当前位置:文档之家› Copper isotope ratios in magmatic

Copper isotope ratios in magmatic

Copper isotope ratios in magmatic
Copper isotope ratios in magmatic

Copper isotope ratios in magmatic and hydrothermal

ore-forming environments

Peter https://www.doczj.com/doc/4a18484916.html,rson *,Kierran Maher,Frank C.Ramos,Zhaoshan Chang,

Miguel Gaspar,Lawrence D.Meinert

Department of Geology,Washington State University,Pullman,WA 99164-2812USA

Accepted 7August 2003

Abstract

Multi-collector inductively coupled plasma mass spectrometry now

accurate measurements of Cu isotope ratios.Copper minerals prepared by direct dissolution with and without purification yield identical Cu isotope ratios within analytic precision of about 0.04x (1r ).Cu isotope ratios have been measured for copper minerals from worldwide magmatic and hydrothermal copper deposits,and for several weathered deposits.Natural variations in d 65Cu values,relative to NBS976,range over 9x .Chalcopyrite samples from mafic intrusions lie within a narrow range of about 1.5x ,and most cluster tightly between à0.10x and à0.20x .This range lies within the broader black smoker chalcopyrite and iron meteorite ranges,and possibly represents a bulk mantle Cu isotope ratio.Most values for hydrothermal native copper from the Michigan native copper district also show a narrow range just larger than 0.1x and suggest a common homogeneous source for Cu in this large hydrothermal https://www.doczj.com/doc/4a18484916.html,ter copper sulfide and arsenide minerals from this district range to values more than 2x lower than native copper.Ratios for chalcopyrite and bornite from moderate to high-temperature porphyry,skarn,and replacement deposits as a group and within individual deposits exhibit a broad range of values.Variations of nearly 1x are observed over distances on the order of 1m.In some cases,these variations may result from multiple mineralization events or copper remobilization during retrograde or later hydrothermal activity.Fractionations between chalcopyrite and bornite,where they occur in the same sample or in related samples,cluster near 0.4x ,suggesting equilibrium Cu isotope fractionation between them at moderate temperatures.In addition,weathering of hydrothermal copper minerals produces a wide range of values in secondary copper phases.In the supergene environment,cuprite typically has higher values than associated native copper.Therefore,redox states appear to exert a significant control over fractionation at low temperatures.Significant questions remain to be answered.Before the source of copper in hydrothermal environments can be fully addressed,source reservoir Cu ratios need to be determined,and chemical and physical factors that control Cu isotope fractionation must be quantitatively defined.D 2003Elsevier B.V .All rights reserved.Keywords:Cu;Isotope geochemistry;Hydrothermal;Mass fractionation

1.Introduction

Natural variations in transition metal stable isotopes

are now known to be widespread.Isotope ratios for Cr (Ellis et al.,2002),Fe (Beard and Johnson,1999;

0009-2541/$-see front matter D 2003Elsevier B.V .All rights reserved.doi:10.1016/j.chemgeo.2003.08.006

*Corresponding author.Tel.:+1-509-335-3095.E-mail address:plarson@https://www.doczj.com/doc/4a18484916.html, (https://www.doczj.com/doc/4a18484916.html,rson).

https://www.doczj.com/doc/4a18484916.html,/locate/chemgeo

Chemical Geology 201(2003)337–350

赤铜矿

Anbar et al.,2000;Bullen et al.,2001),and Cu (Mare′chal et al.,1999;Zhu et al.,2000)range over several per mil.Variations in the isotope ratios for transition metals may be produced by either abiotic or biotic processes(Bullen et al.,2001).Mass-dependent abiotic fractionations are predicted by molecular vi-bration theory,where heavier isotopes are preferential-ly partitioned into more tightly bonded sites in minerals and aqueous species(Bigeleisen and Mayer, 1947;Urey,1947).Biotic fractionation is produced when microbial activity selectively uses lighter iso-topes to maximize free energy.The magnitudes and relative importance of abiotic and biotic fractionations for transition metal isotopes in earth systems are not well known,nor are their functional dependencies on temperature or other parameters such as redox states.

Modern advances in multi-collector inductively coupled plasma mass spectrometry(MC-ICPMS) now allow for precise and accurate measurement of transition metal isotope ratios.This has generated a renewed research interest in transition metal isotopes. Walker et al.(1958)and Shields et al.(1965)first used thermal ionization mass spectrometry(TIMS)to in-vestigate the distribution of Cu isotopes in natural samples.They found a range of about12x among both hypogene(primary hydrothermal)and supergene (secondary weathering)Cu ore minerals,although their analytical precision was about1.5x.Precision of Cu ratios measured by MC-ICPMS are typically 0.03–0.04x(1r)for both Zn doping and sample–standard bracketing techniques(Mare′chal et al.,1999; Zhu et al.,2000;Mare′chal and Albare`de,2002). Equilibrium mass-dependent abiotic Cu isotope frac-tionations should decrease with increasing tempera-ture,and,at high hydrothermal and magmatic temperatures(>300j C),equilibrium fractionations are most likely small.Therefore,highly precise meas-urements are required if such small variations among Cu mineral ratios are to be investigated.Cu mineral ratios measured by MC-ICPMS instruments have recently been published(Mare′chal et al.,1999;Zhu et al.,2000),and,together with the data reported here, show a range in d65Cu values(relative to NBS976)of more than9x,comparable to the range in early data reported by Walker et al.(1958)and Shields et al. (1965).

Transition metal isotope ratios can provide insight into some longstanding questions associated with hy-drothermal systems.A specific focus of our research explores one such question:what are the sources of metals,in this case Cu,in ore-bearing hydrothermal deposits?There are two significant aspects of this problem.First,are metals derived from magmatic sources or are they leached from wall rocks?Hydro-thermal fluids in porphyry Cu deposits are known,for example,to be derived from two sources.Oxygen and hydrogen isotope analyses of hydrothermal minerals have shown that magmatic fluids dominate the central parts of these systems and that meteoric ground waters can be important in their exterior(Sheppard et al., 1969,1971;Larson,1987;Larson and Taylor,1986; Taylor,1997).Although many workers agree that most, if not all,of the Cu in these systems is contributed by the magma(e.g.,Gustafson and Hunt,1975),the porphyry environment demonstrates that multiple fluid sources could potentially provide distinct sources of Cu to some hydrothermal systems.Second,since Cu in a magma is inherited from the magmatic source(e.g., mantle,crustal,and/or subducted slab),Cu isotope ratios in magmatically derived copper deposits may help to distinguish Cu contributions to such magmas if those sources can be shown to be isotopically distinct. Farmer and DePaolo(1997)have used heavy radio-genic isotope ratios(Sr,Nd,and Pb)in hydrothermal systems to address this question.Their results are interpreted to show that hydrothermal components indeed can be traced back to magmatic sources.

We report our first results for Cu isotope ratio measurements on Cu minerals from ore deposits. These data,together with other published Cu isotope ratios on ore minerals,can be used to evaluate the sources of Cu in hydrothermal ore deposits.However, there are many questions that need to be addressed before such data can be fully applied to assessing copper sources in hydrothermal environments.First, how precisely can MC-ICPMS measure Cu isotope ratios and do such ratios appear to vary in any systematic way?Second,the Cu ratios of potential source reservoirs are generally unknown or not well constrained,thus,they need to be characterized.And third,mechanisms that control Cu isotope fraction-ation,such as redox reactions and equilibrium thermo-dynamic fractionations among solids or dissolved aqueous species,and their temperature dependencies, must be known but are only beginning to be experi-mentally investigated.Here,we show that systematic

https://www.doczj.com/doc/4a18484916.html,rson et al./Chemical Geology201(2003)337–350 338

variations in Cu ratios exist in hydrothermal deposits

and report preliminary data on Cu ratio characteristics

of common terrestrial reservoirs.

