当前位置:文档之家› 风电场风电机组选型、布置及风电场发电量估算 2

风电场风电机组选型、布置及风电场发电量估算 2

风电场风电机组选型、布置及风电场发电量估算 2
风电场风电机组选型、布置及风电场发电量估算 2

5 风电机组选型、布置及风电场发电量估算

批准:宋臻核定:董德兰审查:吉超盈校核:牛子曦编写:李庆庆

5 机型选择和发电量估算

5.1风力发电机组选型

在风电场的建设中,风力发电机机组的选择受到风电场自然环境、交通运输、吊装等条件等制约。在技术先进、运行可靠的前提下,选择经济上切实可行的风力发电机组。根据风场的风能资源状况和所选的风力发电机组,计算风场的年发电量,选择综合指标最佳的风力发电机组。

5.1.1 建设条件

酒泉地区南部为祁连山脉,北部为北山山系,中部为平坦的戈壁荒滩,形成两山夹一谷的地形,成为东西风的通道,风能资源丰富。场址位于祁连山山脉北麓山前冲洪积戈壁平原上,地势开阔,地形平缓,便于风机安装;风电场东侧距312国道约30km,可通过简易道路运输大型设备。

根据黑厓子北测风塔 2008年7月~2009年6月测风数据计算得到该风电场场址90m高度风功率密度分布图见图5.1(图中颜色由深至浅代表风能指标递减)。由图5.1可见,该风电场场址地势开阔,地形平坦,风能指标基本一致。根据风能资源计算结果,该风电场主风向和主风能方向一致,以E风和W风的风速、风能最大和频次最高。

用WASP9.0软件推算到预装风电机组轮毂高度90m高度年平均风速为7.32m/s,平均风功率密度为380W/m2,威布尔参数A=8.3, k=2.0;50m高度年平均风速为7.04m/s,平均风功率密度为330W/m2,威布尔参数A=7.9, k=2.06。根据《风电场风能资源评估方法》判定该风电场风功率密度等级为3级。

黑厓子西风电场90m高度年有效风速(3.0m/s~25.0m/s)时数为7131h,风速频率主要集中在3.0 m/s~12.0m/s ,3.0m/s以下和25.0m/s以上的无效风速少,无破坏性风速, 年内变化小,全年均可发电。

由玉门镇气象站近30年资料推算70m、80 m、90 m和100m高度标准空气密度条件下50年一遇极大风速分别为48.00m/s、48.90 m/s、49.71 m/s和50.45m/s,小于52.5m/s。50~90m高度15m/s风速段湍流强度介于0.0660~0.0754之间,小于0.1,湍流强度较小。根据国际电工协会IEC61400-1(2005)判定该风电场可选用适合IECⅢ及其

以上安全等级的风机。

图5.1 黑厓子西风电场90m高度风功率密度分布图

5.1.2 机型选择

根据目前国内成熟的商品化风电机组技术规格,并结合该风电场建设条件,初步选择单机容量为2000kW、2500kW和3000kW的风电机组进行比选。机型特征参数如下:叶片数: 3片

额定功率: 2000kW、2500kW和3000kW

风轮直径: 93~113m

切入风速: 3~4 m/s

切出风速: 20~25m/s

额定风速: 11~12.5m/s

安全风速: 52.5~70m/s

轮毂高度: 69~100m

根据黑厓子西风电场风能资源特点和场址范围,风机排布采用东西间隔9D,南北间隔5D,按风机厂提供的当地空气密度下的功率曲线采用WASP9.0软件分别计算各风电机组发电量。并参照目前各风电机组在我国市场上的大致价格情况,对初选的3种机型6种方案进行了投资估算和财务分析,结果见表5.1。

表5.1 初选方案技术经济比较表

由表5.1可看出,各方案中,方案1的单位电度投资最小,为3.83元/kW.h;方案6的单位电度投资最大,为4.19元/kW.h。由于方案5为业主指定机型,所以本次以方案5(华锐SL113-3000/90)机型作为设计依据。

5.1.3 风力发电机组的技术指标

推荐机型风力发电机机组主要技术参数见表5.2,推荐机型风力发电机功率曲线及推力系数曲线表(1.017 kg/m3)见表5.3。推荐机型风力发电机(1.017 kg/m3)功率曲线和推力系数曲线见图5.2。

表5.2 SL113-3000/90低温型风机主要技术参数表

表5.3 推荐机型功率曲线及推力系数曲线表(1.017 kg/m3)

图5.2 推荐机型SL113-3000/90(空气密度1.017kg/m3)功率曲线和推力系数5.2 风电场总体布置

5.2.1 风电机组布置原则

(1)根据风向和风能玫瑰图,使风机间距满足发电量较大,尾流影响较小为原则。从本风电场风向、风能玫瑰图分析,主风向为西(W)风和东(E)风,风能最大的方向是西(W)风和东(E)风,风电机组排列应垂直于主风能方向。

(2)本风电场属戈壁滩地,地势平坦。风电机的布置应根据地形条件,充分利用风电场的土地和地形,经多方案比较,选择机组之间的行距和列距,尽量减少尾流影响。

(3)考虑风电场的送变电方案、运输和安装条件,力求输电线路长度较短,运输和安装方便。

(4)不宜过分分散,便于管理,节省土地,充分利用风力资源。

5.2.2 风电场内风电机组布置

风电场场址为戈壁荒滩,地势平坦,主风向和最大风能密度的方向一致,盛行风向稳定,所以,本区域风电场风机排列方式采用矩阵式分布,该风电场内部采用梅花型布置。即风力发电机组群排列方向与盛行风向垂直,前后两排错位,后排风机位于前排2台风机之间。

根据国外进行的试验,风机之间的距离为其风轮直径的20倍时,风机之间无影响,但考虑到道路、输电电缆等投资成本的前提下,风机之间列距一般约为3~5倍风轮直径,行距约为5~9倍风轮直径。根据本风场常年风向和主风能方向为E和W,确定南北为列,东西为行。选取华锐SL113-3000/90风机(轮毂高度为90m,功率曲线为1.017kg/m3下)分别按4D×8D、4D×9D、4D×10D、5D×8D、5D×9D、5D×10D、6D×8D、6D×9D 布置进行比较。经过比较发现,增大风机南北间距比增大东西间距发电量增加的多,且风机间距增大到一定程度后间距增大发电量增加缓慢。各布置方案中5D×9D布置方案最优,最终按5D×9D布置,即南北间隔为5D (565m),东西间隔为9D(1020m)。具体机位可根据实际地形进一步在小范围内优化,以便风机布置更为合理。风电场推荐机型风机总平面布置图见附图15。

5.2.3 风电场之间尾流影响分析

黑厓子西风电场东侧有已建成的黑厓子风电场一期、二期(各安装24台单机容量2.0MW的风机,总装机容量96MW)。

为尽可能减少风电场之间的尾流影响,本次设计考虑在两个风电场之间设置一定的风速恢复距离。在计算分析过程中,当逐步增大两个风电场的距离时,风电机组之间的尾流影响值也逐步减小,且风场间距增大到一定程度后间距增大尾流影响减小缓慢。考虑到黑厓子西后期风机布置,本次黑厓子西风电场和已建成的黑厓子风电场之间预留1.3km的间距。

