当前位置:文档之家› 药物基因组学相关数据库

药物基因组学相关数据库

药物基因组学相关数据库
药物基因组学相关数据库

药物基因组学数据库

1、Drugbank

2、dgidb

3、pharmGKB

4、cancercommon

5、ChEMBL

6、mycancergenome

7、TTD

8、guidetopharmcology

9、clearityfoundation

10、CIViC

https://https://www.doczj.com/doc/5011857413.html,/#/home

11、DoCM

https://www.doczj.com/doc/5011857413.html,/

1 Drugbank

药物和药物靶标资源库。DrugBank是一个独特的生物信息学/化学信息学资源,它结合了详细的药物(例如化学制品)数据和综合的药物靶点(即:蛋白质)信息。该数据库包含了超过4100个药物条目,包括超过800个FDA认可的小分子和生物技术药物,以及超过3200个试验性药物。此外,超过1.4万条蛋白质或药物靶序列被链接到这些药物条目。每个DrugCard条目包含超过80个数据域,其中一半信息致力于药物/化学制品数据,另一半致力于药物靶点和蛋白质数据。许多数据域超链接到其他数据库(KEGG、PubChem、ChEBI、Swiss-Prot和GenBank)和各种结构查看小应用程序。该数据库是完全可搜索的,支持大量的文本、序列、化学结构和关系查询搜索。DrugBank的潜在应用包括模拟药物靶点发现、药物设计、药物对接或筛选、药物代谢预测、药物

相互作用预测和普通药学教育。DrugBank可以在http://www.drugbank.ca 使用。广泛应用于计算机辅助的药物靶标的发现、药物设计、药物分子对接或筛选、药物活性和作用预测等。

在查询中,每一种药物对应1个DrugCard,即我们所得到的检索结果。每一个DrugCard都包含的数据信息分为药物、靶标和酶三部分。

药物信息包括了该药物的CAS号、商品名、分子式、分子量、SMILES、2D 和3D结构、logP、logS、pKa、熔点、吸收性、Caco-2细胞穿透性、药物类别和临床使用、性质描述、剂型与给药途径、半衰期、体内的生物转化、毒性、作用于哪些生物体、食物对服用的影响、与其它药物的相互作用、作用机理、代谢途径、药理学特征、与蛋白质的结合情况、溶解度、物质形态、同义词、关于合成的相关文献等,还与ChEBI、GenBank、PubChem等外部数据库有链接。

靶标的信息包括ID、名称、靶标基因的名称、蛋白质序列、残基数目、分子量、等电点、功能和活性、参与的代谢途径和反应、体内分布、靶标信号、跨膜区域、靶标基因序列及其在GenBank、HGNC等外部数据库中的ID和链接、参考文献,以及在GenBank和Swiss-Prot中的链接。

酶的信息包括名称、蛋白质序列、基因名称、在Swiss-Prot 等数据库中的链接。

在DrugBank的主界面上,在Browse菜单下可以浏览数据库的内容,其中PharmaBrowse为用户提供了分类浏览的功能。这为药剂师、医生以及寻找潜在药物的研究人员提供了方便。在Search下拉菜单下,就是Drug Bank的4类检索方式。ChemQuery允许用户通过绘制结构图或书写SMILES、分子式进行结构搜索。在检索过程中还可以对搜索药物类型、分子量范围、搜索结果相似度、结果数量最大值等进行设置。TextQuery则为文本检索功能。文本检索支持逻辑运算符连接及在特定领域内搜索。例如,在“dextromethorphan”中检索混合物,可以键入“mixtures:dextromethorphan”,即用分号在后面输入领域,同时可以加入逻辑运算符,例如,在“dextrome thorphan”和“doxylamine”2个领域进行检索,可以键入“mixtures:dextromethorphan AND mixtures:doxylamine”。SeqSearch为用户提供了通过序列检索蛋白质的功能。Data Extractor是1

个组合检索工具。用户可以对DrugCard所包含的信息进行选择性的组合检索(1) Browse按钮:Drug Browse、Category Browse、Geno Browse、Reaction Browse、Pathway Browse、Class Browse、Target Browse;

(2) Search按钮:ChemQuery Structure Search、Interax Interaction Search、Sequence Search、Advanced Search、MS Search、MS/MS Search、GC/MS Search、1D NMR Search、2D NMR Search;

(3)其他Tool按钮:HMDB、T3DB、SMPDB、FooDB、PPT-DB、CSF、Serum Metabolome、CCDB、YMDB、BMDB、ECMDB、MarkerDB、BacMap、Ref-DB。Drug Browse:小分子药物、生物技术药物、显示药物在DrugBank中的ID、药物名称、分子量、化学式、化学结构、药物类型、治疗症状。

Drugs:显示ID、药物名称、治疗疾病

Drugs and Targets:显示ID、药物名称、作用位点(靶标)、靶标类型

总结:可以查找药物名称、分子量、化学式、分子结构、药物所属类型、靶标、靶标类型、治疗疾病、代谢途径等,还可链接到相关网站。(较实用)

Drug Browse:药名、分子量、化学式、化学结构、药物分类、药效

Geno Browse:药物名称,相互作用的基因/酶,SNP位点、等位基因名称、碱基变化、副作用

Pathway Browse:可查看代谢通路

Classification Browse:药物分类

Target Browse:查靶标及靶标分类和详细细节(药物分类、药理学等)