2.Analytical methodology

MC-ICPMS now allows for high-precision isotope

analysis of Cu,an element which is not normally

measured by more established techniques(e.g.,TIMS)

as a result of its poor ionization efficiency(Walker et

al.,1958;Shields et al.,1965).MC-ICPMS overcomes

such limitations by injecting Cu into an argon plasma

while using multiple collectors to simultaneously mea-

sure63Cu and65Cu.In doing so,MC-ICPMS has been

the catalyst for a resurgence of interest in the field of

Cu isotope geochemistry.Initial MC-ICPMS applica-

tions(Mare′chal et al.,1999;Zhu et al.,2000)confirm

that naturally occurring Cu isotope fractionations are

observed.Such natural fractionations are,however,

limited and require that65Cu/63Cu measurements be

both highly precise and highly reproducible.

In an effort to obtain these critical characteristics,

two methods of analysis have been pursued.The first

utilizes zinc isotopes(68Zn/64Zn)to constrain and

correct65Cu/63Cu measurements for mass bias as is

customary for analyses undertaken by MC-ICPMS

(Mare′chal et al.,1999;Mare′chal and Albare`de,

2002).Alternatively,a sequence of analyses can be

undertaken which brackets a natural sample with

analyses of standards(Zhu et al.,2000)as is custom-

arily done for light stable isotopes such as hydrogen

and oxygen.Both methods have advantages and draw-

backs.When using68Zn/64Zn to correct65Cu/63Cu for

mass bias,the potential isotopically variable natural Zn

of a sample must be removed and Zn with a known 68Zn/64Zn must be introduced prior to analysis.This process is essential because natural Zn may not have

the same68Zn/64Zn ratio as the known Zn introduced

to the sample.Mixing these two variable Zn isotope

reservoirs alters the known68Zn/64Zn normalizing

ratio and results in inaccurate mass bias corrections

for Cu isotopes.Typically,Zn is removed from sam-

ples using chromatography.Chromatography,howev-

er,must be well calibrated and monitored because it can

also fractionate65Cu from63Cu(Mare′chal et al.,1999;

Mare′chal and Albare`de,2002).If,however,natural Zn

can be successfully removed without fractionating 65Cu/63Cu,normalizing to a known68Zn/64Zn ratio should reasonably correct for mass bias,assuming

mass bias is completely a function of mass.In addition

to mass bias,isotopic variations resulting from machine

drift(i.e.,variations occurring in the plasma,tempera-

ture variations,electronic variations,etc.)will also

affect Zn isotopes,and,thus,can be accounted for in

the68Zn/64Zn normalizing process.

In contrast,sample–standard bracketing does not

require either introduction of known Zn or removal of

natural Zn in a sample.Thus,chromatography is only

required for samples that contain molecular or isobaric

interferences that cannot be successfully stripped from

the measured results,or that cause matrix effects which

significantly impact measured ratios.Sample–stan-

dard bracketing,however,may not readily account

for machine drift,as exemplified by large,non-con-

sistent fluctuations in standard values,and,therefore,

is best used on machines that either have constant or

negligible drift.

The Finnigan Neptune R in the GeoAnalytical Lab-

oratory at Washington State University is a newly

designed MC-ICPMS.It allows for high-precision

measurements of both stable and radiogenic isotopes

with minimal instability and machine drift.We have

undertaken an extensive evaluation to constrain the

accuracy and reproducibility of65Cu/63Cu measure-

ments on this machine using Cu minerals from a variety

of environments.We have utilized sample–standard

bracketing(independent of Zn)to constrain and correct 65Cu/63Cu for mass bias and machine drift.As is critical for sample–standard bracketing,machine drift must be

constant(or absent)to ensure the highest in-run preci-

sion and external reproducibility of results(an example

of a single day’s run is shown in Fig.1).The critical

aspect of these variations is that machine drift of the

Neptune is constant(or absent)within analytical un-

certainty and can be accurately assessed and corrected

for using bracketed NBS976analyses(note that our

measured value for NBS976varies with date,but such

variations are eliminated during standard normaliza-

tion).A line fit to the first NBS976standard suite,April

24,2002,reflects0.16x drift over a period of greater

than8h.The run on June4,2002(Fig.1)shows even

less drift.Drift is relatively constant over this period

and allows for samples to be very accurately corrected

for both machine drift and mass bias.In fact,select days

are characterized by an apparent absence of machine

https://www.doczj.com/doc/4a18484916.html,rson et al./Chemical Geology201(2003)337–350339

drift over a period of 12h.As a result,sample–standard analyses on the Neptune can successfully measure 65

Cu/63Cu independent of Zn.

Prior to analysis,Cu minerals were carefully hand-picked and visually inspected to ensure purity.Miner-

als were first dissolved in distilled aqua regia for at least 3days.These solutions were then evaporated to dryness and their residual were redissolved in 2%nitric acid and diluted to about 100ppb Cu.Cu ratios are reported in d notation in per mil relative to NBS976(63Cu/65Cu =2.24F 0.0021)which is prepared identi-cally to unknown minerals and used as an operating standard.Each analysis consists of 50isotope ratio measurements of 8s each (Fig.1).The d values are calculated using mean ratios for each block of 50measurements (Fig.2),where

d 65Cu NBS976??eR SMP =R STD Tà1 1000:

e1T

R SMP is the ratio 65Cu/63Cu for the unknown sample,and R STD is the ratio 65Cu/63Cu for the standard.R STD is calculated as the mean 65Cu/63Cu ratio of the two blocks of measurements that bracket each unknown sample (Fig.2).d 65Cu NBS976values,measured using the sample–standard bracketing technique,are

re-

Fig.1.Data acquired during the mass spectrometer run on June 4,2002.Measured 65Cu/63Cu ratios are plotted vs.real time.Each cluster comprises 50measurements of 8s each for an analysis.The box encloses a standard –sample–standard bracket reproduced in Fig.2

.

Fig.2.65Cu/63Cu ratios for three blocks of measurements enlarged from Fig.1.This shows one standard (black diamonds)–sample (gray circles)–standard bracket from which a Cu d 65Cu value is calculated.R SMP and R STD are mean ratios that are input into Eq.(1)in the text to calculate the delta value.R STD is determined by fitting a line to the two bracketing standard means.Each cluster represents 50measurements,each of 8s duration.

Table 1

Cu-isotope composition of chalcopyrite from mafic intrusions Sample Description d 65Cu a

TL-4

Thayer–Lindsley Mine,Sudbury;Canada,sulfide matrix of impact breccia

à0.25Sd-5Sudbury;Massive sulfide from base of Sudbury Intrusive Complex,Canada

0.16

SW-22Stillwater Mine,USA;hydrothermally reworked sulfides at contact of Stillwater igneous complex à1.06

a

All data are per mil relative to NBS976,analytic uncertainty is F 0.04x (1r ).

