当前位置:文档之家› NURBS汽车建模

NURBS汽车建模

NURBS汽车建模
NURBS汽车建模

1. 设置参考图。这也许是非常重要的一步,(和以前的幻灯一样)下载图片,拿到Photoshop 中进行对齐,轮子、车顶等,分开保存这些文件,前视图为515*512像素,侧视和顶视图为512*1024。

在Maya里,添加图像到top,side front和back摄像机视图,把图像平面的Fixed(固定)优先于Attached To Camera(附加在摄像机上),这样可以保证缩放视图时图像和模型一起缩放。

2.绘制大概的曲线。在Front,Top和Side视图,画出轿车一半的轮廓线,事实上它是对完全对称的,我们仅仅只需要创建轿车的一半,完成后,镜像另一半并缝合起来。

3a.添加曲线。以轿车为参考帮我们定义这些曲线。非常容易的在所有视图中确定它们,因此在也3D视图中不会有太多的问题,大部分的曲线在side视图绘制,然后在top视图沿X 轴移动。

3b.捕捉网格。这是个非常好的做法,把这些曲线的起点沿X轴,然后切换到网络捕捉为结束点捕捉到网格上。控制第一个和第二个CVs沿X轴对齐。

4.选择前保险杆的曲线,首先重建前保险杆的曲线,然后选择路径和截面。

5.挤出前保险杆的截面。将截面沿着路径挤出这个基本的形状。在Extrude信息面板中把“Tube At Profile 和Component Pivot on”打开。

6.调整Cvs点。首先,当我们在建模时给模型一个光亮的Blinn材质,默认的Lambert材质不能给我们像Blinn材质一样的固有色、高光、镜面反射等表面信息,我们移动一些Cvs,使其接近我们想要的形状。

7.成组。开始成组,将所有的创建的曲线成为一个命名为Construction_Curves _GRP的组,我喜欢把组命令为GRP和层为LYR。这样防止复制同名,比如表面“Bumper”加到Bumper_GRP的层里名为Bumper_LYR。这也许是一件小的事实。但是表达式在大的场景中,会明显的减少错误。

8.在曲线上对齐Cvs。接着建立这盖子,开始将边上的CVs捕捉到曲线上,再将中间的曲线的Cvs捕捉到曲线上,……Maya的曲线捕捉不如有些好用,(明显示落后于CAD)但这是我们的工作。

9.轨迹曲线成形。BI-rail3+tool是一个非常有用的创建轿车的工具。……你可以有很多的截面线在两条路径(轨迹)间挤出。这里我选择用来挤出的三条曲线,和作为轨迹的两条边线。你能看到,这不是最好的面,但是它是一个开始所创建的,你将会明白。

10.选择结构等位线。我想要在前面的边缘得到更多的控制面的外形,那我我选择Isoparm 插入这个区域。

11.加载前面挡泥板的曲线。建立前面的挡泥板,首先加载开始创建的曲线。

12.清理并对齐曲线。调整所有的曲线,哪儿非常突起在那添加曲线

13.需要更多的曲线。这是Birailing的6条曲线。

14.从面上创建曲线。所有都不是对前面表面的尝试失去意义。选择一对Isoparms并生成曲线。将从这些截面得来一个新的Bi-Rail。

15.清理曲线。清理这两条新的曲线上的Cvs点和终点吸附在其它的曲线上。

16.对新的曲线成形。新的曲线可以得到一个非常好的结果。

17.切开顶盖的面。接着这一步是为了得到平面的切线连续性。必须将这些平面缝合在一起。第一步将这个顶盖的面切成两个面。所以泥挡板的U和V轴(上和下边)一个面缝合一个边。

18.产生新的曲线。从顶盖和烦的平面生成新的边的曲线,再重建泥挡板。

19.选择新的曲线。一起排列好所有新的曲线。确定没有移动那两根沿着盖子的最新的曲线。确定新建的两块挡泥板然后把它们一起连接起来。

20.新轨迹曲线。用新的轨迹曲线得到前面挡泥板面片。

Nurbs建模基础入门-建模案例学习

Nurbs建模学习 一、关于Nurbs Nurbs建模技术在设计与动画行业中占有举足轻重的地位,一直以来是国外大型三维制作公司的标准建模方式,如pixar,PDI,工业光魔等,国内部分公司也在使用Nurbs建模。他的优势是用较少的点控制较大面积的平滑曲面,以建造工业曲面和有组织的流线曲面见长。而且Maya在特效,贴图方面对nurbs的支持比较充分,使用nurbs模型在后续工作中会很方便。 不过nurbs对拓扑结构要求严格,在建立复杂模型时会比较麻烦,这需要我们耐心的学习。 二、Loft放样 作画时,固有色和环境色是两个非常重要的概念。物体真正的固有色只有在没有任何环境影响,无投影的白色柔和光照下,才能被我们确定。而我们平常所看到的物体大多被随意放置在一定的环境中,…… Loft是最常用的曲面工具之一,我们可以通过几条曲线描述物体的外形,然后放样生成表面。 Loft 放样。 创建一系列的曲线定义物体的形状,然后一起放样这此曲线就象在一个框架上蒙上画布一样。这些曲线可以是表面上的曲线、表面等位结构线或剪切曲线。使用放样来建立表面时,应该保证所有参加放样的截面曲线的CV点的数目一样,下就是当你建立完曲线后进行一次Surface/Rebuild将曲线重建使CV点统一,这样生成的曲面就会显得整齐,而且很方便以后调整外形。需要要注意一点就是在放样前,选择曲线的顺序,这个操作决定了你放样后形成的面。

Parameterization 改变放样参数,Uniform 结点距离,用使轮廓曲线与V 方向平等,结果表面U 方向上的参数值等间距,第一条轮廓曲线和表面上的U (0,0)处的等位结构线对应,第二条和U (1,0)对应以次类推。 Chord Length 间距,结果表面U 方向上的参数值会根据轮廓曲线起点间的距离而定。 Rebuild 后 Rebuild 前

