当前位置:文档之家› (整理)光耦内部结构图

(整理)光耦内部结构图

(整理)光耦内部结构图
(整理)光耦内部结构图

几种常用的光耦反馈电路应用

几种常用的光耦反馈电路应用

————————————————————————————————作者:————————————————————————————————日期:

在一般的隔离电源中,光耦隔离反馈是一种简单、低成本的方式。但对于光耦反馈的各种连接方式及其区别,目前尚未见到比较深入的研究。而且在很多场合下,由于对光耦的工作原理理解不够深入,光耦接法混乱,往往导致电路不能正常工作。本研究将详细分析光耦工作原理,并针对光耦反馈的几种典型接法加以对比研究。 1 常见的几种连接方式及其工作原理 常用于反馈的光耦型号有TLP521、PC817等。这里以TLP521为例,介绍这类光耦的特性。 TLP521的原边相当于一个发光二极管,原边电流If越大,光强越强,副边三极管的电流Ic越大。副边三极管电流Ic与原边二极管电流If的比值称为光耦的电流放大系数,该系数随温度变化而变化,且受温度影响较大。作反馈用的光耦正是利用“原边电流变化将导致副边电流变化”来实现反馈,因此在环境温度变化剧烈的场合,由于放大系数的温漂比较大,应尽量不通过光耦实现反馈。此外,使用这类光耦必须注意设计外围参数,使其工作在比较宽的线性带内,否则电路对运行参数的敏感度太强,不利于电路的稳定工作。 通常选择TL431结合TLP521进行反馈。这时,TL431的工作原理相当于一个内部基准为2.5 V的电压误差放大器,所以在其1脚与3脚之间,要接补偿网络。 常见的光耦反馈第1种接法,如图1所示。图中,Vo为输出电压,Vd为芯片的供电电压。com信号接芯片的误差放大器输出脚,或者把PWM 芯片(如UC3525)的内部电压误差放大器接成同相放大器形式,com信号则接到其对应的同相端引脚。注意左边的地为输出电压地,右边的地为芯片供电电压地,两者之间用光耦隔离。 图1所示接法的工作原理如下:当输出电压升高时,TL431的1脚(相当于电压误差放大器的反向输入端)电压上升,3脚(相当于电压误差放大器的输出脚)电压下降,光耦TLP 521的原边电流If增大,光耦的另一端输出电流Ic增大,电阻R4上的电压降增大,com 引脚电压下降,占空比减小,输出电压减小;反之,当输出电压降低时,调节过程类似。 常见的第2种接法,如图2所示。与第1种接法不同的是,该接法中光耦的第4脚直接接到芯片的误差放大器输出端,而芯片内部的电压误差放大器必须接成同相端电位高于反相端电位的形式,利用运放的一种特性——当运放输出电流过大(超过运放电流输出能力)时,运放的输出电压值将下降,输出电流越大,输出电压下降越多。因此,采用这种接法的电路,一定要把PWM 芯片的误差放大器的两个输入引脚接到固定电位上,且必须是同向

光耦的作用及 工作原理

光耦的作用及工作原理 光耦合器(optical coupler,英文缩写为OC)亦称光电隔离器,简称光耦。光耦合器以光为媒介传输电信号。它对输入、输出电信号有良好的隔离作用,所以,它在各种电路中得到广泛的应用。目前它已成为种类最多、用途最广的光电器件之一。光耦合器一般由三部分组成:光的发射、光的接收及信号放大。输入的电信号驱动发光二极管(LED),使之发出一定波长的光,被光探测器接收而产生光电流,再经过进一步放大后输出。这就完成了电—光—电的转换,从而起到输入、输出、隔离的作用。由于光耦合器输入输出间互相隔离,电信号传输具有单向性等特点,因而具有良好的电绝缘能力和抗干扰能力。又由于光耦合器的输入端属于电流型工作的低阻元件,因而具有很强的共模抑制能力。所以,它在长线传输信息中作为终端隔离元件可以大大提高信噪比。在计算机数字通信及实时控制中作为信号隔离的接口器件,可以大大增加计算机工作的可靠性。 光耦合器的主要优点是:信号单向传输,输入端与输出端完全实现了电气隔离隔离,输出信号对输入端无影响,抗干扰能力强,工作稳定,无触点,使用寿命长,传输效率高。光耦合器是70年代发展起来的新型器件,现已广泛用于电气绝缘、电平转换、级间耦合、驱动电路、开关电路、斩波器、多谐振荡器、信号隔离、级间隔离、脉冲放大电路、数字仪表、远距离信号传输、脉冲放大、固态继电器(SSR)、仪器仪表、通信设备及微机接口中。在单片开关电源中,利用线性光耦合器可构成光耦反馈电路,通过调节控制端电流来改变占空比,达到精密稳压目的。 学习笔记:光耦的主要作用就是隔离作用,如信号隔离或光电的隔离。隔离能起到保护的作用,如一边是微处理器控制电路,另一边是高电压执行端,如市电启动的电机,电灯等等,就可以用光耦隔离开。当两个不同型号的光耦只有负载电流不同时,可以用大负载电流的光耦代替小负载电流的光耦。 以六脚光耦TLP641J为例,说明其原理。 一个光控晶闸管(photo-thyristor)耦合(couple to)一个砷化镓(gallium arsenide)红外发光二极管(diode)组成。左边1和2脚是发光二极管,当外加电压后,驱动发光二极管(LED),使之发出一定波长的光,以此来触发光控晶闸管。光控晶闸管的特点是门极区集成了一个光电二极管,触发信号源与主回路绝缘,它的关键是触发灵敏度要高。光控晶闸管控制极的触发电流由器件中光生载流子提。光控晶闸管阳极和阴极间加正压,门极区若用一定波长的光照射,

