当前位置:文档之家› 【CN109941397A】一种半潜式海上风力发电机平台及海上风力发电设备【专利】

【CN109941397A】一种半潜式海上风力发电机平台及海上风力发电设备【专利】

【CN109941397A】一种半潜式海上风力发电机平台及海上风力发电设备【专利】
【CN109941397A】一种半潜式海上风力发电机平台及海上风力发电设备【专利】

(19)中华人民共和国国家知识产权局

(12)发明专利申请

(10)申请公布号 (43)申请公布日 (21)申请号 201910228992.6

(22)申请日 2019.03.25

(71)申请人 华中科技大学

地址 430074 湖北省武汉市洪山区珞喻路

1037号

(72)发明人 刘震卿 樊贻成 

(74)专利代理机构 华中科技大学专利中心

42201

代理人 孔娜

(51)Int.Cl.

B63B 21/50(2006.01)

B63B 35/44(2006.01)

(54)发明名称

一种半潜式海上风力发电机平台及海上风

力发电设备

(57)摘要

本发明属于海上风力发电机相关技术领域,

其公开了一种半潜式海上风力发电机平台及海

上风力发电设备,该发电机平台包括立柱、多个

偏移柱、多个系泊线及多个浮筒,多个该偏移柱

绕该立柱的中心轴均匀排布,且该偏移柱连接于

该立柱;多个该偏移柱之间通过多个该浮筒相连

接;多个该系泊线分别连接多个该偏移柱及锚,

该锚设置在海底;该偏移柱呈阶梯状,其包括基

柱及上柱,该上柱设置在该基柱上;该系泊线连

接于该基柱;该基柱的直径大于该上柱的直径;

多个该上柱远离该基柱的一端通过多个该浮筒

相连接,且多个该基柱也通过多个该浮筒相连

接;该偏移柱内填充有水,其用于提供压载。本发

明提高了稳定性及使用寿命,

适用性较强。权利要求书1页 说明书5页 附图2页CN 109941397 A 2019.06.28

C N 109941397

A

权 利 要 求 书1/1页CN 109941397 A

1.一种半潜式海上风力发电机平台,其特征在于:

所述发电机平台包括立柱(6)、多个偏移柱、多个系泊线及多个浮筒(8),多个所述偏移柱绕所述立柱(6)的中心轴均匀排布,且所述偏移柱连接于所述立柱(6);多个所述偏移柱之间通过多个所述浮筒(8)相连接;多个所述系泊线分别连接多个所述偏移柱及锚(13),所述锚(13)设置在海底;

所述偏移柱呈阶梯状,其包括基柱(7)及上柱(5),所述上柱(5)设置在所述基柱(7)上;所述系泊线连接于所述基柱(7);所述基柱(7)的直径大于所述上柱(5)的直径;多个所述上柱(5)远离所述基柱(7)的一端通过多个所述浮筒(8)相连接,且多个所述基柱(7)也通过多个所述浮筒(8)相连接;所述偏移柱内填充有水,其用于提供压载。

2.如权利要求1所述的半潜式海上风力发电机平台,其特征在于:所述系泊线包括两个第一系泊线(10)及第二系泊线(11),两个所述第一系泊线(10)的一端分别连接于相邻的两个所述基柱(7),另一端连接于所述第二系泊线(11)的一端,所述第二系泊线(11)的另一端连接于所述锚(13)。

3.如权利要求1所述的半潜式海上风力发电机平台,其特征在于:所述发电机平台还包括多个斜撑(9),多个所述斜撑(9)的一端分别连接于多个所述上柱(5)远离所述基柱(7)的一端,另一端连接于所述立柱(6)邻近所述基柱(7)的一端。

4.如权利要求1所述的半潜式海上风力发电机平台,其特征在于:多个所述上柱(5)远离所述基柱(7)的一端通过所述浮筒(8)连接于所述立柱(6)远离所述基柱(7)的一端。

5.如权利要求1所述的半潜式海上风力发电机平台,其特征在于:所述发电机平台还包括多个导缆器(12),多个所述导缆器(12)分别设置在多个所述基柱(7)上,且绕所述立柱(6)的中心轴均匀排布。

6.如权利要求1-5任一项所述的半潜式海上风力发电机平台,其特征在于:所述偏移柱自静水位上方延伸到水下方。

7.如权利要求1-5任一项所述的半潜式海上风力发电机平台,其特征在于:多个所述偏移柱的数量与多个所述系泊线的数量相同,均为六个;六个所述偏移柱的中心轴分别通过同一个正六边形的顶点。

8.如权利要求1-5任一项所述的半潜式海上风力发电机平台,其特征在于:所述浮筒

(8)为圆柱形等截面浮筒(8)。

9.一种海上风力发电设备,其特征在于:所述发电设备包括权利要求1-8任一项所述的半潜式海上风力发电机平台(1)及风机结构,所述风机结构设置在所述发电机平台上。

10.如权利要求9所述的海上风力发电设备,其特征在于:所述发电设备包括塔架(2),所述塔架(2)设置在所述立柱(6)上;所述塔架(2)呈圆柱状,所述塔架(2)的中心轴与所述立柱(6)的中心轴重合。

2

海上风力发电发展现状解读

海上风电发展 大纲: 一、国外海上风电发展现状及各国远景规划 二、海上风电的特点与面临的困难 三、海上风电发展的关键技术 四、国外海上风电发展现状及各国远景规划 目前已进入运营阶段的海上风电场均位于西北欧,西班牙和日本也建立了各自的首个试验性海上风电场。截至2006年6月,全球共建立了24个海上风电场,累计安装了了402台海上风机,总容量805MW,年发电量约2,800,000,000千瓦时。 西北欧地区的海上风电场布局如下图所示,红色标志由兆瓦级风机构成的运营风电场,紫红色标志由小容量风机构成的运营风电场,而灰色则标志已完成规划的在建风电场。 图1 西北欧海上风电场 已投入运营的大规模海上风电场大多集中在丹麦和英国。其中丹麦海上风电总装机容量达426.8MW,其次是英国339MW,共计现有海上风电装机容量的95%。而德国早在2004年就在北海的Emden树立了首台Enercon的4.5MW风机,西班牙也于今年在其北部港市毕尔巴鄂树立了5台Gamesa 2MW风机。美国已经规划的三个海上风电场Cape Cod,Bluewater Wind,Nai Kun正处于不同阶段的论证与评估阶段,其中Cape Cod风电场将于2009年正式投入运营。 由此可见,各风电大国都不约而同地把注意力集中到海上风电开发的技术研发与运营经验实践中,以图控制海上风电发展的制高点。 根据欧盟的预测,到2020年欧洲的海上风电场总装机容量将从现有的805兆瓦增长到40,000MW。相比之下,过去7年来欧洲海上风电装机容量的年增长率约为35%。欧盟指派的工作组预测欧洲的海上风电潜力约达140,000MW。

