直的位置时,点P运动的时间应为秒. 9.Rt△ABC中,∠BAC=90°,AB=AC=2.以AC为一边,在△ABC外部作等腰直角三角形ACD,则线段BD的长为. 二.解答题(共3小题) 10.已知△ABC中,AB=AC. (1)如图1,在△ADE中,若AD=AE,且∠DAE=∠BAC,求证:CD=BE; (2)如图2,在△ADE中,若∠DAE=∠BAC=60°,且CD垂直平分AE,AD=3,CD=4,求BD的长; (3)如图3,在△ADE中,当BD垂直平分AE于H,且∠BAC=2∠ADB时,试探究CD2,BD2,AH2之间的数量关系,并证明.

数学数学勾股定理试题及解析

数学数学勾股定理试题及解析 一、选择题 1.△ABC 中,AB=15,AC=13,高AD=12,则△ABC 的周长为( ) A .42 B .32 C .42或32 D .37或33 2.如图,在Rt ABC ?中,90, 5 ,3ACB AB cm AC cm ?∠=== ,动点P 从点B 出发,沿射线BC 以1 /cm s 的速度移动,设运动的时间为t 秒,当?ABP 为等腰三角形时,t 的值不可能为( ) A .5 B .8 C .254 D .258 3.如图,四边形ABCD 中,AC ⊥BD 于O ,AB =3,BC =4,CD =5,则AD 的长为( ) A .1 B .32 C .4 D .23 4.如图,已知直线a ∥b ,且a 与b 之间的距离为4,点A 到直线a 的距离为2,点B 到直线b 的距离为3,AB 230=.试在直线a 上找一点M ,在直线b 上找一点N ,满足MN ⊥a 且AM +MN +NB 的长度和最短,则此时AM +NB =( ) A .6 B .8 C .10 D .12 5.如图,设正方体ABCD-A 1B 1C 1D 1的棱长为1,黑、白两个甲壳虫同时从点A 出发,以相同的速度分别沿棱向前爬行,黑甲壳虫爬行的路线是AA 1→A 1D 1→…,白甲壳虫爬行的路线是AB→BB 1→…,并且都遵循如下规则:所爬行的第n+2与第n 条棱所在的直线必须

既不平行也不相交(其中n 是正整数).那么当黑、白两个甲壳虫各爬行完第2017条棱分别停止在所到的正方体顶点处时,它们之间的距离是( ) A .0 B .1 C .3 D .2 6.我国古代数学家赵爽的“勾股方圆图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示),如果大正方形的面积是25,小正方形的面积是1,直角三角形的两直角边分别是a 和b ,那么ab 的值为( ) A .49 B .25 C .12 D .10 7.如图所示,有一个高18cm ,底面周长为24cm 的圆柱形玻璃容器,在外侧距下底1cm 的点S 处有一蜘蛛,与蜘蛛相对的圆柱形容器的上口外侧距开口处1cm 的点F 处有一只苍蝇,则急于捕获苍蝇充饥的蜘蛛所走的最短路径的长度是( ) A .16cm B .18cm C .20cm D .24cm 8.下列各组线段能构成直角三角形的一组是( ) A .30,40,60 B .7,12,13 C .6,8,10 D .3,4,6 9.勾股定理是“人类最伟大的十个科学发现之一”.我国对勾股定理的证明是由汉代的赵爽在注解《周髀算经》时给出的,他用来证明勾股定理的图案被称为“赵爽弦图”.2002年在北京召开的国际数学大会选它作为会徽.下列图案中是“赵爽弦图”的是( ) A . B . C . D . 10.为了庆祝国庆,八年级(1)班的同学做了许多拉花装饰教室,小玲抬来一架2.5米长的梯子,准备将梯子架到2.4米高的墙上,则梯脚与墙角的距离是( ) A .0.6米 B .0.7米 C .0.8米 D .0.9米 二、填空题 11.如图,ACB △和ECD 都是等腰直角三角形,CA CB =,CE CD =,ABC 的顶