智能门锁说明书

第一章概要电池盖螺 钉 电池盖 1.1、简介 密码加Mif a r e卡办公室、家用智能安全门锁(其锁面如下图所示)是I C一卡通 系统组成部分之一,其使用的M if a r e卡可以用在其他一卡通设备上。 本门锁系统功能强大,使用灵活方便,(第二代居民身份证可以设置为开门 卡,选配)可实现一卡多门、一门多卡的开门方式,并可将门锁设置成常开状态, 房门假锁(门没有锁好)时,门锁会自动报警提示。密码、开门卡全部由用户自己 删除和配制,最大限度地减少安全漏洞。本系统采用M i f a r e卡,是一种普及型感应 卡(如小区停车场等)。本门锁适用于现代化办公室、写字楼、高级小区公寓、别墅等。后把 手 后锁体 反锁旋 扭 锁头盖按键面板 钥匙按键 1.2、主要功能特点: 前锁体 指示灯 前把手 ●卡片类型: M i f a r e感应卡 ●电容式触摸按键密码输入 ●微波方式检测卡片靠近 ●开锁方式可自行设置:M i f a r e卡和密码可独立开锁/M i f a r e卡和密码同时使用才能开锁 ●卡片在锁上设定,无需系统软件,最多可设2张管理卡,200张开门卡 ●密码可自行修改,最多可设一个管理密码,50个开门密码 ●密码支持乱码输入,最长可输入12位 ●可设置常开状态 ●门未锁好会报警 ●低压报警提示

●电池供电,可外接应急电源 1.3、主要技术指标 ●工作电压: 6.0V(4节5号碱性电池) ●静态功耗: <50uA ●动态功耗: <200mA ●电池寿命: 12个月以上 ●低电压提示: 4.8V ●读卡距离: <30mm ●工作温度: -25℃-70℃ ●工作湿度: ≤80% ●控制板尺寸: 40mmx60mm ●按键板尺寸:50mm x90mm 1.4、开门方式 M i f a r e卡密码办公室、家用门锁系统有以下两种开门模式: ⑴、独立式:单独使用M i f a r e卡或密码可以开门。 ⑵、组合式:M i f a r e卡和密码同时使用才可以开门。注:1.本系统的门锁出厂 初始化后的管理密码为12345678,开门模式为独立式。 1.1.从独立式切换到组合式操作如下: 输入8位管理密码按钥匙键后再按6键蜂鸣器长鸣5声,红蓝灯闪烁,再按钥匙键确认,蜂鸣器“嘀”长响一声,切换成功。若退出则按*号键; 1.2.从组合式切换到独立式操作如下: 刷管理卡后输入8位管理密码按钥匙键,再按6键蜂鸣器长鸣5声,红蓝灯闪烁,再按钥匙键确认,蜂鸣器“嘀”长响一声,切换成功。若退出则按*号键; 2.在组合模式下,若先读卡(或先输入密码后按钥匙键)则“嘀”一声指示灯蓝灯闪烁,然后输入开门密码按钥匙键(或读卡)蓝灯亮开门。

光耦使用技巧

光耦使用技巧 光电耦合器(简称光耦),是一种把发光元件和光敏元件封装在同一壳体内,中间通过电→光→电的转换来传输电信号的半导体光电子器件。光电耦合器可根据不同要求,由不同种类的发光元件和光敏元件组合成许多系列的光电耦合器。目前应用最广的是发光二极管和光敏三极管组合成的光电耦合器,其内部结构如图1 a所示。 光耦以光信号为媒介来实现电信号的耦合与传递,输入与输出在电气上完全隔离,具有抗干扰性能强的特点。对于既包括弱电控制部分,又包括强电控制部分的工业应用测控系统,采用光耦隔离可以很好地实现弱电和强电的隔离,达到抗干扰目的。但是,使用光耦隔离需要考虑以下几个问题: ①光耦直接用于隔离传输模拟量时,要考虑光耦的非线性问题; ②光耦隔离传输数字量时,要考虑光耦的响应速度问题; ③如果输出有功率要求的话,还得考虑光耦的功率接口设计问题。 1 光电耦合器非线性的克服 光电耦合器的输入端是发光二极管,因此,它的输入特性可用发光二极管的伏安特性来表示,如图1b所示;输出端是光敏三极管,因此光敏三极管的伏安特性就是它的输出特性,如图1c所示。由图可见,光电耦合器存在着非线性工作区域,直接用来传输模拟量时精度较差。 图1 光电耦合器结构及输入、输出特性 解决方法之一,利用2个具有相同非线性传输特性的光电耦合器,T1和T2,以及2个射极跟随器A1和A2组成,如图2所示。如果T1和T2是同型号同批次的光电耦合器,可以认为他们的非线性传输特性是完全一致的,即K1(I1)=K2 (I1),则放大器的电压增益G=Uo/U1=I3R3/I2R2=(R3/R2)[K1(I1)/K2(I1)]=R3/R 2。由此可见,利用T1和T2电流传输特性的对称性,利用反馈原理,可以很好的补偿他们原来的非线性。

光耦的基本知识

光耦的基本知识 光耦合器(optical coupler,英文缩写为OC)亦称光电隔离器,简称光耦。光耦合器以光为媒介传输电信号。它对输入、输出电信号有良好的隔离作用,所以,它在各种电路中得到广泛的应用。目前它已成为种类最多、用途最广的光电器件之一。光耦合器一般由三部分组成:光的发射、光的接收及信号放大。输入的电信号驱动发光二极管(LED),使之发出一定波长的光,被光探测器接收而产生光电流,再经过进一步放大后输出。这就完成了电—光—电的转换,从而起到输入、输出、隔离的作用。由于光耦合器输入输出间互相隔离,电信号传输具有单向性等特点,因而具有良好的电绝缘能力和抗干扰能力。又由于光耦合器的输入端属于电流型工作的低阻元件,因而具有很强的共模抑制能力。所以,它在长线传输信息中作为终端隔离元件可以大大提高信噪比。在计算机数字通信及实时控制中作为信号隔离的接口器件,可以大大增加计算机工作的 可靠性。 1.光耦合器的主要优点 信号单向传输,输入端与输出端完全实现了电气隔离隔离,输出信号对输入端无影响,抗干扰能力强,工作稳定,无触点,使用寿命长,传输效率高。光耦合器是70年代发展起来产新型器件,现已广泛用于电气绝缘、电平转换、级间耦合、驱动电路、开关电路、斩波器、多谐振荡器、信号隔离、级间隔离、脉冲放大电路、数字仪表、远距离信号传输、脉冲放大、固态继电器(S SR)、仪器仪表、通信设备及微机接口中。在单片开关电源中,利用线性光耦合器可构成光耦反馈电路,通过调节控制端电流来改变占空比,达到精密稳压目 的。 十几年来,新型光耦合器不断涌现,满足了各种光控制的要求。其应用范围已扩展到计测仪器,精密仪器,工业用电子仪器,计算机及其外部设备、通信机、信号机和道路情报系统,电力机械等领域。这里侧重介绍该器件的工作特性,驱动和输出电路及部分实际应用电路。近年来问世的线性光耦合器能够传输连续变化的模拟电压或模拟电流信号,使其应用领域大为拓宽。下面分别 介绍光耦合器的工作原理及检测方法。 2. 光耦合器的性能及类型 用于传递模拟信号的光耦合器的发光器件为二极管、光接收器为光敏三极管。当有电流通过发光二极管时,便形成一个光源,该光源照射到光敏三极管表面上,使光敏三极管产生集电极电流,该电流的大小与光照的强弱,亦即流过二极管的正向电流的大小成正比。由于光耦合器的输入端和输出端之间通过光信号来传输,因而两部分之间在电气上完全隔离,没有电信号的反馈和干扰,故性能稳定,抗干扰能力强。发光管和光敏管之间的耦合电容小(2pf左右)、耐压高(2.5KV左右),故共模抑制比很高。输入和输出间的电隔离度取决于两部分供电电源间的绝缘电阻。此外,因其输入电阻小(约10Ω),对高内阻源的噪声相当于被短接。因此,由光耦合器构成的模拟信号隔离电路具有优良的电气 性能。

