当前位置:文档之家› 液位控制系统设计

液位控制系统设计

液位控制系统设计
液位控制系统设计

《计算机控制技术》课程作业

单片机水槽液位控制系统设计报告题目名称

机电与质量技术工程学院

学院

专业

班级

学号

姓名

2017年 5月25日

单片机水槽液位控制系统设计报告

一:选题的实际意义

现在的工业生产最大的一个特点就是自动化,已经是取代了之前的人工化的,在这样的一个过程当中有很多的特点,也就是说我们要实现这样的一点的话,那就需要很多的高科技的仪器来满足了,这点是非常的值得肯定的,因为多数的时候,我们要是能够真正的将我们的工业化的生产做好的话,那是非常的困难的,在某种程度上面可以说,比起其他的一些工业生产来,是比较的困难的多的。所以的话,有许多的精密的仪器需要运用到,比如说,液位控制器是我们常见的一种。而在液位控制器的话,有一个非常的多的特点,就是他的使用范围上面是非常的广泛的,几乎是覆盖了各行各业里面的,所以的话,在现在的话,有很多的行业都有这样的一个特点,就是说要实现自动化的过程,那么这样的一个仪器,那是要用到的了。此次我们本次要设计的就是基于单片机的水槽液位控制系统。

二:该计算机控制系统的目的

根据水槽液位的高低变化来控制水泵的启停,从而达到对水槽液位的控制目的。在运行中可以随时方便的修改各种各样的运行参数的控制值,并修改系统的控制参数,可以方便的改变液位的上限、下限。同时,通过水体控制过程的自动化处理以及监控软件良好的人机界面,操作人员在监控计算机上能根据控制效果及时修运行参数,这样能有效地减少工人的疲劳和失误,提高生产过程的实时性、安全性。

三:计算机控制系统达到的效果

自动控制水槽水位高度。当水槽液位下降至B点或B点以下时水泵被启动;水槽液上升,当液位到达C点时,水泵停止运行;当液位处于B点与C点之间时,水泵就会维持之前的状态(启动或运行)。以实现控制水位高度。

四:设计思路

水位检测及控制采用如附件一所示电路,虚线表示水位变化。在正常范围以内,水位应维持在虚线A和C,其中A处于下限水位,C 处于上线水位,B位于AC之间。A接+5V电源,B、C各通过一个电阻与地相连,同时与单片机的P1.0和P1.1口相连。

1.供水时,水位上升,当达到上线水位C时,由于水的导电作用B、

C与+5V电源导通,同时通过P1.0和P1.1端口向单片机输入高电平1,这时通过程序设计使单片机控制电机和水泵停止工作,不再供水。

2.当水位下降到B以下时,电极B与电极C在水面上悬空,b点、c

点向单片机输入低电平,这时单片机应控制水泵启动,向水槽内供水。

3.当水位位于B点与C点之间时,由于水的导电作用,电极B连到

电极A及+5V是b点呈现高电平,而电极C仍处于悬空状态,则c 点位低电平,这时不论水位处于上升还是下降状态,水泵都应继

续维持原有的工作状态,既可能是运行,也可能是停止。

五:设计过程(建议模块化设计过程)

1.设计的目标与要求

根据水槽液位的高低变化来控制水泵的启停,从而达到对水槽液位的控制目的。工作原理图如下:

当液位上升至高限C以上时,水泵停止运行,液位不再上升;液位降至B以下时,水泵开始启动运行,也为上升;液位维持在BC之间时,水泵维持原来的工作状态,既可以停止,也可以启动。

2.硬件电路设计

根据工艺要求,设计的系统硬件电路如下表:

(1)系统核心部分

采用AT89C51单片机,P1.0和P1.1作为液位采集入口,用P1.2作输出口,P1.3作报警输出口。

(2)液位测量部分

根据液位的4种状态,单片机根据4种状态控制水泵电机的工作,具体见表1。

(3)控制报警部分

根据表1中的液位状态,当液位测量不正常时,会发出故障报警,水槽液位控制系统中的发光二极管发光,或者是蜂鸣器发出声音。3.软件设计

(1)软件设计的原理

通过软件设计将将模拟信号送入A/D转换器,换算出某一时刻水塔水位的实际高度,然后拿它与标定水位进行比较,要求实时检测水箱的液位高度,并与开始预设定值做比较,由单片机控制开关的开断进行液位的调整,最终达到液位的预设定值。检测值若高于上限设定值时,要求水泵停止,断开继电器,控制水泵停止上水;检测值若低于下限设定值,要求水泵启动,开启继电器,控制水泵开始上水;若测量值在设定值之间,则维持原来工作状态;当测量不正常时,故障报警系统启动。

(2)系统主程序设计

void main (void)

{

T0_init_1();

while(1)

{

if(key_play==0) //按下开始按钮

{

temp=1;

TR0 = 1;//启动定时器 1开启 0关闭}

if(key_stop==0) //按下停止按钮

{

temp=0;

TR0 = 0;//启动定时器 1开启 0关闭}

if(key_jian==0) //按下退水按钮

{

while(key_jian != 1); //消抖

TR0 = 0;//启动定时器 1开启 0关闭

if(NEW_shui>0)

{

NEW_shui--;

}

}

smg_show(); //显示水位

if(temp)

{

if(NEW_shui>30)

{

led_A=0;

}

else if(NEW_shui<=30)

{

led_A=1;

}

if(NEW_shui>60)

{

led_B=0;

}

else if(NEW_shui<=60)

{

led_B=1;

TR0 = 1;//启动定时器 1开启 0关闭}

if(NEW_shui>90)

{

led_C=0;

TR0 = 0;//启动定时器 1开启 0关闭}

else if(NEW_shui<=90)

{

led_C=1;

}

if(led_C==0 & led_B==1)

led_error=0;

}

}

}

六:设计结果(包括程序、仿真图、仿真效果等)

程序:

#include

#define uchar unsigned char

#define uint unsigned int

sbit led_A = P2^4; // A处水位

sbit led_B = P2^5; // B处水位

sbit led_C = P2^6; // C处水位

sbit led_error = P2^7; // 水位异常

sbit key_play = P1^5; // 开始按钮

sbit key_stop = P1^6; // 停止按钮

sbit key_jian = P1^7; // 退水按钮

sbit wei1 = P2^0; //数码管位置1

sbit wei2 = P2^1; //数码管位置2

uint NEW_shui=0; //当前水位

uchar T0_time=0; //定时器计时

uchar smg_ying[] = {0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f};//数码

管P0 0-9

uchar temp=0; //开关标致

/////////函数声明////////

void T0_init_1(void); //定时器初始化

void delay_ms(uint t); //延迟_毫秒

void smg_show(void); //数码管显示

/////////*********////////

void main (void)

{

T0_init_1();

while(1)

{

if(key_play==0) //按下开始按钮

{

temp=1;

TR0 = 1;//启动定时器 1开启 0关闭}

if(key_stop==0) //按下停止按钮

{

temp=0;

TR0 = 0;//启动定时器 1开启 0关闭}

if(key_jian==0) //按下退水按钮

{

while(key_jian != 1); //消抖

TR0 = 0;//启动定时器 1开启 0关闭if(NEW_shui>0)

{

NEW_shui--;

}

}

smg_show(); //显示水位

if(temp)

{

if(NEW_shui>30)

{

led_A=0;

else if(NEW_shui<=30)

{

led_A=1;

}

if(NEW_shui>60)

{

led_B=0;

}

else if(NEW_shui<=60)

{

led_B=1;

TR0 = 1;//启动定时器 1开启 0关闭}

if(NEW_shui>90)

{

led_C=0;

TR0 = 0;//启动定时器 1开启 0关闭}

else if(NEW_shui<=90)

led_C=1;

}

if(led_C==0 & led_B==1)

led_error=0;

}

}

}

/******************

函数:T0_init_1

功能:定时器初始化

*******************/

void T0_init_1(void)

{

////定时器配置////

TMOD = 0x01;

TL0 = 0xb0; //预置数:低八位

TH0 = 0x3c; //预置数:高八位

TR0 = 0;//启动定时器 1开启 0关闭

TF0 = 0 ;//溢出标志位置1则(总数+1)

IT0 = 1 ;//下降沿触发

////开启中断服务////

EA = 1;//开启总中断

ET0 = 1;//开启计时器中断

}

/******************

函数:T0_stop_1

功能:定时器中断服务

*******************/

void T0_stop_1(void) interrupt 1 {

TL0 = 0xb0;//预置数:低八位

TH0 = 0x3c;//预置数:高八位

//////中断功能////////

T0_time++;

TF0 = 0 ;

}

void delay_ms(uint t)

{

int i;

for(; t>0; t--)

{

for(i=0; i<118; i++);

}

}

/******************

函数:smg_show

功能:显示数码管

I/O口:阳管 - - 1:灭 0:亮*******************/

void smg_show(void)

{

if(T0_time>=10) //

{

NEW_shui++;

T0_time=0;

if(NEW_shui>99) //

{

NEW_shui=0;

}

}

wei1=0;

P0=smg_ying[NEW_shui/10];

delay_ms(10);

wei1=1;

P0=0xff;

wei2=0;

P0=smg_ying[NEW_shui%10];

delay_ms(10);

wei2=1;

P0=0xff;

}

仿真图:

七:个人总结

基于单片机的水位自动控制系统由于价格低廉,通用性、实用性强,能够在稍作改造后或直接用于诸如:自来水厂的储水池、爆气池,污水处理厂、化学工厂的各类液体池以及电厂的锅炉气泡等需要水位自动控制的场合。该基于单片机的水位自动控制系统是供水系统稳定的可靠保证,在提高经济效益,减少工作人员劳动强度方面起到了较大的作用,能使需要该系统的自动化水平提高具有一定的社会和经济意义。

水箱液位控制系统设计说明

过程控制综合训练 课程报告 16 —17 学年第二学期课题名称基于PLC和组态王的 系统 姓名 学号 班级 成绩

水箱液位控制系统 [摘要] 在工业生产过程中,液位贮槽如进料罐、成品罐、中间缓冲器、水箱等设备应用十分普遍,为了保证生产正常进行,物料进出需均衡,以保证过程的物料平衡。因此,工艺要求贮槽的液位需维持在给定值上下,或在某一小围变化,并保证物料不产生溢出。例如,锅炉系统汽包的液位控制,自流水生产系统过滤池、澄清池水位的控制等等。根据课题要求,设计一个单容水箱的液位过程控制系统,该系统能对一个单容水箱液位的进行恒高度控制。 关键词:过程控制液位控制PID控制 Abstract: In the process of industrial production, liquid storage tank such as product cans, buffer, tanks and other equipments are widely used. In order to ensure the normal production,material supply and demand must be balanced to guarantee the process of the production. So, the process requires that the liquid level in the tank should be maintained at a given value, or change in a small range,and ensure that the material does not overflow,for instance,system of boiler drum level control, level control of filter pool and clarification pool of self-flowing water production

(完整版)液位检测与控制试验系统设计..