P https://www.doczj.com/doc/4a18484916.html,rson et al./Chemical Geology 201(2003)337–350

340

ported for chalcopyrite from mafic igneous rocks (Table 1),for copper minerals from the Michigan Native Copper District,USA (Table 2),for chalcopyrite and bornite from various worldwide skarn,porphyry,and replacement deposits (Tables 3and 4),and for supergene copper minerals from oxidizing and weath-ering hypogene hydrothermal minerals from a variety of deposits (Table 5).

Table 2

Cu isotope composition of Cu minerals from the Michigan native copper district,USA Sample Location Mineral

d 65Cu a Mean and 1r d 65Cu

LS-7Trimountain Mine Native Cu 0.270.27

LS-10

Baltic Mine Native Cu

0.36,0.30,0.27,0.30,0.29,0.27,0.22,0.34

0.29F 0.04LS-12

Centennial Mine Native Cu 0.260.26LS-45Isle Royale Mine Native Cu 0.340.34LS-48Wolverine Mine Native Cu 0.300.30

LS-51Copper Falls Mine

Native Cu

0.03,

0.010.02F 0.01

Mi-6Baltic Mine Bornite

à1.07à1.07Mi-10Baltic Mine Chalcopyrite à0.71à0.71PL-1Baltic Mine Chalcocite 0.740.74LS-8Mohawk Mine Mohawkite 0.240.24LS-46Mohawk Mine Mohawkite à0.28à0.28Mi-2

Mohawk Mine

Domeykite à0.17

à0.17

a

All data are per mil relative to NBS976,analytic uncertainty is F 0.04x (1r ).

Table 3

Cu isotope composition of Cu minerals from porphyry and skarn deposits,Tintaya and Las Bambas districts,Peru Sample

Mineral

d 65Cu a

Mean and 1r d 65Cu Tajo Tintaya deposit,Tintaya

Tajo Chalcopyrite à0.05à0.05TAJO-MS Chalcopyrite

0.540.54Bornite 0.11

0.11

Coroccohuayco deposit,Tintaya 90014.8388.7Chalcopyrite

0.000.00

Bornite

à0.46à0.46140015.8163.4Chalcopyrite 0.310.31140018.9301.95Chalcopyrite 0.070.07140018.9386.4Chalcopyrite

0.69,0.64b 0.67F 0.04Bornite

0.310.31140018.9387.9Chalcopyrite 0.320.32140021.7119.95Chalcopyrite 0.520.52140021.7416.95Chalcopyrite 0.270.27

Chalcobamba deposit,Las Bambas Chalc Chalcopyrite 0.370.37CHALC-MAGN1Chalcopyrite 0.170.17

Ferrobamba deposit,Las Bambas Ferrob Chalcopyrite

0.120.12Bornite

0.010.01

a

All data are per mil relative to NBS976,analytic uncertainty is F 0.04x (1r ).

b

Replicate dissolution using only HNO 3.

Table 4

Cu isotope composition of Cu minerals from other porphyry,skarn,and replacement deposits Sample

Mineral

d 65Cu a

Mean and 1r d 65Cu Superior Mine,Superior district,Arizona,USA SUP-1Chalcopyrite 0.51,0.52,0.54,

0.57,0.54,0.560.54F 0.01

Resolution project,Superior district,Arizona,USA RES-2A 1885.55Chalcopyrite 0.060.06RES-2A 1927Chalcopyrite 0.030.03S22-A 969Chalcopyrite 0.530.53S27-A 1847

Bornite

0.40

0.40

Beaver-Harrison Mine,Beaver County,Utah,USA BEA V Chalcopyrite 1.36,1.41 1.39F 0.04

Bornite 1.00 1.00Pine Creek,California,USA

PC9Chalcopyrite à0.87,à0.79,à0.75à0.80F 0.06

Empire Mine,Idaho,USA

18-365I Chalcopyrite à0.66,à0.76,à0.72à0.71F 0.0518-365II Chalcopyrite à0.56,à0.63à0.60F 0.0517-389Chalcopyrite à0.20à0.20Crown Jewel deposit,Washington,USA GAC-12PO Chalcopyrite à0.01,à0.07à0.04F 0.04GAC-12BD

Chalcopyrite 0.130.13

Grasberg deposit,Ertsberg district,Irian Jaya G6Chalcopyrite à0.39à0.39

Big Gossan deposit,Ertsberg district,Irian Jaya BG-1-6-600

Chalcopyrite 0.23

0.23

a

All data are per mil relative to NBS976,analytic uncertainty is F 0.04x (1r ).

P https://www.doczj.com/doc/4a18484916.html,rson et al./Chemical Geology 201(2003)337–350

341

In addition to constraining machine drift,results illustrate daily and monthly reproducibility of 65Cu/63

Cu.External reproducibility has been evaluated using replicate analyses of two native copper samples,Ray-1(10analyses,Table 5)and LS-10(8analyses,Table 2),run over about a 2-month time span.Means of the replicate analyses are à0.04x and 0.29x ,respec-tively,with standard deviations (1r )of 0.04x for both samples.

We have also analyzed two samples purified using anion exchange chromatography (modified from

Mare

′chal et al.,1999).Results from chalcopyrite (GAC 12PO)have confirmed the absence of both Fe and S in the chromatographically prepared Cu sample,and are well within analytical reproducibility (<0.04x )of non-purified samples.Two analyses of the unpurified sample,run on the same solution,yielded values of à0.01x and à0.07x .Chro-matographically purified Cu from the sample pro-duced a value of à0.03x .Additionally,NBS976copper was chromatographically purified,and yielded a value of 0.05x .Together,these results suggest that the chemical preparation procedures do not result in Cu isotope fractionation,at least for one chalcopyrite sample.

Matrix effects resulting from Fe and S on Cu isotope ratios have been evaluated,since both are major con-stituents in chalcopyrite and bornite.100ppb NBS976solutions were doped with Fe and S,at 1and 9ppm,respectively,and analyzed.Neither Fe nor S at these concentrations had any apparent effect on the Cu isotope ratio of the standard,within analytical error.It is important to note that these Fe and S concentrations are much higher (>10times)than would be expected from any diluted copper mineral sample.Also,both native copper and chalcopyrite samples have been doped with Pb.10ppb,100ppb,and 1ppm Pb were added to solutions of native copper sample Ray-1(à0.04x ,n =10,1r =0.04x ),and yielded results of à0.07x ,à0.02x ,and 0.08x ,respectively.10ppb,100ppb,and 1ppm Pb were also added to chalcopyrite sample SUP-1(0.54x ,n =6,1r =0.01x ),and yielded results of 0.57x for both the 10and 100ppb solutions,and 0.61x for the 1ppm solution.These Pb-doping experiments suggest that heavy metal concentrations in the solutions produce negligible matrix effects.

3.Results

Samples from a variety of ore deposit types encom-pass a range in depositional environments and poten-tial Cu sources.Cu isotope ratios for all analyses

(Tables 1–5;Mare

′chal et al.,1999;Zhu et al.,2000;Luck et al.,2002)vary over a range of about 9x in natural samples,although,with the exception of sev-eral high and low samples,most analyses fall within a range of about 4.0x from à1.5to 2.5.This range shows clearly that Cu isotope fractionation is im-portant in nature.Samples include chalcopyrite from mafic igneous rocks (Table 1),and primary hypo-gene hydrothermal (Tables 2–4)and secondary supergene (Table 5)Cu ore minerals.These data,

together with data recently published by Mare

′chal et al.(1999);Zhu et al.(2000),and Luck et al.(2002),provide a preliminary basis in which to evaluate the Cu isotope ratios in mafic rocks and perhaps the mantle,add insight into the source of Cu in hydrothermal ore-forming systems,and lead to an assessment of chemical factors that most likely control Cu isotope fractionation in natural environments.