光耦反馈常见几种连接方式及其工作原理

光耦反馈常见几种连接方式及其工作原理 来源:互联网?作者:佚名? 2017-11-07 14:12 ? 23793次阅读 在一般的隔离电源中,光耦隔离反馈是一种简单、低成本的方式。但对于光 耦反馈的各种连接方式及其区别,目前尚未见到比较深入的研究。而且在很 多场合下,由于对光耦的工作原理理解不够深入,光耦接法混乱,往往导致 电路不能正常工作。本研究将详细分析光耦工作原理,并针对光耦反馈的几 种典型接法加以对比研究。 1、常见的几种连接方式及其工作原理常用于反馈的光耦型号有TLP521、PC817等。这里以TLP521为例,介绍这类光耦的特性。TLP521的原边相当于一个发光二极管,原边电流If越大,光强越强,副边三极管的电流Ic 越大。副边三极管电流Ic与原边二极管电流If的比值称为光耦的电流放大 系数,该系数随温度变化而变化,且受温度影响较大。作反馈用的光耦正是 利用“原边电流变化将导致副边电流变化”来实现反馈,因此在环境温度变 化剧烈的场合,由于放大系数的温漂比较大,应尽量不通过光耦实现反馈。 此外,使用这类光耦必须注意设计外围参数,使其工作在比较宽的线性带内,否则电路对运行参数的敏感度太强,不利于电路的稳定工作。 通常选择TL431结合TLP521进行反馈。这时,TL431的工作原理相当于 一个内部基准为2.5V的电压误差放大器,所以在其1脚与3脚之间,要接 补偿网络。常见的光耦反馈第1种接法,如图1所示。图中,Vo为输出电压,Vd为芯片的供电电压。com信号接芯片的误差放大器输出脚,或者把PWM芯片(如UC3525)的内部电压误差放大器接成同相放大器形式,com 信号则接到其对应的同相端引脚。注意左边的地为输出电压地,右边的地为 芯片供电电压地,两者之间用光耦隔离。图1所示接法的工作原理如下:当输出电压升高时,TL431的1脚(相当于电压误差放大器的反向输入端)电压 上升,3脚(相当于电压误差放大器的输出脚)电压下降,光耦TLP521的原 边电流If增大,光耦的另一端输出电流Ic增大,电阻R4上的电压降增大,

光耦的作用

光耦 光耦全称是光耦合器,英文名字是:optical coupler,英文缩写为OC,亦称光电隔离器,简称光耦。 光耦隔离就是采用光耦合器进行隔离,光耦合器的结构相当于把发光二极管和光敏(三极)管封装在一起。 发光二极管把输入的电信号转换为光信号传给光敏管转换为电信号输出,由于没有直接的电气连接,这样既耦合传输了信号,又有隔离干扰的作用。 只要光耦合器质量好,电路参数设计合理,一般故障少见。如果系统中出现异常,使输入、输出两侧的电位差超过光耦合器所能承受的电压,就会使之被击穿损坏。 光耦的参数都有哪些?是什么含义? 1、CTR:电流传输比 2、Isolation Voltage:隔离电压 3、Collector-Emitter Voltage:集电极-发射极电压 CTR:发光管的电流和光敏三极管的电流比的最小值 隔离电压:发光管和光敏三极管的隔离电压的最小值 集电极-发射极电压:集电极-发射极之间的耐压值的最小值 光耦什么时候导通?什么时候截至? ------------------------------------- 关于TLP521-1的光耦的导通的试验报告 要求: 3.5v~24v 认为是高电平,0v~1.5v认为是低电平 思路: 1、0v~1.5v认为是低电平,利用串接一个二极管1N4001的压降0.7V+光耦的LED的压降,吃掉1.4V 左右; 2、24V是最高电压,不能在最高电压的时候,光耦通过的电流太大;所以选用2K的电阻;光耦工作在大概10mA的电流,可以保证稳定可靠工作n年以上; 3、3.5V以上是高电平,为了尽快进入光敏三极管的饱和区,要把光耦的光敏三极管的上拉电阻加大;因此选用10K;同时要考虑到ctr最小为50%; 电路: 1、发光管端: 实验室电源(0~24V)->2K->1N4001->TLP521-1(1)->TLP521-1(2)-gnd1 2、光敏三极管: 实验室电源(DC5V)->10K->TLP521-1(4)->TLP521-1(3)-gnd2

光耦参数及资料

市场常见光耦内部图:

光电耦合器(简称光耦)是开关电源电路中常用的器件。光电耦合器分为两种:一种为非线性光耦,另一种为线性光耦。 常用的4N系列光耦属于非线性光耦 常用的线性光耦是PC817A—C系列。 非线性光耦的电流传输特性曲线是非线性的,这类光耦适合于弄开关信号的传输,不适合于传输模拟量。 线性光耦的电流传输手特性曲线接进直线,并且小信号时性能较好,能以线性特性进行隔离控制。 开关电源中常用的光耦是线性光耦。如果使用非线性光耦,有可能使振荡波形变坏,严重时出现寄生振荡,使数千赫的振荡频率被数十到数百赫的低频振荡依次为号调制。由此产生的后果是对彩电,彩显,VCD,DCD等等,将在图像画面上产生干扰。同时电源带负载能力下降。 在彩电,显示器等开关电源维修中如果光耦损坏,一定要用线性光耦代换。

常用的4脚线性光耦有PC817A----C。PC111 TLP521等常用的六脚线性光耦有:TLP632 TLP532 PC614 PC714 PS2031等。 常用的4N25 4N26 4N35 4N36是不适合用于开关电源中的,因为这4种光耦均属于非线性光耦。 以下是目前市场上常见的高速光藕型号: 100K bit/S: 6N138、6N139、PS8703 1M bit/S: 6N135、6N136、CNW135、CNW136、PS8601、PS8602、PS8701、PS9613、PS9713、CNW4502、HCPL-2503、HCPL-4502、HCPL-2530(双路)、HCPL-2531(双路) 10M bit/S: 6N137、PS9614、PS9714、PS9611、PS9715、HCPL-2601、HCPL-2611、HCPL-2630(双路)、HCPL-2631(双路) 光耦合器的增益被称为晶体管输出器件的电流传输比 (CTR),其定义是光电晶体管集电极电流与LED正向电流的比率(ICE/IF)。光电晶体管集电极电流与VCE有关,即集电极和发射极之间的电压。 可控硅型光耦 还有一种光耦是可控硅型光耦。 例如:moc3063、IL420; 它们的主要指标是负载能力; 例如:moc3063的负载能力是100mA;IL420是300mA; 光耦的部分型号 型号规格性能说明

光耦的工作原理

光耦的工作原理 耦合器以光为媒介传输电信号。它对输入、输出电信号有良好的隔离作用,所以,它在各种电路中得到广泛的应用。目前它已成为种类最多、用途最广的光电器件之一。光耦合器一般由三部分组成:光的发射、光的接收及信号放大。输入的电信号驱动发光二极管(LED),使之发出一定波长的光,被光探测器接收而产生光电流,再经过进一步放大后输出。这就完成了电—光—电的转换,从而起到输入、输出、隔离的作用。由于光耦合器输入输出间互相隔离,电信号传输具有单向性等特点,因而具有良好的电绝缘能力和抗干扰能力。又由于光耦合器的输入端属于电流型工作的低阻元件,因而具有很强的共模抑制能力。所以,它在长线传输信息中作为终端隔离元件可以大大提高信噪比。在计算机数字通信及实时控制中作为信号隔离的接口器件,可以大大增加计算机工作的可靠性。 光耦的优点 光耦合器的主要优点是:信号单向传输,输入端与输出端完全实现了电气隔离,输出信号对输入端无影响,抗干扰能力强,工作稳定,无触点,使用寿命长,传输效率高。光耦合器是70年代发展起来产新型器件,现已广泛用于电气绝缘、电平转换、级间耦合、驱动电路、开关电路、斩波器、多谐振荡器、信号隔离、级间隔离、脉冲放大电路、数字仪表、远距离信号传输、脉冲放大、固态继电器(SSR)、仪器仪表、通信设备及微机接口中。在单片开关电源中,利用线性光耦合器可构成光耦反馈电路,通过调节控制端电流来改变占空比,达到精密稳压目的。 光耦的种类 光电耦合器分为两种:一种为非线性光耦,另一种为线性光耦。 非线性光耦的电流传输特性曲线是非线性的,这类光耦适合于开关信号的传输,不适合于传输模拟量。常用的4N系列光耦属于非线性光耦。 线性光耦的电流传输特性曲线接近直线,并且小信号时性能较好,能以线性特性进行隔离控制。常用的线性光耦是PC817A—C系列。 开关电源中常用的光耦是线性光耦。如果使用非线性光耦,有可能使振荡波形变坏,严重时出现寄生振荡,使数千赫的振荡频率被数十到数百赫的低频振荡依次为号调制。由此产生的后果是对彩电,彩显,VCD,DCD等等,将在图像画面上产生干扰。同时电源带负载能力下降。在彩电,显示器等开关电源维修中如果光耦损坏,一定要用线性光耦代换。常用的4脚线性光耦有PC817A----C。PC111 TLP521等常用的六脚线性光耦有:LP632 TLP532 PC614 PC714 PS2031等。常用的4N2 5 4N26 4N35 4N36是不适合用于开关电源中的,因为这4种光耦均属于非线性光耦。 光耦的作用