5.3 年上网电量估算

(1)理论年发电量计算

根据黑厓子北测风塔2008.07~2009.06实测资料及风机布置方案,推荐机型华锐SL113-3000/90当地空气密度(1.017kg/m3)下的功率曲线和推力系数,利用WASP9.0软件进行发电量计算,得到黑厓子西风电场工程风机的理论年发电量和风机尾流影响后(计算时不仅考虑了本风场风机之间的尾流影响,而且考虑了黑厓子一期、黑厓子二期风电场风机的尾流影响)的年发电量。

(2)风电机组利用率

根据目前不同风电机组的制造水平和本风电场的实际条件,本次设计风机可利用率采用95%。

(3)风电机组功率曲线保证率

风电机组厂家对功率曲线的保证率一般为95%,本次在计算发电量时采用当地空气密度1.017kg/m3下风电机组功率曲线,本次功率曲线的保证率取94%。

(4)控制与湍流影响折减

当风向发生转变时,风机的叶片与机舱也逐渐要随着转变,但实际运行中的发电机组控制总是落后于风的变化,因此在计算电量时要考虑此项折减。本风电场湍流强度介于0.05~0.07,湍流强度较小。本风场此两项折减系数取4%。

(5)叶片污染折减

叶片表层污染使叶片表面粗糙度提高,翼型的气动特性下降。考虑本风场风机受当地工业污染影响为主,空气质量较好,叶片污染折减系数取1%。

(6)气候影响停机

玉门镇气象站(1971~2000年)30年实测极端最高温度为36℃;实测极端最低温度为-35℃。

经调查甘肃洁源三十里井子风电场与甘肃大唐低窝铺风电场,在(2008年1月21日~2008年2月9日)时间段,甘肃洁源三十里井子风电场使用的常温型风机因低温停机两周,甘肃大唐低窝铺风电场使用的低温型风机没有出现因低温而停机的情况。

因此根据本风场的气候特性,参考其他工程取气候影响停机折减系数:低温型风机折减系数取2%,常温型风机折减系数取2.5%,由于本次确定机型为低温型风机,因此气候影响折减系统取2%。

(7)厂用电、线损等能量损耗

初步估算厂用电和输电线路、箱式变电站损耗占总发电量的5%。

(8)电网波动影响

考虑到酒泉地区风电装机容量较大,建成后对电网影响较大。本次电网波动折减系数取2%。

(9)其它因素影响

考虑风电场运行中遇到一些其它的影响因素,暂按1%考虑。

经以上综合折减后,黑厓子西风电场工程推荐机型发电量成果见表5.4。

表5.4 黑厓子西风电场工程推荐机型发电量计算表

由表5.4可看出,推荐方案5华锐SL113-3000/90机型年上网电量为10470.5万kW.h,年利用小时数为2181h,容量系数为0.25。

黑厓子西风电场工程单机发电量计算表见表5.5。

华电甘肃玉门黑厓子西风电场48MW工程可行性研究报告

表5.5 黑厓子西风电场工程推荐方案单机发电量计算表

5-10

风力发电发展现状及预测

风力发电发展现状及预 测 文件编码(TTU-UITID-GGBKT-POIU-WUUI-0089)

我国能源发展现状及发展趋势预测 一、我国能源利用现状及存在的问题 首先从不同一次能源的利用现状谈起: 1.煤炭 我国煤炭资源在地理分布上的总格局是西多东少、北富南贫。从地区分布看,储量主要集中分布在新疆、内蒙古、山西、陕西、贵州、宁夏、河南和安徽8省,8省储量占全国储量近90%。在我国的自然资源中,基本特点是富煤、贫油、少气,这就决定了煤炭在一次能源中的重要地位。截至2007年底,中国煤炭剩余可采储量1 145亿t,仅次于美国和俄罗斯,位居世界第3位,占世界总量的%,煤炭的储采比为45,远低于世界平均水平的133。中国是世界第一产煤大国,据统计,2009年煤炭产量达到亿t ,比2008年增加亿t,同比增长%,占世界总产量的42%左右。 煤炭发电存在的问题:煤炭发电过程中除了排放二氧化碳等温室气体外外,还会排放出大量的二氧化硫。二氧化硫是主要的空气污染物之一,也是酸雨的主要来源。部分地区的荒漠化根源在于燃煤发电排放的二氧化硫,

它造成大面积植被死亡、生态环境退化、蓄水能力下降。燃煤发电是山西、内蒙古生态退化的罪魁祸首,是北京沙尘暴的主要原因。 2.石油 我国是少油国家,但石油在我国能源结构中占有重要地位(仅次于煤炭处于第二位),目前我国石油还不能够完全自给,约50%的石油用量需要从国外进口。最近几年我国石油进口量一直在增长,从2004年的亿t增长到2009年的亿t,其中2004年增幅最大达%,除了2005年和2008年增幅较小外,其他年份增幅都在2位数以上,从中可看出中国的石油消费对外依存度较高。截至2007年底,中国石油剩余可采储量亿t,位居世界第13位,但仅占世界总量的%,石油储采比1l,远低于世界平均水平的。 3.天然气 我国的天然气工业发展相对比较落后,但是我国天然气生产消费增速较快。近几年我国天然气产量和消费量都保持了较高的增长幅度。目前我国探明的天然气地质资源量为22.66万亿m3,可采资源量为