海上风电场海水养殖一体化

Perceived Concerns and Advocated Organisational Structures of Ownership Supporting ‘Offshore Wind Farm —Mariculture Integration’ 表示关注和主张 组织结构的企业 支持“离岸风场 —海水养殖一体化” Gesche Krause, Robert Maurice Griffin and Bela Hieronymus Buck 1Leibniz Center for Tropical Marine Ecology (ZMT), Bremen 1莱布尼兹热带海洋生态中心(ZMT),不莱梅 2Department of Environmental and Natural Resource Economics, University of Rhode Island 2环境与自然资源经济学院,罗德岛大学 3Alfred Wegener Institute for Polar and Marine Science (AWI), Bremerhaven 3阿尔弗雷德韦格纳极地和海洋科学研究所(AWI),不来梅港 4Institute for Marine Resources (IMARE), Bremerhaven 4海洋资源研究所(IMARE),不来梅港 5University of Applied Sciences Bremerhaven, Bremerhaven 5不莱梅应用科学技术大学,不来梅港 1,3,4,5Germany 1,2,4,5 德国 2USA 2 美国

海上风力发电及其关键技术分析 林亮

海上风力发电及其关键技术分析林亮 发表时间:2019-09-05T10:34:49.077Z 来源:《中国电业》2019年第09期作者:林亮屈伟 [导读] 随着我国社会不断发展,能源日益紧缺的背景下,低碳环保的理念受到人们重视,并被应用到电力企业中,企业越来越重视清洁新能源的开发与利用。 中国船舶重工集团(天津)海上风电工程技术有限公司天津 300450 摘要:随着我国社会不断发展,能源日益紧缺的背景下,低碳环保的理念受到人们重视,并被应用到电力企业中,企业越来越重视清洁新能源的开发与利用。 关键词:海上;风力发电;关键技术 1我国风力发电技术发展所面临的障碍 1.1发电机组安全性能不足 即使风力发电技术在今年来备受国家和企业重视,然而在安全性能方面没有过多关注,无法保证发电机组的安全性与稳定性,甚至部分设备存在安全隐患。发电机组是风力发电系统重要组成部分,机组运行效率与安全稳定性直接关系到系统的运行效率。国家与电力企业对风力发电技术推广不到位,部分地区没有科学进行技术改革,导致发电机组缺乏安全性,经常出现机组事故,给风力发电系统带来不良影响,降低系统安全性与稳定性,不利于新能源产业的可持续发展。 1.2成本高且监管力度薄弱 经济是限制海上风电发展的重要原因,对比化石能源电力,海上风电的发电成本高,现在我国近海风电统一电价0.85元/千瓦时,一些海域预期投资收益不理想。海上风电对设备和施工技术要求严格,海上风电机组要克服台风、盐雾腐蚀问题,且施工需要专业施工队伍和施工船舶。除此,有的海上设施寿命短,以及停止使用后的拆除与续期的问题都不可避免。海底电缆审批和海域论证审批的分离加大了企业成本,事中事后监管不足,相关配套政策的缺失也加大了建设与运营维护的难度。 1.3风力发电的市场化水平低 风力发电虽然已经有一定的发展时期,但在和市场对接方面仍处于起步阶段,商品化程度依旧很低。风力发电在商品化这一方面仍需要长时间的发展,才能有一台完善的市场机制。相应的市场化人才也是不可或缺的,风力发电需要的商品化人才依旧处于空缺阶段。国家和社会仍需要投入大量的人力物力财力发展相配套的设施和人员。 2海上风力发电及其关键技术分析 2.1海上风力发电技术概述 与传统能源的开采利用相比,利用海上风力资源面临空前的技术难题,如:能量转换设备的设计研发、发电设备的安装施工、海上风力发电电能的传输和供电网络的建设以及海上风力电场的运维管理等方面。因此尽管早在二十世纪的七十年代就有人提出了利用海上风力发电的设想,但是全面的科学研究和实践应用到上个世纪末才真正的全面展开。这由于与陆地风力发电技术的研究相比,海上风力发电面临的复杂施工地质环境缺乏成熟和可借鉴的工程技术做为基础,针对海水的波浪冲击、海冰影响、海水腐蚀以及海上风力和风向变化也没有系统的荷载计算和分析标准。另一方面因为特殊的工程环境和施工、运输以及运维技术需要等因素,造成海上风力发电场建设缺少足够的成熟经验做为参考,导致建设海上风力发电场的投资规模和回报率具有很多不确定性,因而海上风力发的商用推广近十年才随着相关技术的日渐成熟真正展开。 2.2关键技术 (1)海上风力发电机的选择 1)双馈式感应风力发电机双馈式感应风力发电机在海上风力发电站的应用最广泛,基本上普及了海上风力发电站。根据电刷和滑环调节转子电功率频率方式的不同,又可以分为有刷和无刷两种。2)永磁直驱式风力发电机永磁直驱式风力发电机组是目前海上风机发电的主要研究方向。它的涡轮机可以直接进行驱动,减少了齿轮箱环节,有效降低了发电机组运行过程中产生的噪音,且故障率较低,维护成本较低。永磁同步发电机直接与涡轮机连接,利用涡轮机的转化能力,将风能转化为机械能,然后利用永磁同步发电机将传递过来的机械能转化为交流电,并利用并网变频器实现对交流电的蒸馏、升压及逆变处理,最终得到三相电压频率恒定的交流电,并入到电网系统。3)无铁芯电机随着科学技术的发展,无铁芯电机具有安装和运输成本低的优点,越来越多地应用到海上风力发电机组设计中。例如:通过定子和转子均无铁芯的辐条式结构设计,降低了电机重量,同时有效扩大了电机容量。 (2)完善风力产业结构 风力发电技术发展过程中,需要重视风力产业结构的科学与完善。近日,某智慧新能源企业开展“变频控制风力发电系统的拓扑结构”,项目结构简单,功能全面且造价成本低。企业研究部署海上风力发电产业建设工作,推动区域内产业结构调整和风能结构调整,技术人员实地调研生产车间与大数据中心。技术人员使用3MW风机在珠海进行台风测试,设备在每秒68.5m风速下依旧可以稳定运行,并利用台风中的风资源为企业提供额外发电量。例如电白黄岭风电场,与同兆瓦级风电场单机相比,电白黄岭的电机累计发电量高达78.6%,真正意义上实现了风力产业的高质量发展与绿色发展。 (3)桩基式基础技术原理及其应用 在目前已经建成的海上风力发电场当中,桩式基础的应用占有最大的比例,尤其是其中的单桩式基础,是海上风电大国丹麦海上电场建设的主要基础形式。这一方面是因为这一设计形式的施工技术相对简单和经济,另一方面与丹麦沿海的海床工程地质条件有关。单桩式基础的材料采用大径空心柱形钢管,利用大功率的打桩设备直接嵌入海床,为了实现风电设施在海上的可靠稳定运行,单体式的钢管直径最大可达六米,能够适用的海水最大深度为30m。但是由于来自海水、海风和风机运行荷载的承载形式所限,这种风电设施基础形式对海床工程地质的要求相对较高,而且由于目前海上风力发电机组的单机容量越来越大,单桩的直径过大导致其经济性变差和面临施工技术瓶颈。因此在实践应用过程中又演化出了单立柱三桩、导管架式以及多桩承台式等多种桩基式基础,通过复杂的结构形式来增强基础的稳定性和对施工地质条件、荷载变化规律的适应性。其中的导管架式基础由于良好的经济性和广泛的适用性而获得了较多应用,而多桩承台式基础在桥梁和码头的建设中有着广泛应用,因此在我国有着比较丰富的设计使用经验和施工技术资源,因此在国内的海上风力发电场建设