汽车 犀牛建模教程

5.5汽车造型设计 【预览效果】 图5.5.1预览效果 【知识点】 【Scale NU】不等比例缩放 【Properties】编辑物体属性 【NetworkSrf】空间曲线形成曲面 【Analyze direction】分析曲线或曲面法线方向 【难点分析】 (1)两曲面衔接的平滑处理,可调整生成曲面的曲线使其与已有曲面相切来实现。 (2) 生成曲面的网格数量与曲线法线方向的控制。曲线法线方向不同,生成曲面的效果就不同。通常曲线的数量越少,生成的曲面就越光顺。不规则曲面的形成主要是通过构造曲线来生成。 (3)曲线可以对曲面修剪,曲面可以对实体修剪,但曲线不可以修剪实体。 【制作步骤】 5.5.1车身 1)新建图层 单击,在对话框中新建如图5.5.2所示的6个图层,选择车身表面为当前图层。

图5.5.2设置图层 2)绘制车身骨架曲面 (1)绘制平面曲线。单击,结合三视图绘制三条平面曲线,如图5.5.3所示。 图5.5.3绘制平面曲线 (2)绘制汽车框架曲线。在【T op】视图沿垂直方向和水平方向对三条平面曲线分别进行复制。如图5.5.4所示。

图5.5.4绘制框架曲线 (3)绘制平面曲线。激活【T op】视图,单击,绘制平面曲线,如图5.5.5所示。 图5.5.5绘制平面曲线 (3)一轨成型生成曲面。单击,以图5.5.5绘制曲线为轨迹一轨成型生成曲面,对 话框设置为rebuild with 10 control points,生成半个粗略车身侧面。如图5.5.6所示。 (4) 提取曲面结构线。激活【T op】视图,单击,选择车身侧面曲面,在车身侧面曲 面上提取多条结构线。如图5.5.7 所示。 (5) 删除车身侧面曲面及图5.5.5与图5.5.4所绘曲线。如图5.5.8所示。

Alias 曲线教程

[原创]Alias中的G0-G7曲线基础教材第一课1:在Alias中曲线分别有:直线,弧线,自由线,B样线,抛物线,贝赛尔线,混合线等等, 本帖相关图片如下: 2:曲线可分为单一曲线和复合曲线两种,单一曲线是由2个数据点组成的,复合曲线则是由多个数据点 组成的。下图表示曲线在空间表示的坐标方程式。 本帖相关图片如下:

3:把上面的方程式我们用向量来表达,那么使用向量符号时,曲线的参数方程式就变成下面这样。 本帖相关图片如下: 因此不规则的曲线我们可以使用多项式来表达,由于不规则的曲线数据点数非常多,而它的幂数会变得很大,那么曲线在计算过程中耗时容易造成不稳定,所以我们在实际工作中往往把它们分割成数段小的曲线,这些小线段称为曲线线段,每一小线段使用较低阶的多项式来近似就行了,最后完成时我们再把这些小线 段两端连接起来即可。 4:2条曲线相连,我们必须考虑它们之间的连续性问题,连续性我们把它们分为 (1)点连续或称为G0连续, (2)切线连续或称为G1相切, (3)曲率连续或称G2连续。 (4)曲率变化率的连续或称G3连续。 (5)曲率变化率的变化连续或称G4连续。 (1)点连续或称为C0连续-两连接曲线的端点必须重合,下图表示: 本帖相关图片如下: (2)切线连续或称为C1相切-两连续曲线端点的坐标,切线向量都必须重合。下图表示

(2)曲率连续或称G2连续-两连续曲线端点的坐标,切线向量,曲率中心都必须重合。下图表示 本帖相关图片如下: (2)曲率变化率的连续或称G3连续-两连续曲线端点的坐标,切线向量,曲率中心都必须重合而且变化 率连续。下图表示

汽车悬架系统动力学研究剖析

(研究生课程论文) 汽车动力学 论文题目:汽车悬架系统动力学研究指导老师:乔维高 学院班级: 学生姓名: 学号: 2015年1月

汽车悬架系统动力学研究 摘要:汽车悬架类型的选择和悬架参数的差异对汽车的操纵稳定性和行驶平顺性具有重要的影响。主要分析了麦弗逊悬架的结构特点,并通过ADAMS软件建立麦弗逊悬架的3D模型,对其进行仿真分析,得出悬架参数的优化设计方法。关键词:麦弗逊悬架;ADAMS多刚体动力学;仿真分析 The automobile suspension system dynamics research Caisi Vehicle 141 1049721402344 Abstract:Different kinds of suspension systems and of differences in suspension parameters on the vehicle steering stability and riding comfort have important influence. Mainly analyzed the structure characteristics of Macpherson suspension, and by using ADAMS software to establish 3D model of Macpherson suspension, carry on the simulation analysis, the method of optimal design parameters of the suspension. Key words:Macpherson suspension; ADAMS /Car; multi-rigid-body dynamics; simulation and analysis 引言 汽车悬架是汽车车轮与车身之间一切装置的总称。其功用在于:在垂直方向能够衰减振动和起悬挂作用;在侧向可防止车身侧倾和左右车轮载荷转移;在行驶方向上能够保证驱动与制动的实现并保持行驶方向的稳定性。不同的悬架设置会使驾驶者有不同的感受。看似简单的悬架系统综合多种作用力,决定着轿车的稳定性、舒适性和安全性,是现代轿车十分关键的部件之一。悬架系统起着传递车轮和车身之间的力和力矩、引导与控制汽车车轮与车身的相对运动、缓和路面传递给车身的冲击、衰减系统的振动等作用,汽车悬架系统对汽车的操