液位检测与控制试验系统设计 1.发展现状: 液位检测在许多控制领域已较为普遍,各种类型的液位检测装置也不少,按原理分有浮力式、压力式、超声波式、差压式、电容式等,这各种方法都根据其需要设计完成,其结构、量程和精度各有特色, 适用于各自的场合, 但都是基于固定液箱液位检测而设计。市面上也有现成的液位计,有投入式、浮球式、弹簧式等,绝大多数价格惊人。 “水是生命之源”,不仅人们生活以及工业生产经常涉及到各种液位和流量的控制问题,例如饮料、食品加工,居民生活用水的供应,溶液过滤,污水处理,化工生产等多种行业的生产加工过程,通常要使用蓄液池。蓄液池中的液位需要维持合适的高度,太满容易溢出造成浪费,过少则无法满足需求。因此,需要设计合适的控制器自动调整蓄液池的进出流量,使得蓄液池内液位保持正常水平,以保证产品的质量和生产效益。这些不同背景的实际问题都可以简化为某种水箱的液位控制问题。因此液位是工业控制过程中一个重要的参数。特别是在动态的状态下,采用适合的方法对液位进行检测、控制,能收到很好的生产效果。高老师也进行了多次的实验得出了一些相关的数据,水箱液位控制系统的设计应用非常长广泛,可以把一个复杂的液位控制系统简化成一个水箱液位控制系统来实现。所以就选择了该题目的设计。由于液位检测应用领域的不同,性能指标和技术要求也有差异,但适用有效的测量成为共同的发展趋势,随着电子技术及计算机技术的发展,液位检测的自动控制成为其今后的发展趋势,控制过程的自动化处理以及监控软件良好的人机界面,操作人员在监控计算机上能根据控制效果及时修运行参数,这样能有效地减少工人的疲劳和失误,提高生产过程的实时性、安全性。随着计算机控制技术应用的普及、可靠性的提高及价格的下降,液位检测的微机控制必将得到更加广泛的应用。 所以,我们在此设计了这个简易的监测系统,一方面,节省了大量的经济开支;另一方面,让我们对监测系统有了更加深刻、透彻的了解,不仅增加了我们的感性认识,还促进了我们对于系统各个部分的深刻剖析,从传感器选型到整个

过程控制课程设计报告材料-贮槽液位控制系统设计

过程控制课程设计 设计题目:贮槽液位控制系统设计 学院:电气工程学院 专业:自动化 班级:091班 2012年6月4日

小组成员: 序号学号姓名设计分工 16 0902100138 姚航程总方案的确定及原理、控制参数的整定、 simulink仿真 17 0902100140 韦寿德测量变送器的选型、控制参数的整定、查阅 资料 18 0902100141 张印测量变送器的选型、控制参数的整定 19 0902100142 邓世杰调节阀的选型、水箱的建模 20 0902100147 杨奉志总方案的确定及原理、控制参数的整定、 simulink仿真 21 0902100148 钟昌帅simulink仿真、调节阀的选型 22 0902100149 李晓明控制器的选型、控制参数的整定、设计总结、 整理报告 23 0902100202 张凯强simulink仿真、水箱的建模、查阅资料 24 0902100203 农志兴调节阀的选型、水箱的建模 25 0902100204 袁剑波控制器的选型、查阅资料 26 0902100206 李季调节阀的选型、控制器的选型 27 0902100208 黄灵浩测量变送器的选型、水箱的建模、查阅资料 28 0902100209 谭雷调节阀的选型、水箱的建模 29 0902100213 吴高阳控制参数的整定、水箱的建模、查阅资料 30 0902100216 潘敏调节阀的选型、测量变送器的选型

目录 一、设计目的 (4) 二、设计任务及要求 (4) 三、工艺过程及要求 (5) 四、系统总体方案的选择及说明 (6) 五、系统结构框图与工作原理 (7) 1.系统结构框图 (7) 2.工作原理 (8) 3.水箱建模 (8) 六、各单元软硬件 (10) 1.控制对象 (10) 2.控制器 (10) 3.调节阀 (11) 4.差压变送器 (12) 七、参数的整定及仿真结果 (13) 1.经验法(现场实验整定法) (13) 2.常见被控量的PID参数选择范围 (13) 3.控制器各校正环节的作用 (13) 4.仿真结果 (14) 八、分析总结 (16) 设备清单 (17) 参考文献 (18)

过程控制系统课程设计报告报告实验报告

成都理工大学工程技术学院《过程控制系统课程设计实验报告》 名称:单容水箱液位过程控制 班级:2011级自动化过程控制方向 姓名: 学号:

目录 前言 一.过程控制概述 (2) 二.THJ-2型高级过程控制实验装置 (3) 三.系统组成与工作原理 (5) (一)外部组成 (5) (二)输入模块ICP-7033和ICP-7024模块 (5) (三)其它模块和功能 (8) 四.调试过程 (9) (一)P调节 (9) (二)PI调节 (10) (三)PID调节 (11) 五.心得体会 (13)

前言 现代高等教育对高校大学生的实际动手能力、创新能力以及专业技能等方面提出了很高的要求,工程实训中心的建设应紧紧围绕这一思想进行。 首先工程实训首先应面向学生主体群,建设一个有较宽适应面的基础训练基地。通过对基础训练设施的 集中投入,面向全校相关专业,形成一定的规模优势,建立科学规范的训练和管理方法,使训练对象获得机械、 电子基本生产过程和生产工艺的认识,并具备一定的实践动手能力。 其次,工程实训的内容应一定程度地体现技术发展的时代特征。为了适应现代化工业技术综合性和多学科交叉的特点,工程实训的内容应充分体现机与电结合、技术与非技术因素结合,贯穿计算机技术应用,以适应科学技术高速发展的要求。应以一定的专项投入,建设多层次的综合训练基地,使不同的训练对象在获得对现代工业生产方式认识的同时,熟悉综合技术内容,初步建立起“大工程”的意识,受到工业工程和环境保护方面的训练,并具备一定的实用技能。 第三,以创新训练计划为主线,依靠必要的软硬件环境,建设创新教育基地。以产品的设计、制造、控制乃至管理为载体,把对学生的创新意识和创新能力的培养,贯穿于问题的观测和判断、创造和评价、建模和设计、仿真和建造的整个过程中。