光耦选型最全指南及各种参数说明

光耦选型手册 光耦简介: 光耦合器(opticalcoupler,英文缩写为OC)亦称光电隔离器或光电耦合器,简称光耦。它是以光为媒介来传输电信号的器件,通常把发光器(红外线发光二极管LED)与受光器(光敏半导体管)封装在同一管壳内。当输入端加电信号时发光器发出光线,受光器接受光线之后就产生光电流,从输出端流出,从而实现了“电—光—电”转换。 光耦合器一般由三部分组成:光的发射、光的接收及信号放大。输入的电信号驱动发光二极管(LED),使之发出一定波长的光,被光探测器接收而产生光电流,再经过进一步放大后输出。这就完成了电—光—电的转换,从而起到输入、输出、隔离的作用。 光耦的分类: (1)光电耦合器分为两种:一种为非线性光耦,另一种为线性光耦。 非线性光耦的电流传输特性曲线是非线性的,这类光耦适合于开关信号的传输,不适合于传输模拟量。常用的4N系列光耦属于非线性光耦。 线性光耦的电流传输特性曲线接近直线,并且小信号时性能较好,能以线性特性进行隔离控制。常用的线性光耦是PC817A—C系列。 (2)常用的分类还有: 按速度分,可分为低速光电耦合器(光敏三极管、光电池等输出型)和高速光电耦合器(光敏二极管带信号处理电路或者光敏集成电路输出型)。 按通道分,可分为单通道,双通道和多通道光电耦合器。 按隔离特性分,可分为普通隔离光电耦合器(一般光学胶灌封低于5000V,空封低于2000V)和高压隔离光电耦合器(可分为10kV,20kV,30kV等)。 按输出形式分,可分为: a、光敏器件输出型,其中包括光敏二极管输出型,光敏三极管输出型,光电池输出型,光可控硅输出型等。 b、NPN三极管输出型,其中包括交流输入型,直流输入型,互补输出型等。 c、达林顿三极管输出型,其中包括交流输入型,直流输入型。 d、逻辑门电路输出型,其中包括门电路输出型,施密特触发输出型,三态门电路输出型等。 e、低导通输出型(输出低电平毫伏数量级)。 f、光开关输出型(导通电阻小于10Ω)。 g、功率输出型(IGBT/MOSFET等输出)。 光耦的结构特点: (1)光电耦合器的输入阻抗很小,只有几百欧姆,而干扰源的阻抗较大,通常为105~106Ω。据分压原理可知,即使干扰电压的幅度较大,但馈送到光电耦合器输入端的杂讯电压会很小,只能形成很微弱的电流,由于没有足够的能量而不能使二极体发光,从而被抑制掉了。 (2)光电耦合器的输入回路与输出回路之间没有电气联系,也没有共地;之间的分布电容极小,而绝缘电阻又很大,因此回路一边的各种干扰杂讯都很难通过光电耦合器馈送到另一边去,避免了共阻抗耦合的干扰信号的产生。 (3)光电耦合器可起到很好的安全保障作用,即使当外部设备出现故障,甚至输入信号线短接时,也不会损坏仪表。因为光耦合器件的输入回路和输出回路之间可以承受几千伏的高压。 (4)光电耦合器的回应速度极快,其回应延迟时间只有10μs左右,适于对回应速度要求很高的场合。

(完整word版)光耦原理介绍

光电耦合器 TLP521是可控制的光电藕合器件,光电耦合器广泛作用在电脑终端机,可控硅系统设备, 测量仪器,影印机,自动售票,家用电器,如风扇,加热器等 电路之间的信号传输,使之前端与负载完全隔离,目的在于增加安全性,减小电路干扰,减 化电路设计。 东芝TLP521-1,-2和-4组成的砷化镓红外发光二极管耦合到光三极管。 该TLP521-2提供了两个孤立的光耦8引脚塑料封装,而TLP521-4提供了4个孤立的光 耦中16引脚塑料DIP封装 集电极-发射极电压: 55V(最小值)经常转移的比例: 50 %(最小)隔离电压: 2500 Vrms (最小) 图1 TLP521 TLP521-2 TLP521-4 光藕内部结构图及引脚图 图2 TLP521-2 光电耦合器引脚排列图 Characteristic 参数 Symbol 符号 Rating 数值Unit 单位 TLP521?1 TLP521?2 TLP521?4 LED Forward current 正向电流IF 70 50 mA Forward current derating 正向电流减率ΔIF/℃?0.93(Ta≥50℃)?0.5(Ta≥25℃)mA/℃Pulse forward current 瞬间正向脉冲电流IFP 1 (100μ pulse, 100pps) A Reverse voltage 反向电压VR 5 V Junction temperature 结温Tj 125 ℃ 接 收 侧 Collector?emitter voltage 集电极发射 极电压 VCEO 55 V Emitter?collector voltage 发射极集电VECO 7 V

开关电源中的光耦的作用

开关电源中的光耦的作用 开关电源的光耦主要是隔离、提供反馈信号和开关作用。开关电源电路中光耦的电源是从高频变压器次级电压提供的,当输出电压低于稳压管电压是给信号光耦接通,加大占空比,使得输出电压升高;反之则关断光耦减小占空比,使得输出电压降低。旦高频变压器次级负载超载或开关电路有故障,就没有光耦电源提供,光耦就控制着开关电路不能起振,从而保护开关管不至被击穿烧毁。 通常光耦与TL431一起使用。下面是led电源驱动芯片(开关电源芯 片)TMG0321/TMG0165/TMG0265/TMG03655的部分电路。两电阻串联取样到431R端与内部比较器进行比较.然后根据比出的信号再控制431K端(阳极接光耦那一端)对地的电阻,然后达到控制光耦内部发光二极管的亮度.(光耦内部一边是一发光二极管,一边是一光敏三极管)通过发光的强度.控制另一端三极管的CE端的电阻也就是改变了led电源驱动芯片(开关电源芯 片)TMG0321/TMG0165/TMG0265/TMG0365检测脚的电流(1脚:电压反馈引脚,通过连接光耦到地来调整占控比).根据电流的大小,led电源驱动芯片(开关电源芯 片)TMG0321/TMG0165/TMG0265/TMG0365就会自动调整输出信号的占空比,达到稳压的目的 TMG0321/TMG0165/TMG0265/TMG0365芯片是一款高集成度、高性能的PWM+MOSFET 管二合一的电流型离线式开关电源控制器。适用于充电器、电源适配器、LED驱动电源等各类小功率的开关电源。采用DIP8 封装,无需加散热器可输出0~36W 的功率(加散热可以做到更大)。电路结构简单,成本低。具有完善的保护功能,包括过压、欠压、过温、过载及短路等保护。固定振荡频率及抖频功能,可以降低EMI。待机功率低,在待机时进入跳周期模式,符合“能源之星”等待机功耗标准要求。 光耦在开关电源中有两个作用。 1;隔离,把进线220V的强电和电路板电路隔离开来,也就是常说的…冷底板?。 2;同时把后面工作电路中变化的电压信号通过光耦的原端发光二极管转变成光信号照射到次端的光敏二极管从而改变光敏二极管的电阻,在通过这个电阻的变化去控制开关电源,完成了隔离和反馈控制的作用。

光电耦合器原理及使用

光电耦合器,又称光耦,万联芯城销售原装现货光耦元件,品牌囊括TOSHIBA,LITEON,EVERLIGHT,VISHAY等。型号种类繁多,万联芯城为终端生产企业提供电子元器件一站式配套服务,节省了客户的采购成本。点击进入万联芯城 点击进入万联芯城