八年级数学经典压轴题勾股定理综合

勾股定理(3)勾股定理及逆定理的综合 民棊市在“I日城改中卄划在市内一块如囲17-3-7所示的三角率空她上胛植 某秒耳良以灵比药填^其中ZApl5(T,Jl£f = l?(}来川C = 30米■已知这 棘常皮需平方米倍价a亓+则胸买这种茸皮至少需要元. 乳如图17-3-8所示,艮方形片附?门中用"=乩班:=仁将桩方形沿At?折養? 点D蔣应”址刚巫獰部 分^AfC的面积是 _____________ 10. 17-3-9所示,把长方殛AHCD迓片祈是使点B蒋在点D如点<?摧在C'处,折痕EF与BD交 于点O?已知AE = 1趴AD=]盒则折锻EF的怅为___________ ? 1134EJ 17^3-10 所示*在ZXABC 屮上丸CH = g(TMC二EGP 是ZV1迟C 内的一点,且PB=UPC=2:尸人"3,桁△円垃骁点C旋转后,与△AFC重合,连播P严,则PP f = _______________ ,Z-BPC的度数为________ * 12. 等慣三角形的一边氏蹙12,另一边快挺10*则其面积均_____________ , 13. 如图1Z-311所吾*公路昭N和公賂PQ在点P处交汇*且ZQPN=30\点A赴有一所中学.AP = 1仙m.假没拖拉机行餐时J剤出】00m以内空受到噪音的申响?那么检拉机牲公路上沿PN方向 行观时?学校抠否会受剰囁芦喲叙诸说明理由,如廉覺烹鞘’已知拖拉机的速度为 18km/h f W么学 校受影响的时间为多少秒? 14. 如图L7-3-1Z所示’在-篷直妁公貉MN的同一旁冇两个新开堤区片*為巳知4fi = 10千米,直銭AE与公路 MJV的夹甬Z_4CWW = 3OJ新开发区B到公路肋片的跑离EC=3千米. (D滾新开发区A到公路阿挖的距离* ■熄)现磐在丽闻上某点尸处向新开发区AE修两条公賂尸使点尸到新开发IKA,B的亜离之彌故矩■诸似用尺规悴團在亜呻找出点户的位豎:不用证期「不写作搖,谏苗作囲痕迹4并求出此 ■ 时PA+PB的值. “、 估' 3] 17 3 12图17-i 8ffl 17 3 !>

勾股定理典型题总结(较难)

勾股定理 一.勾股定理证明与拓展 模型一 . 图中三个正方形面积关系 思考:如下图,以直角三角形a 、b 、c 为边,向外作等边三角形、半圆、等腰直角三角形和正方形,上述四种情况的面积有和关系? 例1、有一个面积为1的正方形,经过一次“生长”后,在他的左右肩上上生出两个小正方形(如图1),其中,三个正方形围成的三角形是直角三角形,再经过一次“生长”后,生出了4个正方形(如图2),如果按此规律继续“生长”下去,它将变得“枝繁叶茂”;在“生长”了2017次后形成的图形中所有正方形的面积和是 . 变式1:在直线l 上依次摆放着七个正方形(如图1所示).已知斜放置的三个正方形的面积分别是1,1. 21,1. 44,正放置的四个正方形的面积依次是1234S S S S ,,,,则41S S =______.

变式2:如图,四边形ABCD 中,AD ∥BC ,∠ABC +∠DCB =90°,且BC =2AD ,以AB 、BC 、DC 为边向外作正方形,其面积分别为S 1、S 2、S 3,若S 1=3,S 3=9,求S 2. (变式2) (变式3) 变式3:如图,Rt △ABC 的面积为10cm 2 ,在AB 的同侧,分别以AB ,BC ,AC 为直径作三个半圆,则阴影部分的面积为 . (难题)如图,是小明为学校举办的数学文化节设计的标志,在△ABC 中,∠ACB = 90°,以△ABC 的各边为边作三个正方形,点 G 落在 HI 上,若 AC +BC =6,空白部分面积为 10.5,则阴影部分面积 模型二 外弦图 D C B A 内弦图 G F E H 例题2.四年一度的国际数学大会于2002年8月20日在北京召开,大会会标如图所示,它是由四个相同的直角三角形与中间的小正方形拼成的一个大正方形,若大正方形的面积为 13,每个直角三角形两直角边的和是5。求中间小正方形的面积为__________;