基于PLC的液位控制系统设计

毕业论文(设计)题目:基于PLC控制的高精度液位控制系统的设计 姓名:濮孝金 学号: 专业:机械电子工程 年月

摘要 在工农业生产过程中,经常需要对水位进行测量与控制,而日常生活中应用 到的水位控制也相当广泛。在以往水塔液位控制系统中,常规继电器的频繁操作容易导致机械磨损,不方便更新和维护,不能满足人们的实际需求;另外,随着人口的递增和生活条件的提高,人们用水的需求量也日益增加。 为了提高液位控制系统的质量和效率,节约能源,本次模拟水塔液位控制系统的装置考虑结合可编程逻辑控制器,继电器和传感器等技术,实现液位控制系统的自动控制。本设计使用西门子S7-300 PLC可编程控制器作为液位控制系统的核心,配合硬件与软件实现液位控制池液位动态平衡,过高、过低水位报警等功能。主要 的实验方法是在水箱上安装一个自动水位测量装置,通过水位变送器检测水箱实际液位并将该液位反馈到PLC控制器,经A/D转换后,所得数据与PLC内部设定数据进行比较,控制器处理数据并发送相应指令改变电机的转速从而控制抽 水速率,改变进水量,使水位稳定地保持在设定值附近。此外,通过液位标定计算出控制器输出PIW数值与实际水位的关系,就可以在触摸屏上直观显示实时水位情况。实验结果表明本设计能较好地完成自动液位控制的功能。 关键词:水塔液位控制,水位控制,继电器,PLC Abstract In the course of routine industrial and agricultural production we the need to measure the water level and

control it. Furthermore everyday level control applications are quite extensive , such as hydropower , water towers and other water control . According to the water supply system in the past, frequent operation towers will produce mechanical wear of conventional relay convenient maintenance and updates, that means it can not meet the actual needs of the people, and with Gradual growth of population and living conditions, the demand for water is also increasing .In order to improve the quality of the water supply system, energy conservation, so I considered use a programmable logic controller, relay and sensor technology, with hardware and software to achieve low water level alarm, warning switch between work and procedures manual / automatic to design practical level control tower scheme. I completed the set up of this simulation using the tank water tower , based on Siemens S7-300 PLC programmable controller tank water level control system as the core .I completed a water tank to

水箱液位自动控制系统设计

目录 摘要 (1) 关键词 (1) 引言 (2) 1设计任务目的及要求 (2) 1.1 设计目的 (2) 1.2 设计要求 (2) 2系统元件的选择 (3) 2.1有自平衡能力的单容元件 (3) 2.2 无自平衡能力的单容元件 (4) 2.3单容对象的特性参数 (6) 3控制器参数的整定 (7) 3.1 参数的确定 (7) 3.2 电动机的数学模型 (9) 3.3 控制系统的数学模型 (10) 3.4 PID控制器的参数计算 (10) 4控制系统的校正 (11) 4.1 控制器的正反作用 (12) 4.2 串级控制系统 (12) 5系统的稳定性分析 (16) 5.1 系统的稳定性分析 (16)

5.2 控制系统的稳态误差 (17) 结束语 (19) 参考文献 (20) 致 (21)

水箱液位自动控制系统原理 摘要:水箱液位自动控制系统就是利用自身的水位变化进行调节和改变的系统,它自身具平衡能力,并由电动机带动下自动完成水位恢复的功能。水箱液位是由传感器检测水位变化并达到设定值时,水箱自己的阀门关闭,防止溢出,当检测液位低于设定值时,阀门打开,使液位上升,从而达到控制液位的目的。 关键词:有自平衡能力、无自平衡能力、电动机、单容对象、系统稳定 引言 液位自动控制是通过控制投料阀来控制液位的高低,当传感器检测到液位设定值时,阀门关闭,防止物料溢出;当检测液位低于设定值时,阀门打开,使液位上升,从而达到控制液位的目的。在制浆造纸工厂常见有两种方式的液位控制:常压容器和压力容器的液位控制,例如浆池和蒸汽闪蒸罐。液位自动控制系统由液位变送器(或差压变送器)、电动执行机构和液位自动控制器构成。根据用户需要也可采用控制泵启停或改变电机频率方式来进行液位控制。结构简单,安装方便,操作简便直观,可以长期连续稳定在无人监控状态下运行。 1 设计任务目的及要求 1.1 设计目的 通过课程设计,对自动控制原理的基本内容有进一步的了解,特别是水箱液位系统的设计。能把本学期学到的自动控制理论知识进行实践,操作。在提高动手能力的同时对常

单片机水位控制系统课程设计

课程设计(论文) 题目名称: 课程名称: 学生姓名: 学号: 学院: 指导教师:

课程设计任务书

目录 摘要 (4) 引言 (5) 1几种方案的比较 (6) 1.1 简单的机械式控制方式 (6) 1.2 复杂控制器控制方案 (6) 1.3通过水位变化上下限的控制方式 (6) 2水塔水位控制原理 (8) 3电路设计 (9) 3.1原件的介绍 (9) 3.2引脚功能 (10) 3.3 水位检测接口电路 (13) 3.4报警接口电路 (14) 3.5 存储器扩展接口电路.................. .. (14) 4系统软件设计 (15) 4.1 流程图 (15) 4.2程序 (16) 5实验仿真 (18) 6结语 (19)

7参考文献 (19) 摘要 随着微电子工业的迅速发展,单片机控制的智能型控制器广泛应用于电子产品中,为了使学生对单片机控制的智能型控制器有较深的了解。经过综合分析选择了由单片机控制的智能型液位控制器作为研究项目,通过训练充分激发学生分析问题、解决问题和综合应用所学知识的潜能。另外,水位控制在高层小区水塔水位控制,污水处理设备和有毒,腐蚀性液体液位控制中也被广泛应用。通过对模型的设计可很好的延伸到具体应用案例中。设计一种基于单片机水塔水位检测控制系统。该系统能实现水位检测、电机故障检测、处理和报警等功能,实现超高、低警戒水位报警,超高警戒水位处理。介绍电路接口原理图,给出相应的软件设计流程图和汇编程序,并用Proteus软件仿真。实验结果表明,该系统具有良好的检测控制功能,可移植性和扩展性强。 关键词:单片机;水位检测;控制系统;仿真