汽车犀牛建模教程

汽车造型设计 【预览效果】 图5.5.1预览效果 【知识点】 【Scale NU】不等比例缩放 【Properties】编辑物体属性 【NetworkSrf】空间曲线形成曲面 【Analyze direction】分析曲线或曲面法线方向 【难点分析】 (1)两曲面衔接的平滑处理,可调整生成曲面的曲线使其与已有曲面相切来实现。 (2) 生成曲面的网格数量与曲线法线方向的控制。曲线法线方向不同,生成曲面的效果就不同。通常曲线的数量越少,生成的曲面就越光顺。不规则曲面的形成主要是通过构造曲线来生成。 (3)曲线可以对曲面修剪,曲面可以对实体修剪,但曲线不可以修剪实体。 【制作步骤】 5.5.1车身 1)新建图层 单击,在对话框中新建如图5.5.2所示的6个图层,选择车身表面为当前图层。 图5.5.2设置图层 2)绘制车身骨架曲面 (1)绘制平面曲线。单击,结合三视图绘制三条平面曲线,如图5.5.3所示。 图5.5.3绘制平面曲线 (2)绘制汽车框架曲线。在【Top】视图沿垂直方向和水平方向对三条平面曲线分别进行复制。如图5.5.4所示。 图5.5.4绘制框架曲线 (3)绘制平面曲线。激活【Top】视图,单击,绘制平面曲线,如图5.5.5所示。 图5.5.5绘制平面曲线 (3)一轨成型生成曲面。单击,以图5.5.5绘制曲线为轨迹一轨成型生成曲面,对话框设置为rebuild with 10 control points,生成半个粗略车身侧面。如图5.5.6所示。 (4) 提取曲面结构线。激活【Top】视图,单击,选择车身侧面曲面,在车身侧面曲面上提取多条结构线。如图5.5.7 所示。 图一轨成型生成曲面图提取曲面结构线 (5) 删除车身侧面曲面及图与图所绘曲线。如。 图5.5.8 提取后的曲线 (6) 重建曲线控制点。单击,框选所有曲线,重建曲线控制点。对话框设置如图5.5.9所示。 图5.5.9 对话框设置 (7)调整曲线控制点。单击,打开曲线控制点,结合三视图调整曲线控制点所示。 图5.5.10 调整曲线控制点 (8)放样曲线成曲面。单击,框选所有曲线,对话框设置为rebuild with 10 control points,生成车身侧面。如图5.5.11所示。(此处生成的曲面若不理想,可重新返回上一步重新调整曲线控制点,反复操作直到调出满意曲面) 图5.5.11 放样生成曲面 (9)选择所有曲线,按【Delete】删除。(此步是为方便以后操作,读者也可选择将其隐藏) 3)绘制发动机罩

UG8.0曲面建模实例介绍

曲面建模应用实例 本章将介绍曲面建模的思路和方法,并且通过两个综合实例来详细介绍曲面设计过程。通过实例的讲解,读者可以熟悉曲面造型的一般思路和操作过程,从而深入掌握曲面造型的方法。 掌握曲面建模的思路和方法 掌握工程图纸的阅读方法 熟练掌握曲面造型中的常用命令

实例一:小汽车设计 这个例子通过设计小汽车模型来具体描述曲面造型的过程,最终结果如图1所示。 图 1 1.打开图形文件 启动UG NX8,打开文件“\part\surface modeling\ 1.prt”,结果如图2所示。 图 2 2.创建主片体 (1)创建曲面1。选择下拉菜单中的【插入】|【网格曲面】|【通过曲线组】命令,选

图 3 (2)创建曲面2。选择下拉菜单中的【插入】|【网格曲面】|【通过曲线组】命令,选择如图4所示的曲线来创建曲面。 图 4 (3)创建曲面3。选择下拉菜单中的【插入】|【网格曲面】|【通过曲线组】命令,选择如图5所示的曲线来创建曲面。 图 5 (4)创建曲面4。选择下拉菜单中的【插入】|【网格曲面】|【通过曲线组】命令,选择如图6所示的曲线来创建曲面。 图 6 (5)创建曲面5。选择下拉菜单中的【插入】|【网格曲面】|【通过曲线组】命令,选

图7 (6)创建曲面6。选择下拉菜单中的【插入】|【网格曲面】|【通过曲线组】命令,选择如图8所示的曲线来创建曲面。 图8 (7)创建曲面7。选择下拉菜单中的【插入】|【网格曲面】|【通过曲线组】命令,选择如图9所示的曲线来创建曲面。 图9 3创建过渡片体 (8)创建曲面8 。隐藏曲面3、曲面4。选择下拉菜单中的【插入】|【细节特征】|【桥接】命令,桥接曲面2、曲面5,结果如图10所示。

汽车半悬挂系统建模与分析(现代控制理论大作业)

XX大学 现代控制理论 ——汽车半主动悬架系统的建模与分析 姓名:XXX 学号:XXXX 专业:XXXX

一. 课题背景 汽车的振动控制是汽车设计的一个重要研究内容,涉及到汽车的平顺性和操纵稳定性。悬架系统是汽车振动系统的一个重要子系统,其振动传递特性对汽车性能有很大影响。因此设计性能良好的悬架系统以减少路面激励的振动传递,从而提高汽车的平顺性和操纵稳定性是汽车振动控制研究的重要课题。 悬架系统是汽车车身与轮胎间的弹簧和避震器组成整个支撑系统,用于支撑车身,改善乘坐舒适度。而半主动悬架是悬架弹性元件的刚度和减振器的阻尼系数之一可以根据需要进行调节控制的悬架。 目前,半主动悬架研究主要集中在调节减振器的阻尼系数方面,即将阻尼可调减振器作为执行机构,通过传感器检测到汽车行驶状况和道路条件的变化以及车身的加速度,由ECU 根据控制策略发出脉冲控制信号实现对减振器阻尼系数的有级可调和无级可调。 二. 系统建模与分析 1.1 半主动悬架系统的力学模型 以二自由度 1/4半主动悬架模型为例,并对系统作如下假设: (1) 悬挂质量与非悬挂质量均为刚体; (2) 悬架系统具有线性刚度和阻尼; (3) 悬架在工作过程中不与缓冲块碰撞; (4) 轮胎具有线性刚度,且在汽车行驶过程中始终与地面接触。 综上,我们将该系统等效为两个质量块M ,m ;两个弹簧系统Ks ,Kt ;一个可调阻尼器(包含一个常规 阻尼器Cs 和一个变化阻尼力F ),如图1所示。 图1 系统力学模型 1.2 半主动悬架系统的数学模型 由减振器的简化模型得:N S =-+F C V F 对m 进行分析:()211201122()t s s d z dz dz m K z z K z z C F dt dt dt ?? =------ ??? 即:()()1011212()t s s mz K z z K z z C z z F =------ 对M 进行分析:2212122 ()s s d z dz dz M K z z C F dt dt dt ?? =-+-+ ??? 即:()()21212s s Mz K z z C z z F =-+-+