光耦使用技巧 光电耦合器(简称光耦),是一种把发光元件和光敏元件封装在同一壳体内,中间通过电→光→电的转换来传输电信号的半导体光电子器件。光电耦合器可根据不同要求,由不同种类的发光元件和光敏元件组合成许多系列的光电耦合器。目前应用最广的是发光二极管和光敏三极管组合成的光电耦合器,其内部结构如图1a所示。 光耦以光信号为媒介来实现电信号的耦合与传递,输入与输出在 电气上完全隔离,具有抗干扰性能强的特点。对于既包括弱电控制部分,又包括强电控制部分的工业应用测控系统,采用光耦隔离可以很好地实现弱电和强电的隔离,达到抗干扰目的。但是,使用光耦隔离需要考虑以下几个问题: ①光耦直接用于隔离传输模拟量时,要考虑光耦的非线性问题; ②光耦隔离传输数字量时,要考虑光耦的响应速度问题; ③如果输出有功率要求的话,还得考虑光耦的功率接口设计问题。 1 光电耦合器非线性的克服 光电耦合器的输入端是发光二极管,因此,它的输入特性可用发 光二极管的伏安特性来表示,如图1b所示;输出端是光敏三极管, 因此光敏三极管的伏安特性就是它的输出特性,如图1c所示。由图 可见,光电耦合器存在着非线性工作区域,直接用来传输模拟量时精

度较差。 图1 光电耦合器结构及输入、输出特性 解决方法之一,利用2个具有相同非线性传输特性的光电耦合器,T1和T2,以及2个射极跟随器A1和A2组成,如图2所示。如果T 1和T2是同型号同批次的光电耦合器,可以认为他们的非线性传输 特性是完全一致的,即K1(I1)=K2(I1),则放大器的电压增益G=Uo/ U1=I3R3/I2R2=(R3/R2)[K1(I1)/K2(I1)]=R3/R2。由此可见,利用T1 和T2电流传输特性的对称性,利用反馈原理,可以很好的补偿他们原来的非线性。 图2 光电耦合线性电路 另一种模拟量传输的解决方法,就是采用VFC(电压频率转换)方式,如图3所示。现场变送器输出模拟量信号(假设电压信号),电压频率转换器将变送器送来的电压信号转换成脉冲序列,通过光耦隔离后送

线性光耦原理与电路设计

可编辑 线性光耦原理与电路设计 1. 线形光耦介绍 光隔离是一种很常用的信号隔离形式。常用光耦器件及其外围电路组成。由于光耦电路简单,在数字隔离电路或数据传输电路中常常用到,如UART协议的20mA电流环。对于模拟信号,光耦因为输入输出的线形较差,并且随温度变化较大,限制了其在模拟信号隔离的应用。 对于高频交流模拟信号,变压器隔离是最常见的选择,但对于支流信号却不适用。一些厂家提供隔离放大器作为模拟信号隔离的解决方案,如ADI的AD202,能够提供从直流到几K的频率内提供0.025%的线性度,但这种隔离器件内部先进行电压-频率转换,对产生的交流信号进行变压器隔离,然后进行频率-电压转换得到隔离效果。集成的隔离放大器内部电路复杂,体积大,成本高,不适合大规模应用。 模拟信号隔离的一个比较好的选择是使用线形光耦。线性光耦的隔离原理与普通光耦没有差别,只是将普通光耦的单发单收模式稍加改变,增加一个用于反馈的光接受电路用于反馈。这样,虽然两个光接受电路都是非线性的,但两个光接受电路的非线性特性都是一样的,这样,就可以通过反馈通路的非线性来抵消直通通路的非线性,从而达到实现线性隔离的目的。 市场上的线性光耦有几中可选择的芯片,如Agilent公司的HCNR200/201,TI子公司TOAS的TIL300,CLARE的LOC111等。这里以HCNR200/201为例介绍 2. 芯片介绍与原理说明 HCNR200/201的内部框图如下所示 其中1、2引作为隔离信号的输入,3、4引脚用于反馈,5、6引脚用于输出。1、2引脚之间的电流记作IF,3、4引脚之间和5、6引脚之间的电流分别记作IPD1和IPD2。输入信号经过电压-电流转化,电压的变化体现在电流IF上,IPD1和IPD2基本与IF成线性关系,线性系数分别记为K1和K2,即 K1与K2一般很小(HCNR200是0.50%),并且随温度变化较大(HCNR200的变化范围在0.25%到0.75%之间),但芯片的设计使得K1和K2相等。在后面可以看到,在合理的外围电路设计中,真正影响输出/输入比值的是二者的比值K3,线性光耦正利用这种特性才能达到满意的线性度的。 . . 精品