液位控制系统设计说明

目录 第1章绪论............................................................................................... - 1 - 第2章设计方案........................................................................................ - 2 - 2.1 方案举例......................................................................................... - 2 - 2.2 方案比较......................................................................................... - 3 - 2.3 方案确定......................................................................................... - 3 - 第3章硬件设计........................................................................................ - 4 - 3.1 控制系统......................................................................................... - 4 - 3.1.1 AT89C51单片机 ..................................................................... - 4 - 3.1.2 AT89C51的信号引脚............................................................... - 6 - 3.1.3 单片机最小系统 ....................................................................... - 7 - 3.2 感应系统......................................................................................... - 8 - 3.3 指示系统......................................................................................... - 9 - 3.4 液位控制系统................................................................................. - 10 - 3.5 电机与报警系统.............................................................................. - 11 - 第4章软件设计...................................................................................... - 14 - 4.1 延时子程序.................................................................................... - 14 - 4.2 感应系统程序................................................................................. - 14 - 4.3 指示系统程序................................................................................. - 15 - 4.4 电机和警报系统程序 ....................................................................... - 16 - 4.5 液位预选系统程序 .......................................................................... - 16 - 4.6 系统主流程图................................................................................. - 19 - 第5章系统测试...................................................................................... - 21 - 5.1 仿真测试过程................................................................................. - 22 - 5.2 仿真结果....................................................................................... - 24 -总结...................................................................................................... - 25 - 致谢...................................................................................................... - 26 - 参考文献................................................................................................... - 25 -附录1 系统仿真电路 ................................................................................ - 28 - 附录2 源程序.......................................................................................... - 29 -

液位自动控制系统设计及调试

等级: 课程设计 2016年6月17日

电气信息学院 课程设计任务书 课题名称液位自动控制系统设计与调试 姓名专业班级学号 指导老师沈细群 课程设计时间2016年6月6日~2016年6月17日(第15~16周) 教研室意见同意开题。审核人:汪超林国汉 一.课程设计的性质与目的 本课程设计是自动化专业教学计划中不可缺少的一个综合性教学环节,是实现理论与实践相结合的重要手段。它的主要目的是培养学生综合运用本课程所学知识和技能去分析和解决本课程范围内的一般工程技术问题,建立正确的设计思想,掌握工程设计的一般程序和方法。通过课程设计使学生得到工程知识和工程技能的综合训练,获得应用本课程的知识和技术去解决工程实际问题的能力。 二. 课程设计的内容 1.根据控制对象的用途、基本结构、运动形式、工艺过程、工作环境和控制要求,确定控制方案。 2.绘制水箱液位系统的PLC I/O接线图和梯形图,写出指令程序清单。 3.选择电器元件,列出电器元件明细表。 4.上机调试程序。 5.编写设计说明书。 三. 课程设计的要求 1.所选控制方案应合理,所设计的控制系统应能够满足控制对象的工艺要求,并且技术先进,安全可靠,操作方便。 2.所绘制的设计图纸符合国家标准局颁布的GB4728-84《电气图用图形符号》、GB6988-87《电气制图》和GB7159-87《电气技术中的文字符号制定通则》的有关规定。 3.所编写的设计说明书应语句通顺,用词准确,层次清楚,条理分明,重点突出,篇幅不少于7000字。

四.进度安排 1.第一周星期一:布置课程设计任务,讲解设计思路和要求,查阅设计资料。 2.第一周星期二~星期四:详细了解搬运机械手的基本组成结构、工艺过程和控制要求。确定控制方案。配置电器元件,选择PLC型号。绘制传送带A、B的拖动电机的控制线路原理图和搬运机械手控制系统的PLC I/O接线图。设计PLC梯形图程序,列出指令程序清单。 3.第一周星期五:上机调试程序。 4.第二周星期一:指导编写设计说明书。 5.第二周星期二~星期四:编写设计说明书。 6.第二周星期五:答辩。 附录:课题简介及控制要求 (1)课题简介 某化工厂水箱的排水量根据工业生产的需要而不断地变化,为了保持水箱压力恒定,就要保持水位恒定,因此就必须自动调整进水量。 本系统要求有手动和自动两种工作方式。手动控制方式用于水泵的调试,即当按下按钮时水泵运转,松开按钮时水泵停止,目的是为了调试水泵是否能正常工作;当系统切换为自动控制方式并启动后,控制系统自动调整水泵的进水量达到给定水位恒定。水位设定高限和低限,当水位超过设定的限位时要进行超限报警。 (2)控制要求 控制系统技术参数表

过程控制系统课程设计报告

~ 过程控制系统课程设计报告 · 题目:温度控制系统设计 姓名: 学号: 班级: 指导教师: ` )

温度控制系统设计 一、设计任务 设计电热水壶度控制系统方案,使系统满足85度至95度热饮需要。 二、预期实现目标 通过按键设定温度,使系统水温最终稳定在设定温度,达到控制目标。( 三、设计方案 (一)系统数学模型的建立 要分析一个系统的动态特性,首要的工作就是建立合理、适用的数学模型,这也是控制系统分析过程中最为重要的内容。数学模型时所研究系统的动态特性的数学表达式,或者更具体的说,是系统输入作用与输出作用之间的数学关系。 在本系统中,被控量是温度。被控对象是由不锈钢水壶、2Kw电加热丝组成的电热壶。在实验室,给水壶注入一定量的水,将温度传感器放入水中,以最大功率加热水壶,每隔30s采样一次系统温度,记录温度值。在整个实验过程中,水量是不变的。 经过试验,得到下表所示的时间-温度表: 表1 采样时间和对应的温度值

采样时间 t 8 》 9 10 11 12 13 温度值℃ 64 · 72 79 86 93 98 以采样时间和对应的温度值在坐标轴上绘制时间-温度曲线,得到图1所示的曲线: < 图1 时间-温度曲线 采用实验法——阶跃响应曲线法对温箱系统进行建模。将被控过程的输入量作一阶跃变化,同时记录其输出量随时间而变化的曲线,称为阶跃响应曲线。 从上图可以看出输出温度值的变化规律与带延迟的一阶惯性环节的阶跃曲线相似。因此我们选用 ()1s ke G s Ts τ-= + (式中:k 为放大系数;T 为过程时间常数;τ为纯滞后时间)作为内