中考数学勾股定理知识归纳总结附解析

中考数学勾股定理知识归纳总结附解析 一、选择题 1.在ABC ?中,D 是直线BC 上一点,已知15AB =,12AD =,13AC =,5CD =,则BC 的长为( ) A .4或14 B .10或14 C .14 D .10 2.如图,在△ABC 中,∠BAC =90°,AC =2AB ,点D 是AC 的中点,将一块锐角为45°的直角三角板ADE 如图放置,连接BE ,EC .下列判 断:①△ABE ≌△DCE ;②BE =EC ;③BE ⊥EC ;④EC =3DE .其中正确的有( ) A .1个 B .2个 C .3个 D .4个 3.如图,在等腰三角形ABC 中,AC=BC=5,AB=8,D 为底边上一动点(不与点A ,B 重合),DE ⊥AC ,DF ⊥BC ,垂足分别为E 、F ,则DE+DF= ( ) A .5 B .8 C .13 D .4.8 4.如果正整数a 、b 、c 满足等式222+=a b c ,那么正整数a 、b 、c 叫做勾股数.某同学将自己探究勾股数的过程列成下表,观察表中每列数的规律,可知x y +的值为( ) A .47 B .62 C .79 D .98 5.如图,在△ABC 中,∠A =90°,P 是BC 上一点,且DB =DC ,过BC 上一点P ,作PE ⊥AB 于E ,PF ⊥DC 于F ,已知:AD :DB =1:3,BC =46,则PE+PF 的长是( ) A .6 B .6 C .42 D .26

6.如图是由“赵爽弦图”变化得到的,它由八个全等的直角三角形拼接而成,记图中正方形ABCD 、正方形EFGH 、正方形MNKT 的面积分别为S 1、S 2、S 3.若S 1+S 2+S 3=15,则S 2的值是( ) A .3 B .154 C .5 D .152 7.如图,已知AB AC =,则数轴上C 点所表示的数为( ) A .3- B .5- C .13- D .15- 8.如图,在Rt △ABC 中,∠A=90°,AB=6,AC=8,现将Rt △ABC 沿BD 进行翻折,使点A 刚好落在BC 上,则CD 的长为( ) A .10 B .5 C .4 D .3 9.如图, 在ABC 中,CE 平分ACB ∠,CF 平分ABC 的外角ACD ∠,且EF //BC 交AC 于M ,若CM 4=,则22CE CF +的值为( ) A .8 B .16 C .32 D .64 10.如图,△ABC 中,AB =AC ,AD 是∠BAC 的平分线.已知AB =5,AD =3,则BC 的长 为( )

“二次函数+勾股定理”型压轴题汇编[1]

“二次函数+勾股定理型”的压轴题分析 一、基础题(15分钟内自主学会得30分,提示、互助中学会得25分,听懂20分,书写规范另外奖励5至10分) 如图1,已知抛物线与x 轴交于)0,1(-A 、)0,3(B 两点,与y 轴交于点)3,0(C . (1)求抛物线的解析式; (2)设抛物线的顶点为D ,在其对称轴的右侧抛物线上是否存在点P ,使得PDC ?是等腰三角形?若存在,求出符合条件的点P 的坐标;若不存在,请说明理由. (3)若点M 是抛物线上一点,以B 、C 、D 、M 为顶点的四边形是直角梯形,试求出点M 的坐标.

二、提高题(15分钟内自主学会得30分,提示、互助中学会得25分,听懂20分,书写规范另外奖励5至10分) 已知抛物线c bx ax y ++=2与x 轴相交于)0,1(-A 、)0,2(B 两点,与y 轴交于点)2,0(-C .如图2所示. (1)求这个抛物线的表达式及其顶点M (2)若点N 为线段BM 上一点(如图3),过点N 作x 轴的垂线,垂足为点Q ,当点N 在线段BM 上运动时(点N 不与点B 、点M 重合),设OQ 的长为t ,四边形NQAC 的面积为S ,求S 关于t 的函数关系式,并写出自变量的取值范围;