Table 5

Cu isotope composition of Cu minerals supergene environments in ore deposits Sample

Mineral

d 65Cu a

Mean and 1r y 65Cu

Ray Mine,Arizona,USA Ray-1Native Cu

0.02,0.00,à0.05,à0.06,à0.08,

à0.09,0.02,b à0.04,b 0.00,b à0.09b à0.04F 0.04Ray-2Native Cu

with cuprite 1.26 1.26Ray-2b

Native Cu without cuprite

0.72

0.72

Ccatun Pucara deposit,Tintaya district,Peru

CCP-1Cuprite à0.54à0.54

CCP-2Native Cu à0.83à0.83

OK Mine,Beaver County,Utah,USA OKM-1Azurite 2.44

2.44

a

All data are per mil relative to NBS976,analytic uncertainty is F 0.04x (1r ).

b

Repeat analyses.

P https://www.doczj.com/doc/4a18484916.html,rson et al./Chemical Geology 201(2003)337–350

342

3.1.Cu isotope ratios in mafic igneous rocks

Chalcopyrite is commonly found as a magmatic mineral in large mafic intrusions,such as Sudbury, Canada,the Stillwater Complex,Montana,USA,and the Bushveld Complex,South Africa,where it occurs in ore grade concentrations in association with nickel and iron sulfides.Mafic magmas are produced in the mantle.Cu isotope ratios of these mafic magmas could thus represent mantle values if fractionation did not occur during mantle melting or crustal sulfide precip-itation.Assimilation of crustal rocks could potentially add Cu to the magma and modify the mafic magmatic Cu isotope ratios.Indeed,S isotope ratios(Ripley et al.,1999,2000)of magmatic sulfides in layered mafic intrusions often correlate with wall rock values and suggest deep crustal assimilation.Copper in these magmas also may be derived in part from crustal sources.Regardless,it is useful to look at Cu isotope ratios in mafic igneous rocks to constrain their poten-tial for defining mantle Cu ratios.We have analyzed chalcopyrites from two samples from the Sudbury Complex,Canada,(Table1)and compare them to recently published results for this body(Fig.3).We have also analyzed a chalcopyrite from the Stillwater Complex,but this sample has been affected by post-crystallization hydrothermal activity and it will not be discussed further.

Zhu et al.(2000)analyzed five chalcopyrite sam-ples from the Sudbury Cu–Ni deposit,Canada.Our two Sudbury analyses,à0.25x and0.16x,lie within the range found by Zhu et al.(2000).The overall range of the analyses is fromà0.57to0.40 (four are in the rangeà0.25toà0.18)with a mean ofà0.12x and a standard deviation of0.31.One sample from the Bushveld Complex,South Africa, yielded a value ofà0.15x(Zhu et al.,2000).It is interesting to note the similarity between the mean Sudbury value ofà0.12and the single Bushveld à0.15value,but the data base is much too

limited Fig.3.Histograms comparing the distribution of d65Cu values for chalcopyrites from mafic igneous rocks and Cu minerals from the Michigan native copper district(Tables1and2).Additional native copper and chalcopyrite data from Mare′chal et al.(1999)and Zhu et al.(2000)are included.For comparison,the range in black smoker chalcopyrite(Mare′chal et al.,1999;Zhu et al.,2000)and meteorite(Luck et al.,2002) d65Cu values are shown.

https://www.doczj.com/doc/4a18484916.html,rson et al./Chemical Geology201(2003)337–350343

at this time to draw significant conclusions from it.These preliminary data do,however,show that mafic magmas exhibit a range of Cu ratios that is more restricted than the overall terrestrial range.It is unclear if this represents a narrow range of mantle values,variable degrees of crustal assimilation in the magmas,or some combination of source and assimilant varia-tion.Cu ratios in MORBs might also represent mantle values.Although no MORB analyses are available,chalcopyrites from black smoker vents have been

analyzed (Mare

′chal et al.,1999;Zhu et al.,2000).Cu in these hydrothermal deposits is derived through leaching of oceanic crust by deeply circulating heated seawater.Their values range from à0.48x to 1.16x ,and overlap the lower end of the mafic intrusion values,but also extend more than half a per mil higher (Fig.3).The broad range of these values could result from temperature related fluid–mineral Cu isotope fractionation during leaching and/or precipitation.

Some meteorites likely represent primordial mate-rial from which the earth formed,and it is interesting to compare their Cu ratios to the mafic sulfide data.Cu ratios from carbonaceous chondrites and iron meteor-ites vary from à1.5x to 0.5x (Luck et al.,2002).

Iron meteorites lie in the higher end of this range (à0.5to 0.5x ),and chondrites on the lower end (à1.5x to 0.0x ),with overlap between them.The mafic intrusion Cu ratios span nearly the same range as the iron meteorites (Fig.3).Variations in the meteorite ratios are attributed by Luck et al.(2002)to mixing between two isotopically distinct primordial reservoirs.3.2.Michigan native copper district

The Proterozoic Michigan native copper deposits were formed by hydrothermal fluids migrating up-dip along permeable horizons in steeply dipping interbed-ded basalts and conglomerates (Butler and Burbank,1929;White,1968).Mineralization is found along nearly 100km of strike length in the Portage Lake lava series,although historically economic zones are restricted to specific intervals (Fig.4).Nearly all of the Cu in the deposits occurs as native copper,although late stage Cu sulfides and arsenides cross cut the earlier native copper in several locations (Butler and Burbank,1929).Fluid inclusion measurements suggest that the hydrothermal alteration and mineralization formed in the interval 150–200j C (Livnat,1983).Six native copper samples from six different mines were

ana-

Fig.4.Simplified geologic map of the Michigan native copper district,Keweenaw Peninsula,showing d 65Cu values (per mil relative to NBS976)for native copper samples (Table 2).The geology is modified from White (1968).The heavy line running along the center of the peninsula is the near-vertical Keweenaw fault (KF).The Portage Lake lava series (PLLS)west of the fault consists of interbedded basalt and conglomerate and dips steeply to the northwest.The PLLS is overlain by less steeply dipping Nonesuch Shale and Freda Sandstone (NS –FS).The nearly horizontal and younger Jacobsville Sandstone (JS)lies east of the fault.Hydrothermal alteration and copper mineralization are found in the PLLS.The lined areas designate the most economically productive zones,although mineralization can be found throughout the PLLS exposures.

P https://www.doczj.com/doc/4a18484916.html,rson et al./Chemical Geology 201(2003)337–350

344

lyzed,together with three hypogene Cu and Cu–Fe sulfides from the Baltic mine and three samples of Cu arsenides from the Mohawk mine(Table2).Zhu et al. (2000)also analyzed two samples from the district.

Native copper isotope ratios range from0.02x to 0.54x,and cluster(Fig.3)near a mean value of 0.31x(1r=0.15,n=8).The isotope ratios are re-markably homogeneous across the district and,within the main area of copper production,five samples range from0.27x to0.34x,well within analytic uncer-tainty(Fig.4).It seems probable that the Cu was derived through hydrothermal leaching of the basalts at depth,down dip from the site of deposition(White, 1968).Native copper precipitation most likely in-volved reduction from oxidized Cu cationic complexes in the hydrothermal solutions.Figs.3and5show that the Michigan native copper Cu ratios tend to cluster at slightly higher values than other hydrothermal and mafic magmatic Cu minerals.Together,these obser-vations suggest that reduction may have played a role in fractionating Cu isotopes to higher values during precipitation of the native copper,at temperatures as high as200j C.