单容液位控制系统设计

单容液位控制系统设计 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

目录1系统设计认识 (1) 前言 (1) 2系统方案确定、系统建模和原理介绍 (1) 控制方案确定 (1) 控制系统建模 (1) (1) (2) 3系统构成 (4) 控制系统结构 (4) 控制系统方框图 (4) 4系统各环节分析 (5) 调节器PID控制 (5) 执行器分析 (6) 检测变送环节分析 (6) 被控对象分析 (6) 5系统仿真 (7) 系统结构图以及参数整定 (7) 6仪器仪表选型 (10)

PID调节器选择 (10) 执行器选择 (11) (11) (11) (12) 差压变送器的选择 (12) 7课程设计结束语 (14) 参考文献 (15)

一、系统设计认识 前言 过程控制早已在矿业、冶金、机械、化工、电力等方面得到了广泛应用。在液位控制方面,比如:水塔供水、工矿企业排给水、锅炉汽包液位控制、精馏塔液位控制等更是发挥着重要作用。在这些生产领域里,基本上都是劳动强度大或者操作有一定危险性的工作,极易出现操作失误引起事故,造成厂家的经济损失。可见,在实际生产中,液位控制的准确程度和控制效果直接影响着工厂的生产成本、经济效益以及设备的安全系数。所以,为了保证安全条件、方便操作,就必须研究开发先进的液位控制方法和策略。 本设计以单容水箱的液位控制系统为研究对象。由于单回路反馈控制系统结构简单、投资少、操作方便,且能满足一般的生产过程要求,在液位控制中得到了广泛的应用,所以本设计单容水箱的液位控制系统采用的就是单回路反馈控制。它的控制任务就是使水箱液位保持在给定值所要求的高度,并且减少或消除来自系统内部和外部扰动的影响。通过系统方案的选择,完成系统的工艺流程图设计和方框图的确定,各环节仪表仪器的选型,控制算法的选取,系统的仿真以及控制参数的整定等工作。 二、系统方案确定、系统建模和原理介绍 控制方案确定 如前言所介绍,由于单回路反馈控制系统结构简单、投资少、操作方便,且能满足一般的生产过程要求,在液位控制中得到了广泛的应用,故采用单回路反馈控制。 液位控制的实现除模拟PID调节器外,还可以采用计算机PID算法控制。由差压传感器检测出水箱水位;水位实际值通过单片机进行A/D转换,变成数字信号后输入计算机中;在计算机中,根据水位给定值与实际输出值之差,利用PID程序算法得到输出值,再将输出值传送到单片机中,由单片机将数字信号转换成模拟信号;最后,由单片

液位控制系统设计

液位控制系统设计 学院: 专业班级: 学生姓名: 指导老师:

液位控制系统设计 本文主要讲了压力传感器实现的液位控制器的设计方法,以单片机为核心。通过外围硬件电路来达到实现控制的目的,根据需要设定液位控制高度,同时具备报警、高度显示等功能,具有与液面不接触的特点,可用于有毒、腐蚀性液体液位的控制,具有较高的研究价值。该控制器不仅可用于学校进行教学研究,还可用于生产实际,是目前比较缺少的一种产品。随着微电子工业的迅速发展,单片机控制的智能型控制器广泛应用于电子产品中,为了使学生对单片机控制的智能型控制器有较深的了解。 。关键词:单片机;水位检测;控制系统;仿真 0 引言 随着微电子工业的迅速发展,单片机控制的智能型控制器广泛应用于电子产品中,为了使学生对单片机控制的智能型控制器有较深的了解。经过综合分析选择了由单片机控制的智能型液位控制器作为研究项目,通过训练充分激发学生分析问题、解决问题和综合应用所学知识的潜能。另外,液位控制在高层小区水塔水位控制,污水处理设备和有毒,腐蚀性液体液位控制中也被广泛应用。通过对模型的设计可很好的延伸到具体应用案例中。中国使用单片机的历史只有短短的30年,在初始的短短五年时间里发展极为迅速。1986 年在上海召开了全国首届单片机开发与应用交流会,很多地区还成立了单片微型计算机应用协会,那是全国形成的第一次高潮。单片机应用技术飞速发展,我们上因特网输入一个“单片机”的搜索,将会看到上万个介绍单片机的网站,这还不包括国外的。电子界,在2003年7月,https://www.doczj.com/doc/5011312043.html, (91 猎头网)在上海、广州、北京等大城市所做的一次专业人才需求报告中,单片机人才的需求量位居第一。大家都有些奇怪一块小小的片子,为何有这样的魔力?我们首先从它的构成说起:单片机,亦称单片微电脑或单片微型计算机。它是把中央处理器(CPU)、随机存取存储器(RAM)、只读存储器(ROM)、输入/输出端口(I/0)等主要计算机功能部件都集成在一块集成电路芯片上的微型计算机。正因为如此他才改变了我的生活它为我们改变了什么?纵观我们现在生活的各个领域,从导弹的导航装置,到飞机上各种仪表的控制,从计算机的网络通讯与数据传输,到工业自动化过程的实时控制和数据处理,以及我们生活中广泛使用的各种智能IC 卡、电子宠物等,这些都离不开单片机。以前没有单片机时,这些东西也能做,但是只能使用复杂的模拟电路,然而这样做出来的产品不仅体积大,而且成本高,并且由于长期使用,元器件不断老化,控制的精度自然也会达不到标准。在单片机产生后,我们就将控制这些东西变为智能化了,我们只需要在单片机外围接一点简单的接口电路,核心部分只是由人为的写入程序来完成。这样产品的体积变小了,成本也降低了,长期使用也不会担心精度达不到了。所以,它的魔力不仅是在现在,在将来将会有更多的人来接受它、使用它。据统计,我国的单片机年容量已达3 亿片,且每年以大约20%的速度增长,但相对于世界市场我国的占有率还不到1%。特别是沿海地区的玩具厂等生产产品多数用到单片机,并不断地