风电场风机优化布置数学模型研究

风电场风机优化布置数学模型研究 王丰, 刘德有,谭志忠 (河海大学水利水电工程学院) 摘 要:推导建立了一种新的风电场简化风机尾流模型,给出了任意角度来风情况下的风电场风机尾流影响 区域以及尾流叠加的计算公式,建立了计入多因素的风电场成本-效益模型和增量装机效益评价模型。最后,利用算例资料,进行了给定区域风电场的风机优化布置以及不同布置方案的经济性分析和对比评价,确定了 风机最优布置数量和布置形式。结果表明:采用本文的风机优化布置数学模型能够有效地进行大型风电场的 风机布置优化计算分析。 关键词:风电场;风机优化布置;尾流模型;成本-效益模型;效益评价模型 1 概述 由于具有良好风能资源的区域土地资源是不可再生的有限的宝贵资源,但风能的能流密度很低,大型风电场的占地面积相对很大,因此,如何充分、高效地开发利用风能资源及经济、合理地减小风电场的占地面积将成为今后值得关注的重要研究课题[1-3]。此外,对于海上风电场,国外工程经验表明,其输电线路成本约占工程总投资的20%[4,5]。因此,无论是陆上或海上的大型风电场,在满足风机设计出力的前提下,应对其风机布置进行反复的优化和经济评价分析。 对于总占地面积给定的风电场,如不考虑各风机尾流的相互影响,则其风机数量布置越多,单位容量的平均投资成本越低,经济性越好。但实际上,当风经过风机后,由于风轮吸收了部分风能,且转动的风轮会导致湍动能增大,因此风机后风速会有一定程度的突变减小,这就是所谓的风机尾流效应。尔后,在周围气流的作用下,风速会逐渐恢复,但在到达下游风机时,风速的恢复值与两风机间的距离有关。如风电场内风机布置过密,以致风经过上游风机后的风速来不及恢复而导致下游风机的工作风速过低,则将造成下游风机出力大大减小甚至为零,此时,风电场的单位电量效益较小、单位出力投资成本较大,经济性较差。反之,如风电场内风机布置过疏,风机总装机容量过小,则其单位容量的投资成本和运行维护费用均较高,经济性也较差。因此,根据风电场场址处的风能资源情况,在选定风机单机容量后,合理确定风机布置数量和布置形式是提高大型风电场经济性的重要设计环节。 关于风电场的风机优化布置,目前国内大多依赖国外商业软件进行工程设计,而其基本理论的学术研究还很少,主要集中在经验估算上,如文献[6]给出了风机布置的经验间距,指出:在盛行风向上风机间应相隔5~9倍风轮直径,在垂直于盛行风向上风机间应相隔3~5倍风轮直径。显然,该方法比较粗略,难以得到优化布置方案。国外一些学者采用数值模拟方法对该问题进行了研究,如文献[7,8]用遗传算法对风电场风机布置进行了优化,但其采用的风机尾流模型存在一定缺陷,给出的风电场风机成本-效益模型过于简单,且未给出风机尾流影响区域的计算方法以及增量装机效益评价模型等。 本文针对大型风电场的特点,推导建立其新的风机尾流模型、成本-效益模型和增量装机效益评价模型等,编制相应的优化计算程序,并结合算例进行给定区域风电场的风机优化布置以及不同布置方案的经济性分析和对比评价,确定风机最优布置数量和布置形式。 2 数学模型的建立 风电场风机优化布置的数学模型主要包括以下三个模型:(1)风机尾流模型;(2)风机成本-效益模型;(3)风电场增量装机效益评价模型。风机尾流效应的模拟是整个风电场发电量效益预测的基础,因此,风机尾流模型的合理性将直接影响到风电场效益的估算以及风机优化布置的正确性。风电场风机成本-效益模型用于对某一选定的风机布置方案进行其与风机相关的投资成本核算,并结合尾流模型对评估周期内的发电量效益进行估算,该模型的合理性会直接影响到风机布置方案的经济性评价结论。风电场增量装机效益评价模型用于对选定的不同风机布置方案的对比评价分析,并最终确定给定区域风电场的风机最优布置方案。 2.1 风机尾流模型 目前,在进行风电场风机优化布置模拟计算时,均忽略了风轮的湍流影响,而采用简化风机尾流线性扩张模型[7-9],即尾流影响边界随距离线性增大模型。此外,目前多数风机尾流模型未考虑风经过风机后的尾流影响区域直径的突然扩大,而一些考虑了该因素的尾流风速预测解析计算公式,则不能满足上游风机后风速与尾流影响区域边界的连续性。为此,本文推导了一种新的简化风机尾流模型。 如图1所示,采用控制体积法进行风轮流场分析。u0、u分别为风轮前、后距离风轮x处的风速;

风电场综合统计指标计算公式

风电综合统计指标计算公式 1、平均风速 平均风速是指统计周期内风机轮毂高度处瞬时风速的平均值。取统计周期内全场风机或场内代表性测风塔的风速平均值,即 1 1n i i V V n ==∑ 单位:米/秒(/m s ) 式中: V —统计周期内的风电场平均风速,/m s ; n —统计周期内的全场风机的台数或代表性测风塔的个数; i V —统计周期内的单台风机或单个代表性测风塔的平均风速,/m s 。 2、平均温度 平均温度是指统计周期内风机轮毂高度处环境温度的平均值,即 1 1n i i T T n ==∑ 单位:摄氏度(o C ) 式中: T —统计周期内的风电场平均温度,o C ; n —统计周期内的记录次数; i T —统计周期内的第i 次记录的温度值,o C 。 3、平均空气密度 平均空气密度是指统计周期内风电场所处区域空气密度的平均值,即 P RT ρ= 单位:千克/立方米(3 /kg m ) 式中: ρ—统计周期内的风电场平均空气密度,3 /kg m ; P —统计周期内的风电场平均大气压强,a P ; R —气体常数,取287/J kg K ?;

T —统计周期内的风电场开氏温标平均绝对温度,K 。 4、 平均风功率密度 平均风功率密度是指统计周期内风机轮毂高度处风能在单位面积上所产生的平均功率,即 3 1 12n i wp i D V n ρ==∑()() 单位:瓦特/平方米(2 /W m ) 式中: wp D —统计周期内的风电场平均风功率密度,2 /W m ; n —统计周期内的记录次数; ρ—统计周期内的风电场平均空气密度,3/kg m ; 3 i V —统计周期内的第i 次记录平均风速值的立方。 5、有效风速小时数 有效风速小时数是指统计周期内风机轮毂高度处介于切入风速与切出风速之间的风速累计小时数,简称有效风时数,即 n i i V V V V T T == ∑有效风时数 单位:小时(h ) 式中: T 有效风时数 —统计周期内的风电场有效风时数,h ; 0V —风机的切入风速,/m s ; n V —风机的切出风速,/m s ; i V T —统计周期内出现介于切入风速(0V )和切出风速(n V ) 之间的风速小时数,h 。 6、风机可利用率 风机可利用率是指统计周期内除去风机因定期维护或故障时数后剩余时数与总时数除去非设备自身责任停机时数后剩余时数的百分比,即 (1)100%A B T B η-=- ?-可利用率 式中: η可利用率—统计周期内的风电场风机可利用率;

风电场发电量计算方法

发电量计算梳理 发电量计算部分,我们所要做的工作是这样的: 当拿到标书(可研报告)等资料后,我们首先要提澄清(向业主索要详细发电量计算所需的资料);然后选择机型(确定该风电场适合用什么类型的风机);最后进行发电量计算。 一、澄清 下面列出了发电量计算需要的所有内容,提澄清的时候,缺什么就列出来。 风电场详细发电量计算所需资料汇总 (1)请业主提供风电场的可研报告; (2)请业主提供风电场内的测风塔各高度处完整一年实测风速、风向、风速标准偏差数据,以及测风塔的地理位置坐标; (3)请业主提供测风塔测风数据的密码; (4)风电场是否已确定风机布置位置,若已确定风机位置,请提供相应的固定风机点位坐标; (5)请业主提供风电场的边界拐点坐标; (6)请业主提供风电场内预装轮毂高度处的50年一遇最大风速; (7)请业主提供风电场场址处的空气密度; (8)请业主提供预装轮毂高度处15m/s湍流强度特征值; (9)请业主提供风电场的海拔高度以及累年极端最低温度; (10)请业主提供风电场内测风塔处的综合风切变指数; (11)请业主提供风电场影响发电量结果的各项因素的折减系数。

https://www.doczj.com/doc/4618504802.html,/SELECTION/inputCoord.asp 第二步:打开Global Mapper软件,将.dxf和.zip地形文件拖入。 设置“投影”:Gauss Krueger(3 degree zones)\Gauss Krueger(6 degree zones); 设置“基准”:XIAN 1980(CHINA)\BEIJING 1954; 设置“地区”:Zone x(xxE-xxE)。 1 将.dxf拖入Global Mapper并设置好投影及基准后,将鼠标放于地图任意位置,软件右下角会显示点位坐标。完整坐标表示应该为横坐标8位,纵坐标7位。而横坐标的前两位经常被省去,如果你看到的是横坐标6位,纵坐标7位,那么横坐标的前两位就是被省略的。此时要人为对地图进行整体偏移。偏移量为“地区”Zone后的数值,见下图。