2ChEMBL

生物活性药物类小分子数据库。

总结:输入分子结构或已知靶标描述或靶标蛋白,每条记录都包括分子的分类、名称、ChEMBI ID、功能、毒性、亚细胞定位、结构、序列、参考文献等。(偏向于化学)

3 clearityfoundation

关于卵巢癌的公益网站。治疗卵巢癌复发、有关肿瘤分子信息、临床试验、卵巢癌诊断和治疗分析、新型靶向制剂的临床开发、治疗结果。(基本无用)

4 DoCM

位点突变数据库,

总结:查找染色体、基因、疾病、突变类型、氨基酸、起始位置、参考文献(稍微简单了点)

5 CIViC

Search:查找描述、疾病名称、疾病DOID、药物PubChem ID、药物名称、证据水平、基因名、PubChem ID、突变位点等查找相关信息。

总结:evidence ID、基因、氨基酸变化、描述、病名、药物、evidence level(A:经过验证的;B:临床;C:临床前;D:个体研究;E:推理的)、evidence type (predictive、diagnostic、prognostic)、evidence direction(supports、dose not support)、clinical significance(sensitivice/resistance or non-response/better outcome/poor outcome/positive/negative)、variant origin(somatic/germline)、trust

rating(1/2/3/4/5 stars),可链接到代谢途径及下载。(比较实用)

Search:可按不同类型搜索

输入要搜索的单词,如“breast cancer”

点击一个基因/疾病

单击“View Full Detials from MyGene info”,查基因介绍、蛋白结构域、通路。

专业进展——药物基因组学

专业进展——药物基因组学 一、药物基因组学 药物基因组学:是研究人类基因变异和药物反应的关系,利用基因组学信息解答不同个体对同一药物反应存在差异的原因。 基因组(genome):是指生物体单倍细胞中一套完整的遗传物质,包括所有的基因和基因间区域(即编码区和非编码区)。 人类基因组计划是由序列(结构)基因组学向功能基因组学的转移。开启了人类的“后基因组时代”。 后基因组时代研究的重要方向: 功能基因组学 比较基因组学 结构基因组学 蛋白质组学 药物基因组学 …… 二、基因多态性 基因多态性是指在一个生物群体中,呈不连续多峰曲线分布的一个或多个等位基因发生突变而产生的遗传变异。 CYP450酶超大家族 共涉及1000种药物的代谢(拓展) 12种亚型:CYP1、CYP2、CYP3…… 15个亚家族:A~Q 如:CYP2C9、CYP2C19、CYP2D6、CYP3A5等 药物转运蛋白-MDR1(多药耐药基因)(拓展) 调控许多药物吸收、分布和排泄过程 与胆红素、抗癌化疗药物、强心苷、免疫抑制剂、糖皮质激素、HIVⅠ型蛋白抑制剂有关 药物靶蛋白-ADRB2 编码人β2肾上腺受体 人类白血球抗原-HLA-B HLA-B变异,将引起某些药物的严重皮肤反应 内容: 1.药物代谢酶的多态性 同一基因位点上具有多个等位基因引起,其多态性决定表型多态性和药物代谢酶的活性,造成不同个体间药物代谢反应的差异。是产生药物毒副作用、降低或丧失药效的主要原因之一。 细胞色素P450酶(CYP)是药物代谢的主要酶系。在细胞色素P450的亚群中,CYP2D6、CYP2C9和CYP2C19对许多药物的效应非常重要。(拓展) 例: 奥美拉唑、兰索拉唑和泮托拉唑等质子泵抑制剂由P450酶代谢,主要由CYP2C19,部分由CYP3A4代谢。 因此,CYP2C19的基因多态性会影响质子泵抑制剂的药动学,从而影响后者治疗相关疾病的临床效果。 埃索美拉唑仅经CYP3A4代谢。 2.药物转运蛋白 在药物的吸收、排泄、分布、转运等方面起重要作用,其变异对药物吸收和消除具有重要意义。 药物进入体内方式除被动扩散外,细胞的主动转运发挥着非常重要的作用。 例:

药物基因组学检测工作

药物基因组学检测工作 药物基因组学 (pharmaeogenomies)又称基因组药物学或基因组药理学,是药理学或基因组学的一个分支,它是研究基因组或基因变异对药物在人体内吸收、代谢、疗效及不良反应的影响,从而指导临床合理用药的一门新学科。目前,很多高血压或糖尿病等常见病、多发病的患者在接受治疗时,同样的疾病使用同样剂量的同一药物,在疗效和不良反应方面存在显著差异,其原因是多方面的,其中患者间基因的个体差异因素起着相当重要的作用,正是这种差异直接导致患者对药物敏感性不同。因而根据患者遗传背景,检测出患者的基因个体差异,选取正确的药物并确定正确的给药剂量,正是药物基因组学服务的目的。美国FDA于2007年首次批准了华法林的基因组学检测方法,用于判断其用量及敏感性。截至2011年,美国已有70余种药物说明书上注明要求根据药物基因组学信息,制订个体化用药方案。结合国内外基因组检测较为成熟的经验和我院的实际情况,我院临床药学科与检验科现已开展质子泵抑制剂、氯吡格雷、华法林等相关药物基因组学检测工作。 1.药物基因组学研究内容 药物基因组学主要是利用已知的基因组学理论,来研究人体遗传因素对药物反应的影响,其主要内容包括:药物代谢酶、药物转运蛋白、药物作用靶点等基因多态性。它以药物效应和安全性为目标,主要研究药物效应的个体性差异,并针对不同个体的基因型进行个性化针对治疗。 2.药物相关基因检测的适合人群 通常需要长期甚至终身接受某种药物治疗的患者(如心血管药物、精神病药物、消化道药物、抗病毒药物) ;有过严重药物不良反应史或家族成员中有过药物不良反应的人;同时接受多种药物治疗的患者;经常接触有毒物质的患者;使用某种药物效果一直不理想,病情控制不稳定的患者;某些特殊人群:儿童和老年人等人群,适合作药物相关基因检测。 3.药物基因组学检测方法 根据检测对象的不同,药物基因组学对用药指导的检测可以分为三类:即药物代谢酶基因检测、药物转运体基因检测、药物靶点基因检测。我院药物基因组学检测主要通过药物代谢酶基因检测从而制订个体化用药方案。 药物代谢酶的种类很多,包括氧化、还原或水解I相酶和负责结合反应的II相酶。I相酶中的细胞色素P 450酶系 (CYP450 )参与了临床上90 %以上的药物代谢,不同的P450家族成员对药物代谢有不同的影响。如果药物代谢的药酶发生变异,则可引发血药浓度的显著变化从而改变了药物的药动学与药效学。 已知参与药物代谢的药酶众多,因基因多态性的编码影响,将其分为 4 种:正常代谢型( extensivemetabolizer,EM) 、慢代谢型( poor metaboliser,PM) 、中间

药物基因组学相关大数据库

药物基因组学数据库 1、Drugbank .drugbank.ca/ 2、dgidb https://www.doczj.com/doc/5011857413.html,/ 3、pharmGKB https://https://www.doczj.com/doc/5011857413.html,/ 4、cancercommon cancercommon./ 5、ChEMBL https://https://www.doczj.com/doc/5011857413.html,/chembldb/ 6、mycancergenome https://www.doczj.com/doc/5011857413.html,/ 7、TTD https://www.doczj.com/doc/5011857413.html,.sg/group/cjttd/ 8、guidetopharmcology https://www.doczj.com/doc/5011857413.html,/ 9、clearityfoundation https://www.doczj.com/doc/5011857413.html,/ 10、CIViC https://https://www.doczj.com/doc/5011857413.html,/#/home 11、DoCM https://www.doczj.com/doc/5011857413.html,/ 1 Drugbank 药物和药物靶标资源库。DrugBank是一个独特的生物信息学/化学信息学资源,它结合了详细的药物(例如化学制品)数据和综合的药物靶点(即:蛋白质)信息。该数据库包含了超过4100个药物条目,包括超过800个FDA认可的小分子和生物技术药物,以及超过3200个试验性药物。此外,超过1.4万条蛋白质或药物靶序列被到这些药物条目。每个DrugCard条目包含超过80个数据域,其中一半信息致力于药物/化学制品数据,另一半致力于药物靶点和蛋白质数据。许多数据域超到其他数据库(KEGG、PubChem、ChEBI、Swiss-Prot和GenBank)和各种结构查看小应用程序。该数据库是完全可搜索的,支持大量的文本、序列、化学结构和关系查询搜索。DrugBank的潜在应用包括模拟药物靶点发现、药物设计、药物对接或筛选、药物代谢预测、药物相互作用预测和普通药学教育。DrugBank可以在www.drugbank.ca使用。广泛应用于计算机辅助的药物靶标的发现、药物设计、药物分子对接或筛选、药物活性和作用预

有关药物基因组学的看法

有关药物基因组学的看法 药物基因组学是以药物效应和安全性为主要目标 ,研究药物体内过程差异 的基因特性,以及基因变异所致的不同病人对药物的不同反应 ,从而研究开发新的药物和合理用药方法的一门新学科。它是基于功能基因组学与分子药理学,从基因水平研究人类个体对药物效应不同的分子机理的学科。药物基因组学的创立,为研究高效、特效药物开辟了新的途径,为患者或特定人群寻找合适的药物及适宜的用药方法。随着1997法国成立了世界第一家独特基因与制药公司和2003 完成了人类历史上每个人的基因都是来自于父母,除了少部分的变异,大部分是一成不变的,由于很多人都会存在某些地方的基因缺陷,所以患上某些疾病的几率会比正常人大很多。而药物基因组学就是针对某个人或某类人专门设计出的药物,从而治疗这些人得上的特有的疾病。王老师曾在课堂上说过有关于东亚人种和欧美人种对于消化牛奶上的区别,并认为东亚人缺少充分消化牛奶的基因,并且以自身举例说喝了牛奶以后特别不舒服。我认为这就是关于基因组差异的一个具体体现。第一个人类基因组序列的测定和图谱的绘制。药物基因组学也走上了快速发展之路。 下面,我想说两点,一是药物基因组学其他科学的关系。二是药物基因组学和新药开发的关系。 一、药物基因组学其他科学的关系 药物基因组学与药物遗传学。药物基因组学虽然起源于药物遗传学,但两者在诸多方面有所不同,要表现在:1研究范畴:尽管两者都是研究基因的遗传学变异与药物反应关系的学科, 但药物遗传学主要集中于研究单基因变异, 特别是药物代谢酶基因变异对药物作用的影响。而药物基因组学除了覆盖药物遗传学研究范畴外,还包括与药物反应有关的所有遗传学标志,药物代谢靶受体或疾病发生链上诸多环节。2应用领域:一般来说,药物基因组学可应用于从药物发现、开发到临床应用的各个领域,较药物遗传学更广。 药物基因组学与基因组学相关学科。人类基因组学研究包括系统地测定和鉴别所有人类基因及基因产品,分析人类基因遗传学变异及不同基因在不同健康或疾病状态下的表达等。药物基因组学利用基因组学研究技术和方法,研究具有不同基因特征人群对药物治疗的反应,它是基因组学在药物开发和药物治疗学领域