(完整版)《电力拖动自动控制系统》毕业课程设计变频液位自动控制

扬州大学能源与动力工程学院本科生课程设计 题目:变频液位自动控制系统 课程:电力拖动自动控制系统 专业:电气工程及其自动化 班级:电气 学号: 姓名: 指导教师: 完成日期:

第一部分 任 务 书

电力拖动自动控制系统课程设计任务书 一、课程设计的目的 通过电力拖动自动控制系统的设计、了解一般交直流调速系统设计过程及设计要求,并巩固交直流调速系统课程的所学内容,初步具备设计电力拖动自动控制系统的能力。为今后从事技术工作打下必要的基础。 二、课程设计的要求 1、熟悉交直流调速系统设计的一般设计原则,设计内容以及设计程序的要求。 2、掌握控制系统设计制图的基本规范,熟练掌握电气控制部分的新图标。 3、学会收集、分析、运用自动控制系统设计的有关资料和数据。 4、培养独立工作能力、创造能力及综合运用专业知识解决实际工程技术问题的能力。

三、课程设计的内容 完成某一给定课题任务,按给出的工艺要求、运用变频调速对系统进行控制。 四、进度安排:共1.5周 本课程设计时间共1.5周,进度安排如下: 1、设计准备,熟悉有关设计规范,熟悉课题设计要求及内容。(1.5天) 2、分析控制要求、控制原理设计控制方案(1.5天) 3、绘制控制原理图、控制流程图、端子接线图。(2天) 4、编制程序、梯形图设计、程序调试说明。(1.5天) 5、整理图纸、写课程设计报告。(1.5天) 五、课程设计报告内容 完成下列课题的课程设计及报告(课题工艺要求由课程设计任务书提供) 1、退火炉温度控制系统 2、变频液位自动控制系统设计 3、变频流量自动控制系统设计 4、变频供水系统设计 5、变频调速恒张力控制系统设计 6、变频器在温度控制系统中的应用 7、线缆设备恒张力变频器控制设计 六、参考书 1、陈伯时主编电力拖动自动控制系统(第二版) 机械工业出版社1992 2、陈伯时, 陈敏逊交流调速系统机械工业出版社1998

基于PID的上水箱液位控制系统设计课程设计

基于PID的上水箱液位控制系统设计 过程控制系统课程设计 基于PID的上水箱液位控制系 统设计

一、课程设计任务书 1.设计内容 针对某厂的液位控制过程与要求实现模拟控制,其工艺过程如下:用泵作为原动力,把水从低液位池抽到高液位池,实现对高液位池液位高度的自动控制。具体设计内容是利用西门子S7-200PLC作为控制器,实现对单容水箱液位高度的定值控制,同时利用MCGS组态软件建立单容水箱液位控制系统的监控界面,实现实时监控的目的。 2.设计要求 1、以RTGK-2型过程控制实验装置中的单个水箱作为被控对象、PLC作为控制器、静压式压力表作为检测元件、电动调节阀作为执行器构成一个单容水箱单闭环控制系统,实现对水箱液位的恒值控制。 2、PLC控制器采用PID算法,各项控制性能满足要求:超调量20%,稳态误差≤±0.1;调节时间ts≤120s; 3、组态测控界面上,实时设定并显示液位给定值、测量值及控制器输出值;实时显示液位给定值实时曲线、液位测量值实时曲线和PID输出值实时曲线; 4、选择合适的整定方法确定PID参数,并能在组态测控界面上实时改变PID参数; 5、通过S7-200PLC编程软件Step7实现PLC程序设计与调试; 6、分析系统基本控制特性,并得出相应的结论; 7、设计完成后,提交打印设计报告。

3.参考资料 1.邵裕森,戴先中主编.过程控制工程(第2版).北京:机械工业出版社.2003 2.崔亚嵩主编.过程控制实验指导书(校内) 3.廖常初主编.PLC编程及应用(第2版).北京:机械工业出版社.2007 4.吴作明主编.工业组态软件与PLC应用技术.北京:北京航空航天大学出版社.2007 4.设计进度(2010年12月27日至2011年1月9日) 时间设计内容 2010年12月27日布置设计任务、查阅资料、进行硬 件系统设计 2010年12月28日~ 2010年12月29日 编制PLC控制程序,并上机调试; 2010年12月30日~2010年12月31日利用MCGS组态软件建立该系统的工 程文件 2011年1月2日~2011年1月4日进行MCGS与PLC的连接与调试进行PID参数整定 2011年1月5日~2011年1月6日系统运行调试,实现单容水箱液体 定值控制 2011年1月7日~ 2011年1月9日 写设计报告书 5.设计时间及地点 设计时间:周一~周五,上午:8:00~11:00 下午:1:00~4:00 设计地点:新实验楼,过程控制实验室(310) 电气工程学院机房(320)

过程控制系统课程设计报告

过程控制系统课程设计报告 题目:温度控制系统设计 姓名: 学号: 班级: 指导教师:

温度控制系统设计 一、设计任务 设计电热水壶度控制系统方案,使系统满足85度至95度热饮需要。 二、预期实现目标 通过按键设定温度,使系统水温最终稳定在设定温度,达到控制目标。 三、设计方案 (一)系统数学模型的建立 要分析一个系统的动态特性,首要的工作就是建立合理、适用的数学模型,这也是控制系统分析过程中最为重要的内容。数学模型时所研究系统的动态特性的数学表达式,或者更具体的说,是系统输入作用与输出作用之间的数学关系。 在本系统中,被控量是温度。被控对象是由不锈钢水壶、2Kw电加热丝组成的电热壶。在实验室,给水壶注入一定量的水,将温度传感器放入水中,以最大功率加热水壶,每隔30s采样一次系统温度,记录温度值。在整个实验过程中,水量是不变的。 经过试验,得到下表所示的时间-温度表: 表1 采样时间和对应的温度值