风电场的选址及布局优化仿真

第38卷第6期2010年6 月 Vo.l38No.6 Jun.2010风电场的选址及布局优化仿真 乔歆慧1,张延迟2,3,解大1 (1.上海交通大学电气工程系,上海200240;2.华东理工大学自动化系,上海200237; 3.上海电机学院电气工程系,上海200240) 摘要:风电场建设选址及风机选型与布局是风电场设计的核心内容。基于以上两方面介绍了风能特性、风电场设计的基本思想及设计准则。通过W i ndFarme r仿真软件完成了风电场优化设计实例。 关键词:风电场;风电场选址;风电场规划 作者简介:乔歆慧(19852),女,硕士研究生,从事并网型风电研究和电力系统仿真。 中图分类号:T M614;TK80文献标志码:A文章编号:100129529(2010)0620934203 L oca tion Se lection ofW i n d Farm and O p ti m iza tion Si m ula tion of Its Layou t QIA O X i n2hu i1,Z HA NG Y an2chi2,3,XIE Da1 (1.Dept.of E lectr i ca l Engi neering,Shang ha i Jiaoto ngUn i v.,Shangha i200240,Ch i na; 2.Dept.of Auto m a ti on,East Ch i na Un i versity of Sc ience and Technol ogy,Shangha i200237,Ch i na; 3.Dept.of E lectr ica l Engi neer i ng,Shangha i D i anjiUn i v.,Shangha i200240,Chi na) Ab stra ct:The core contents of the desi gn of t he w i nd far m are the l oca ti on selectio n for t he co nstructio n and the ty pe se lecti on and layo ut for the fan.The characteristi cs of t he wi nd energy and the basic thought and des i gn criter i on for the desig n of the w i nd far m were presented based o n the t wo aspects above.The practi ca l examp l e of t he o pti m izatio n design for the w i nd far m was co m pleted usi ngW i nd F ar m er si m ulatio n soft ware. K ey w or ds:w i nd far m;locati on se lecti on of t he wind farm;progra mm ing of the w i nd far m 风电场的建设规划是风力发电工程的首要任务,主要包括两方面。一是风电场的选址,通过风能资源评估选择适合建设风电场的地点;二是风力发电机的选型及布局,满足最大限度地利用风能资源及最低的环境影响。基于以上两点进行风电场最优规划,是确保最大限度地利用风能及产生最大经济效益的先决条件。 1风电场选址的考虑因素 (1)风力资源 风能的利用形式主要是将大气运动时所具有的动能转化为其他的能源形式。高纬度与低纬度之间的温度差异可形成南北之间的气压梯度,使空气作水平运动而形成风。地球自转所产生的偏向力也是产生风能的主要原因。除以上两方面外,风能在很大程度上受海洋、地形的影响,时空分布较为复杂。 风能的大小与气流密度通过的面积及气流速度的立方成正比,其中空气密度(Q)、气体速度(v)随地理位置、海拔、地形等因素变化。 普遍采用的风速模型是4种风速的叠加,即V=V WB+V WG+V WR+V WN(1)式中V WB )))基本风;V WG )))阵风;V WR )))渐变风; V W N )))随机噪声风。 (2)地形对风速的影响 当冷空气在斜坡地形上因重力而加速下滑所形成的风叫做流曳风,或称重力流及下坡风。在冷空气能够翻越某一段山地的情况下,才会出现背风坡的流曳风。山脚处流曳风的风速与山顶及山脚处的温差有关。一般,温差越大,风速越快。 当气流经过山谷时,由于横截面减少,造成气流速度加大,形成狭管效应。 地形斜坡由于热力的作用很容易构成斜压性,是产生低空急流的主要原因。在斜压大气中,水平温度梯度会引起地转风随高度的变化。 (3)观测点选取 风电场风能观测点的位置选取与风能的准确度量及风电机组控制密切相关。一般来说,海域观测点风能的不稳定性较小,高山测点有一定的不稳定性,而城郊测点风能的不稳定性较大。自

风电运营管理平台运行维护系统用户手册

北京天源科创风电技术有限责任公司 BEIJING TIANYUAN CREA TION WINDPOWER TECHNOLOGY CO., LTD 华润新能源数字风电运营管理平台运行维护系统用户手册 V1.1 北京天源科创风电技术有限责任公司 2011年4月

目录 第1章系统的登录与退出 (4) §1.1用户登录 (4) §1.2岗位编码规则 (6) §1.3用户退出 (6) §1.4登录与退出常见问题 (7) 第2章基础数据管理 (8) §2.1风电场设置 (8) §2.2风机类型维护 (8) §2.3风机设置 (9) 第3章风机故障管理 (11) §3.1故障登记 (11) §3.2故障列表 (11) §3.3风机专用工作票(故障) (13) 第4章缺陷管理 (13) §4.1缺陷登记 (14) §4.2缺陷受理 (16) §4.3缺陷工作票登记 (17) §4.4缺陷查询统计 (17) §4.5风机专用工作票(缺陷) (18) 第5章巡检管理 (18) §5.1巡检单上传 (19) §5.2巡检单下载 (19) §5.3巡检报告 (19) §5.4巡检查询统计 (23) §5.5风机专用工作票(巡检) (23) 第6章检修管理 (24) §6.1检修计划 (24) §6.2检修报告 (25) §6.3考核评价 (27) §6.4风机专用工作票(检修) (28)

第7章工单管理 (28) §7.1风机专用工作票 (28) §7.2变电站第一种工作票 (34) §7.3变电站第二种工作票 (37) §7.4变电站第三种工作票 (40) §7.5线路第一种工作票 (41) §7.6线路第二种工作票 (44) §7.7动火工作票 (46)