风力发电机的分类

1,风力发电机按叶片分类。 按照风力发电机主轴的方向分类可分为水平轴风力发电机和垂直轴风力发电机。 (1)水平轴风力发电机:旋转轴与叶片垂直,一般与地面平行,旋转轴处于水平的风力发电机。水平轴风力发电机相对于垂直轴发电机的优点;叶片旋转空间大,转速高。适合于大型风力发电厂。水平轴风力发电机组的发展历史较长,已经完全达到工业化生产,结构简单,效率比垂直轴风力发电机组高。到目前为止,用于发电的风力发电机都为水平轴,还没有商业化的垂直轴的风力发电机组。 (2)垂直轴风力发电机:旋转轴与叶片平行,一般与地面吹垂直,旋转轴处于垂直的风力发电机。垂直轴风力发电机相对于水平轴发电机的优点在于;发电效率高,对风的转向没有要求,叶片转动空间小,抗风能力强(可抗12-14级台风),启动风速小维修保养简单。垂直轴与水平式的风力发电机对比,有两大优势:一、同等风速条件下垂直轴发电效率比水平式的要高,特别是低风速地区;二、在高风速地区,垂直轴风力发电机要比水平式的更加安全稳定;另外,国内外大量的案例证明,水平式的风力发电机在城市地区经常不转动,在北方、西北等高风速地区又经常容易出现风机折断、脱落等问题,伤及路上行人与车辆等危险事故。 按照桨叶数量分类可分为“单叶片”﹑“双叶片”﹑“三叶片”和“多叶片”型风机。 凡属轴流风扇的叶片数目往往是奇数设计。这是由于若采用偶数片形状对称的扇叶,不易调整平衡。还很容易使系统发生共振,倘叶片材质又无法抵抗振动产生的疲劳,将会使叶片或心轴发生断裂。因此设计多为轴心不对称的奇数片扇叶设计。对于轴心不对称的奇数片扇叶,这一原则普遍应用于大型风机以及包括部分直升机螺旋桨在内的各种扇叶设计中。包括家庭使用的电风扇都是3个叶片的,叶片形状是鸟翼型(设计术语),这样的叶片流量大,噪声低,符合流体力学原理。所以绝大多数风扇都是三片叶的。三片叶有较好的动平衡,不易产生振荡,减少轴承的磨损。降低维修成本。 按照风机接受风的方向分类,则有“上风向型”――叶轮正面迎着风向和“下风向型”――叶轮背顺着风向,两种类型。 上风向风机一般需要有某种调向装置来保持叶轮迎风。 而下风向风机则能够自动对准风向, 从而免除了调向装置。但对于下风向风机, 由于一部分空气通过塔架后再吹向叶轮, 这样, 塔架就干扰了流过叶片的气流而形成所谓塔影效应,使性能有所降低。 2,按照风力发电机的输出容量可将风力发电机分为小型,中型,大型,兆瓦级系列。 (1)小型风力发电机是指发电机容量为0.1~1kw的风力发电机。 (2)中型风力发电机是指发电机容量为1~100kw的风力发电机。 (3)大型风力发电机是指发电机容量为100~1000kw的风力发电机。 (4)兆瓦级风力发电机是指发电机容量为1000以上的风力发电机。 3,按功率调节方式分类。可分为定桨距时速调节型,变桨距型,主动失速型和 独立变桨型风力发电机。 (1)定桨距失速型风机;桨叶于轮毂固定连接,桨叶的迎风角度不随风速而变化。依靠桨叶的气动特性自动失速,即当风速大于额定风速时依靠叶片的失速特性保持输入功率基本恒定。

风力发电机介绍

风能发电机 一风力机的分类 风力机按照风轮轴所在的位置分为:水平轴风力机HAWT (Horizontal-axis wind turbines)和垂直轴风力机V AWT (V ertical-axis wind turbines),如图1所示。 图1 两种类型的风力机 这两种类型的风力机各有优缺点: 垂直轴风力机V AWT的优点有:(1) 无需偏航对风系统;(2) 设备在地面,安装维护方便;(3) 制造工艺简单,造价低。其缺点为:(1) 难以自启动;(2) 易失速;(3) 风能利用率低。 水平轴风力机HAWT的优点有:(1) 转轮相对较高;(2) 占地面积小;(3) 风能利用率高。其缺点为:(1) 叶片悬臂梁固定,受力大;(2) 设备安装在塔柱顶部,安装维护困难。 其中,水平轴风力机HAWT制作工艺成熟,风能利用率高而被广泛采用。 二风力机的构成 下面以水平轴风力机HAWT为例,介绍风力机的组成。 风力发电机主要由风轮(叶片和轮毂)、机舱、高速轴、低速轴、增速齿轮箱、发电机、调向装置、调速装置、刹车制动装置、塔架、避雷装置等组成,如图2所示。 风力机的组成分为三部分: 1. 旋转部件主要为风轮,将风能转化为低速旋转的机械能。 2. 发电部件风力机的核心部件,包括发电机、调向装置、调速装置、高速轴、低 速轴、增速齿轮箱。通过增速齿轮箱将低速旋转变成合适的高速旋转。 3. 支撑部件包括塔架和旋转关节。

图2风力机的组成 三风力机的工作原理 风力发电是将风能转换为机械能,再由机械能转换为电能,所以,风力资源的好坏将是影响风力发电成本的最重要的因素。风速会随着高度的增加而变大,如图3所示。 图3 风速与高度的关系 风力发电机出力受风速变化的影响,图4是风机的典型出力曲线图。 图4 风力机的典型出力曲线