心血管药物个体化用药指导的基因检测及临床意义

心血管药物个体化用药指导的基因检测及临床意义 导读 心血管系统疾病主要包括高血压、动脉粥样硬化、冠心病、脑卒中等,是严重威胁人类健康和导致死亡的重要原因。目前临床上常规使用的抗凝药、抗血小板药、降脂药、血管扩张药等普遍存在个体差异。随着药物基因组学研究的深入,开展与药物疗效相关的基因多态性检测,可以为临床选择合适的药物种类及药物剂量提供遗传证据,能极大地提高心血管药物使用的安全有效性。 心血管系统疾病主要包括高血压、动脉粥样硬化、冠心病、脑卒中等,是 严重威胁人类健康和导致死亡的重要原因。目前临床上常规使用的抗凝药、抗血小板药、降脂药、血管扩张药等普遍存在个体差异。随着药物基因组学研究的深入,开展与药物疗效相关的基因多态性检测,可以为临床选择合适的药物种类及药物剂量提供遗传证据,能极大地提高心血管药物使用的安全有效性。 一、阿司匹林 虽然阿司匹林被广泛应用于抗血小板治疗,但是部分患者在服用常规剂量的阿司匹林后不能达到预期临床效果,这种现象被称为阿司匹林抵抗(aspirin resistance, AR)。 1.COX-1基因多态性: 阿司匹林是非选择性的COX酶抑制剂,突变COX-1单体型CGCGCC显著增加了阿司匹林抵抗的发病风险[1]。但是Kranzhofer等[2]通过研究认为阿司匹林抵抗与COX1/2基因多态性无关。

2.血小板糖蛋白(GPⅡb/Ⅲa)基因多态性: 血小板膜糖蛋白Ⅱb/Ⅲa复合体(GPⅡb/Ⅲa)是纤维蛋白原的受体,PLA2等位基因可以增加急性冠状动脉综合征(acute coronary syndrome ACS)的风险,并且携带该等位基因的患者对于阿司匹林疗效不佳,存在阿司匹林抵抗现象 [3]。 二、氯吡格雷 大量的研究和长期的临床实践表明氯吡格雷联合阿司匹林在ACS尤其是行PCI术患者中具有显著的抗栓治疗作用[4]。 1.CYP2C19基因多态性: CYP2C19基因的突变位点有很多,已经发现36个。东方人突变携带者中,99%以上是属于*2、*3类型[5]。根据CYP2C19基因型的不同可将人群分为快代谢(*1/*1),中等代谢(*1/*2,*1/*3),慢代谢(*2/*2,*2/*3,*3/*3),他们在中国人中的频率分别为42.4%、43.4%和14.2%[6]。 2.CYP2C19基因多态性在氯吡格雷治疗中的影响: Sibbing等[7]对2 485例冠状动脉支架置入的患者研究发现:至少携带一个*2等位基因的患者发生支架内血栓的概率明显高于野生型(1.5% vs. 0.4%, HR=3.81, 95%CI 1.45~10.02,P=0.006),同时发现CYP2C19* 2 /* 2慢代谢型发生支架内血栓的概率最高(2.1%, P=0.002)。携带一个以上CYP2C19*2等位基因的患者与不良临床预后有相关性,更容易出现氯吡格雷抵抗[8]。Spokoyny等[9]通过研究后发现,慢代谢和中间代谢心脑血管疾病患者在服用氯吡格雷时有复发心脑血管事件的风险。 3.CYP2C19基因型检测对临床用药的指导意义:

药物基因组学

药物基因组学 PART 01 药物基因组学 一、药物基因组学 药物基因组学:是研究人类基因变异和药物反应的关系,利用基因组学信息解答不同个体对同一药物反应存在差异的原因。 基因组(genome):是指生物体单倍细胞中一套完整的遗传物质,包括所有的基因和基因间区域(即编码区和非编码区)。 人类基因组计划是由序列(结构)基因组学向功能基因组学的转移。开启了人类的“后基因组时代”。 后基因组时代研究的重要方向: 功能基因组学 比较基因组学 结构基因组学 蛋白质组学 药物基因组学 …… PART 02 基因多态性 二、基因多态性 基因多态性是指在一个生物群体中,呈不连续多峰曲线分布的一个或多个等位基因发生突变而产生的遗传变异。 CYP450酶超大家族 共涉及1000种药物的代谢(拓展) 12种亚型:CYP1、CYP2、CYP3…… 15个亚家族:A~Q 如:CYP2C9、CYP2C19、CYP2D6、CYP3A5等 药物转运蛋白-MDR1(多药耐药基因)(拓展) 调控许多药物吸收、分布和排泄过程 与胆红素、抗癌化疗药物、强心苷、免疫抑制剂、糖皮质激素、HIVⅠ型蛋白抑制剂有关 药物靶蛋白-ADRB2 编码人β2肾上腺受体 人类白血球抗原-HLA-B HLA-B变异,将引起某些药物的严重皮肤反应 内容: 1.药物代谢酶的多态性 同一基因位点上具有多个等位基因引起,其多态性决定表型多态性和药物代谢酶的活性,造成不同个体间药物代谢反应的差异。是产生药物毒副作用、降低或丧失药效的主要原因之一。 细胞色素P450酶(CYP)是药物代谢的主要酶系。在细胞色素P450的亚群中,CYP2D6、CYP2C9和CYP2C19对许多药物的效应非常重要。(拓展) 例: 奥美拉唑、兰索拉唑和泮托拉唑等质子泵抑制剂由P450酶代谢,主要由CYP2C19,部分由CYP3A4代谢。 因此,CYP2C19的基因多态性会影响质子泵抑制剂的药动学,从而影响后者治疗相关疾病的临床效果。 艾司奥美拉唑仅经CYP3A4代谢。 2.药物转运蛋白 在药物的吸收、排泄、分布、转运等方面起重要作用,其变异对药物吸收和消除具有重要意义。

氯吡格雷药物基因组学及个体化治疗研究进展与展望

·944· 中华老年多器官疾病杂志 2013年12月28日 第12卷 第12期 Chin J Mult Organ Dis Elderly, Vol.12, No.12, Dec 28, 2013 收稿日期: 2013?06?18; 修回日期: 2013?07?18 基金项目: 国家自然科学基金面上项目(30971259,30570736/C03030201); 解放军总医院临床扶持基金(2012FC-TSYS-3042) 通信作者: 卢才义, E-mail: cylu2000@https://www.doczj.com/doc/5011857413.html,; 尹 彤, E-mail: yintong2000@https://www.doczj.com/doc/5011857413.html, ·综 述· 氯吡格雷药物基因组学及个体化治疗研究进展与展望 张蓝宁,卢才义*,尹 彤* (解放军总医院老年心血管病研究所,北京 100853) 【摘 要】通过与阿司匹林联合应用,氯吡格雷已经成为治疗急性冠脉综合征和预防经皮冠状动脉介入术后支架内 血栓形成和再发缺血事件的经典口服抗血小板药物。尽管如此,氯吡格雷抗血小板的反应性和疗效存在显著的个体间差异。近年来的研究证实,除临床环境因素外,遗传变异是导致氯吡格雷抗血小板反应性个体间差异的重要因素之一。多项大规模临床药物基因组学研究发现,参与氯吡格雷代谢的关键酶——CYP2C19功能缺失型等位基因与氯吡格雷治疗期间高血小板反应性及心血管一级缺血终点事件的发生密切相关。另外,与氯吡格雷代谢相关的其他基因变异型也被证实可能与氯吡格雷抗血小板反应性及不良心血管事件相关。在此基础上,利用药物基因组学基因型检测指导氯吡格雷个体化抗血小板治疗,可能部分克服氯吡格雷治疗期间的高血小板反应性,但研究结果之间仍存在争议,尚需深入研究以提供更有力的证据。除此之外,未来有必要进一步深入研究基因型检测联合血小板功能监测共同指导氯吡格雷抗血小板个体化治疗的效果。 【关键词】氯吡格雷;遗传药理学;CYP2C19;血小板反应性;心血管缺血事件;个体化医学 【中图分类号】 R541.4 【文献标识码】 A 【DOI 】 10.3724/SP.J.1264.2013.00239 Pharmacogenomics and individualized therapy of clopidogrel: evidence and perspectives ZHANG Lan-Ning, LU Cai-Yi *, YIN Tong * (Institute of Geriatric Cardiology, Chinese PLA General Hospital, Beijing 100853, China) 【Abstract 】 Dual antiplatelet therapy with aspirin and clopidogrel is the standard care to prevent stent thrombosis and recurrent ischemic events after acute coronary syndrome or stent placement. However, there is a large inter-individual variability in biological anti-platelet responsiveness and clinical outcomes in patients after clopidogrel treatment. Apart from clinical and environmental factors, recently accumulated evidence strongly confirms the pivotal role of genetic factors for the variability of clopidogrel responsiveness. Several large-scale pharmacogenomic studies found that the loss-of-function alleles of CYP2C19 and the key enzyme in clopidogrel metabolism are the predominant genetic mediators of low clopidogrel responsiveness and recurrent cardiovascular events. Other genetic polymorphisms related with clopidogrel metabolism may also contribute to the variability of clopidogrel efficacy. On the basis of these observations, it is still in controversy whether CYP2C19-genotype-guided individualized clopidogrel therapy could overcome the high on-treatment platelet reactivity to clopidogrel. In the future, it is necessary to combine genotyping and platelet function testing to guide the individualized clopidogrel therapy. 【Key words 】 clopidogrel; pharmacogenetics; CYP2C19; platelet function; cardiovascular ischemic events; individualized medicine This work was supported by the General Program of National Natural Science Foundation of China (30971259, 30570736/C03030201) and the Supporting Fund of People’s Liberation Army General Hospital (2012FC-TSYS-3042). Corresponding author: LU Cai-Yi, E-mail: cylu2000@https://www.doczj.com/doc/5011857413.html,; YIN Tong, E-mail: yintong2000@https://www.doczj.com/doc/5011857413.html, 通过与阿司匹林联合应用,氯吡格雷(clopidogrel )已经成为治疗急性冠脉综合征(acute coronary syndrome ,ACS )和预防经皮冠状动脉介入(percutaneous coronary intervention , PCI )术后支架内血栓形成和再发缺血事件的经典口服抗血小板药物[1,2], 但氯吡格雷抗血小板反应性和疗效存在显著的个体差异。除临床环境因素外,基因多态性在其中起了重要作用。多项大