风电场度运行分析模板_0

风电场度运行分析模板 (可替换为所属公司的Logo标识)精选资料克山龙源风力发电有限公司曙光风电场月安全生产分析单位:曙光风电场编制:魏志国审核:(审核人姓名)时间:年月日目录一、本月概述二、风资源情况()、测风设备情况()、测风塔观测结果三、运行情况()、发电量情况()、计划完成情况()、利用小时数情况()、综合厂用电情况()、线损情况()、机组可用系数情况四、设备检修情况()当月定检情况()、风电机组故障检修情况()、升压站设备检修情况()、线路检修情况()、损失影响五、安全管理情况()、概述()、本月两票情况()、本月一类障碍情况六、遗留的主要问题和下月计划()、本月遗留的问题()、下月计划工作、本月概述克山曙光风电场地处克山县中部北联乡北联林场区域为典型丘陵地形场区内的海拔在~米之间。 风电场坐标位于N°′″~°′″、E°′″~°′″范围内。 克山曙光风电场拟选用台单机容量为kW的WTG风力发电机组总装机MW。 综合考虑各种因素本风电场年上网电量为万kW·h综合折减系数为年利用小时数h容量系数。 本风电场建设一座升压站建设MV A主变一台升压站为后期项目预留间隔。 kV主接线采用线路变压器组接线。 变电站通过一回LGJ线路送入kV克山变电站的kV侧,距离km。 (内容:风电场当月总体情况具体包括风电场简介机型简介工作

外委情况等。 对新、扩建项目要注明工程进度包括机组并网情况试运行情况等。 )二、风资源情况()、测风设备情况①测风塔概述测风塔编号:高度:米位置:位于号风机北米处。 (内容包括:测风塔编号、高度、位置等信息如有变动注明新塔或新设备的明细资料及投运时间如发生移位需详细说明)②测风塔管理测风塔每月巡视一次自动读取数据。 (内容包括:测风塔月巡视周期、巡视次数测风塔测风数据读取周期遇到测风数据不能正常发送的需记录现场上塔取数实际和次数)③测风塔设备健康情况测风塔自投运开始一切正常。 (内容包括:测风塔故障开始、恢复日期、故障描述、原因分析和处理经过)()、测风塔观测结果①本月风速情况测风塔编号:xx 月月xx月平均备注年年相差年年相差米平均风速(ms) 米平均风速(ms) 风切变系数 米标准高度平均风速(ms) 风机轮毂高度(m)轮毂高度平均风速(ms)风机测得风速(ms)风机高度为:m(风速情况中:第一行填写高度最高的传感器测得数值第二行取其他高度传感器测得数值不固定第三行填写风切变系数计算风切变系数时应选取数据完整率大于的不同高度传感器数据来计算。 计算公式如下:设定米高度为标准高度第四行填写米高度平均风

单机计算法修正风电场发电量计算

2009年8月 第4期 * 收稿日期:2009-06-31 作者简介:牟磊(1981-),男,四川涪陵人,硕士。 《风电场风能资源评估方法》规范了对风电场的风资源评估方法和内容,其中对风电场风速频率的模拟提出了运用Weibull 模型进行模拟,由于该模型是一个单峰类似正态分布的模型,因此对于特殊地区的风速频率双峰的状态不能够很好模拟,造成发电量计算的有偏差,使经济评价缺少了可信度,造成业主投资没有依据,经济效益不明显。 本文提出运用单机计算方法对频率分布不均的风电场进行修正,修正后能够满足风电场风资源评估的需求。 1 Weibull分布 威布尔分布是一种单峰的,两参数的分布 函数法。其概率密度函数可表达为: f (V ) = —— —— K-1 e - — K 式中:k 和c 为威布尔分布的两个参数,k 称作形 状参数,c 称作尺度参数。当c =1时,称为标准威布尔分布。 2 单机计算的具体方法 单机计算法基本思想:通过风资源评估软件计算出测风塔位置的发电量;利用测风塔位置各个风速时间段和所对应的风机功率曲线相乘的方法计算出测风塔位置准确发电量,通过同一位置不同方法计算出发电量相比,计算出 K C V C V C 76

2009年8月 第4期 测风塔数据 功率与风速时间相乘 功率与风速时间相乘 单点计算出测风塔位置发电量 计算出修正系数 计算出发电量测风塔位置风机发电量Wasp 、windfarm 软件 修正风场内发电机电量 weibull 分布的修正系数,从而修正了风场的发电量。 2.1 单机计算具体方法 风电场设计一个必要条件就是需要进行一年的测风,测风塔数据经过数据插补和订正后具有代表性,因此假定在此处建设风机,用此处各个风速段的时间和所选机型各个风速段下功率曲线相乘的方法计算出此处理论发电量,此发电量是较为准确的;根据wasp 软件或其他软件对风场风机进行排布,为了下一步修正,在测风塔位放置一台参考机组,通过软件计算出整个风场内各个风机布置位的理论发电量;将wasp 软件计算出测风塔位置的风机发电量与根据风速段和功率曲线相乘计算出的发电量相除得出修正系数,将此修正系数用于风电场发电量计算的折减中,计算出风电场的年发电量。 2.2 单机计算方法实现的技术路线 风资源软件计算初步发电量、测风塔位置单点发电量计算、对整个风电场发电量修正等过程。实现单点计算修正风频分布模型的技术路线见图1。 图1 技术路线图 图2 风电场甲风机排布图 表1 测风塔50m高度风速频率分布 图中右下角位置为测风塔位置,在测风塔位置立一台风力发电机组为参考风机位,用两种算法计算参考风机位的发电量。 风电场测风塔50m 高度的风速频率分布见表1和图3 。 3 实例计算 3.1 风速分布频率比较符合weibull分布情况 某风电场甲地势平坦,场区内有一座测风 77 塔,选取测风塔2007年4月27日至2008年4月28日一个完成的测风周期数据,经过插补和订正数据具有代表性。 利用WasP 软件进行风机布置和发电量计算。风机排布如图2。

风电安装手册

风力发电机安全手册编号:FT000320-IT R00

目录 1.责任与义务 2.安全和防护设备 2.1 必备设备 2.2 用于特殊操作的设备2.2.1 用于紧急下降的设备2.2.2 其它特殊操作 3.基本安装注意事项 3.1 概述 3.2 对风力发电机的操作 3.3 在风力发电机附近逗留及活动3.4 访问控制单元和面板 3.5 访问变压器平台 4.安全设备 4.1 紧急停止 4.2 与电网断开 4.3 过速保护设备(VOG) 4.4 机械安全设备 4.4.1 啮合锁 4.4.2 活动元件的保护罩4.4.3 机舱顶的栏杆 4.4.4 机舱后门的栏杆 5.在风力发电机内部检查或工作6.对风力发电机的设备的操作6.1 使用绞盘 6.2 使用紧急下降器 7.风力发电机的固定 8.急救 9.应急计划 10.发生火灾时的应急措施11.发生事故时的措施