中国海上风力发电发展现状以及趋势

中国海上风力发电发展现状以及趋势【摘要】:由于具有资源丰富,对人们的生产生活影响小,以及不占用耕地等优势,近几年,我国的海上风力发电得到越来越多的关注。本文就我国近海风电的行业背景、海上风电市场区域分析、国家政策、社会效益、技术支持、发展瓶颈及建议、以及未来发展趋势等几个方面进行论述。 【关键词】:海上风力发电,发展现状,发展趋势,海上风电技术,社会效益,国家政策 前言: 相对于我国陆地风能,海上风能以其资源丰富,风速稳定,对环境负面影响小,装机容量大,且不占用耕地等优势得到了众多风电开发商的青睐。 经过连续多年的高速增长,我国风电装机容量已居世界第1位。目前我国正在大力推动海上风电发展,将从以陆上风电开发为主向陆上和海上风电全面开发转变,目标是成为海上风电大国。近年来,政府相关部门多次出台技术和管理政策,大力推动我国海上风电开发进程。 1、行业背景: 我国近海风能资源丰富。拥有18,000多公里长的大陆海岸线,可利用海域面积多达300多万平方公里,是世界上海上风能资源最丰富的国家之一。据统计,我国可开发利用的风能资源初步估算约为10亿kW,其中,海上可开发和利用的风能储量约7.5亿kW]。 目前我国已经成功并网发电的海上风电项目有:东海大桥海上风电示范项目,响水潮间带实验项目,龙源如东潮间带风电场项目,华能荣成海上风电项目等。另外有南港海上风电项目,江苏大丰200MW海上风电项目等44个项目拟建或者在建。这意味着我国的海上风电正在高速发展着。 另外,随着海上风能的高速发展,也带动着风能产业链的高速发展。我国现有海上风机供应厂家12家,其中以明阳风能以及金风科技最为卓越,在全球最佳海上风机评选中,分别位列第二和第十,这标志着我国风机制造业已经拥有国际先进水平。 据数据分析,未来的15年内,我国风电设备市场的总利润将高达1400亿至2100亿元。巨大的利润,也必将使得我国海上风机制造业得到更加快速的发展。

风力发电机的组成部件其功用

风力发电机的组成部件及其功用 风力发电机是将风能转换成机械能,再把机械能转换成电能的机电设备。风力发电机通常由风轮、对风装置、调速装置、传动装置、发电机、塔架、停车机构等组成。下面将以水平轴升力型风力发电机为主介绍它的各主要组成部件及其工作情况。图3-3-4和3-3-5是小型和中大型风力发电机的结构示意图。 图3-3-4 小型风力发电机示意图 1—风轮2—发电机3—回转体4—调速机构5—调向机构6—手刹车机构7—塔架8—蓄电池9—控制/逆变器 图3-3-5 中大型风力发电机示意图 1—风轮;2—变速箱;3—发电机;4—机舱;5—塔架。 1 风轮 风轮是风力机最重要的部件,它是风力机区别于其它动力机的主要标志。其作用是捕捉和吸收风能,并将风能转变成机械能,由风轮轴将能量送给传动装置。

风轮一般由叶片(也称桨叶)、叶柄、轮毂及风轮轴等组成(见图3-3-6)。叶片横截面形状基本类型有3种(见图第二节的图3-2-3):平板型、弧板型和流线型。风力发电机的叶片横截面的形状,接近于流线型;而风力提水机的叶片多采用弧板型,也有采用平板型的。图3-3-7所示为风力发电机叶片(横截面)的几种结构。 图3-3-6 风轮 1.叶片 2.叶柄 3.轮毂 4.风轮轴 图3-3-7 叶片结构 (a)、(b)—木制叶版剖面; (c)、(d)—钢纵梁玻璃纤维蒙片剖面; (e) —铝合金等弦长挤压成型叶片;(f)—玻璃钢叶片。 木制叶片(图中的a与b)常用于微、小型风力发电机上;而中、大型风力发电机的叶片常从图中的(c)→(f)选用。用铝合金挤压成型的叶片(图中之e),基于容易制造角度考虑,从叶根到叶尖一般是制成等弦长的。叶片的材质在不

海上风电

Nysted海上风电场:项目时间表与前期招标 2007-12-06 21:45 Nysted海上风电场:项目时间表与前期招标 供稿人:张蓓文;陆斌供稿时间:2007-6-15 项目时间表 现简单介绍其项目时间表与前期招标情况。 1998年,丹麦政府同生产商达成协议,实施一个大型海上风力发电示范项目,目的在于调查发展海上风力发电场的经济,技术和环境等问题,并为未来风力发电场选择区域。 1999年,丹麦能源部原则上批准安装,并开始了Horns Rev和Nysted初期调研和设计。 2000年夏天,政府得到风力发电场的环境影响评估,于2001年批准了发电场建造的申请。 海上风力发电场的基座建设起始于2002年7月末,基座的建造和安装根据时间表执行,始于承包公布的2002年3月,2003年夏天全部完成,并做好了接收风力涡轮机的准备。第一台涡轮机于年5月9日起开始安装,2003年7月12日开始运行。最后一台涡轮机于2003年9月12日安装并电网,试运行在2003年11月1日结束。 前期招标 ENERGI E2为项目准备了一份技术上非常详细的招标书,其中评价了ENERGI E2在丹麦东部传统火和电网建造,策划和运行方面的经历,以及来自海上风力发电场Vindeby(11×450 kW Bonus)Middelgrunden(10 of 20 x 2MW Bonus)的经验。 涡轮机的选择:选择涡轮机的重要参数有:96%可用性;雷电保护;塔架低空气湿度(为防止腐采用单个起重机用于安装大型部件;能完全打开机舱;在所有电力设备采用电弧监测的防火措施等最后丹麦制造商Bonus(现为Siemens)获得了生产涡轮机的合同,涡轮机额定容量为2.3MW(是机组的升级版),是2004年Bonus所能生产的最大容量涡轮机。 风机叶片的选择:Bonus为Nysted的2.3MW涡轮机开发了一种特殊的叶片(不含胶接接头,一片成此前,叶片先在2000年1.3MW涡轮机预先检测过,运行一年后被拆卸进行全面观察。此外,Bon 专门成立队伍从生产线随机抽取叶片来检测,检测内容包括20年的寿命测试和叶片的断裂测试。基座的选择:海上风机基座设计需要考虑Nysted风力发电场的工作负载、环境负载、水文地理条地质条件。基座适用性包括涡轮机尺寸、土壤条件、水深、浪高、结冰情况等多个技术要素。水力可用于冲刷保护和起重机驳船安装基座的操作研究。基座面积大约为45000m2,占发电场总面积0.2%。水力模型研究包括各项可能的极端事件,如:波浪扰动的数值模拟和海浪,水流和冰受力算。由于Nysted海底石头较多,单桩式基座不可行,重力式基座较为合适。图1: Nysted 风电用的重力型基座,基座运载和安装的过程要求混凝土基座尽可能轻质。为此,该项目的基座采用带个开孔、单杆、顶部冰锥形的六边形底部结构,底部直径15米,最大高度16.25米,单个基座在中重量低于1300吨,适合海上操作。EIDE V号起重机船从运输码头把基座运载过去。然后,通过孔内添加重物和单杆为基座又增加了500吨重量,这些重量可保持基座的稳定性,防止滑移和倾覆刷保护分为两层结构,包括石头外层和一过滤层,材料由驳船上的液力挖掘机放置。 塔架要求:每个塔架有69米高,比陆上涡轮机的塔架低大约10%,这是由于陆上风切高于海上,只要采用较低的塔架就可获得相同的发电量。