基因组学在药物方面的研究进展

基因组学在药物方面的研究进展 摘要:药物基因组学可以说是基因功能学与分子药理学的有机结合,在很多方面这种结合是非常必要的。药物基因组学区别于一般意义上的基因学,它不是以发现人体基因组基因为主要目的,而是相对简单地运用已知的基因理论改善病人的治疗。也可以这么说,药物基因组学以药物效应及安全性为目标,研究各种基因突变与药效及安全性的关系[1]。正因为药物基因组学是研究基因序列变异及其对药物不同反应的科学,所以它是研究高效、特效药物的重要途径,通过它为患者或者特定人群寻找合适的药物,药物基因组学强调个体化;因人制宜,有重要的理论意义和广阔的应用前景。 关键词:基因组学;药物;进展;基因多态性;SNP 概述: 同一种药物对患有相同疾病的不同患者疗效不同是临床上常见的一种现象,以往的观点认为这是由于药代动力学的差异造成的。最近的研究表明,药效学原因所产生的差异更为广泛和显著,而药效学差异大多源于基因的差异。为此,提出了“药物基因组学”这个全新的概念[2]。药物基因组学以基因多态性为基础,而基因多态性是指群体中正常个体的基因在相同位置上存在差别(如单碱基差别,或单基因、多基因以及重复序列数目的差别),这种差别出现的频率大于1%。药物基因组学研究药物效应的个体间差异,针对不同个体基因型进行个性化治疗。其研究内容包括药物效应的基因型预测和基因组学在医药上的应用,在分子水平上证明和阐述药物疗效、药物作用的靶位、作用模式和毒副作用[3]。药物基因组学不是以发现新的基因和探索疾病的发生机理为主要目标,而是以探讨药物作用的遗传分布,确定药物作用靶点来满足临床上最佳的药物效应及安全性为目标。药物基因组学除了具有药物遗传学研究的遗传多样性引起对药物或有毒物质反应的差异外,还研究基因多样性与药效的关系,以及个体差异与同种药物不同作用靶点的关系等[4]。 药物基因组学涉及的研究大体可分为个阶段:首先检测一些候选基因,寻找等位缺失以及造成的生物学后果;其次借助现有分子遗传学等技术,同时进行更多候选基因的研究;最后进行基因组水平的关联分析[5]。 在药物基因组学的研究过程中,由于基因组学规模大、手段新、系统性强,可以直接加速新药的发现。另外,由于新一代遗传标记物的大规模发现,以及将其迅速应用于群体,使流行病遗传学可以大大推进多基因遗传病和常见病(往往是多基因病)机理的基础研究,其研究成果可以为制药工业提供新的药靶。这里所谓的新一代遗传标记物,就是单碱基多态性(SNP)。 研究方法和技术: 药物基因组学研究的主要策略包括选择药物起效、活化、排泄等过程相关的候选基因,寻找变异基因序列,确定基因对药物效应的多态性。方法学上依赖于药理学、生物化学、遗传学及基因组学,其中特别需要高效的基因变异检测方法,即从众多的个体中获得某等位基因产物,检查其变异,并确定变异基因的序列变化[6]。主要应用技术:表型和基因型分析;连锁分析和关联分析;药物效应图谱;单核苷酸多态性;芯片技术;表达水平多态性分析等[7]。 进展: 目前药物基因组学方面有很多研究发展的空间,研究方向有很多种。 例如G蛋白偶联受体:G蛋白偶联受体种类很多,β2-肾上腺素受体为其中研究较多的一类,它有三种多态性可改变受体功能:Arg16Gly、Glin27Glu、Thr164Ile。β2-肾上腺的素