1.责任与义务 Gamesa Eólica将安全与健康方向的考虑放在首位并一以贯之,因此在我们生产的风力发电机的设计中体现了防护的需要。 设计是在决不损害人、动物或者财产的前提下进行的。因此,只要风力发电机的安装、维护和使用遵照Gamesa Eólica的设计,就不会出现这方向的问题。 经批准接触或使用风力发电机的人员在《工作场所安全与健康》方面有权得到有效保护。 同样,经批准在风力发电机中进行有关工作的人员必须遵守《工作场所的安全与健康以防工作场所事故》的有关法律及法规,在执行任务时必须正确地使用工作设备和所有防护性设备,在可能遇到的危险情况的出现必须及时报告。 经批准执行安装任务的人员必须已经接收了足够且合适的理论与实践方面的训练以正 确执行任务。 本文档介绍基本的预防,在接触风力发电机时在安全方面必须遵守的义务及程序。不同维护工作的具体安全措施将在有关这些操作的具体文档中介绍。 2.安全及防护设备 2.1必备设备 在对风力发电机进行任何检查或者维护工作之前,每个人至少应该理解如下设备的使用说明: ●安全设备 ●可调的系索 ●系索(1m和2m) ●安全头盔 ●安全手套 ●防护服 除了上面指出的设备外,每个维护或者检查小组必须具有如下物件: ●紧急下降设备 ●灭火器(在运输工具中有) ●移动电话 在任何时候,不管是在风力发电机内部还是在其外部,都应该使用安全头盔。 建议在上升设备中准备手电筒、安全眼镜和保护性耳塞,这取决于要完成的工作(是对正在运行的风力发电机的检查还是维护)。 操作者必须正确使用安全设备并在使用之前和之后都对安全设备进行检查。对安全设备

2017年中国火力发电量、水力发电量、风力发电量及核能发电量预测分析

2017年中国火力发电量、水力发电量、风力发电量及核能发电量预测分析一、中国火力发电量预测 2015年,全国火力发电累计产量为42,101.9亿千瓦时,同比降低了2.8%;2016年1-8月,累计产量为28,639亿千瓦时,同比降低了0.5%。预计,2017年火力发电量将达到41,738亿千瓦时,未来五年(2017-2021)年均复合增长率约为-0.49%,2021年火力发电量将达到40,933亿千瓦时。 中国火力发电量预测 数据来源:公开数据整理 二、中国水力发电量预测 2015年,全国水力发电累计产量为9,959.9亿千瓦时,同比增长了4.2%;2016年1-8月,累计产量为7,157亿千瓦时,同比增长了12%。预计2017年水力发电量将达到11,801亿千瓦时,未来五年(2017-2021)年均复合增长率约为7.92%,2021年水力发电量将达到16,010亿千瓦时。 中国水力发电量预测

数据来源:公开数据整理 三、中国风力发电量预测 2015年1-10月,全国风力发电累计产量为1,370.71亿千瓦时,同比增长了14.94%;2016年1-8月,累计产量为1,358.00亿千瓦时,同比增长了16.3%。预计,2017年风力发电量将达到1,846亿千瓦时,未来五年(2017-2021)年均复合增长率约为15.20%,2021年风力发电量将达到3,252亿千瓦时。 中国风力发电量预测 数据来源:公开数据整理 四、中国核能发电量预测

2015年1-10月,全国核能发电累计产量为1,404.56亿千瓦时,同比增长了30.99%;2016年1-8月,累计产量为1,364.00亿千瓦时,同比增长了23.7%。预计2017年核能发电量将达到2,128亿千瓦时,未来五年(2017-2021)年均复合增长率约为21.10%,2021年核能发电量将达到4,577亿千瓦时。 中国核能发电量预测

风电亟须优化电源布局和电源结构

风电亟须优化电源布局和电源结构 更新:2011-08-17 11:50:14 来源:人民网 电源布局和电源结构亟待调整优化 长期以来,我国大区电网存在电源分布不合理,造成电源结构(基、腰、峰荷电源)性矛盾,即电网严重缺调峰电源,是当前阻碍节能减排的根源,且未引起决策部门重视。 我国电力一次能源结构中,水电占有20%多,煤电70%多,其它核、抽水蓄能、燃气电厂极少,合起来不足10%,因此煤发电量占总发电量80%以上,二氧化碳和二氧化硫排放自然大。风能、太阳能等绿色能源只是最近几年才迅速发展。 一次能源结构不合理必然导致电源结构不合理。我国水电占20%多,且多是径流,西南大水电发电年利用4000小时以上,汛期大发,带基荷,供水期可提供调峰也不足10%。特别是上世纪90年代以来,电网进入超高压、大电网、大机组时期,执行“以大代小”、“以煤代油”政策;使得原一天内可开停作主力调峰的小火电近亿千瓦,逐年关停,至2010年已关停8100万千瓦,但却没有规划补建峰荷电源,致使调峰矛盾凸显,至今时过20年,矛盾依旧,实属决策失误。新发展热电机组又没有严格执行国家“以热定电”的原则,机组多为30万千瓦,打孔抽汽的一般只允许调峰10%。低碳大机组合理调峰率为20%,现有水、火电可调峰率共约为总电源20%,远不能满足电网40%~50%峰谷差的调整要求。 因此,多年来一直迫使超临界和超超临界的60~100万千瓦机组低谷时压负荷到50%亚临界运行,使低碳机组高碳运行。如继续增建低碳煤电大机组,必将继续强迫非常规调峰,岂不恶性循环。目前各大区电网都出现缺电,其主因是煤炭平衡工作没做好,煤炭涨价电价不变,实际更是缺调峰电源,估计约占总电源的15%~20%。因此调整电源布局和电源结构已迫在眉睫。 欧洲风电调峰模式可供借鉴 据欧洲风能协会研究报告的观点,电网接纳更多风电是经济性和政策性问题,不是技术水平和运行问题,德、法、丹麦、西班牙等国对风电并网以及电网如何适应作了深入研究,结论是,风电容量可占电网比例超过20%。其经验分析如下: 风电与抽水蓄能配套、风电出力预报、电价政策——西班牙风电强劲发展。 西班牙风电装机占总装机20%,发电量占8.7%,核电15%,抽水蓄能约10%,为开发EIHierro岛、Canary岛风能,建相应抽水蓄能与之联合运行,风电场风电功率预测是强制性的,与电价挂钩。 风电与抽水蓄能配套,加强电网建设——德国风电积极发展。 德国风电占总装机17%,电量占总7%,水电比重很低,消纳风电措施除与欧洲电网强联外,建设超过10%抽水蓄能,就地调峰平衡,因峰荷远距离输送增加网损。

风电场电量计算公式

风电场电量计算公式 单位:MWh 1.关口表计量电量 1)上网电量 251正向A总(A+) 2)用网电量 251反向A总(A-) 3)送网无功 251正向R总(R+) 4)用网无功 251反向R总(R-) 2.发电量:是指每台风力发电机发电量的总和。 1)表底读数 (312A+)+(313A+)+(314A+)+(315A+)+(316A+)+(317A+) 2)日用量 (今日表底读数-昨天表底读数)*350*60*0.001(即*21) 3)月累计今日日用量+昨天月累计 4)年累计今日日用量+昨天年累计 3.上网电量:风电场与电网的关口表计计量的风电场向电网输送的电能。 1)表底读数 251A+ 2)日用量 (今251A+)-(昨251A+) 3)月累计今日日用量+昨天月累计 4)年累计今日日用量+昨天年累计 4.用网电量:风电场与电网的关口表计计量的电网向风电场输送————————————————————————————————————————————————————— 的电能。 1)表底读数 251A- 2)日用量 (今251A-)-(昨251A-)