Sulfide and arsenide Cu minerals show a nearly 2x range in values,extending to values lower than the native copper cluster.These minerals occur in veins that cross cut earlier native copper mineraliza-tion,but it is not clear if they formed by remobilization of the native copper or result from the last stage associated with the native copper mineralization.

3.3.High-temperature hydrothermal systems

Chalcopyrite and bornite are characteristic ore min-erals in moderate to high-temperature hydrothermal porphyry,skarn,and replacement deposits that are closely related to intermediate to granitic intrusions. Fluid inclusions and other geothermometers indicate that the alteration assemblages in most of these depos-its formed between300and700j C.We have mea-sured Cu isotope ratios of32chalcopyrite and bornite samples from12deposits from worldwide locations (Tables3and4).All these data,including a chalco-pyrite from the Morenci Deposit,Arizona,USA, (Mare′chal et al.,1999)are compared in Fig.5. Chalcopyrite and bornite Cu isotope ratios exhibit a range of nearly2.5x.Relatively large variations are also observed within individual districts.Nine samples of chalcopyrite from the Tintaya district,Peru,vary fromà0.05x to0.67x,and three bornite samples vary fromà0.46x to0.31x.Ranges for both minerals are about0.75x.At the Las Bambas district, Peru,chalcopyrite and bornite ratios thus far lie within the Tintaya ranges and are plotted with them in Fig.5. The large variations in values for chalcopyrite from the Peruvian districts contrast with the relatively homoge-neous native copper values observed in the very large Michigan district.The paucity of data,however,pre-cludes confidently evaluating the range of data for the other deposits in Tables3and4.

Samples spaced more closely than the scale of a mining district show distinct variability.Three chal-copyrite samples collected from drill core(drill hole 140018.9)from the Coroccohuayco deposit,Tintaya district,at depths of301.95,386.4,and387.9m (Table3)yield values of0.07x,0.69x,and 0.32x,respectively.The data vary by0.62x over an interval of84m,and by0.37x over a shorter interval of1.5m.

Coexisting chalcopyrite and bornite were analyzed from five high-temperature deposit samples,three from the Tintaya district,one from the Las Bambas district,and one from the Beaver–Harrison Mine, Beaver County,UT,USA(Tables3and4).In addi-tion,bornite and chalcopyrite were also analyzed from Baltic Mine samples,Michigan native copper district, although these minerals came from different samples (Table2).In all cases,chalcopyrite has uniformly higher values than associated bornite(Fig.6),with per mil fractionation between minerals ranging from0.11 to0.46.Five of the mineral pairs have fractionations in the range0.36–0.46x.It is not clear,however, why the Las Bambas mineral pair lies outside this range,but it may not represent an equilibrium pair of minerals.The five clustered fractionations have a mean value of0.40x and standard deviation of 0.04x.It has been suggested that copper sulfide minerals may reequilibrate during cooling in natural systems,and that their compositions usually reflect temperatures of about200j C(Barton and Skinner, 1979).It is not known if this reequilibration would affect Cu isotope fractionations between bornite and chalcopyrite.However,the seemingly consistent rela-tionship between the Cu isotope ratios of these two minerals suggests equilibrium Cu isotope fraction-ation between them during deposition.

https://www.doczj.com/doc/4a18484916.html,rson et al./Chemical Geology201(2003)337–350345

Fig.6.Chalcopyrite–bornite fractionations for coexisting phases (Tables 2,3and 4).In all cases,the chalcopyrite (open bars)has a higher value

than the bornite (filled bars).For all but one sample,the chacopyrite –bornite fractionations (D 65Cu =d 65Cu CHALCOPYRITE àd 65Cu BORNITE )are in the narrow range 0.36–0.46per

mil.

Fig.5.Histograms comparing the distribution of d 65Cu values for copper minerals from moderate-to high-temperature hydrothermal ore

deposits and from weathered deposits (Tables 3–5).Additional data from Mare

′chal et al.(1999)and Zhu et al.(2000)are included.P https://www.doczj.com/doc/4a18484916.html,rson et al./Chemical Geology 201(2003)337–350

346

3.4.The supergene environment

Supergene alteration occurs during weathering of primary,hypogene ore minerals,where sulfides are oxidized and their metal ions are redistributed by near-surface percolating ground water.It is not unusual in such environments to find some metals deposited in their array of oxidized cationic valences,although multivalent assemblages of minerals most likely are not equilibrium assemblages.Cu is a perfect example, where Cu0,Cu+,and Cu2+minerals may coexist in near proximity or even within the same hand sample. The low temperature of weathering(typically no more than30j C),where temperature-dependent fraction-ation might a priori be predicted to be large,and the coexistence of minerals with multivalent cationic states,makes supergene alteration an ideal environ-ment in which to study fractionation of transition metal isotopes.Cu isotope analyses of coexisting native copper and cuprite pairs from two deposits,and a single native copper sample from one of them,are shown in Table5,together with one analysis of azurite from a third deposit.These data are compared with other supergene Cu mineral analyses(Mare′chal et al., 1999;Zhu et al.,2000)in Fig.5.Including one very low supergene native Cu value,the data extend over a range of about5.5x,suggesting large Cu isotopic fractionations in the weathering environment.The supergene data overlap and extend beyond the ranges of all magmatic and primary hydrothermal values (Figs.3and5).

The cuprite in both native copper–cuprite pairs is enriched relative to native copper.In the Ray,Arizona, USA,sample cuprite encrusts native copper(Ray-2 was analyzed‘‘as is’’,with cuprite encrusting the native copper,and Ray-2b was analyzed after mechan-ical crushing to remove the cuprite,Table5).Ray-2 yielded a value of1.26x.Ray-2b yielded a value of 0.72x,0.53lower than the uncrushed sample.A second,pure,Ray native copper sample produced a value ofà0.04F0.04x(n=10,Ray-1,Table5). These data suggest that cuprite is enriched in65Cu relative to native copper.

A second native copper–cuprite pair,from the Ccatun Pucara deposit,Tintaya district,Peru,was then carefully prepared and analyzed.These pure cuprite(CCP-1)and native copper(CCP-2)samples produced values ofà0.54x andà0.83x,respec-tively(Table5).In this example,the cuprite has a higher value than the native copper,similar to the Ray,Arizona,sample.Although limited to only two mineral pairs,the data suggest that fractionation between solid Cu+(cuprite,Cu2O)and Cu0(native copper,Cu)during oxidation of native copper to cuprite enriches the cuprous phase in65Cu.At least two potential mechanisms may contribute to this fractionation:(1)reduction–oxidation reactions in solution between the two Cu valence states,or(2) variable thermodynamic equilibrium fractionations among the mineral phases and the supergene fluid (as is well known in the light stable isotopes such as oxygen),which would be a function only of temper-ature.It is probable that both effects contribute to the fractionations in the cuprite–native copper pairs. 4.Discussion

Fractionation of Cu isotopes among fluid species and solid mineral phases appears to be a complex function influenced by several variables.Together with the data presented here,a growing base of data (Mare′chal et al.,1999;Zhu et al.,2000;Ruiz et al., 2002)is beginning to reveal distinct and reproducible variations among Cu isotope ratios in inorganic mate-rial produced in a variety of environments.However, before these data can be applied to answering funda-mental questions about the sources of metals in ore deposits,the geochemical behavior of Cu isotopes as functions of temperature,oxidation state,and other chemical and physical variables needs to be investi-gated.Preliminary evaluations of these variables,as discerned by the data in Figs.3and5,are discussed here.It is notable that the oxidation of Cu ore in a monitored biogenic mining environment produces a copper isotope fractionation that is not related to biogenic activity,but can be modelled using redox equilibria(Ruiz et al.,2002).Biogenic fractionations are,therefore,not considered here.