Alias建模心得

Alias建模心得 时间:2010-04-11 09:25来源:未知作者:admin 点击:109次 1、 curve和tanget chain的区别。比如做两个连续的四边曲面,曲面A引用了curve1,则在创建曲面B时,最好引用A的tangent chain而不是其原始curve。因为尽管原理上A的边(tangent chain)即curve1,但在生成曲面后,它的边已经和原始curve有了精度上的偏差。所以为了保证曲面的连续性,应尽量选用tangent chain。 补充:在定义边界条件时,tangent chain无须选择曲面(因为本来就在曲面上),而curve则需选择相切曲面,也就是先前通过此curve创建的曲面。 2、变截面扫描时选项Pivot Dir(轴心方向)的理解。首先把原始轨迹线看成无数个原点的组合,在任一原点处的截面参照为:原点、原点处的切线、以及过原点且与datum面垂直的直线(可以把它理解为创建point-on-plane轴)。一个很好的例子是ice的鼠标面教程,以分模面作为变截面扫描的datum面,因此能保证任一扫描点处的脱模角。 3、创建连续的混合曲面,其curve要连续定义,以保证曲率连续;而曲面则可以先分开生成,再创建中间的连接面。 4,在通过点创建曲线时,可以用tweak进行微调,推荐选择基准平面进行二维的调节,然后再选择另一个基准进行调节,这样控制点就不会乱跑了。 5,如果曲面质量要求较高,尽可能用四边曲面。 6,扫描曲面尽可能安排在前面,因为它不能定义边界连接。 7,当出现>4边时,有时可以延长边界线并相交,从而形成四边曲面,然后再进行剪切处理。 8,变截面扫描之垂直于原始轨迹:原始轨迹+X向量轨迹 局部坐标系原点:原始轨迹可以视作无数个点的集合,这些点就是局部坐标系原点; Z轴:原始轨迹在原点处的切线方向; X轴:原始轨迹在任一点处形成与Z轴垂直的平面,该平面与X向量轨迹形成交点,原点指向交点即形成X轴; Y轴:由原点、Z轴、X轴确定。 9,垂直于轨迹之曲面法向Norm to Surf: 局部坐标系原点:原始轨迹可以视作无数个点的集合,这些点就是局部坐标系原点; Z轴:相切轨迹可以视作无数个点的集合,每个点的切线就是Z轴; X轴:由Z轴可确定XY轴所在的平面,与另一个过原始轨迹的曲面相交,即得到X轴; Y轴:由原点、Z轴、X轴确定。 10、 垂直于轨迹之使用法向轨迹Use Norm Traj: 局部坐标系原点:原始轨迹可以视作无数个点的集合,这些点就是局部坐标系原点; Z轴:相切轨迹可以视作无数个点的集合,每个点的切线就是Z轴; X轴:原点指向法向轨迹,即为X轴; Y轴:由原点、Z轴、X轴确定。

犀牛建模入门教程

目录 前言1 第一章我的建模观2 为什么选犀牛3 软件分类5 与Nurbs6 第二章Rhino界面和基础操作9 界面构成9 如何使用工具面板11 自定义工具集13 视窗14 视窗基本操作14 在底部显示视图标签15 视窗显示模式16 工作平面18 观看物体20 物体基本操作20 选择物体20 建模辅助设置22 第三章第三章绘制2D物体24 中的对象介绍24 点物体线物体25 面物体26 网格28 点物体的绘制29 曲线绘制31 直线绘制31 曲线绘制35 其他封闭几何体37 第四章2D编辑和NURBS深入理解41 曲线编辑41 曲线的分割和修剪41 编辑曲线上的点46 曲线编辑工具48 对nurbs曲线的深入理解52 何谓nurbs?52 有理”和“无理”52 均匀”和“非均匀”60 曲线的“阶”63 第五章曲面构建65 构建曲面65 创建方形平面68 绘制简单曲面69

放样75 扫琼80 旋转命令83 边界曲面、闭合线曲面、镶面的区别84 第六章曲面编辑87 点的编辑87 分割和修剪94 曲线作为分割边界94 曲面作为分割边界95 还原分割和修剪97 链接曲面97 延伸曲面97 曲面倒角99 偏移工具101 混接曲面102 合并曲面105 衔接曲面106 几何学上的G0、G1和G2连续109 第七章Rhino实体和网格112 基本几何体创建112 实体工具118 布尔运算118 抽面工具122 实体倒角123 对象124 第八章高级工具集129 从物件建立曲线129 曲线投影到曲面130 从曲面提取边界线133 从曲面提取轮廓线133 从曲面提取UV线133 生成相交线133 生成等分线134 生成剖面线135 物件变动工具136 处理物件空间位置的工具136 特殊位置工具143 套用UV、沿曲面流动、沿曲线流动143 定位至曲面151 定位曲线至曲面边缘和定位垂直曲线152 特殊变形工具154 曲面理解158 第九章Rhino辅助工具162

Alias初级教程

Alias初级教程一操作环境介绍 本节课将介绍使用者的环境及界面,主要是让使用者认识Alias的工作环境,以及图形化对话框式的操作界面,使用者必须充分了解这些环境界面,才能发挥Alias软件的强大功能。 一、Alias操作界面介绍 1、alias的界面环境 Alias具有非常亲和性的操作步骤工作环境,更有强大的曲面建模和彩像功能。因此,与大多数CAD类的软件相比之下,更容易受到设计师的青睐。首先来认识一下Alias的界面环境,如下图所示。 2、主题栏 与其他的一般软件相同,在界面的最上方,主要是显示该软件的模组与版本,以及目前的档案名称和档案的存放路径,如下图所示。 3、下拉式功能表 下拉式功能表位于主题栏的下方,主要提供使用者基本的绘图编辑指令与其他工具。 4、选取状态 位于下拉功能表的下方,其功能是显示欲在绘图区选取的曲线、曲面或其他物件的形式。使用者课与工具箱点选选取工具列中的任意指令,此时,欲选取的物件形式将会在该栏位中显示。 5、提示列 下拉功能表下方有一个分色的栏位,此栏位叫做Prompt Line,也就是提示列的意思,如下图所示。在绘图的过程中,此处显示输入、警告、或下个步骤的操作信息,按下左边的按钮,将显示之前所出现的提示,如下图所示。