中国风力发电的发展现状及未来前景要点

中国风电发展现状及前景 前言 随着能源与环境问题的日益突出,世界各国正在把更多目光投向可再生能源,其中风能因其自身优势,作为可再生能源的重要类别,在地球上是最古老、最重要的能源之一,具有巨大蕴藏量、可再生、分布广、无污染的特性,成为全球普遍欢迎的清洁能源,风力发电成为目前最具规模化开发条件和商业化发展前景的可再生能源发电方式。 风,来无影、去无踪,是无污染、可再生能源。一台单机容量为1兆瓦的风电装机与同容量火电装机相比,每年可减排2000吨二氧化碳、10吨二氧化硫、6吨二氧化氮。随着《可再生能源法》的颁布,中国已把风能利用放在重要位置。 一、国内外风电市场现状 1.国外风机发展现状 随着世界各国对环境问题认识的不断深入,可再生能源综合利用的技术也在不断发展。在各国政府制订的相应政策支持和推动下,风力发电产业也在高速发展。截至2011年底,世界风电装机量达到237669MW,新增装机量43279MW,增长率22.3%,增速与2010年持平,低于2009年32%的增速。由表一,可以看出中国风电装机量62364MW,远远超过世界其他各国装机量,而德国依然是欧洲装机量最多的国家。从图表三中,很明显的看出,从2001年到2004年,风电装机增速是在下降的,2004年到2009年风电有处于一个快速发展期,直到近两年风电装机的增速又降为22%左右,可见风电的发展正处在一个由快速扩张到技术提

升的阶段。 图表 1 世界风电装机总量图 图表 2 世界近10年新增装机量示意图

图表 3 世界风电每年装机量增速

图表 4 总装机量各国所占份额

图表 5 2011年新增装机量各国所占份额 2.国内风电发展现状 中国的风电产业更是突飞猛进:2009年当年的装机容量已超过欧洲各国,名列世界第二。2010年将新增1892.7万kW,超越美国,成为世界第一。2011年装机总量到达惊人的62364MW。在图6中可以看出,中国风电正经历一个跨越式发展,这对世界风电的发展起到了至关重要的作用。然而,图8 中,我们能够清楚的看出自2007年以后,虽然新增装机量很大,但增速却明显下降,而其他国家,比如美国、德国,这些年维持着一个稳定的增速。由此,我们应该意识到,我国风电,尤其是陆上风电,正在进入一个转型期,从发展期进入成熟期,从量的追求进入到对质的提升。 图表 6 中国每年风电装机量示意图

(非常好)海上风电场经验总结:由ScrobySands、Nysted等建设得到的启发

海上风电场经验总结:由ScrobySands、Nysted等建设得到的启发 作者:张蓓文陆斌发布日期:2008-5-8 18:13:30 (阅270次) 关键词: 风电总结 DS 海上风电场的风速高于陆地风电场的风速,不占用陆地面积,虽然其电网联接成本相对较高,但是海上风 能开发的经济价值和社会价值正得到越来越多的认可,海上风电的发电成本也将越来越低。海上风电场的 建设对于风电行业的进一步发展而言很关键,现已进入到一个重要阶段,进一步发展可以吸引大量项目资 金的进入,其具有震撼力的阵形正在全球范围地受到沿袭[1]。全球海上风力发电场装机容量增长详见图1。欧洲地区的发展目前领先于全球。丹麦于1991年建成第一个海上风力发电场,此后直到2006年末,全球 运行了超过900MW装机容量的海上风电场,几乎所有发电场都在欧洲[2]。 表1.17座离岸1km以外的建成或在建风电场 建设地点始建年 份风电机组数量 (台) 风电机组型号总装机容 量 TunaKnob丹麦1995 10 VestasV39/500kW 5MW Utgrunden瑞典2000 7 EnronWind70/1500kW 10.5MW Middelgrunden丹 麦2001.3 20 Bonus76/2.000MW 40MW HornsRev丹麦2002.12 80 VestasV80/2.000MW 160MW Nysted丹麦2003.11 72 Bonus82,4/2.300MW 165.6MW NorthHoyle英国2003.12 30 VestasV80/2.000MW 60MW KentishFlats英国2005.8 30 VestasV90/3.000MW 90MW Beatrice英国2006.9 2 OWEZ荷兰2006.11 36 VestasV90/3.000MW 108MW 来源:“Off-andNearshoreWindEnergy”,上海科技情报研究所整理 国外海上风力发电场技术正日趋成熟,建成的风电场容量为2.75至165.6MW(详见表1),规划中的风电场容量为4.5至1000MW[3]。而海上风电场产业还处于“做中学”的阶段[5],对于以往的经验教训进行总结对未来产业发展是很有必要的。笔者之前已依据德国专业研究机构公开的 “CaseStudy:Eur opeanOffshoreWindFarms-ASurveyfortheAnalysisoftheExperiencesandLessonsLearntbyDevelope