(3)在对称轴右侧的抛物线上是否存在点P ,使P A C ?为直角三角形?若存在,求出所有符合条件的点P 的坐标,若不存在请说明理由. 三、拓展题(15分钟内自主学会得30分,提示、互助中学会得25分,听懂20分,书写规范另外奖励5至10分) 已知抛物线c bx ax y ++=2 与x 轴相交于A 、B 两点(点A 在点B 左侧),与y 轴交于点C (如图4),且当2=x 和0=x 时,y 的值相等.直线73-=x y 与这条抛物线相交于两点,其中一点的横坐标为4,另一点是这条抛物线的顶点M . (1)求这个抛物线的表达式;

几种简单证明勾股定理的方法

几种简单证明勾股定理的方法 ——拼图法、定理法 江苏省泗阳县李口中学沈正中 据说对社会有重大影响的10大科学发现,勾股定理就是其中之一。早在4000多年前,中国的大禹曾在治理洪水的过程中利用勾股定理来测量两地的地势差。迄今为止,关于勾股定理的证明方法已有500余种,各种证法融几何知识与代数知识于一体,完美地体现了数形结合的魅力。让我们动起手来,拼一拼,想一想,娱乐几种,去感悟数学 的神奇和妙趣吧! 一、拼图法证明(举例12种) 拼法一:用四个相同的直角三角形(直角边为a 、b ,斜边为c )按图2拼法。 问题:你能用两种方法表示左图的面积吗?对比两种不同的表示方法,你发现了什么? 分析图2:S 正方形=(a+b )2= c 2 + 4×2 1ab 化简可得:a 2+b 2 = c 2 拼法二:做8个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c ,再做三个边长分别为a 、b 、c 的正方形,把它们像左 图那样拼成两个正方形。 从图上可以看到,这两个正方形的边长都是a + b ,所以面积相等. 即 a 2+ b 2+4×21ab = c 2+4×21ab 整理得 a 2+b 2 = c 2 拼法三:用四个相同的直角三角形(直角边为a 、b ,斜边为c )按图3拼法。 问题:图3是由三国时期的数学家赵爽在为《周髀算经》作注时给出的。在图3中用同样的办法研究,你有什么发现?你能验证a 2+b 2=c 2吗? 分析图3:S 正方形= c 2 =(a-b )2+ 4×21ab 化简可得:a 2+b 2 = c 2 图1 图2 图3 图4 b a b a b a b a c b a c b a c b a c b a c b a c b a

勾股定理经典例题(含答案)

勾股定理经典例题透析 类型一:勾股定理的直接用法 1、在Rt△ABC中,∠C=90° (1)已知a=6, c=10,求b, (2)已知a=40,b=9,求c; (3)已知c=25,b=15,求a. 思路点拨:写解的过程中,一定要先写上在哪个直角三角形中,注意勾股定理的变形使用。 解析:(1) 在△ABC中,∠C=90°,a=6,c=10,b= (2) 在△ABC中,∠C=90°,a=40,b=9,c= (3) 在△ABC中,∠C=90°,c=25,b=15,a= 举一反三 【变式】如图∠B=∠ACD=90°, AD=13,CD=12, BC=3,则AB的长是多少? 【答案】∵∠ACD=90° AD=13, CD=12 ∴AC2 =AD2-CD2 =132-122 =25 ∴AC=5 又∵∠ABC=90°且BC=3 ∴由勾股定理可得 AB2=AC2-BC2 =52-32

=16 ∴AB= 4 ∴AB的长是4. 类型二:勾股定理的构造应用 2、如图,已知:在中,,,. 求BC的长. 思路点拨:由条件,想到构造含角的直角三角形,为此作于D,则有 ,,再由勾股定理计算出AD、DC的长,进而求出BC的长. 解析:作于D,则因, ∴(的两个锐角互余) ∴(在中,如果一个锐角等于 , 那么它所对的直角边等于斜边的一半). 根据勾股定理,在中, . 根据勾股定理,在中,

. ∴. 举一反三【变式1】如图,已知:,,于P. 求证:. 解析:连结BM,根据勾股定理,在中, . 而在中,则根据勾股定理有 . ∴ 又∵(已知), ∴. 在中,根据勾股定理有 , ∴. 【变式2】已知:如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2。求:四边形ABCD的面积。