3)月累计今日日用量+昨天月用量 4)年累计今日日用量+昨天年累计 5.站用电量 1)表底读数 361A+ 2)日用量 (今日表底读数-昨天表底读数)*350*20*0.001(即*7) 3)月累计今日日累计+昨天月累计 4)年累计今日日累计+昨天年累计 注意:现在算出的单位是Mwh,运行日志上的单位是万kWh,要将算出的数小数点前移一位(如:427Mwh=42.7万kWh) *厂用电率:风电场生产和生活用电占全场发电量的百分比。 厂用电率=(厂用电量日值?发电量日值)×100 =(0.161?20.02)×100 *风电场的容量系数:是指在给定时间内该风电场发电量和风电场装机总容量的比值 容量系数=发电量日值?(50×2×24) 等效利用小时数也称作等效满负荷发电小时数。 *风电机等效利用小时数(等效满负荷发电小时数):是指某台风电机发电量折算到该风电机满负荷的运行小时数。 ————————————————————————————————————————————————————— 公式为:风电机等效利用小时数,发电量,额定功率 *风电场等效利用小时数(等效满负荷发电小时数):是指某风电场发电量折算到该场满负荷的运行小时数。

风电机组维护手册

广东明阳风电技术有限公司 MY1.5s风力发电机组 维护维修手册 编写: 校对: 审核: 批准: 发布日期:2010年1月

目录 前言 (10) 第一部分 (13) 第一章 MY1.5S风机简介 (14) 1.1MY1.5S风力发电机组的结构概述 (14) 1.2MY1.5S 风力发电机组电气概述 (16) 第二章叶片 (18) 2.1简介 (18) 2.2叶片的检查与维护 (19) 2.2.1外观检查 (20) 2.2.2叶片螺栓的维护和检查 (22) 2.2.3叶片的安装及拆卸 (24) 2、3工具与备料 (26) 2.3.1维护工具清单 (26) 2.3.2 修复材料及工具 (27) 第三章轮毂及变桨系统 (28) 3.1简介 (28) 3.2构成示意图 (28) 3.3注意事项 (28) 3.4变桨轴承的维护维修 (29) 3.4.1 变桨轴承结构图: (30) 3.4.2 变桨轴承的维护 (30) 3.4.3变桨轴承螺栓检查 (31) 3.4.4变桨轴承滚道和齿面润滑 (32) 3.5变桨电机 (33) 3.5.1变桨电机技术参数: (33) 3.5.2变桨电机检查 (33) 3.5.3检查绝对值编码器和变桨编码器连接螺栓 (35) 3.6变桨齿轮箱 (36) 3.6.1技术参数 (36) 3.6.2变桨齿轮箱与变桨小齿轮维护 (36) 3.6.3 变桨齿轮箱螺栓检测 (37) 3.6.4变桨齿轮箱润滑 (37) 3.7变桨控制 (39) 3.7.1变桨控制装置检查: (39) 3.7.2变桨控制箱螺栓紧固 (40) 3.7.3检查备用电池 (40) 3.7.4检查限位开关 (40) 3.7.5检查轮毂与滑环连接电缆 (41) 3.8轮毂 (41)

风电功率预测系统功能规范

风电功率预测系统功能规范(试行) 前言 为了规范风电调度技术支持系统的研发、建设及应用,特制订风电功率预测系统功能规范。本规范制订时参考了调度自动化系统相关国家标准、行业标准和国家电网公司企业标准。制订过程中多次召集国家电网公司科研和生产单位的专家共同讨论,广泛征求意见。本规范规定了风电功率预测系统的功能,主要包括预测时间尺度、信息要求、功率预测、统计分析、界面要求、安全防护、接口要求及性能指标等。本规范由国家电网公司国家电力调度通信中心提出并负责解释;本规范主要起草单位:中国电力科学研究院、吉林省电力有限公司。本规范主要起草人:刘纯、裴哲义、王勃、董存、石永刚、范国英、郭雷。 1范围 1.1本规范规定了风电功率预测系统的功能,主要包括预测时间尺度、数据准备、数据采集与处理、功率预测、统计分析、界面要求、安全防护、接口要求及性能指标等。 1.2本规范用于指导电网调度机构和风电场的风电功率预测系统的研发、建设和应用管理。本规定的适用于国家电网公司经营区域内的各级电网调度机构和风电场。 2术语和定义 2.1风电场Wind Farm由一批风电机组或风电机组群组成的发电站。 2.2数值天气预报Numerical Weather Prediction根据大气实际情况,

在一定的初值和边值条件下,通过大型计算机作数值计算,求解描写天气演变过程的流体力学和热力学的方程组,预测未来一定时段的大气运动状态和天气现象的方法。 2.3风电功率预测Wind Power Forecasting以风电场的历史功率、历史风速、地形地貌、数值天气预报、风电机组运行状态等数据建立风电场输出功率的预测模型,以风速、功率或数值天气预报数据作为模型的输入,结合风电场机组的设备状态及运行工况,得到风电场未来的输出功率;预测时间尺度包括短期预测和超短期预测。 2.4短期风电功率预测Short term Wind Power Forecasting未来3天内的风电输出功率预测,时间分辨率不小于15min。 2.5超短期风电功率预测ultra-short term Wind Power Forecasting 0h~4h的风电输出功率预测,时间分辨率不小于15min。 3数据准备 风电功率预测系统建模使用的数据应包括风电场历史功率数据、历史测风塔数据、历史数值天气预报、风电机组信息、风电机组及风电场运行状态、地形地貌等数据。 3.1风电场历史功率数据风电场的历史功率数据应不少于1a,时间分辨率应不小于5min。 3.2历史测风塔数据a)测风塔位置应在风电场5km范围内;b)应至少包括10m、70m及以上高程的风速和风向以及气温、气压等信息;c)数据的时间分辨率应不小于10min。 3.3历史数值天气预报历史数值天气预报数据应与历史功率数据相