药物基因组学浅析

药物基因组学浅析 药学系曾邦国陈曦 摘要:药物基因组学是以药物效应及安全性为目标,研究各种基因变异与药效及安全性的关系。它是一门研究影响药物吸收、转移、代谢、消除、效应等个体差异的基因特性,即决定药物行为和敏感性的全部基因的新学科。本文综述了药物基因组学的研究方法和手段以及在合理用药、新药开发等多方面的应用情况,并介绍了药物基因组学产品。 关键词:药物基因组学;合理用药;新药开发。 2011年11月17-18日,第一届全国药物基因组学大会暨中国药理学会药物基因组学专业委员会举行了第一次全体会议。这标志着标志着我国药物基因组学和个体化医疗的研究和应用迈入一个新的发展阶段。 1 药物基因组学的定义及其由来 药物基因组学区别于一般意义上的基因学,它不是以发现人体基因组基因为主要目的,而是相对简单地运用已知的基因理论改善病人的治疗。也可以这么说,药物基因组学是以药物效应及安全性为目标,研究各种基因变异与药效及安全性的关系。它是一门研究影响药物吸收、转移、代谢、消除、效应等个体差异的基因特性,即决定药物行为和敏感性的全部基因的新学科;主要阐明药物代谢、药物转运和药物靶分子的基因多态性与药物效应及不良反应之间的关系,并在此基础上研制新的药物或新的用药方法。 2 药物基因组学的研究方法和手段 目前药物基因组学的研究方法有:第一,构建全基因组基因多态性图谱;第二,发现各种疾病和各种药物反应表现型差异与基因多态性的统计关联;第三,根据基因多态性对人群或患者进行疾病易感性和药物反应分类,并开发这种诊断试剂盒;第四,在临床上,针对易感人群进行疾病防治,针对不同药物反应的患者进行个性化治疗。[3]药物基因组学通常采用两种研究手段。第一种即“候选基因”策略,第二种是基因组范围内遗传标志物和药物反应表型之间的关联研究。“候选基因”策略,主要是在给定某一药物的条件下,比较有反应者及无反应者靶基因多态性出现的频率。该方法的一个局限性是候选基因的选择需以给定药物的假定作用机制和(或)所治疗疾病的病理生理学为根据。因此,该方法的成功建立在上述假设的真实性上,且不能鉴定那些根据药物作用或疾病生物学难以预测的新基因。基因组范围内遗传标志物和药物反应表型之间的关联研

心血管药物基因组学的研究进展_刘胜男

Chin J Clin Pharmacol 225 Vol .29No .3March 2013(Serial No .161 ) 心血管药物基因组学的研究进展 Advance in search for cardiovascular pharmacogenetics 收稿日期:2012-09-21 修回日期:2013-01-26 作者简介:刘胜男(1988-),女,硕士研究生,主要从事临床药学研究通信作者:赵志刚,主任药师,硕士生导师 Tel :(010)67098036E -mail :1022zzg@https://www.doczj.com/doc/5011857413.html, 刘胜男,赵志刚 (首都医科大学附属北京天坛医院药剂科,北京100050) LIU Sheng -nan ,ZHAO Zhi -gang (Beijing Tiantan Hospital Affiliated to Capital Medical University ,Beijing 100050,China ) 摘要:由于遗传变异,不同心血管药物在代谢和疗效方面存在个体差异,药物基因组学可以指导心血管药物的发展和选择, 同时也为临床达到理想疗效、减少毒副作用提供参考。本文对临床相关的几种药物(他汀类降脂药、抗血小板药、口服抗凝药、β受体阻断剂、ACEI )的基因组学证据进行综述。关键词:药物基因组学;心血管疾病;药物反应中图分类号:R541.9;R972.6;R973.2文献标志码:A 文章编号:1001-6821(2013)03-0225-03 Abstract :The most important application of cardiovascular pharmacoge-netics is to guide choosing agents with the greatest efficacy and smallest risk of adverse drug reactions.This review provides an overview of the current researches on cardiovascular pharmacogenetics ,and focuses on the most clinically relevant and well -studied drugs :statins ,antiplatelet drugs ,anticoagulants ,βblokers ,ACEI ,providing reference for rational drug use in clinic. Key words :pharmacogenetics ;cardiovascular diseases ;drug response 从1990年起,心血管疾病持续为我国居民首位死亡原因,并呈 不断上升趋势。由于遗传变异,不同心血管药物在代谢和疗效存在个体差异, 药物基因组学不仅可以指导心血管药物的发展和选择,同时也为临床达到理想治疗效果、 减少毒副作用提供参考。本文对目前研究较多、临床相关的几种药物(如他汀类降脂药、抗血小板药、口 服抗凝药、β受体阻断剂和ACEI 等)的药物基因组学进行综述。1 他汀类降脂药 他汀类药物能有效防治心脑血管疾病。但个体差异导致了一些患者降脂疗效不佳以及肌痛和肌无力等副作用。基因因素对此类药物疗效有影响,目前已超过40个候选基因与降脂疗效、减少心血管性死亡和心肌梗死风险相关。 胆固醇酯转运蛋白(cholesterl ester transfer protein ,CETP )是胆 固醇逆向转运过程中的关键蛋白, CETP 血浆浓度与高密度脂蛋白(HDL )水平负相关。相比于B1B1型患者,B2B2纯合突变型患者, 有较低的CETP 水平和较高的HDL 水平,冠心病的患病风险较降 低[1] 。TaqIB 突变(rs708272)是CETP 基因多态性中研究最多的。Meta 分析[2]证实,TaqIB 与HDL -C 水平和冠心病风险相关,但在普 伐他汀治疗组并未显示显著相关性。虽然B2B2基因型的患者发展为冠心病的风险较低;但B1B1基因型患者接受他汀类药物治疗获益更大。携带ε2基因的患者接受他汀类药物治疗,可提高降脂疗效, 降低心血管疾病风险。但也有报道该结果尚无证实[3] 。ApoE 基因

麻醉领域的个体化用药,药物基因组学(Evan Kharasch)