《勾股定理教材分析》

《勾股定理》教材分析 一、课标要求: 1、体验勾股定理的探索过程,会运用勾股定理解决简单问题; 2、会运用勾股定理的逆定理判定直角三角形; 3、通过具体的例子,了解定理的含义,了解逆命题、逆定理的概念,知道原命题成立其逆命题不一定成立。 二、中考要求: 1、已知直角三角形的两边长,会求第三边长。 2、会用勾股定理解决简单问题;会用勾股定理逆定理判定三角形是否为直角三角形。 3、了解定义、命题、定理含义;了解逆命题的概念,会识别两个互逆命题,并知道原命题成立,逆命题不一定成立。 三、 本章结构图: 互逆定理 四、 本章的地位和作用 五、本章课时安排: 本章教学时间约需要7课时,具体安排如下: 18.1 勾股定理 3课时 18.2 勾股定理的逆定理 2课时 18.3 小结 2课时

六、本章重要的数学思想和方法 1. 在定理、逆定理探究过程中所体现出来的由特殊到一般的思想 2.数形结合思想:面积法证明数学问题及由数到形、由形到数 3、整体的方法. 4.分类讨论思想 5.方程思想贯穿始终 6.转化思想:化斜为直,化空间为平面,化曲为直 七、教学内容设计 八、数学思想的贯穿 2、数形结合思想 例1、我国古代数学家赵爽的“勾股圆方图”是由四个全等的直角三角形与中间的一个小正方形拼成一个大正方形。如果大正方形的面积是13,小正方形的面积是1,直角三角形的两条直角边分别为a,b. 那么( a+b)2的值为_____ 例2 如图,高速公路的同侧有A、B两个村庄,他们到高速公路所在直线MN的距离分别为AA1=2km,BB1=4km,A1B1=8km。现要在高速公路上

勾股定理简单应用

勾股定理应用的教学设计 教学目标 1 ?会用勾股定理进行简单的计算。 2.通过探究,会运用勾股定理解释生活中的实际问题 教学重点 勾股定理的应用。 教学难点 实际问题向数学问题的转化 教学过程 通过小组合作学习探究,研究勾股定理在实际中的应用 一、 复习旧知 复习勾股定理以及一些简单的计算 ⑴勾股定理: ____________________________________________________ (2)求出下列直角三角形中未知的边. 通过四个问题,让学生明白勾股定理在实际生活中的应用,以及如何去使用勾股定理 问题1.有一个边长为1米正方形的洞口,想用一个圆形盖去盖住这个洞口, 则圆形盖半径至 少为多少米? ? 问题2.如图所示,一旗杆在离地面 5 m 处断裂,旗杆顶部落在离底部 12 m 处,问旗杆 折断前有多咼? 合作探究 B A 2 C C C

问题4.如图,一个5米长的梯子AB 斜着靠在竖直的墙A0上,这时A0的距离为3米. ① 球梯子的底端B 距墙角0多少米? ② 如果梯的顶端A 沿墙下滑1米至C,请同学们猜一猜,底端 B 也将滑动1米吗? 算一算,底端滑动的距离。(结果保留 1位小数). 三. 深化新知 “引葭赴岸”是《九章算术》中的一道题“今有池方一丈,葭生其中央,出水一尺 , 引 葭赴岸,适与岸齐。问水深、葭长各几何?” 四、课堂小结 本节课你有什么收获?你认为用勾股定理解决实际问题的关键是什么? 五、运用新知 1校园里有两棵树,相距15米,一棵树高10米,另一棵树高18米,一只小鸟从一棵树 的顶端飞到另一棵树的顶端,小鸟至少要飞 ___________ 米。 2如图,一根12米高的电线杆两侧各用 15米的铁丝固定,两个固定点之间的距离 问题3.如下图,要将楼梯铺上地毯,则需要 _____ 米长的地毯.