6、锁定键 位于提示列右侧,此三个按钮的功能是用来吸附控制点、编辑点、格线与曲线。 第一个代表吸附的位置将会在最近的控制点或编辑点上。 第二个代表吸附的位置将会在最近的格线交点上。 第三个代表吸附的位置将会在曲线上。 7、图层列 图层列是让使用者组织与归类各种不同种类的物件,包括点、曲线、曲面等物件。透过图层的管理,所有的物件才不会混乱不清,另外图层的颜色可帮助使用者更好的辨别各种不同的物件元素,让不同属性的物件有专属的图层。 8、绘图区 顾名思义就是绘图的视窗区域,可执行下拉功能表的Layouts>>All windows>> All windows (所有视窗),系统将显示四个视窗,分别为顶视图、前视图、透视图、右视图。当视窗正为绘图状态时,视窗的周围将显示白色的色框,如下图的透视图所示。

汽车悬架系统开发布置流程

悬架系统开发流程---布置部分 目标设定BENCHMARK 在此主要是分析竞争车型的底盘布置。底盘布置首先要确定出轮胎、悬架形式、转向系统、发动机、传动轴、油箱、地板、前纵梁结构(满足碰撞)等,因为这些重要的参数,如轮胎型号、悬架尺寸、发动机布置、驱动形式、燃油种类等在开发过程中要尽可能早地确定下来。在此基础上,线束、管路、减振器、发动机悬置等才能继续下去 悬架选择 对各种后悬架结构型式进行优缺点比较,包括对后部轮罩间空间尺寸的分析比较,进行后悬架结构的选择。 常见的后悬架结构型式有:扭转梁式、拖曳臂式、多连杆式。 扭转梁式悬架 优点: 1.与车身连接简单,易于装配。 2.结构简单,部件少,易分装。 3.垂直方向尺寸紧凑。 4.底板平整,有利于油箱和后备胎的布置。 5.汽车侧倾时,除扭转梁外,有的纵臂也会产生扭转变形,起到横向稳定作用, 若还需更大的悬架侧倾角刚度,还可布置横向稳定杆。 6.两侧车轮运转不均衡时外倾具有良好的回复作用。 7.在车身摇摆时具有较好的前束控制能力。 8.车轮运动特性比较好,操纵稳定性很好,尤其是在平整的道路情况下。 9.通过障碍的轴距具有相当好的加大能力,通过性好。 10.如果采用连续焊接的话,强度较好。 缺点: 1.对横向扭转梁和纵向拖臂的连续焊接质量要求较高。 2.不能很好地协调轮迹。 3.整车动态性能对轴荷从空载到满载的变化比较敏感。 4.但这种悬架在侧向力作用时,呈过度转向趋势。另外,扭转梁因强度关系,允 许承受的载荷受到限制。 扭转梁式悬架结构简单、成本低,在一些前置前驱汽车的后悬架上应用较多。 拖曳臂式悬架 优点: 1.Y轴和X轴方向尺寸紧凑,非常有利于后乘舱(尤其是轮罩间宽度尺寸较大) 和下底板备胎及油箱的布置。 2.与车身的连接简单,易于装配。 3.结构简单,零件少且易于分装; 4.由于没有衬套,滞后作用小。 5.可考虑后驱。 缺点: 1.由于沿着控制臂相对车身转轴方向控制臂较大的长宽比,侧向力对前束将产生 不利的影响。 2.车身摇摆(body roll)对外倾产生不利影响;(适当的控制臂转轴有可能改善外

犀牛rhino跑车建模教程

(3)在两条轮廓线之间,用arcdir命令加入一些弧线,作为定义侧面曲面的截面线,如图4所示。 图4 用arcdir命令加入一些弧线 (4)将上面的那条轮廓线复制一条,放在两条轮廓线的中间,适当调整控制点,如图5所示。 图5 在两条轮廓线中间做出一条曲线 (5)选择所有曲线,执行networksrf命令,生成曲面,如图6所示。

在这个教学里,将简单介绍用rhino制作跑车的基本方法。 图1 用rhino制作的跑车 (1)在侧面视图里,绘制出侧面的两条轮廓线,如图2所示。 图2 画出两条车体的轮廓线 (2)在上视图里,打开两条轮廓曲线的控制点,适当调整控制点,如图2所示。在调整控制点的同时,可以根据需要,用insertknot命令给曲线加入控制点。

图3 在上视图里面调整控制点 6)用mirror命令镜象出另外半边的曲面,执行mergesrf命令,将两个曲面合而为一,如图7所示。 图7 用mergesrf命令将两个曲面合而为一 (7)如图8所示,画出一序列的曲线。

图8 画出一序列的曲线 (8)执行sweep2命令,产生曲面,注意选择上一步骤画出的一序列的曲线的中间那条U字形的曲线和前面产生的曲面的边界作为rail的路径线,然后选择出的围绕在U字形曲线的一序列的曲线作为cross section的截面线,产生曲面,如图9所示。 图9 用sweep2命令产生曲面 9)执行matchsrf命令,选择刚才用sweep2产生的曲面,然后再选择它下面的曲面,进行曲面匹配,在match surface 对话框里面,选择Tangency和Refine match其他都不要选,如图10所示。

rhino汽车建模详细教程

rhino汽车建模详细教程 在这个教学里,将简单介绍用rhino制作跑车的基本方法。图1 用rhino制作的跑车(1)在侧面视图里,绘制出侧面的两条轮廓线,如图2所示。图2 画出两条车体的轮廓线(2)在上视图里,打开两条轮廓 进入 论坛专区: , Rhino基础教程五:基 , Rhino基础教程四:建编辑推荐

在这个教学里,将简单介绍用rhino制作跑车的基本方法。 图1 用rhino制作的跑车 (1)在侧面视图里,绘制出侧面的两条轮廓线,如图2所示。 图2 画出 两条车体的轮廓线 (2)在上视图里,打开两条轮廓曲线的控制点,适当调整控制点,如图2所示。在调整控制点的同时,可以根据需要,用iertknot命令给曲线加入控制点。

图3 在上 视图里面调整控制点 (3)在两条轮廓线之间,用arcdir命令加入一些弧线,作为定义侧面曲面的截面线,如图4所示。 图4 用arcdir命令加入一些弧线 (4)将上面的那条轮廓线复制一条,放在两条轮廓线的中间,适当调整控制点,如图5所示。

图5 在两条轮廓线中间做出一条曲线 (5)选择所有曲线,执行networksrf命令,生成曲面,如图6所示。 图6 用networksrf命令产生曲面 (6)用mirror命令镜象出另外半边的曲面,执行mergesrf命令,将两个曲面合而为一,如图7所示。