光耦的作用1

电气隔离的要求。A与B电路之间,要进行信号的传输,但两电路之间由于供电级别过于悬殊,一路为数百伏,另一路为仅为几伏;两种差异巨大的供电系统,无法将电源共用; A电路与强电有联系,人体接触有触电危险,需予以隔离。而B线路板为人体经常接触的部分,也不应该将危险高电压混入到一起。两者之间,既要完成信号传输,又必须进行电气隔离; 运放电路等高阻抗型器件的采用,和电路对模拟的微弱的电压信号的传输,使得对电路的抗干扰处理成为一件比较麻烦的事情——从各个途径混入的噪声干扰,有可能反客为主,将有用信号“淹没”掉; 除了考虑人体接触的安全,又必须考虑到电路器件的安全,当光电耦合器件输入侧受到强电压(场)冲击损坏时,因光耦的隔离作用,输出侧电路却能安全无恙。 以上四个方面的原因,促成了光耦器件的研制、开发和实际应用。光耦的基本作用,是将输入、输出侧电路进行有效的电气上的隔离;能以光形式传输信号;有较好的抗干扰效果;输出侧电路能在一定程度上得以避免强电压的引入和冲击。 二、光电耦合器件的一般属性: 1、结构特点:输入侧一般采用发光二极管,输出侧采用光敏晶体管、集成电路等多种形式,对信号实施电-光-电的转换与传输。 2、输入、输出侧之间有光的传输,而无电的直接联系。输入信号的有无和强弱控制了发光二极管的发光强度,而输出侧接受光信号,据感光强度,输出电压或电流信号。 3、输入、输出侧有较高的电气隔离度,隔离电压一般达2000V以上。能对交、直流信号进行传输,输出侧有一定的电流输出能力,有的可直接拖动小型继电器。特殊型光耦器件能对毫伏,甚至微伏级交、直流信号进行线性传输。 4、因光耦的结构特性,输入、输出侧需要相互隔离的独立供电电源,即需两路无“共地”点的供电电源。下述一、二类光耦输入侧由信号电压提供了输入电流通路,但实质上输入信号回路,也是有一个供电支路的;而线性光耦,则输入侧与输出侧一样,是直接接有两种相隔离的供电电源的。 三、在变频器电路中,经常用到的光电耦合器件,有三种类型: 1、一种为三极管型光电耦合器,如PC816、PC817、4N35等,常用于开关电源电路的输出电压采样和误差电压放大电路,也应用于变频器控制端子的数字信号输入回路。结构最为简单,输入侧由一只发光二极管,输出侧由一只光敏三极管构成,主要用于对开关量信号的隔离与传输; 2、第二种为集成电路型光电耦合器,如6N137、HCPL2601等,输入侧发光管采用了延迟效应低微的新型发光材料,输出侧为门电路和肖基特晶体管构成,使工作性能大为提高。其频率响应速度比三极管型光电耦合器大为提高,在变频器的故障检测电路和开关电源电路中也有应用; 3、第三种为线性光电耦合器,如A7840。结构与性能与前两种光耦器件大有不同。在电路中主要用于对m V级微弱的模拟信号进行线性传输,在变频器电路中,往往用于输出电流的采样与放大处理、主回路直流

智能门锁方案

智能门锁方案 如今随着消费水平与生活品质的不断提升,每天进行着开门与关门的动作都在和门锁有着密不可分的关联。我们身边越来越多的智能门锁进入视野,作为第一道安全防线它所起的作用不言而喻,智能门锁的出现不仅解决了生活忘带钥匙的烦恼,同时也给我们带来了安全与便捷性。 目录 1.智能门锁的特点 2.智能门锁的作用 3.智能门锁的挑选方式 1.智能门锁的特点 智慧门锁与门业的结合,满足了门业企业对锁具不同层次的需要,智慧锁可实现与物联网互动,可以满足消费者对高品质智慧生活的追求。现在智慧门锁已经发展成熟,市场的需要逐渐从传统机械锁

向智慧门锁转变。虽然在平常生活中,人们普遍认为智慧门锁这种高科技产品多会出现在高档小区、酒店客房、银行等地方,但是事实它已经融入到了人们的平常生活中,这种高科技产品已经与普通的生活相结合,它不仅给生活带来了安全和方便,而且有助于人们享受智慧时期智慧家居带来的轻松便捷。配备完整智慧家居安全解决方案,实现与智慧家居相联动。随着生物识别技术水平的成熟,已经应用到电子智慧门锁中,研发出具有全新概念的全自动智慧锁,为我们开启智慧家居生活保驾护航。 2.智能门锁的作用 都说家是心灵和身体的港湾。是你遇到困难和压力的避风港口更是温馨和快乐的栖息场所。家是一种牵挂,一种温暖,一种幸福。大

千世界,芸芸众生,每个人都有一个属于自己的家。家是我们人生的驿站,有了这个家就有了安全感。每当夜幕降临或是出差旅途你都会无时无刻不在惦念着家中的安全。说到安全不得不提到家中的门锁。一般来说,在涉及到家庭安防设备产品中门锁是不可缺少的一个重要环节,它是家庭的生命财产安全第一道关卡,可谓是重中之重。 3.智能门锁的挑选方式 与传统机械门锁相比,智能门锁或电子门锁只不过在解锁方式上不同。前者是通过物理钥匙开锁,后者是通过指纹、密码、手机或卡片等,安全性的关键在于锁体而并非触发解锁的方式。锁体部件带有天地钩装置,酮体金属材料很有质感,一般都是不锈钢材质。拿到手中非常的厚实。这个锁体属于标准锁体,可适配99%的防盗门。标准

(整理)光耦问题大解决

最近在使用光耦的时候遇到几个问题恳请指教? 小生在使用光耦的时候遇到几个问题,恳请大侠指教: 1:CTR(50%-300%)是什么意思?在电路中这个CTR是多少?与If有关吗? 2:光耦的工作方式是电流控制还是电压控制。最近在PS2561与TL431配合稳压反馈的电路中,外部参数怎么调整光耦都在正常工作,很费解。 3:希望有大侠分享光耦的使用心得。 潮光光耦网答:1、CTR(50%-300%)是电流传输比, CTR(Curremt-Trrasfer Ratio),它等于直流输出电流IC与直流输入电流IF的百分比。简单来讲,就是个电流放大系数。50%-600%是该系列光耦的CTR,在电路中是多少要看你选择的是哪个光耦。 2、光耦是电流控制的,你调节外部参数还在那个工作的范围里面,肯定可以工作啊,如果你把限流的电阻加很大就会出问题了。 3、CTR是电流传输比Ice/If我知道。但是在具体电路中CTR的值是变化的还是固定的呢。我用 的光耦是NEC的PS2561,W系列。传输比是130%-260%,看规格书是说CTR与If有关,是吗? 另外我也想知道怎么来测量光耦的传输比。 在这个电路中,我通过改变R425的阻值,从100R改变为15K,光耦均能正常工作,R426 两端 的电压维持在1V。当R425=100R的时候,Vk=22.9V,计算得出流过光耦的电流为1.1mA;当 R425=15K的时候,Vk=3.68V,计算得出流过光耦的电流为0.13mA.这个电流变化还是很大的 ,但是光耦正常工作。

关于东芝光耦缺货型号,瑞萨(原NEC)光耦替代方案. 关于东芝光耦缺货型号,潮光光耦网(https://www.doczj.com/doc/4f8396093.html,)建议各位采购和技术人员,瑞萨(原NEC)光耦替代方案 另外还有很多高速光耦型号的替代 详情登录https://www.doczj.com/doc/4f8396093.html, 光耦器件在变频器电路中的作用 一、电路中为什么要使用光耦器件?电气隔离的要求。A与B电路之间,要进行信号的传输,但两 电路之间由于供电级别. 一、电路中为什么要使用光耦器件?