大型风电场风机最优布置规律研究_王丰

D OI :10.3876/j .issn .1000-1980.2010.04.023 收稿日期:2009-11-18 基金项目:国家“十一五”科技支撑计划(2006BAA01A24)作者简介:王丰(1981—),男,河南周口人,博士研究生,主要从事抽水蓄能及新能源技术研究.E -mail :wfnj3089@https://www.doczj.com/doc/4618504802.html, 大型风电场风机最优布置规律研究 王 丰1,刘德有1,曾利华1,陈守伦1,陈星莺 2 (1.河海大学水利水电学院,江苏南京 210098; 2.河海大学水资源高效利用与工程安全国家工程研究中心,江苏南京 210098)摘要:采用较完善的风机优化布置计算数学模型,研究了单一风向风况下的风电场风机最优布置 的一般性规律,给出了风机布置排数和风机间距的合理取值范围:风电场区域无限制以及风电场沿 盛行风向上尺寸较小时,风机横向间距应为2D 0~3D 0(D 0为风轮直径),纵向间距应大于15D 0;风 电场沿盛行风向上尺寸较大时,可考虑布置3排以上风机,风机纵向间距应为15D 0~20D 0,风机横 向间距应为3D 0~5D 0;风机优化布置一般可不考虑风速大小的影响.在此基础上,研究了均匀对称 风况、1个主导风向风况和多个主导风向风况下的风机最优布置规律,得出了风机最优布置形式与 风况特征的规律性基本一致,且风况越复杂,风机最优布置的规律性越弱的结论. 关键词:风电场;风机;布置排数;风机间距 中图分类号:TK83 文献标志码:A 文章编号:1000-1980(2010)04-0472-07 风电场风机优化布置是风电场规划中的关键环节,其布置方案的优劣直接影响风电场的发电量以及风电场的经济性水平.在风电场区域边界以及该区域风资源确定的情况下,如风机布置数量太少,将会降低该区域风资源的利用率;但如风机布置数量太多、风机间距太小,则会由于风机尾流的影响而降低各单台风机 的发电效益,从而降低整个风电场开发的经济性[1-3].因此,考虑风机布置数量在内的风机最优布置方案是风 电场规划设计和开发过程中需要深入研究的重要课题. 在最初的研究中,风电场风机优化布置理论基本属于经验性结论,布置方式也基本为规则性的行列布置.如Patel [4] 提出:风机布置的最优距离为在盛行风向上风机间隔8D 0~12D 0(D 0为风轮直径),在垂直于盛行风向上风机间隔1.5D 0~3D 0.而王承煦等[5]指出:在盛行风向上要求风机间隔5D 0~9D 0,在垂直于盛行风向上要求风机间隔3D 0~5D 0.这些基于经验判断给出的风机布置间隔距离,在一定程度和特定阶段指导了风电场风机优化布置的探索研究和工程应用.Ammara 等[6]曾据此构建了一个风电场风机布置方案,在保证相同发电量的同时,能够有效地减少风力发电机组的总占用土地面积. 实际上,不同风电场和风机类型的风机最优间隔距离是不相同的,上述经验成果只能在一定条件范围内作为风机优化布置设计的参考.为此,许多学者针对不同风况、不同区域边界的特定风电场进行了风机最优布置的更精确的计算研究.Mosetti 等[7]首先提出了基于遗传算法的风机优化布置计算方法,把风电场总投资成本、发电效益作为优化变量,用两者的比值作为目标参数,评价不同风机布置方案优劣.该计算方法采用穷举法对不同风机布置方案进行经济比较,最终确定相对优化的风机布置方案,摆脱了风机经验布置间距的限制,可以获得更科学、合理的结果.Grady 等[8]在Mosetti 等[7]研究的基础上,利用遗传算法研究了风机优化布置问题,并结合理论分析,对风机优化布置形式进行了计算分析和校核,得到了更好的结果.Mar midis 等[9]采用Monte -Carlo 方法对风电场风机优化布置问题进行了研究,提出了研究该问题的新思路和新方法. Mosetti 等[7-9]的研究虽提出了若干创新性的计算方法和模型,研究成果也为风电场风机优化布置的研究和实际工程设计提供了重要的理论基础,但其中所采用的风机优化布置计算模型还不完善,更未对风电场风机最优布置的一般性规律进行系统的探讨分析和论证研究. 第38卷第4期 2010年7月河海大学学报(自然科学版)Journal of Hohai University (Natural Sciences )Vol .38No .4Jul .2010

风电机组维护手册

.. 广东明阳风电技术有限公司 MY1.5s风力发电机组 维护维修手册 编写: 校对: 审核: 批准:

发布日期:2010年1月 目录 前言 (10) 第一部分 (14) 第一章MY1.5S风机简介 (15) 1.1MY1.5S风力发电机组的结构概述 (15) 1.2MY1.5S 风力发电机组电气概述 (17) 第二章叶片 (19) 2.1简介 (19) 2.2叶片的检查与维护 (21) 2.2.1外观检查 (22) 2.2.2叶片螺栓的维护和检查 (25) 2.2.3叶片的安装及拆卸 (27) 2、3工具与备料 (30) 2.3.1维护工具清单 (30) 2.3.2 修复材料及工具 (31) 第三章轮毂及变桨系统 (33) 3.1简介 (33) 3.2构成示意图 (33) 3.3注意事项 (34) 3.4变桨轴承的维护维修 (35) 3.4.1 变桨轴承结构图: (35) 3.4.2 变桨轴承的维护 (35) 3.4.3变桨轴承螺栓检查 (36) 3.4.4变桨轴承滚道和齿面润滑 (38) 3.5变桨电机 (39) 3.5.1变桨电机技术参数: (39) 3.5.2变桨电机检查 (39) 3.5.3检查绝对值编码器和变桨编码器连接螺栓 (41) 3.6变桨齿轮箱 (42) 3.6.1技术参数 (42) 3.6.2变桨齿轮箱与变桨小齿轮维护 (43) 3.6.3 变桨齿轮箱螺栓检测 (44) 3.6.4变桨齿轮箱润滑 (44) 3.7变桨控制 (46) 3.7.1变桨控制装置检查: (46) 3.7.2变桨控制箱螺栓紧固 (47)

3.7.4检查限位开关 (48) 3.7.5检查轮毂与滑环连接电缆 (48) 3.8轮毂 (49) 3.8.1轮毂外表检查与维护 (49) 3.8.2轮毂与主轴连接螺栓紧固 (49) 3.9滑环 (50) 3.9.1 原理与作用 (50) 3.9.2 滑环的维护维修 (51) 3.10轮毂与变桨系统各部件明细清单 (51) 第四章主轴及其组件 (53) 4.1简介 (53) 4.2主轴及其组件的维护维修 (57) 4.2.1 表面清洁度检查 (57) 4.2.2 防腐检查 (57) 4.2.3 主轴锁定装置检查 (57) 4.2.4 主轴轴承检查 (59) 4.2.5 主轴锁定盘检查 (60) 4.2.6 螺栓力矩检查 (60) 第五章齿轮箱 (61) 5.1简介 (61) 5.1.1 功能 (61) 5.1.2 原理 (61) 5.1.3齿轮箱数据 (62) 5.1.4结构名称图 (62) 5.2维护与维修 (63) 5.2.1齿轮箱外表检查与维护 (65) 5.2.2检查主要紧固螺栓力矩 (65) 5.2.3 齿轮箱润滑油维护 (67) 5.2.4 检测齿轮箱噪音 (68) 5.2.5 检测齿轮箱振动 (69) 5.2.6 检查齿轮副啮合及齿面情况 (69) 5.2.7 检测传感器 (69) 5.2.8 检测弹性支撑 (69) 5.2.9润滑泵及冷却系统 (70) 5.2.10检查避雷装置 (70) 5.2.11 其它需检查的内容 (70) 5.3齿轮箱易损件的拆卸及更换 (70) 5.3.1 润滑系统滤清器的拆卸及更换 (70) 5.3.2弹性支撑的拆卸及更换 (71) 5.3.3温度传感器拆卸及更换 (71) 5.3.4避雷接地线的拆卸及更换 (71) 5.3.5更换齿轮箱润滑油 (71)

相关主题
文本预览
相关文档 最新文档