图7 用mergesrf命令将两个曲面合而为一 (7)如图8所示,画出一序列的曲线。 图8 画出一序列的曲线 (8)执行sweep2命令,产生曲面,注意选择上一步骤画出的一序列的曲线的中间那条U字形的曲线和前面产生的曲面的边界作为rail的路径线,然后选择出的围绕在U字形曲线的一序列的曲线作为cro section的截面线,产生曲面,如图9所示。

Alias初级教程

本节课将介绍使用者的环境及界面,主要是让使用者认识Alias的工作环境,以及图形化对话框式的操作界面,使用者必须充分了解这些环境界面,才能发挥Alias软件的强大功能。 一、Alias操作界面介绍 1、alias的界面环境 Alias具有非常亲和性的操作步骤工作环境,更有强大的曲面建模和彩像功能。因此,与大多数CAD类的软件相比之下,更容易受到设计师的青睐。首先来认识一下Alias的界面环境,如下图所示。 2、主题栏 与其他的一般软件相同,在界面的最上方,主要是显示该软件的模组与版本,以及目前的档案名称和档案的存放路径,如下图所示。 3、下拉式功能表 下拉式功能表位于主题栏的下方,主要提供使用者基本的绘图编辑指令与其他工具。 4、选取状态 位于下拉功能表的下方,其功能是显示欲在绘图区选取的曲线、曲面或其他物件的形式。使用者课与工具箱点选选取工具列中的任意指令,此时,欲选取的物件形式将会在该栏位中显示。 5、提示列 下拉功能表下方有一个分色的栏位,此栏位叫做Prompt Line,也就是提示列的意思,如下图所示。在绘图的过程中,此处显示输入、警告、或下个步骤的操作信息,按下左边的按钮,将显示之前所出现的提示,如下图所示。 6、锁定键 位于提示列右侧,此三个按钮的功能是用来吸附控制点、编辑点、格线与曲线。 第一个代表吸附的位置将会在最近的控制点或编辑点上。 第二个代表吸附的位置将会在最近的格线交点上。 第三个代表吸附的位置将会在曲线上。 7、图层列 图层列是让使用者组织与归类各种不同种类的物件,包括点、曲线、曲面等物件。透过图层的管理,所有的物件才不会混乱不清,另外图层的颜色可帮助使用者更好的辨别各种不同的物件元素,让不同属性的物件有专属的图层。 8、绘图区 顾名思义就是绘图的视窗区域,可执行下拉功能表的Layouts>>All windows>> All windows (所有视窗),系统将显示四个视窗,分别为顶视图、前视图、透视图、右视图。当视窗正为绘图状态时,视窗的周围将显示白色的色框,如下图的透视图所示。 9、视窗名称 每个视窗的左上角都会显示视窗名称,如图所示 10、系统坐标 系统坐标位于每个视窗的左下方,主要是让使用者清楚现在的视窗坐标位置,红色代表X 轴,绿色代表Y轴,蓝色代表Z轴。另外在使用Xform变形指令时,也要注意左下方视图的坐标轴向,因为鼠标的左中右三键,也分别代表XYZ轴向。 11、指令功能说明 指令功能说明位于绘图区的下方,可将游标随意移至任一个指令列的图示,此栏位将会显示指令的功能说明,比如我鼠标移动至新建画线工具位置,如下图会显示。 12、工具箱

汽车悬架系统研究现状综述

汽车悬架系统研究现状综述 【摘要】悬架作为汽车的重要部件,对汽车的行驶平顺性和操纵稳定性有着直接的影响。通过对被动悬架、半主动悬架和主动悬架的对比分析,可知采用半主动悬架是改善汽车悬架性能的一条新途径。文中对汽车悬架的发展现状及不同学者关于悬架系统运用的控制策略作了分析,为进一步研究悬架系统提供了一定的理论基础和参考。 【关键词】悬架系统平顺性控制策略 悬架是车架与车桥之间一切传力连接装置的总称,它将路面作用于车轮上的垂直反力(支承力)、纵向反力(驱动力与制动力)和侧向反力以及这些反力所造成的力矩传递到车架(或承载式车身)上,吸收和缓和因不平路面而产生的对车体的冲击载荷[1],并能衰减弹性系统引起的振动,使汽车在行驶中保持行驶的平顺性和操纵的稳定性。 现代汽车的悬架系统尽管有各种不同的结构形式,但一般都由弹性元件、减振器和导向机构(纵、横向推力杆)等三部分组成,分别起缓冲、减振和导向的作用,另外还铺设有缓冲块和横向稳定器。如图1所示。 1 悬架类型 按控制力或者所需外部提供能量的多少,可将悬架分为被动悬架、半主动悬架和主动悬架三种类型,其简化模型分别如图2所示。 被动悬架简化模型如图2(a)所示,主要由弹性支承(弹簧装置)和阻尼器(车辆减震器)组成,无外部能量输入,其弹簧刚度和减振器阻尼系数是不可调节的,在汽车行驶过程中无法随外部路面状况而改变,只能保证在一种特定路面和速度下达到性能最优折中,该结构简单,性能稳定,经过不断改进和发展,现在技术已经相当成熟。但由于平顺性和操纵稳定性对悬架参数的要求不一样,这种传统的被动悬架已经不能满足汽车工业的发展。 半主动悬架简化模型如图2(b)所示,由可变特性弹簧和减振器组成,目前应用较多的是基于阻尼可调减振器的半主动悬架。其工作原理是根据簧上质量相对车轮的速度响应和加速度响应等反馈信号,按照一定的控制规律调节可调减振器的阻尼力。半主动悬架突破了被动悬架系统只能在某种工况下达到最优的局限,并可以根据路面的激励和车身的响应对悬架的阻尼系数进行自适应调整,以改善悬架的振动特性,从而使车身的振动控制在一定的范围内。其最大优点是工作中几乎不消耗发动机的功率,不向机械振动系统中附加能源,只是应用严格的保守(弹簧)或耗能(减振器)元件,结构简单,造价较低,因此受到车辆工程界的广泛重视。 主动悬架由弹性元件和一个力发生器组成,其简化模型如图2(c)所示。