关于海上风力发电技术及风力发电机组可靠性问题的探析

关于海上风力发电技术及风力发电机组可靠性问题的探析 发表时间:2018-06-12T13:28:37.837Z 来源:《建筑学研究前沿》2018年第4期作者:李钢幕[导读] 我们应当积极借鉴并利用世界上已有的先进工程实例,充分挖掘我国沿海风力资源,推进海上风电场建设,为我国节能减排工作的顺利进行做出贡献。 中国电建集团核电工程有限公司摘要:本文作者结合多年工作经验,主要就海上风力发电技术及风力发电机组可靠性问题进行了相关研究,希望对加快我国海上风力发电发展有所帮助。 关键词:海上风力发电;风电场;能源海上风力发电是节能减排工作中的一项重要内容,具备诸多优势,海上风况明显优于陆地,湍流较小,空间大,环境污染和噪音污染较小便于开发,但海上风力发电也存在一定不足,其初期投资较大,并且在风电机组基础结构选型与实施、风电机组运输以及后期维护等方面的技术难度较大。此种情况下,加大力度探讨海上风力发电技术对于海上风能资源的开发和利用具有重要意义。 1 当前海上风力发电主要技术 1.1海上风场选址 海上风力发电场需要选择一个适合的地方进行,这将是一个繁琐复杂的工作。如果选址不正确的话很可能会导致项目建设的失败。那么,电场选址应该考虑的因素主要包括以下几方面:(1)关于项目建设的审批是否经过相关部门的许可。(2)建设之前一定要注意是否获得海域的使用权。(3)建设的时候要对环境进行相关的了解,包括水深度、海域的范围、风能资源的多少以及地质条件是否有优势。(4)要考虑环境制约的因素,相关人员要考虑到风力发电场的坚实是否会对当地的生态环境造成破坏。 1.2海上风力发电机的结构支撑 目前海上风力发电机的建造结构形式主要有四种,分别是:单桩、混凝土重力式陈翔、多桩、吸力式:(1)单桩:单桩的结构通常是在海床下十米到二十米深处,深度应该要按照海床的类型变化。通常桩径大约是两到四米左右,单桩的结构制造比较简单,缺点是施工安装费用都比较高。(2)混凝土沉箱。它的优势是造价比较低,不太受海床的影响,但是在进行建造的过程当中必须要海底准备,此外,它的尺寸和重量比较大,施工的时候也比较复杂。(3)多桩基础,它的特点是桩径比较小,但适用于深海的建造,由于多桩的建造经验较少,因而较少实际应用到工作方面。(4)吸力式基础,吸力式基础主要分为单柱和多柱沉箱基础。吸力式沉箱基础适用于软粘土,吸力式沉箱基础的安装费用比较高。 1.3海上风机机组 海上风电机组的安装主要包括两种方式:分体安装和整体安装。分体安装是指在目标海域按照基础→塔筒→机舱→叶片的顺序依次将机组的各主要部件装配成一个整体,这种施工方法与陆上风电场类似,适用于潮间带及近海区域,目前运行的多数风电场均按该方法建造;而整体安装则是在岸边将机组各部件装配成一个整体,竖直放置于运输船运送并安放至目标地点,以减少海况对装配精度的影响,作业费用较低,这种施工方法是近年发展起来的,也已有成功案例。 2海上风电机组运行可靠性问题研究 2.1 塔架基础的可靠性 目前海上风电机组基础主要分为两大类:悬浮式和底部固定式。悬浮式主要利用海水的浮力,及绳缆的固定作用,将风电机组“固定”在海里;底部固定式即利用单桩或多桩,直接把塔架与海底基础连接起来。目前浅海区域多采用单桩或三桩结构,而深海区域则多采用悬浮式基础。 悬浮式:悬浮式基础适用于深海区域,在保证风电机组正常运行的情况下,悬浮式基础可以大大降低基础的建设成本,从而降低海上风电的生产成本,但是在强风等恶劣环境下,其可靠性远远不及底部固定式,所以在其基础缆绳以及底部配重的设计上要求留有较大余量。 底部固定式:相对于悬浮式,稳定性更加优越,不会受海水波浪冲击效应的影响。由于其底部与海底直接刚性连接,所以不会有较大幅度的摆动,这很好的保证了塔顶发电机组的平稳运行,同时对于主轴而言,载荷的波动较小,这有力的延长了主轴的使用寿命,降低了风电机组的使用成本。 对于底部固定式基础,由于浸泡在海水中,长期受海浪、洋流的冲刷作用以及海水的腐蚀作用,基础易发生松动,严重时甚至会导致风电机组倾覆,这个问题必须引起重视。建议要在风电机组上安装基础实时监视装置,然后通过无线发射器将检测信号传输至主控室,以便安全检修人员及时发现和排除风电机组基础的安全隐患。 2.2机组的防腐蚀与防潮湿 风力机内部有很多的电气控制部分,其运行时不允许湿度过大,所以在海上高湿度的环境中,防潮防湿显得尤为重要。防湿的手段有很多,现在普遍采用的是密闭舱式,即把风电机组的机舱做成密闭形式,然后利用空调系统对风电机组内部构件散热和保温。这样能达到较好的防潮效果,但对空调系统运行的可靠性要求相对很高。除了防潮,防腐蚀也相当关键。由于海上的空气湿度大,并且海水中各种溶盐离子较多,致使风电机组结构很容易发生电化学腐蚀。一般风电机组的设计使用寿命都在二十年以上,所以还上的风电机组一定要有较强的抗腐蚀能力。现在比较常用的手段是在风电机组易腐蚀的部位适用抗腐蚀材料、在风电机组外表面涂刷防腐蚀涂料、使用不会被腐蚀的高强度复合材料等。这对风电机组有效的起到了防腐蚀作用。 2.3 极端恶劣天气的影响 我国南方沿海地区,在夏季和秋季经常会遭受台风和强热带风暴的影响,而在北方沿海地区,冬季经常会出现严寒低温、海面结冰情况,因此海上风电机组必须要考虑台风、海啸、冰冻、海冰等极端恶劣天气的影响。首先,风电场的选址要尽量选择风速稳定、台风路径较少经过的区域。对于北方可能出现海冰的区域,要根据往年气象资料,研究海冰厚度及对风电机组的影响,然后进行实验模拟,最后科学选址。其次,在风电机组设计时,要考虑破坏性天气发生时对风电机组的损坏,以及制定相应的安全防范措施。比如风电机组的叶片强度可以根据塔架及机舱的强度而设计,使其强度低于塔架的强度,这样在遇到破坏性强风的时候,叶片可以先行断裂脱落,从而最大程度的保护主机舱,把损失减小到最小。

海上风力发电概况

摘要 绿色能源的未来在于大型风力发电场,而大型风电场的未来在海上。本文简要叙述了全球海上风力发电的近况和一些主要国家的发展计划,并介绍了海上风电场的基础结构和吊装方法。 关键词:海上风电;风力发电机组;基础结构;吊装方法。 要旨 このページグリーンエネルギーの未来は大型風力発電場、大型風力発電の未来は海上。本文は簡単に述べた世界の海上風力発電の近況といくつかの主要国の発展計画を紹介した海上風力発電の基礎構造と架設方法。 キーワード海上風力発電、風力発電ユニット;基礎構造;架設方法。