勾股定理典型题型

新人教版八年级下册勾股定理典型例习题 一、经典例题精讲 题型一:直接考查勾股定理 例1.在ABC ?中,90C ∠=?. ⑴已知6AC =,8BC =.求AB 的长 ⑵已知17AB =,15AC =,求BC 的长分析:直接应用勾股定理 222a b c += 解:⑴2210AB AC BC =+= ⑵228BC AB AC =-= 题型二:利用勾股定理测量长度 例题1 如果梯子的底端离建筑物9米,那么15米长的梯子可以到达建筑物的高度是多少 米? 解析:这是一道大家熟知的典型的“知二求一”的题。把实物模型转化为数学模型后,. 已知斜边长和一条直角边长,求另外一条直角边的长度,可以直接利用勾股定理! 根据勾股定理AC 2+BC 2=AB 2, 即AC 2+92=152,所以AC 2 =144,所以AC=12. 例题2 如图(8),水池中离岸边D 点1.5米的C 处,直立长着一根芦苇,出水部分B C 的长是0.5米,把芦苇拉到岸边,它的顶端B 恰好落到 D 点,并求水池的深度AC. 解析:同例题1一样,先将实物模型转化为数学模型,如 图2. 由题意可知△ACD 中,∠ACD=90°,在Rt △ACD 中,只知道CD=1.5,这是典型的利用勾 股定理“知二求一”的类型。 标准解题步骤如下(仅供参考): 解:如图2,根据勾股定理,AC 2+CD 2=AD 2 设水深AC= x 米,那么AD=AB=AC+CB=x +0.5 x 2+1.52=( x +0.5)2 解之得x =2. 故水深为2米. 题型三:勾股定理和逆定理并用—— 例题3 如图3,正方形ABCD 中,E 是BC 边上的中点,F 是AB 上一点,且AB FB 4 1= 那么△DEF 是直角三角形吗?为什么? C B D A

勾股定理 例题详解

勾股定理经典例题详解 知识点一:勾股定理 如果直角三角形的两直角边长分别为:a,b,斜边长为c,那么a2+b2=c2.即直角三角形中两直角边的平方和等于斜边的平方. 要点诠释:(1)勾股定理揭示的是直角三角形平方关系的定理。 (2)勾股定理只适用于直角三角形,而不适用于锐角三角形和钝角三角。 (3)理解勾股定理的一些变式: c2=a2+b2, a2=c2-b2, b2=c2-a2,c2=(a+b)2-2ab 知识点二:用面积证明勾股定理 方法一:将四个全等的直角三角形拼成如图(1)所示的正方形。 图(1)中,所以。 方法二:将四个全等的直角三角形拼成如图(2)所示的正方形。 图(2)中,所以。 方法三:将四个全等的直角三角形分别拼成如图(3)—1和(3)—2所示的两个形状相同的正方形。

在(3)—1中,甲的面积=(大正方形面积)—(4个直角三角形面积), 在(3)—2中,乙和丙的面积和=(大正方形面积)—(4个直角三角形面积), 所以,甲的面积=乙和丙的面积和,即:. 方法四:如图(4)所示,将两个直角三角形拼成直角梯形。 ,所以。 知识点三:勾股定理的作用 1.已知直角三角形的两条边长求第三边;2.已知直角三角形的一条边,求另两边的关系; 3.用于证明平方关系的问题; 4.利用勾股定理,作出长为 的线段。 2. 在理解的基础上熟悉下列勾股数 满足不定方程x2+y2=z2的三个正整数,称为勾股数(又称为高数或毕达哥拉斯数),显然,以x,y,z为三边长的三角形一定是直角三角形。 熟悉下列勾股数,对解题是会有帮助的: ①3、4、5②5、12、13;③8、15、17;④7、24、25;⑤10、24、26;⑥9、 40、41.