Alias初级教程一 操作环境介绍

Alias初级教程一操作环境介绍 特别鸣谢:老A 整理:中国汽车工程群(7234594) 本节课将介绍使用者的环境及界面,主要是让使用者认识Alias的工作环境,以及图形化对话框式的操作界面,使用者必须充分了解这些环境界面,才能发挥Alias软件的强大功能。 一、Alias操作界面介绍 1、alias的界面环境 Alias具有非常亲和性的操作步骤工作环境,更有强大的曲面建模和彩像功能。因此,与大多数CAD类的软件相比之下,更容易受到设计师的青睐。首先来认识一下Alias的界面环境,如下图所示。 2、主题栏 与其他的一般软件相同,在界面的最上方,主要是显示该软件的模组与版本,以及目前的档案名称和档案的存放路径,如下图所示。 3、下拉式功能表 下拉式功能表位于主题栏的下方,主要提供使用者基本的绘图编辑指令与其他工具。 4、选取状态 位于下拉功能表的下方,其功能是显示欲在绘图区选取的曲线、曲面或其他物件的形式。使用者课与工具箱点选选取工具列中的任意指令,此时,欲选取的物件形式将会在该栏位中显示。

5、提示列 下拉功能表下方有一个分色的栏位,此栏位叫做Prompt Line,也就是提示列的意思,如下图所示。在绘图的过程中,此处显示输入、警告、或下个步骤的操作信息,按下左边的按钮,将显示之前所出现的提示,如下图所示。 6、锁定键 位于提示列右侧,此三个按钮的功能是用来吸附控制点、编辑点、格线与曲线。 第一个代表吸附的位置将会在最近的控制点或编辑点上。 第二个代表吸附的位置将会在最近的格线交点上。 第三个代表吸附的位置将会在曲线上。 7、图层列 图层列是让使用者组织与归类各种不同种类的物件,包括点、曲线、曲面等物件。透过图层的管理,所有的物件才不会混乱不清,另外图层的颜色可帮助使用者更好的辨别各种不同的物件元素,让不同属性的物件有专属的图层。 8、绘图区 顾名思义就是绘图的视窗区域,可执行下拉功能表的Layouts>>All windows>>All windows(所有视窗),系统将显示四个视窗,分别为顶视图、前视图、透视图、右视图。当视窗正为绘图状态时,视窗的周围将显示白色的色框,如下图的透视图所示。

汽车悬架系统动力学研究完整版

汽车悬架系统动力学研 究 集团标准化办公室:[VV986T-J682P28-JP266L8-68PNN]

(研究生课程论文) 汽车动力学论文题目:汽车悬架系统动力学研究 指导老师:乔维高 学院班级: 学生姓名: 学号: 2015年1月

汽车悬架系统动力学研究 摘要:汽车悬架类型的选择和悬架参数的差异对汽车的操纵稳定性和行驶平顺性具有重要的影响。主要分析了麦弗逊悬架的结构特点,并通过ADAMS软件建立麦弗逊悬架的3D模型,对其进行仿真分析,得出悬架参数的优化设计方法。关键词:麦弗逊悬架;ADAMS多刚体动力学;仿真分析Theautomobilesuspensionsystemdynam icsresearch CaisiVehicle141 Abstract:Differentkindsofsuspensionsystemsand ofdifferencesinsuspens ionparametersonthevehiclesteeringstabilityandridingcomforthaveimporta ntinfluence.MainlyanalyzedthestructurecharacteristicsofMacphersonsusp ension,andbyusingADAMSsoftwaretoestablish3DmodelofMacphersonsuspensio n,carryonthesimulationanalysis,themethodofoptimaldesignparametersofth esuspension. Keywords:Macphersonsuspension;ADAMS/Car;multi-rigid-bodydynamics;simulationandanalysis 引言 汽车悬架是汽车车轮与车身之间一切装置的总称。其功用在于:在垂直方向能够衰减振动和起悬挂作用;在侧向可防止车身侧倾和左右车轮载荷转移;在行驶方向上能够保证驱动与制动的实现并保持行驶方向的稳定性。不同的悬架设置会使驾驶者有不同的感受。看似简单的悬架系统综合多种作用力,决定着轿车的稳定性、舒适性和安全性,是现代轿车十分关键的部件之一。悬架系统起着传递车轮和车身之间的力和力矩、引导与控制汽车车轮与车身的相对运动、缓和路面传递给车身的冲击、衰减系统的振动等作用,汽车悬架系统对汽

犀牛鞋类建模终极教程(转)

1.4主要研究内容 以犀牛3D建模软件为工具来研究NURBS自由曲面在表现鞋类3D效果图方面的应用。通过对几个常见款式的建模法的归纳总结,得出一套基于NURBS自由曲面的适合于鞋类建模的方法。 2 建模部分 2.1 建模前的准备 2.1.1 建模场景的优化 在Rhino3D中,除了等参数线和边界线外,其他都是不可见的,为了显示NURBS 曲面为可见的曲面,要把它转化为可渲染的多边形网格物体。这就存在一个转换精度的问题。精度越高,所生成的多边形网格物体就越逼近原始NURBS曲面。如果转换精度不高,可能看到的NURBS曲面就不平滑,如图2.1所示: 图2.1 由于转换精度低造成显示不够平滑 遇到这种情况,并不是由于曲面不够平滑,而是NURBS曲面转换为可渲染的多边形物体的精度不够高。用鼠标右击打开渲染设置,在Render mesh选项卡里调高精度即可显示为平滑的曲面。如图2.2,2.3所示:

图2.2 调整Render mesh选项卡 图2.3提高转换精度后显示平滑 虽然提高Render mesh转换精度可以达到高质量的显示和渲染效果。但是转换精度越高,所需要的计算时间就越长,这会造成显示慢的后果。在视觉质量允许的范围内,尽量减少转换精度能大大的提高工作效率。这就要求对Render mesh的设置进行优化,方法如下:右击按钮,调出渲染属性面板。将各数值按照图2.4所示的参数重新进行设置。

图2.4 优化参数设置 其中,Max angle是一个绝对数值,它不会随着模型的大小变化而改变显示精度,而Min edge length和Max distance,edge to srf则是相对数值,如果模型的尺寸越小,那么显示精度就越低,产生的面数就越少,模型的尺寸越大,显示精度就越高,产生的面数就越多。因此,这两个参数需要根据模型的大小进行设置。一般来说,它们的大小为模型的1/100时,显示就已经基本可以达到很平滑的效果了,而且面数也不会过多,属于一个最优化的参数设置。我在本文鞋子的建模中一般长度为10cm左右,10的1/100既0.01,按此标准在建模前进行设置即可达到理想的显示精度和精简的面数平衡值。 2.1.2三视图的备制与导入 我们在建立一个物体的模型时通常需要准备好这个物体的三视图或四视图。这样,才能建出比例比较标准的模型。如下图2.5所示是甲壳虫汽车的四视图: 图2.5