4.1.Reservoir Cu isotope ratios

To evaluate the isotopic signature of the sources of Cu in hydrothermal systems,it is necessary to measure or reliably estimate Cu isotope ratios in relevant source reservoirs.Current research has not addressed this

https://www.doczj.com/doc/4a18484916.html,rson et al./Chemical Geology201(2003)337–350347

problem.However,some data do address the Cu isotope ratio of the mantle.Analyses of Cu minerals in mantle derived magmas,specifically chalcopyrite in layered mafic intrusions(Fig.3),cluster within about 0.1x around a mean value ofà0.10x toà0.15x. These data are limited,and originate mostly from one large intrusion at Subdury,Canada,where crustal assimilation may have modified the mafic mantle-derived magma.Also,several samples lie outside this cluster.

Hydrothermal Cu derived from basalts,which might be expected to reflect mantle values,overlap mafic intrusion chalcopyrite values but exhibit broader ranges extending to higher ratios.Black smoker chal-copyrites range up to greater than one per mil more than mafic intrusion chalcopyrites(Mare′chal et al., 1999;Zhu et al.,2000),and Michigan native Cu values peak at a half per mil higher than mafic samples.Redox and temperature-dependent fractiona-tions are probably important in these moderate-to low-temperature hydrothermal systems,and their re-spective copper values most likely do not reflect source values.Iron meteorite Cu ratios match values from mafic igneous rocks,but chondritic values are lower(Luck et al.,2002).All of these data suggest that bulk mantle Cu isotope ratios are most likely one to several tenths of a per mil lower than0.0x,but in detail they may be variable over a rather broad range of several per mil.

4.2.Reduction–oxidation fractionation

Cu isotope ratios for mineral pairs in supergene environments suggest that fractionation occurs in min-erals with Cu in different oxidation states.Cuprite,for example,has a higher value than native copper in two native copper–cuprite pairs from different deposits (Table5).These data suggest a low-temperature redox fractionation relationship.Note also that supergene copper minerals,with copper in all three valence states,from a variety of deposits show a5.5x range in values,broader than and extending to both higher and lower values than the ranges of hypogene hydro-thermal Cu minerals from many deposits(Figs.3and 5).This broad range also implies that redox reactions play a role in the fractionation of Cu isotopes at low https://www.doczj.com/doc/4a18484916.html,mercial mining uses biogenic agents to oxidize Cu minerals in leach pads,so that Cu becomes soluble and can be collected from perco-lating solutions and precipitated.Ruiz et al.(2002) have monitored time-dependent variations in Cu iso-tope ratios in these fluids,as oxidation proceeds.They conclude that,in fact,variations in Cu isotope ratios with time are best modelled using redox fractionation without any contribution from fractionation originat-ing from biogenic agents.

It seems clear that redox reactions correlate with fractionation among Cu species in different valence states.This fractionation may be controlled by the oxidation state and pH of the transporting fluid.By analogy,Ohmoto and Rye(1979)have shown that,at 250j C,d34S values of aqueous H2S may vary by more than25x from bulk fluid d34S values under oxygen fugacity and pH conditions that are typical of hydro-thermal fluids(along the equilibrium phase boundary between magnetite and pyrite,where SO4à2/H2S ratios vary).The fractionations may be larger at lower tem-peratures.Cu in+1and+2oxidation states is most soluble as a complex with Clàions(Helgeson,1969).It is also possible that fractionations among different copper chloride complexes,where the Cu is in the same or different oxidation states,is important(Mare′-chal and Albare`de,2002).Therefore,Cu isotope frac-tionation may also vary as a function of solution salinity.

4.3.Thermodynamic equilibrium fractionation

Copper isotope fractionations between chalcopyrite and bornite pairs from four samples where the two minerals appear to have co-precipitated in equilibrium are uniform within analytic uncertainty.Together with a fifth pair that came from different samples in the same deposit,they indicate a chalcopyrite–bornite fractionation of0.40F0.04x at moderate temper-atures(Fig.6).A lack of geothermometric measure-ments for these samples precludes estimating a temperature dependence for this fractionation factor. The fractionation is interpreted as a thermodynamic equilibrium fractionation,analogous to the well known equilibrium fractionations for the light stable isotopes such as oxygen,carbon,and hydrogen(isotope sys-tems in which redox equilibria are not important in natural environments).These data imply that thermo-dynamic equilibrium fractionations may be important in hydrothermal and other systems.

https://www.doczj.com/doc/4a18484916.html,rson et al./Chemical Geology201(2003)337–350 348

5.Summary and conclusions

(1)High-precision,multicollector ICP mass spec-

trometers have been applied successfully to measuring variations of Cu isotope ratios for samples of geochemical interest.Several labora-tories are now producing precise Cu ratios on natural inorganic samples.Internal precision of Cu isotope ratio measurements using samples prepared by either chromatographic purification techniques or dissolution of Cu-rich minerals without purification are comparable within ana-lytic uncertainty and generally better than F0.04x(1r).

(2)d65Cu NBS976values have been measured for

magmatic and hydrothermal Cu minerals from a variety of environments.Together with other recently published Cu ratios for ore minerals, these data provide a preliminary basis for evaluating variations among and within moderate to high-temperature hydrothermal systems.Some very large hydrothermal systems,such as the one that produced the Michigan,USA,native copper deposits,appear to homogenize Cu during trans-port,or provide Cu from a single homogeneous source.Cu ratios in the major Michigan ore mineral,native copper,vary only slightly,within analytic uncertainty for most samples across the system.Smaller hydrothermal systems,such as in the Tintaya and Las Bambas porphyry-skarn copper districts in Peru,yield relatively variable Cu ratios that change significantly even over very short distances.This may reflect multiple miner-alization or remobilization events,or fractiona-tion along a fluid flow pathway.

(3)Cu source reservoir ratios,such as for batholithic

or clastic sedimentary Cu sources,remain undefined but are critically needed so that metal sources in hydrothermal systems can be eval-uated.Preliminary measurements suggest that bulk mantle values and basalt magmas derived from bulk mantle appear to lie several tenths of a per mil less than0.0x,although the mantle may exhibit an overall Cu isotopic range of several per mil.