光电耦合器工作原理详细解说

光电耦合器工作原理详细解说 光电耦合器件简介 光电偶合器件(简称光耦)是把发光器件(如发光二极体)和光敏器件(如光敏三极管)组装在一起,通过光线实现耦合构成电—光和光—电的转换器件。光电耦合器分为很多种类,图1所示为常用的三极管型光电耦合器原理图。 当电信号送入光电耦合器的输入端时,发光二极体通过电流而发光,光敏元件受到光照后产生电流,CE导通;当输入端无信号,发光二极体不亮,光敏三极管截止,CE不通。对于数位量,当输入为低电平“0”时,光敏三极管截止,输出为高电平“1”;当输入为高电平“1”时,光敏三极管饱和导通,输出为低电平“ 0”。若基极有引出线则可满足温度补偿、检测调制要求。这种光耦合器性能较好,价格便宜,因而应用广泛。 图一最常用的光电耦合器之部结构图三极管接收型 4脚封装

图二光电耦合器之部结构图三极管接收型 6脚封装 图三光电耦合器之部结构图双发光二极管输入三极管接收型 4脚封装

图四光电耦合器之部结构图可控硅接收型 6脚封装

图五光电耦合器之部结构图双二极管接收型 6脚封装 光电耦合器之所以在传输信号的同时能有效地抑制尖脉冲和各种杂讯干扰,使通道上的信号杂讯比大为提高,主要有以下几方面的原因: (1)光电耦合器的输入阻抗很小,只有几百欧姆,而干扰源的阻抗较大,通常为105~106Ω。据分压原理可知,即使干扰电压的幅度较大,但馈送到光电耦合器输入端的杂讯电压会很小,只能形成很微弱的电流,由于没有足够的能量而不能使二极体发光,从而被抑制掉了。 (2)光电耦合器的输入回路与输出回路之间没有电气联系,也没有共地;之间的分布电容极小,而绝缘电阻又很大,因此回路一边的各种干扰杂讯都很难通过光电耦合器馈送到另一边去,避免了共阻抗耦合的干扰信号的产生。 (3)光电耦合器可起到很好的安全保障作用,即使当外部设备出现故障,甚至输入信号线短接时,也不会损坏仪表。因为光耦合器件的输入回路和输出回路之间可以承受几千伏的高压。 (4)光电耦合器的回应速度极快,其回应延迟时间只有10μs左右,适于对回应速度要求很高的场合。 光电隔离技术的应用 微机介面电路中的光电隔离 微机有多个输入埠,接收来自远处现场设备传来的状态信号,微机对这些信号处理后,输出各种控制信号去执行相应的操作。在现场环境较恶劣时,会存在较大的杂讯干扰,若这些干扰随输入信号一起进入微机系统,会使控制准确性降低,产生误动作。因而,可在微机的输入和输出端,用光耦作介面,对信号及杂讯进行隔离。典型的光电耦合电路如图6所示。该电路主要应用在“A/D转换器”的数位信号输出,及由

光电耦合器工作原理

光电耦合器工作原理 光电耦合器件简介 光电偶合器件(简称光耦)是把发光器件(如发光二极体)和光敏器件(如光敏三极管)组装在一起,通过光线实现耦合构成电—光和光—电的转换器件。光电耦合器分为很多种类,图1所示为常用的三极管型光电耦合器原理图。 当电信号送入光电耦合器的输入端时,发光二极体通过电流而发光,光敏元件受到光照后产生电流,CE导通;当输入端无信号,发光二极体不亮,光敏三极管截止,CE不通。对于数位量,当输入为低电平“0”时,光敏三极管截止,输出为高电平“1”;当输入为高电平“1”时,光敏三极管饱和导通,输出为低电平“ 0”。若基极有引出线则可满足温度补偿、检测调制要求。这种光耦合器性能较好,价格便宜,因而应用广泛。 图一最常用的光电耦合器之内部结构图三极管接收型4脚封装

图二光电耦合器之内部结构图三极管接收型6脚封装 图三光电耦合器之内部结构图双发光二极管输入三极管接收型4脚封装

图四光电耦合器之内部结构图可控硅接收型6脚封装

图五光电耦合器之内部结构图双二极管接收型6脚封装 光电耦合器之所以在传输信号的同时能有效地抑制尖脉冲和各种杂讯干扰,使通道上的信号杂讯比大为提高,主要有以下几方面的原因: (1)光电耦合器的输入阻抗很小,只有几百欧姆,而干扰源的阻抗较大,通常为105~106Ω。据分压原理可知,即使干扰电压的幅度较大,但馈送到光电耦合器输入端的杂讯电压会很小,只能形成很微弱的电流,由于没有足够的能量而不能使二极体发光,从而被抑制掉了。 (2)光电耦合器的输入回路与输出回路之间没有电气联系,也没有共地;之间的分布电容极小,而绝缘电阻又很大,因此回路一边的各种干扰杂讯都很难通过光电耦合器馈送到另一边去,避免了共阻抗耦合的干扰信号的产生。 (3)光电耦合器可起到很好的安全保障作用,即使当外部设备出现故障,甚至输入信号线短接时,也不会损坏仪表。因为光耦合器件的输入回路和输出回路之间可以承受几千伏的高压。 (4)光电耦合器的回应速度极快,其回应延迟时间只有10μs左右,适于对回应速度要求很高的场合。 光电隔离技术的应用 微机介面电路中的光电隔离 微机有多个输入埠,接收来自远处现场设备传来的状态信号,微机对这些信号处理后,输出各种控制信号去执行相应的操作。在现场环境较恶劣时,会存在较大的杂讯干扰,若这些干扰随输入信号一起进入微机系统,会使控制准确性降低,产生误动作。因而,可在微机的输入和输出端,用光耦作介面,对信号及杂讯进行隔离。典型的光电耦合电路如图6所示。该电路主要应用在“A/D转换器”的数位信号输出,及由CPU发出的对前向通道的控制信号

相关主题
文本预览
相关文档 最新文档