Pharmacogenetics in Anesthesia Evan D. Kharasch, M.D., Ph.D. St. Louis, Missouri 302 Page 1 Pharmacogenetics (or pharmacogenomics) aims to understand the inherited basis for variability in drug response. The promise of pharmacogenetics has been a change from “one drug and dose fits all” to individualized predictive medicine, or “the right drug at the right dose in the right patient”. Anesthesiology as a specialty played a key role in developing pharmacogenetics. Prolonged apnea after succinylcholine, thiopental-induced acute porphyria, and malignant hyperthermia were clinical problems of the 1960’s whose investigation helped craft the new science of pharmacogenetics. Today we perhaps take for granted the knowledge that they are genetically-based problems, due to variants in pseudocholinesterase, heme synthesis and the ryanodine receptor, respectively. This review will address basic principles of pharmacogenetics and their application to drugs used in anesthetic practice. The term pharmacogenetics was originally defined (1959) as “the role of genetics in drug response”. Since the science of pharmacokinetics (drug absorption, distribution, metabolism, excretion) evolved earlier than pharmacodynamics, early pharmacogenetic studies addressed mainly pharmaco-kinetics. Application (fusion) of the genomic revolution and associated technologies to pharmaco-genetics spawned pharmacogenomics. Pharmacogenetics has been used by some in a more narrow sense, to refer only to genetic factors which influence drug kinetics and dynamics (drug receptor actions), while pharmacogenomics has been used more broadly to refer to the application of genomic technologies (whole-genome or individual gene changes) to drug discovery, pharmacokinetics and pharmacodynamics, pharmacologic response, and therapeutic outcome. Nonetheless, many consider this distinction unimportant and use the two terms interchangeably, as will this review. BASIC CONCEPTS A polymorphism is a discontinuous variation in a population (a bimodal or trimodal distribution). It is different than simple continuous variability (i.e. a unimodal population distribution, even if quite wide). A genetic polymorphism is the presence of multiple discrete states (i.e. for a particular trait) within a population, which has an inherited difference. The complete human genome consists of approximately 3 billion base pairs, which encode approximately 30,000 genes. A single nucleotide polymorphism (SNP) is a variation in the DNA sequence which occurs at a specific base. Polymorphisms are relatively common, occurring by definition in ≥1% of the population, while mutations are less common, occurring in <1%. Only 3% of DNA consists of sequences which code for protein (exons). Other portions of the DNA include promoter regions (near the transcription initiation site), enhancer regions (which bind regulatory transcription factors), and introns (DNA sequences which do not code for protein). After exons and introns are transcribed, the intronic mRNA is excised and the exonic mRNA is spliced together to form the final mature mRNA, which then undergoes translation into protein. SNPs are frequent, occurring in approximately 1:100-1:1000 bases. SNPs and mutations may occur in the coding or noncoding regions of the DNA. Since most occur in the latter, they are usually synonymous (or silent, having no effect on proteins), although intronic changes and promoter variants can change protein expression. Non-synonymous SNPs result in a change in an amino acid. A conservative change results in a similar amino acid that does not alter protein function, while a non-conservative change yields an amino acid which alters protein structure or function. These latter SNPs may be clinically significant. SNPs are not the only events which can cause RNA and protein changes; others are deletions, insertions, duplications, and splice variants, however these are not inherited. Multiple SNPs can occur in the DNA which encodes a particular protein. A haplotype is a set of closely linked alleles or DNA polymorphisms which are inherited together. While SNPs are important, haplotypes are more clinically relevant. Polymorphisms can be classified at the DNA locus (which depicts the normal “wild-type” and the altered base pair; for example the mu opioid receptor gene polymorphism at base pair 118 which codes for changing an adenine nucleotide to a guanine is abbreviated as A118G, or 118 A>G); at polymorphism changes the amino acid at position 40

药物基因组学相关数据库

药物基因组学相关数据 库 标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]

药物基因组学数据库1、Drugbank 2、dgidb 3、pharmGKB 4、cancercommon 5、ChEMBL 6、mycancergenome 7、TTD 8、guidetopharmcology

9、clearityfoundation 10、CIViC https://https://www.doczj.com/doc/5011857413.html,/#/home 11、DoCM https://www.doczj.com/doc/5011857413.html,/ 1 Drugbank 药物和药物靶标资源库。DrugBank是一个独特的生物信息学/化学信息学资源,它结合了详细的药物(例如化学制品)数据和综合的药物靶点(即:蛋白质)信息。该数据库包含了超过4100个药物条目,包括超过800个FDA认可的小分子和生物技术药物,以及超过3200个试验性药物。此外,超过1.4万条蛋白质或药物靶序列被链接到这些药物条目。每个DrugCard条目包含超过80个数据域,其中一半信息致力于药物/化学制品数据,另一半致力于药物靶点和蛋白质数据。许多数据域超链接到其他数据库(KEGG、PubChem、ChEBI、Swiss-Prot和GenBank)和各种结构查看小应用程序。该数据库是完全可搜索的,支持大量的文本、序列、化学结构和关系查询搜索。DrugBank的潜在应用包括模拟药物靶点发现、药物设计、药物对接或筛选、药物代谢预测、药物相互作用预测和普通药学教育。DrugBank可以在http://www.drugbank.ca使用。广泛应用于计算机辅助的药物靶标的发现、药物设计、药物分子对接或筛选、药物活性和作用预测等。

相关主题
文本预览
相关文档 最新文档