(4)Consistent fractionations have been measured for

native copper–cuprite and chalcopyrite–bornite pairs in several deposits.Redox reactions,Cu ion

valence and speciation in solutions,and equili-brium fractionation akin to that observed in light stable isotope systems most likely control Cu isotope fractionations in hydrothermal and weath-ering environments.Chemical and physical para-meters,therefore,exert control over Cu isotope fractionation and probably include temperature, oxygen fugacity,pH,and fluid salinity. Acknowledgements

We thank Charles Douthitt,Joaquin Ruiz,Chloe′Mare′chal,and John Wolff for fruitful and interesting discussions about Cu isotopes.Charles Knaack,as usual,proved to be a great analytic resource,and he graciously provided his time for this project.John Dilles and Thomas Pettke provided useful and constructive reviews of the original manuscript,for which we are sincerely grateful.[RR]

References

Anbar,A.D.,Roe,J.E.,Barling,J.,Nealson,K.H.,2000.Non-bio-logical fractionation of iron isotopes.Science288,126–128. Barton Jr.,P.B.,Skinner,B.J.,1979.In:Barnes,H.L.(Ed.),Geo-chemistry of Hydrothermal Ore Deposits.Wiley,New York, pp.278–403.

Beard,B.L.,Johnson,C.M.,1999.High precision iron isotope measurements of terrestrial and lunar materials.Geochimica et Cosmochimica Acta63,1653–1660.

Bigeleisen,J.,Mayer,M.G.,1947.Calculation of equilibrium con-stants for isotope exchange reactions.Journal of Chemistry and Physics15,261–267.

Bullen,T.D.,White,A.F.,Childs,C.W.,Vivit,D.V.,Schulz,M.S., 2001.Demonstration of significant abiotic iron isotope fractio-nation in nature.Geology29,699–702.

Butler,B.S.,Burbank,W.S.,1929.The copper deposits of Michi-gan.United States Geological Survey,Professional Paper244. Ellis,A.S.,Johnson,T.M.,Bullen,T.D.,2002.Mass-dependent fractionation of Cr isotopes and applications of Cr isotope ratios to indicate hexavalent Cr reduction and immobilization.Science 265,2060–2062.

Farmer,G.L.,DePaolo, D.J.,1997.Sources of hydrothermal components:heavy isotopes.In:Barnes,H.L.(Ed.),Geochem-istry of Hydrothermal Ore Deposits,3rd ed.Wiley,New York, pp.31–61.

Gustafson,L.B.,Hunt,J.P.,1975.The porphyry copper deposit at El Salvador,Chile.Economic Geology70,857–912. Helgeson,H.C.,1969.Thermodynamics of hydrothermal systems at elevated temperatures and pressures.American Journal of Science267,729–804.

https://www.doczj.com/doc/4a18484916.html,rson et al./Chemical Geology201(2003)337–350349

Larson,P.B.,1987.Stable isotope and fluid inclusion investigations of epithermal vein and porphyry molybdenum mineralization in the Rico mining district,Colorado.Economic Geology82, 2141–2157.

Larson,P.B.,Taylor Jr.,H.P.,1986.An oxygen isotope study of hydrothermal alteration in the Lake City caldera,San Juan Moun-tains,Colorado.Journal of Volcanology and Geothermal Re-search30,47–82.

Livnat,A.,1983.Metamorphism and copper mineralization of the Portage Lake Lava Series,northern Michigan.PhD Thesis,Uni-versity of Michigan,Ann Arbor,USA.

Luck,J.M.,Ben Othman,D.,Albare`de,F.,2002.What do Cu–Zn isotopes tell us on meteorites?Abstract.Geochimica et Cosmo-chimica Acta66,A462.

Mare′chal,C.,Albare`de,F.,2002.Ion-exchange fractionation of copper and zinc isotopes.Geochimica et Cosmochimica Acta 66,1499–1509.

Mare′chal,C.,Te′louk,P.,Albare`de,F.,1999.Precise analysis of copper and zinc isotopic compositions by plasma-source mass spectrometry.Chemical Geology156,251–273.

Ohmoto,H.,Rye,R.O.,1979.Isotopes of sulfur and carbon.In: Barnes,H.L.(Ed.),Geochemistry of Hydrothermal Ore Depos-its,2nd ed.Wiley,New York,pp.509–567.

Ripley,E.M.,Park,Y.R.,Li,C.,Naldrett,A.J.,1999.Sulfur and oxygen isotope evidence of country rock contamination in the Voisey’s Bay Ni–Cu–Co deposit,Labrador,Canada.Lithos 47,53–68.

Ripley,E.M.,Park,Y.R.,Li,C.,Naldrett,A.J.,2000.Oxygen iso-tope studies of the V oisey’s Bay Ni–Cu–Co deposit,Labrador, Canada.Economic Geology95,831–844.Ruiz,J.,Mathur,R.,Young,S.,Brantley,S.,2002.Controls of copper isotope fractionation.Abstract.Geochimica et Cosmo-chimica Acta66,A654.

Sheppard,S.M.F.,Nielsen,R.L.,Taylor Jr.,H.P.,1969.Oxygen and hydrogen isotope ratios of clay minerals from porphyry copper deposits.Economic Geology64,755–777.

Sheppard,S.M.F.,Nielsen,R.L.,Taylor Jr.,H.P.,1971.Hydrogen and oxygen isotope ratios in minerals from porphyry copper deposits.Economic Geology66,515–542.

Shields,W.R.,Goldich,S.S.,Garner,E.L.,Murphy,T.J.,1965.

Natural variations in the abundance ratio and the atomic weight of copper.Journal of Geophysical Research70,479–491. Taylor Jr.,H.P.,1997.Oxygen and hydrogen isotope relationships in hydrothermal mineral deposits.In:Barnes,H.L.(Ed.),Geo-chemistry of Hydrothermal Ore Deposits,3rd ed.Wiley,New York,pp.229–302.

Urey,H.C.,1947.The thermodynamic properties of isotopic sub-stances.Chemical Society Journal(London),562–581. Walker,E.C.,Cuttitta,F.,Senftle,F.E.,1958.Some natural varia-tions in the relative abundance of copper isotopes.Geochimica et Cosmochimica Acta15,183–194.

White,W.S.,1968.The native-copper deposits of northern Michi-gan.In:Ridge,J.D.(Ed.),Ore Deposits of the United States, The Graton-Sales V olume.AIME,New York,pp.303–325. Zhu,X.K.,O’Nions,R.K.,Guo,Y.,Belshaw,N.S.,Rickard,D., 2000.Determination of natural Cu-isotope variation by plasma-source mass spectrometry:implications for use as geochemical tracers.Chemical Geology163,139–149.

https://www.doczj.com/doc/4a18484916.html,rson et al./Chemical Geology201(2003)337–350 350

铜电解槽精炼车间工业设计

铜电解槽精炼车间工业设 计 Newly compiled on November 23, 2020

铜电解槽精炼车间工艺设计 一、概述 1、粗铜经火法精炼后仍含有一点数量的杂质。这些杂质的存在会使铜的某些物理性质和机械性能变坏,不能满足电气工业对铜的要求。因此,粗铜在火法精炼后需要电解精炼以除去有害杂质。铜的电解精炼以火法精炼产出的铜为阳极,以电解产出的薄铜片为阴极,以硫酸和硫酸铜水溶液作电解液。在直流电作用下,阳极铜电化学溶解,在阴极上沉积,杂质则进入阳极泥和电解液中,从而实现铜于杂质的分离。 下图为铜电解精炼一般工艺流程图: 种板阳极 阳极 阳极泥 送阳极泥 处理法精炼 结晶硫酸铜粗硫酸 图1-1铜电解精炼一般工艺流程图: 2、铜阳极 铜电解精炼的原料是火法精炼后烧铸而成的铜阳极。生产中应尽量获得质量良好的铜阳极板。 二、技术条件及技术经济指标的选择 1、操作技术条件 ⑴、电流密度