1 引言 1.1 风力发电是近年来世界各国普遍关注的可再生能源开发项目之一,发展速度非常快。1997~2004年,全球风电装机容量平均增长率达26.1%。目前全球风电装机容量已经达到5000万千瓦左右,相当于47座标准核电站。随着风电技术逐渐由陆上延伸到海上,海上风力发电已经成为世界可再生能源发展领域的焦点。 1.2 海上风能的优点 风能资源储量大、环境污染小、不占用耕地;低风切变,低湍流强度——较低的疲劳载荷;高产出:海上风电场对噪音要求较低,可通过增加转动速度及电压来提高电能产出;海上风电场允许单机容量更大的风机,高者可达5MW—10MW 2 海上风能的利用特点 海上风况优于陆地,风流过粗糙的地表或障碍物时,风速的大小和方向都会变化,而海面粗糙度小,离岸10km的海上风速通常比沿岸陆上高约25%;海上风湍流强度小,具有稳定的主导风向,机组承受的疲劳负荷较低,使得风机寿命更长;风切变小,因而塔架可以较短;在海上开发利用风能,受噪声、景观影响、鸟类影响、电磁波干扰等问题的限制较少;海上风电场不占陆上土地,不涉及土地征用等问题,对于人口比较集中,陆地面积相对较小、濒临海洋的国家或地区较适合发展海上风电海上风能的开发利用不会造成大气污染和产生任何有害物质,可减少温室效应气体的排放。 3 海上风电机组的发展 3.1 第一个发展阶段——500~600kW级样机研制 早在上世纪70年代初,一些欧洲国家就提出了利用海上风能发电的想法,到1991~1997年,丹麦、荷兰和瑞典才完成了样机的试制,通过对样机进行的试验,首次获得了海上风力发电机组的工作经验。但从经济观点来看,500~600kW级的风力发电机组和项目规模都显得太小了。因此,丹麦、荷兰等欧洲国家随之开展了新的研究和发展计划。有关部门也开始重新以严肃的态度对待海上风电场的建设工作。 3.2第二个发展阶段——第一代MW级海上商业用风力发电机组的开发 2002年,5 个新的海上风电场的建设,功率为1.5~2MW的风力发电机组向公共

世界上最大的风力涡轮叶片和海上风力发电场平台

世界上最大的风力涡轮叶片和海上风力发电场平台 风力发电产业作为一种新技术在全球的发展中已赢得媒体的关注,最近,无排放发发电部门一年一年又一年的继续增加其全球范围内的装机容量。 西门子早在八月宣布,它已建成75米高的风力发电机,是世界上最大的风力涡轮机转子叶 片。 通过比较,了解到西门子新的叶片有多长,参加2012年4月在哥本哈根举行的欧洲风能协会年度盛会的人还记得,大量的LM风力发电机有73.5米长的叶片在贝勒中心以外(Bella Center)。 西门子说,大量的玻璃纤维制成的叶片将用在该公司的新的6兆瓦海上风力发电机组。 该公司表示,在今年夏天晚些时候在丹麦安装?sterild154米转子的第一个原型,6兆瓦的涡轮机将被安装风力发电机叶片。 公司的新闻稿指出:“每个转子直径为154米,占地18600平方米,这是两个半足球场的大小,”。 叶片移动速度将达到80米每秒,每小时290公里。巨大的转子可以通过特殊的技术,使用西门子非常坚固而轻巧的结构。“ 然而,根据风电月刊的一篇文章中,中国风机制造商中船重工将在在江苏省示范海上风电场建设海上安装一个5兆瓦的风力涡轮机也将采用75米的叶片安装。 中船重工是不是在中国唯一的75米的风力发电机叶片制造商,风电月刊说,中孚Liazhong

今年早些时候表示,它也能产生这种规模的风力发电机叶片。这一切,是为了再次提醒欧洲的政治家,中国发展非常迅速,欧盟必须大力投资于风电技术研发,如果它要保持领先。在另一方面,也将有利于海上风电行业,三星重工最近公布的世界上最大的风力发电场安装船的交付。 三星表示,该公司的新闻稿称,Pacific Orca的运输和安装将有助于继续建立其在沿海水域的海上风力发电市场。 Pacific Orca是161米长,宽49米,高10.4米的庞然大物。三星表示,该容器是能够携带和安装多达12台3.6兆瓦级的风电场。 发布的消息称:“这也可以让安装在深度为60米的海上风力发电场,在世界上最深的地方成为可能,以及超大规模的风电场,容量为10兆瓦或更大的安装量。”。 该公司增加了新船的建立是为了安装的风力发电场,即使在极端条件下速度为每秒20米,波高为2.5米的大风中依然能正常工作。 此外,三星还表示,全球海上风电场容量达到293万千瓦,到2030年预计将增长迅速。“这是目前的市场规模3.5万千瓦,1000台3.5兆瓦级发电机约70倍。” 注:来源自青岛日川精密机械有限公司https://www.doczj.com/doc/5012928202.html,

(完整版)【速度收藏】风力发电机工作原理

风力发电机工作原理__图文 前言:由于环境污染,人类对大自然的过度开采,我们对无污染、可再生的能源越来越重视。风能就是这样一种无须燃料、无污染、可再生的能源。风力发电机作为把风能运用率较高的产品,受到世界各国的重视。为了让风力发电机更好的为人们服务,今天我们来研究一下风力发电机工作原理。 关键词:风力发电机,风力发电机工作原理,风力发电机结构 一、风力发电机结构 高 由电子控制器操作,电子控制器可以通过风向标来感觉风向。图中显示了风力发电机偏航。通常,在风改变其方向时,风力发电机一次只会偏转几度。 7、电子控制器:包含一台不断监控风力发电机状态的计算机,并控制偏航装置。为防止任何故障(即齿轮箱或发电机的过热),该控制器可以自动停止风力发电机的转动,并通过电话调制解调器来呼叫风力发电机操作员。 8、液压系统:用于重置风力发电机的空气动力闸。 9、冷却元件:包含一个风扇,用于冷却发电机。此外,它包含一个油冷却元件,用于冷却齿轮箱内的油。一些风力发电机具有水冷发电机。

10、塔:风力发电机塔载有机舱及转子。通常高的塔具有优势,因为离地面越高,风速越大。现代600千瓦风汽轮机的塔高为40至60米。它可以为管状的塔,也可以是格子状的塔。管状的塔对于维修人员更为安全,因为他们可以通过内部的梯子到达塔顶。格状的塔的优点在于它比较便宜。 11、风速计及风向标:用于测量风速及风向。 二、风力发电机原理 现代风力发电机采用空气学原理,就像飞机的机翼一样。风并非“推动”风轮叶片,而是吹过叶片正反面的压差,这种压差会产生升力,令风轮旋转并不断横切风流。 面向来风,从而令风轮刹车。 在风速很低的时候,风力发电机风轮会保持不动。当到达切入风速时(通常每秒3到4米),风轮开始旋转并牵引发电机开始发电。随著风力越来越强,输出功率会增加。当风速达到额定风速时,风电机会输出其额定功率。之后输出功率会保留大致不变。当风速进一步增加,达到切出风速的时候,风电机会刹车,不再输出功率,为免受损。 青岛恒风风力发电机有限公司是一家专注研发、制造、销售为一体的科技型企业,公司始建于2004年,厂房占地面积5000 余平。公司主要生产150瓦至500千瓦的水平和垂直轴的中小型风力发电机组,风光互补供电系统,广泛应用于离网和并网型发电系统。生产中我们严格按照ISO9001国际标准生产管理体系,并拥有标准的生产线,自动包装流水线,严