初二数学 勾股定理常考压轴题专题练习汇总(含解析)

初二数学勾股定理常考压轴题专题练习汇总(含解析) 一.选择题(共8小题) 1.直角三角形两直角边长度为5,12,则斜边上的高( ) A.6B.8C.D. 2.下列说法中正确的是( ) A.已知a,b,c是三角形的三边,则a2+b2=c2 B.在直角三角形中两边和的平方等于第三边的平方 C.在Rt△ABC中,∠C=90°,所以a2+b2=c2 D.在Rt△ABC中,∠B=90°,所以a2+b2=c2 3.如图,是台阶的示意图.已知每个台阶的宽度都是30cm,每个台阶的高度都是15cm,连接AB,则AB等于( ) A.195cm B.200cm C.205cm D.210cm 4.如图,在水池的正中央有一根芦苇,池底长10尺,它高出水而1尺,如果把这根芦苇拉向水池一边,它的顶端恰好到达池边的水面则这根芦苇的长度是( ) A.10尺B.11尺C.12尺D.13尺 5.如图所示,在数轴上点A所表示的数为a,则a的值为( )

A.﹣1﹣B.1﹣C.﹣D.﹣1+ 6.一架2.5米长的梯子底部距离墙脚0.7米,若梯子的顶端下滑0.4米,那么梯子的底部在水平方向滑动了( ) A.1.5米B.0.9米C.0.8米D.0.5米 7.在△ABC中,∠ACB=90°,AC=12,BC=5,AM=AC,BN=BC,则MN的长为( ) A.2B.2.6C.3D.4 8.如图,是2002年北京第24届国际数学家大会会徽,由4个全等的直角三角形拼合而成,如果大正方形的面积是13,小正方形的面积是1,直角三角形的短直角边为a,较长直角边为b,那么(a+b)2的值为( ) A.13B.19C.25D.169   二.填空题(共5小题)

勾股定理典型练习题

《勾股定理》典型例题分析 一、知识要点: 1、勾股定理 勾股定理:直角三角形两直角边的平方和等于斜边的平方。也就是说:如果直角三角形的两直角边为a、b,斜边为c ,那么 a2 + b2= c2。公式的变形:a2 = c2- b2, b2= c2-a2 。 2、勾股定理的逆定理 如果三角形ABC的三边长分别是a,b,c,且满足a2 + b2= c2,那么三角形ABC 是直角三角形。这个定理叫做勾股定理的逆定理. 该定理在应用时,同学们要注意处理好如下几个要点: ①已知的条件:某三角形的三条边的长度. ②满足的条件:最大边的平方=最小边的平方+中间边的平方. ③得到的结论:这个三角形是直角三角形,并且最大边的对角是直角. ④如果不满足条件,就说明这个三角形不是直角三角形。 3、勾股数 满足a2 + b2= c2的三个正整数,称为勾股数。注意:①勾股数必须是正整数,不能是分数或小数。②一组勾股数扩大相同的正整数倍后,仍是勾股数。常见勾股数有: (3,4,5)(5,12,13) (6,8,10)(7,24,25)(8,15,17)(9,12,15) 4、最短距离问题:主要运用的依据是两点之间线段最短。 二、考点剖析 考点一:利用勾股定理求面积 1、求阴影部分面积:(1)阴影部分是正方形;(2)阴影部分是长方形;(3)阴影部分是半圆. 2. 如图,以Rt△ABC的三边为直径分别向外作三个半圆,试探索三个半 圆的面积之间的关系.

3、如图所示,分别以直角三角形的三边向外作三个正三角形,其面积分别是S 1、S 2、S 3,则它们之间的关系是( ) A. S 1- S 2= S 3 B. S 1+ S 2= S 3 C. S 2+S 3< S 1 D. S 2- S 3=S 1 4、四边形ABCD 中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD 的面积。 5、在直线l 上依次摆放着七个正方形(如图4所示)。已知斜放置的三个正方形的面积分别是 1、2、3,正放置的四个正方形的面积依次是S S 12、、 S S S S S S 341234、,则+++=_____________。 考点二:在直角三角形中,已知两边求第三边 1.在直角三角形中,若两直角边的长分别为1cm ,2cm ,则斜边长为 . 2.(易错题、注意分类的思想)已知直角三角形的两边长为3、2,则另一条边长的平方是 3、已知直角三角形两直角边长分别为5和12, 求斜边上的高. S 3 S 2 S 1