以采样时间和对应的温度值在坐标轴上绘制时间-温度曲线,得到图1所示的曲线: 图1 时间-温度曲线 采用实验法——阶跃响应曲线法对温箱系统进行建模。将被控过程的输入量作一阶跃变化,同时记录其输出量随时间而变化的曲线,称为阶跃响应曲线。 从上图可以看出输出温度值的变化规律与带延迟的一阶惯性环节的阶跃曲线相似。因此我们选用 ()1s ke G s Ts τ-= + (式中:k 为放大系数;T 为过程时间常数;τ为纯滞后时间)作为内胆温度系统的数学模型结构。 (1)k 的求法:k 可以用下式求得: ()(0) y y k x ∞-= (x :输入的阶跃信号幅值)

(完整版)水位控制系统设计

课题名称:水箱水位控制系统设计专业:电气工程及其自动化学号: 姓名:

水箱水位控制系统设计 摘要 本设计主要基于单片机的硬件电路设计,实现一种能够实现水位自动控制、具有自动保护、自动声光报警功能的控制系统。本控制系统由A/D转换部分、单片机控制部分、数码显示部分、电机驱动部分、电机控制部分等构成。同时对各个部分进行了详细的论述。在设计中对水塔水位控制原理进行分析,选用AT89C51单片机作为控制水塔水位的处理芯片,由AT89C51的P1口直接来控制.设计方案采用模块化程序设计方法,结合程序流程图,编写程序代码,最后利用KEIL公司的u Vision3软件及伟福仿真软件进行仿真实验,达到单片机自动控制水塔水位变化的目的. 关键词:单片机,水塔水位控制原理,AT89C51,伟福仿真软件

目录 前言 (1) 第1章设计内容 (2) 1.1 设计要求 (2) 1.2 方案设计 (2) 第2章硬件电路设计 (3) 2.1 系统框图设计 (3) 2.2 系统原理 (4) 第3章水塔水位控制系统的硬件电路设计 (5) 3.1 水位检测电路 (5) 3.2 水位显示电路 (5) 3.3电机控制电路 (6) 3.4振荡电路和复位电路 (7) 3.5声光报警电路 (7) 第4章软件程序设计 (8) 4.1 系统主程序流程图 (8) 4.2编写C程序 (9) 第5章硬件制作与调试 (10) 结论 (11) 附录 (12) 仿真总图 (12) 源代码 (13)

前言 水塔是在日常生活和工业应用中经常见到的蓄水装置,在我们的生活中起到了重要的作用,而水基于单片机的水塔水位控制系统使水塔水位自动保持在一定的位置,通过对其水位的控制对外供水,以满足需要。塔里面的水位控制是一个水塔发挥作用的关键。该系统使用水位传感器对水塔水位进行检测并将检测到的信号传给单片机来进行处理,通过调整定时器的定时时间来增大或者缩小占空比,并编写程序加以控制,从而实现电机的调速。最后,使用液晶屏显示当前水位状态以及电动机的转速。该系统通过了报警模块来实现了过低水位蜂鸣器鸣笛报警、过低警戒水位自动处理、正常水位蜂鸣器鸣笛报警以及正常水位处理。本系统适应在不同的用水场合下的用水速度需要,节省工作时间,提高了整体工作的效率,实现水塔水位的自动控制。 液位控制是工业控制中的一个重要问题,针对液位控制过程中存在大滞后、时变、非线性的特点,为适应复杂系统的控制要求,人们研制了种类繁多的先进的智能控制器,模糊PID控制器便是其中之一。模糊PID控制结合了PID控制算法和模糊控制方法的优点,可以在线实现PID参数的调整,使控制系统的响应速度快,过渡过程时间大大缩短,超调量减少,振荡次数少,具有较强的鲁棒性和稳定性,在模糊控制中扮演着十分重要的角色。

水箱液位控制系统课程设计

、液位控制系统的原理分析 1.1水箱液位控制系统的原理框图 本次课程设计对水箱液位控制系统的设计是一个简单的控制系统, 所谓简单 液位控制系统通常是指有一个被控对象,一个检测变松单元一个控制器和一个执 行器所组成的单闭环负反馈控制系统,也成为单回路控制系统。 简单控制系统有着共同的特征,他们均有四个基本环节组成,即被控对象, 测量变送装置,控制器和执行器。对不同对象的简单控制系统尽管其具体装置和 变量不相同,但都可以用相同的方框图表示: 图1控制系统方框图 这是单回路水箱液位控制系统,单回路调节系统一般指在一个调节对象上用 一个调节器保持一个参数的恒定,而调节器只接受一个测量信号,其输出也只控 制一个执行机构。本系统所要保持的恒定参数是液位的给定高度, 即控制的任务 是控制水箱液位等于给定值所要求的高度。 根据控制框图,这是一个闭环反馈单 回路液位控制,采用工业智能仪表控制。 1.2被控过程传递函数的一般形式 根据被控过程动态特性的特点,典型工业过程控制所涉及及被控对象的传递 函数一般具有下述几种形式 1一阶惯性加纯迟延 2 二阶惯性环节加纯迟延 G(s) 二 k Ts 1 e s 1-1

3 N 阶惯性环节加纯迟延 二、建立被控对象数学模型 2.1求传递函数 根据阶跃响应的实验数据如表1 使用Matlab 编辑.m 文件,得出阶跃响应曲线。Matlab 程序如下: t = [0 10 20 40 60 80 100 140 180 250 300 400 500 600 700 800]; h = [0 0 0.2 0.8 2.0 3.6 5.4 8.8 11.8 14.4 16.5 18.4 19.2 19.6 19.8 20]; plot(t,h) grid on hold on 得到阶跃响应曲线再取0.39和0.62处的t 值如图2、图3 G(s) = (T i S 1)幽 1) V s (1-2) G(s) = K (Ts 1)n e —s (1-3) 上述3个公式只适用于自衡过程 个积分环节,即 G(s)二丄e 「s Ts G(s) - e 「s 71s(T 2 s +1) 对于非自衡过程,其传递函数应包含有一 (1-4) (1-5)

相关主题
文本预览
相关文档 最新文档