第二章 海上风电场的选址

第二章海上风电场的选址 2.1 概述 近海风电场一般都是在水深10~20m、距岸线10~15km左右的近海,从空间上看,地域大,选址余地大。实际上海上风电场的建设受到诸多因素的影响和制约。按制约因素的性质可为以下几方面: 硬性制约(比如军事区、航道等)、软性制约(如:渔民的利益、规划上的冲突)、技术制约(如:风资源、海床条件、不利因素等)、环境制约(如:生态因素、噪声等)、经济制约。 根据各国的海上风电场经验,综合各种影响因素,得出风电场选址的几项基本原则: (1)考虑风资源的类型、频率和周期 (2)考虑海床的地质结构、海底深度和最高波浪级别 (3)考虑地震类型及活跃程度及雷电等其它天气情况 (4)考虑城市海洋功能区的规划要求 (5)场址规划与城市建设规划、岸线和滩涂开发利用规划相协调 (6)符合环境和生态保护的要求,尽量减少对鸟类、渔业的影响。 (7)避开航道,尽量减少对船舶航行及紧急避风的影响。 (8)避开通信、电力和油气等海底管线的保护范围。 (9)尽量避开军事设施及周围 (10)考虑基础施工条件和施工设备要求及经济性,场址区域水深一般控制在5~15m。 2.2 选址考虑的各种因素 2.2.1 风资源因素 1. 风资源:风资源是风电场选址的首要因素,一个良好的风资源是必备条 200W/m2 。我国最佳风资源区在台湾海峡,平均风速达到8m/s以上,功率密度达到700w/m2 ,其次就是广东、再次就是上海江浙一带,然后就是山东、河北等地。 在从风资源方面选址上,首先要从宏观上确定区域,然后再进行区域风资源

测试评估。 2. 风资源上的不利因素:台风 海上风电场在风资源上的不利因素首先就是台风,强台风不仅仅损害叶片、机舱,还包括结构部件,如塔筒和基础,对发电设备影响很大。 台风机倒了20台,整个风场几乎报废。”如果没有科学、扎实的研究,海上风场

风力发电机的分类

,风力发电机按叶片分类. 按照风力发电机主轴地方向分类可分为水平轴风力发电机和垂直轴风力发电机. ()水平轴风力发电机:旋转轴与叶片垂直,一般与地面平行,旋转轴处于水平地风力发电机. 水平轴风力发电机相对于垂直轴发电机地优点;叶片旋转空间大,转速高.适合于大型风力发电厂.水平轴风力发电机组地发展历史较长,已经完全达到工业化生产,结构简单,效率比垂直轴风力发电机组高.到目前为止,用于发电地风力发电机都为水平轴,还没有商业化地垂直轴地风力发电机组. 资料个人收集整理,勿做商业用途 ()垂直轴风力发电机:旋转轴与叶片平行,一般与地面吹垂直,旋转轴处于垂直地风力发电机.垂直轴风力发电机相对于水平轴发电机地优点在于;发电效率高,对风地转向没有要求,叶片转动空间小,抗风能力强(可抗级台风),启动风速小维修保养简单. 垂直轴与水平式地风力发电机对比,有两大优势:一、同等风速条件下垂直轴发电效率比水平式地要高,特别是低风速地区;二、在高风速地区,垂直轴风力发电机要比水平式地更加安全稳定;另外,国内外大量地案例证明,水平式地风力发电机在城市地区经常不转动,在北方、西北等高风速地区又经常容易出现风机折断、脱落等问题,伤及路上行人与车辆等危险事故.资料个人收集整理,勿做商业用途 按照桨叶数量分类可分为“单叶片”﹑“双叶片”﹑“三叶片”和“多叶片”型风机. 凡属轴流风扇地叶片数目往往是奇数设计. 这是由于若采用偶数片形状对称地扇叶,不易调整平衡.还很容易使系统发生共振,倘叶片材质又无法抵抗振动产生地疲劳,将会使叶片或心轴发生断裂. 因此设计多为轴心不对称地奇数片扇叶设计.对于轴心不对称地奇数片扇叶,这一原则普遍应用于大型风机以及包括部分直升机螺旋桨在内地各种扇叶设计中.包括家庭使用地电风扇都是个叶片地,叶片形状是鸟翼型(设计术语),这样地叶片流量大,噪声低,符合流体力学原理.所以绝大多数风扇都是三片叶地.三片叶有较好地动平衡,不易产生振荡,减少轴承地磨损.降低维修成本.资料个人收集整理,勿做商业用途 按照风机接受风地方向分类,则有“上风向型”――叶轮正面迎着风向和“下风向型”――叶轮背顺着风向,两种类型.资料个人收集整理,勿做商业用途 上风向风机一般需要有某种调向装置来保持叶轮迎风. 而下风向风机则能够自动对准风向, 从而免除了调向装置.但对于下风向风机, 由于一部分空气通过塔架后再吹向叶轮, 这样, 塔架就干扰了流过叶片地气流而形成所谓塔影效应,使性能有所降低.资料个人收集整理,勿做商业用途 ,按照风力发电机地输出容量可将风力发电机分为小型,中型,大型,兆瓦级系列. ()小型风力发电机是指发电机容量为地风力发电机. ()中型风力发电机是指发电机容量为地风力发电机. ()大型风力发电机是指发电机容量为地风力发电机. 兆瓦级风力发电机是指发电机容量为以上地风力发电机. ,按功率调节方式分类.可分为定桨距时速调节型,变桨距型,主动失速型和独立变桨型风力发电机. ()定桨距失速型风机;桨叶于轮毂固定连接,桨叶地迎风角度不随风速而变化.依靠桨叶地气动特性自动失速,即当风速大于额定风速时依靠叶片地失速特性保持输入功率基本恒定.资料个人收集整理,勿做商业用途 ()变桨距调节:风速低于额定风速时,保证叶片在最佳攻角状态,以获得最大风能;当风速超过额定风速后,变桨系统减小叶片攻角,保证输出功率在额定范围内.资料个人收集整理,勿做商业用途 ()主动失速调节:风速低于额定风速时,控制系统根据风速分几级控制,控制精度低于变桨距控制;当风速超过额定风速后,变桨系统通过增加叶片攻角,使叶片“失速”,限制风轮吸收功率增加资料个人收集整理,勿做商业用途 ()独立变桨控制风力机:由于叶片尺寸较大,每个叶片有十几吨甚至几十吨,叶片运行在不同地位置,受力状况也是不同地故叶片中立对风轮力矩地影响也是不可忽略地.通过对三个叶片进行独立地控制,可以大大减小风力机叶片负载地波动及转矩地波动,进而减小传动机构与齿轮箱地疲劳度,减小塔架地震动,输出功率基本恒定在额定功率附近.资料个人收集整理,勿做商业用途

相关主题
文本预览
相关文档 最新文档