勾股定理知识归纳总结及解析

勾股定理知识归纳总结及解析 一、选择题 1.如图,已知ABC 中,4AB AC ==,6BC =,在BC 边上取一点P (点P 不与点B 、C 重合),使得ABP △成为等腰三角形,则这样的点P 共有( ). A .1个 B .2个 C .3个 D .4个 2.如图,在矩形纸片ABCD 中,AD =9,AB =3,将其折叠,使点D 与点B 重合,折痕为EF ,那么折痕EF 的长为( ) A .3 B .6 C .10 D .9 3.如图,已知ABC 中,10,86,AB AC BC AB ===,的垂直平分线分别交,AC AB 于 ,,D E 连接BD ,则CD 的长为( ) A .1 B . 54 C . 74 D .254 4.如图,在ABC 中,90A ∠=?,6AB =,8AC =,ABC ∠与ACB ∠的平分线交于点O ,过点O 作⊥OD AB 于点D ,若则AD 的长为( ) A 2 B .2 C 3 D .4 5.如图,设正方体ABCD-A 1B 1C 1D 1的棱长为1,黑、白两个甲壳虫同时从点A 出发,以相同的速度分别沿棱向前爬行,黑甲壳虫爬行的路线是AA 1→A 1D 1→…,白甲壳虫爬行的路线是AB→BB 1→…,并且都遵循如下规则:所爬行的第n+2与第n 条棱所在的直线必须

既不平行也不相交(其中n 是正整数).那么当黑、白两个甲壳虫各爬行完第2017条棱分别停止在所到的正方体顶点处时,它们之间的距离是( ) A .0 B .1 C .3 D .2 6.如图是由“赵爽弦图”变化得到的,它由八个全等的直角三角形拼接而成,记图中正方形ABCD 、正方形EFGH 、正方形MNKT 的面积分别为S 1、S 2、S 3.若S 1+S 2+S 3=15,则S 2的值是( ) A .3 B . 154 C .5 D . 152 7.下列四组数中不能构成直角三角形的一组是( ) A .1,2,6 B .3,5,4 C .5,12,13 D .3,2,13 8.下列长度的三条线段能组成直角三角形的是( ) A .9,7,12 B .2,3,4 C .1,2,3 D .5,11,12 9.在直角三角形ABC 中,90C ∠=?,两直角边长及斜边上的高分别为,,a b h ,则下列关系式成立的是( ) A . 222221a b h += B . 222111 a b h += C .2h ab = D .222h a b =+ 10.如图,在△ABC ,∠C =90°,AD 平分∠BAC 交CB 于点D ,过点D 作DE ⊥AB ,垂足恰好是边AB 的中点E ,若AD =3cm ,则BE 的长为( )

勾股定理经典例题(含答案)

勾股定理经典例题 类型一:勾股定理的直接用法 1、在Rt△ABC中,∠C=90° (1)已知a=6,c=10,求b,(2)已知a=40,b=9,求c;(3)已知c=25,b=15,求a. 思路点拨: 写解的过程中,一定要先写上在哪个直角三角形中,注意勾股定理的变形使用。 举一反三 【变式】:如图∠B=∠ACD=90°, AD=13,CD=12, BC=3,则AB的长是多少? 类型二:勾股定理的构造应用 2 、如图,已知:在中,, ,. 求:BC的长. 1、某市在旧城改造中,计划在市内一块如图所示的三角形空地上种植草皮以美化环境,已知这种草皮每平方米售价a元,则购买这种草皮至少需要() A、450a元 B、225a 元 C、150a元 D、300a元 举一反三【变式1】如图,已知: ,,于P. 求证:. 150° 20m 30m

【变式2】已知:如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2。求:四边形ABCD的面积。 类型三:勾股定理的实际应用 (一)用勾股定理求两点之间的距离问题 3、如图所示,在一次夏令营活动中,小明从营地A点出发,沿北偏东60°方向走了到达B 点,然后再沿北偏西30°方向走了500m到达目的地C点。 (1)求A、C两点之间的距离。 (2)确定目的地C在营地A的什么方向。 举一反三 【变式】一辆装满货物的卡车,其外形高2.5米,宽1.6米,要开进厂门形状如图的某工厂,问这辆卡车能否通过该工厂的厂门? (二)用勾股定理求最短问题 4、如图,一圆柱体的底面周长为20cm,高AB为4cm,BC是上底面的直径.一只蚂蚁从点A出发,

相关主题
文本预览
相关文档 最新文档