浅谈汽车悬架系统建模与仿真

浅谈汽车悬架系统建模与仿真 发表时间:2019-01-15T12:39:58.223Z 来源:《防护工程》2018年第30期作者:周磊[导读] 汽车悬架系统较为复杂,而且多种构件组成,构件与构件之间的相互配合运转也较为复杂,因此使用传统的方式来对汽车悬架的特性进行分析便面临着诸多困难。本篇文章从悬架运动学和动力学仿真来分析汽车悬架特性的研究中所发挥的重要作用,并且就汽车悬架系统的设计开发进行探讨。 周磊 安徽江淮汽车集团股份有限公司安徽合肥 230601 摘要:汽车悬架系统较为复杂,而且多种构件组成,构件与构件之间的相互配合运转也较为复杂,因此使用传统的方式来对汽车悬架的特性进行分析便面临着诸多困难。本篇文章从悬架运动学和动力学仿真来分析汽车悬架特性的研究中所发挥的重要作用,并且就汽车悬架系统的设计开发进行探讨。 关键词:汽车悬架系统;建模;仿真 本篇文章以国内某品牌汽车自主生产的SUV汽车前悬架为例,通过ADAMS/CAR建立前悬架三维实体模型,前悬架相关数据参数,包括构件的质量、转动惯量等参数,来确定前悬架的几何定位参数、减震器、扭杆等参数,依据这些数据来确定运动学和动力学仿真模型的建立。 1. 前悬架模型建立 利用ADAMS/CAR建立仿真模型时,建模顺序自下而上,最后得到前悬架模型,通过装配试验来确定模型建立的正确与否。 利用ADAMS/CAR软件建立仿真模型时要确保各个零部件关键点的位置要准确,这样才能确保建立的仿真模型的准确性。通过对比汽车理零件的设计图纸以及三维实体模型的实际测量,获得前悬架中零件关键的位置。设计图纸上可以查询悬架零件的质量,在多体系统的运动中,在运动过程中具有某种联系并且具有相同的运动轨迹而且固定在一起的部件可以看做是一个运动部件。一个运动部件具有同样的质心和转动惯量。获取运动部件的质心和转动惯量的参数可以通过称重和计算或者试验获取。利用CAD技术来完成部件实体模型,将构件的材料密度等参数输入既可以获得部件的质量、质心和转动惯量。 2. 悬架系统的仿真结果分析 利用ADAMS/CAR软件可对悬架系统进行分析,通过对车轮的垂直跳动来分析出前束角、车轮外倾角、后倾角及主销内倾角的参数变化。在轮胎的接地点施加侧向力、回正力矩来测量前束角和车轮侧偏角的参数变化。 2.1车辆悬架仿真实验 建立好悬架仿真模型之后,接下来就可以对其进行分析,悬架转向系统仿真分析的过程大体包括:打开悬架数学模型,然后设置好轴距、驱动力分配等悬架参数,之后进行仿真实验,根据实验结果绘制试验曲线图。 2.2悬架仿真结果分析 通过建立悬架仿真模型对其进行动力学和弹性动力学分析,通过对车辆左右侧的车轮同时进行上下跳动的位移,进行双轮同向激振的仿真试验。 2.2.1车轮外倾角结果分析 车轮的外倾角是车轮中心的平面与地面的垂线所形成的的夹角大小,在汽车工程手册中对于车轮外倾角的推荐中,在上调中外倾角变化范围在正负一度范围内合理选择悬架设计参数。 在该试验中,车轮在上跳过程中出现了外倾角的数值变化,外倾角由正值变向负值,当车轮处于-50mm时,外倾角大小为0.2°,当车轮在50mm时,车轮外倾角为-1.77°。通过对结果进行分析可以看出在上跳过程中车轮外倾角的数值变化范围超过了推荐的数值范围,变化过大,因此该设计需要改进。 2.2.2主销后倾角和后倾拖矩 主销后倾角和主销后倾拖矩是为了保证汽车在行驶过程中能够保证有足够的侧向力回正力矩,从而保证汽车能够保持直线行驶。主销后倾角数值越大那么主销后倾拖矩也就越大,从而回正力矩的力臂越大,结果就是回正力矩也就越大。通常来讲,四轮车的主销后倾角一般为3-10°足有,后倾拖矩数值大小一般为0-30mm。该次仿真实验中,仿真结果显示主销后倾角随车轮跳动量变化范围在4.2°-5.3°之间,这个范围在允许的范围内,因此符合悬架设计要求。 在主销后倾拖矩进行仿真试验时,实验结果可以看出来,随着车轮的上跳,主销后倾拖矩逐渐变大,而且变化范围在10.26mm-22.04mm之间,随着后倾拖矩的增大,回正力矩的力臂变大,而回正力矩也随之变大,不过回正力矩的数值变化范围仍然在规定范围之内,因此可以视为符合设计要求。 2.2.2主销内倾角及横向偏移距分析 主销内倾角的作用也是保证汽车在行驶过程中车轮自动回正,其作用效应是利用汽车本身的重力使得车轮回复到原来的中间位置。主销内倾角和主销横向偏置距有关系,主销内倾会减小横向偏置距的大小,从而使得驾驶员在转向时使用的作用力减小,也就是转向更加方便,也减小了转向轮传递过来的冲击力。 在实际设计汽车的时候,主销内倾角的范围大致在7-13°之间,数值最好取小一点,主销横向偏移距数值范围在-10-30mm之间,数值也是越小越好。通过对主销内倾角和横向偏移距进行仿真分析后得出的结果为,随着车轮的上跳,主销内倾角的增加幅度比较大,数值为10.6°-14.72°,这个范围已经超过了设计要求的标准范围,因此汽车悬架的主销内倾角需要改进。 对主销横向偏移距的仿真分析结果表明,前悬架的主销横向偏移距范围在13.87-23.35mm范围内,符合设计要求的范围,因此不必改进。 2.2.3汽车前束

相关主题
文本预览
相关文档 最新文档