电流密度是指单位面积上通过的电流安培数。电流密度的范围为200-360A /m 2.。种板电解槽电流密度比普通电解槽电流密度稍低,本设计中普通电解槽电流密度取300 A /m 2,种板电解槽电流密度取230A /m 2。 ⑵、电解液成分 电解液成分主要由硫酸和硫酸铜水溶液组成。其铜和硫酸的含量视电流密度、阳极成分和电解液的纯净度等条件而定。在电解生产中,必须根据具体条件加以掌握,以控制电解液的含铜量处于规定的范围。 ⑶、极距 极距一般指同极中心距。本设计取极距为90mm 。 ⑷、阳极寿命和阴极周期 阳极寿命根据电流密度、阳极质量及残极率来确定,一般为18-24天。阴极周期与电流密度、阳极寿命及劳动组织等因素有关,一般为阳极寿命的1/3。本设计中阳极寿命为18天,阴极寿命为6天。 2、技术经济指标 ⑴、电流效率 电流效率是指电解过程中,阴极实际析出量占理论量的百分比。本设计中电流效率为% ⑵、残极率 残极率是指产出残极量占消耗阳极量的百分比。本设计中残极率17%。 ⑶、电解回收率 铜电解回收率反应在电解过程中铜的回收程度,其计算方法如下: 铜电解回收率×100 %

铜铟镓硒(CIGS)薄膜太阳能电池研究

铜铟镓硒(CIGS)薄膜太阳能电池研究 【摘要】:铜铟镓硒Cu(InGa)Se_2(CIGS)薄膜太阳能电池,具有转换效率高、成本低、稳定性好等特点,是最有发展前景的薄膜太阳能电池之一。到目前为止,基于三步共蒸发工艺制备的CIGS薄膜太阳能电池的效率已达19.99%,是所有薄膜太阳能电池中最高的。尽管这种制备方法有很多优点,制备成分均匀的大面积电池却具有难以克服的困难,不能满足大规模产业化的要求。在CIGS薄膜太阳能电池产业化进程中,克服其层间的附着力差,制备符合化学计量比具有黄铜矿结构的多晶薄膜吸收层是必须解决的两个最重要的工艺技术。本论文主要研究一种工艺简单、可控、适合产业化需要的技术工艺,即溅射制备合金预制膜后硒化的制备方法。研究采用的溅射系统,是本中心自行设计研制的三靶共溅设备,阴极大小为3英寸,衬底基座可以旋转,以保证制备薄膜的均匀。首先,在碱石灰玻璃衬底上制备厚度约1微米的钼电极,在溅射过程中通过改变工作气压,使Mo电极具有类似层状结构,消除了内应力的影响。通过扫描电镜分析,薄膜表面具有鱼鳞状结构,从而增加了Mo电极和CIGS吸收层之间的接触面积。Mo电极和玻璃衬底之间,及其和CIGS吸收层之间的附着力得到显著提高。然后,在沉积有Mo电极的玻璃衬底上,通过共溅射的方法制备约700纳米厚度的Cu(InGa)预制层薄膜,靶材采用CuIn和CuGa合金靶。硒化采用低温和高温过程依次进行的2步方法,采用固态硒源,硒化室是一个半密封的石墨盒。通过在高温区保温30分钟,制备出了性能优异的CIGS

吸收层薄膜,具有(112)晶面择优取向,显示明显的黄铜矿单一结构。薄膜表面平整,晶粒大小均匀、排列紧密,晶粒大小达到3到5微米。用化学水浴法,制备厚度约70纳米的CdS过渡层。分别采用醋酸镉和硫尿作为镉源和硫源。研究了ZnS薄膜的制备工艺,对无镉电池的制备做了初步探索。最后用射频磁控溅射的方法,研究了常温下制备透明导电材料IT0和ZnO的制备工艺,研究了溅射功率和溅射气压对薄膜性能的影响。所制备的透明导电薄膜在可见光谱范围内,透过率到达80%到90%,方块电阻达到15Ω/□以下。在CIGS薄膜太阳能中,作为上电极材料,具有广泛的应用前景。通过大量的实验,优化了背电极Mo、吸收层CIGS、过渡层CdS(ZnS)、本征氧化锌i-ZnO和搀杂氧化锌n-ZnO(或者ITO)的制备工艺。最后,制备出了结构为Glass/Mo/CIGS/CdS/i-ZnO/n-ZnO/A1的CIGS电池器件。对器件的性能做了测试分析,在没有减反射层的情况下,转化效率达到7.8%。该研究采用的CIGS薄膜太阳能电池的制备工艺简单、过程容易控制、设备和材料费用低,没有采用剧毒的气源,适合大规模产业化的要求,为以后进一步的研究开发做了技术储备。【关键词】:CIGS薄膜太阳能电池TCO磁控溅射合金靶固态硒源硒化 【学位授予单位】:华东师范大学 【学位级别】:博士 【学位授予年份】:2009

铜编织带软连接标准和类型

铜编织带软连接标准和类型,用途和工艺简介:铜编织带软连接又名铜编织线软连接,用冷压方法约束而成,是在编织带两边焊接铜管,通过处理做成软连接导线材料:铜编织线、铜编织带、镀锡铜编织线、镀锡铜编织带、铜绞线。铜编织带是用无氧铜丝编织,线经0.10mm,0.12mm,0.15mm单丝,根据客户要求,柔软度,通电强度等特制而成。,可根据客户不同的需求打孔,镀锡等。 接触面材料:OT端子、DT端子、铜管(表面可根据客户要求镀银、锡、镍等) 压接方法:用冷压的方法制成,依照厚度要求或根据客户参数要求选用不同的冲床、液压机进行压接。 绝缘材料:雅杰公司标准规划无绝缘材料,可根据客户要求运用PVC绝缘套管或热宿管加以绝缘维护固定。 工艺:用裸铜线、铜编织线,作为导体,两头选用铜端子,接头标准按客户要求 出产,用冷压方法约束而成。可根据客户要求镀锡镀银。再通过特别处理,做成高强度大电流软连接。 产品功能:导电率高,表面平整,亮光,接触面好,导电功能优越。适用性强,柔软度佳,设备便当,易散热,耐曲折。

适用范围:雅杰产品首要用于非水平方向的带电运动及中、低压断路器,适用于各种高低压电器、真空电器、矿用防爆开关及轿车、机车、轿车电池、动力电池等相关产品做软连接用。广泛用于发电机、变压器、开关、母线、工业电炉、整流设备、电解锻炼设备、焊接设备及其他大电流设备中做柔性导电联接。 优势:处理了传统母线在运用过程中易发热、高能耗等缺陷,具有节能降耗、导电功能超群、运用寿命长、免维护、外形漂亮、设备便当等特征。本公司选用先进的原子扩散工艺,专业出产各种高低压电器设备用软连接、导电带、母线弹性节。 钻孔:雅杰公司标准规划无钻孔要求,可根据图纸或客户参数要求在接触面钻孔。 特别规划:可根据用户要求或图纸参数要求进行辅佐的车床、洗床、切床等设备加工。

铜电解槽精炼车间工业设计

铜电解槽精炼车间工业 设计 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

铜电解槽精炼车间工艺设计 一、概述 1、粗铜经火法精炼后仍含有一点数量的杂质。这些杂质的存在会使铜的某些物理性质和机械性能变坏,不能满足电气工业对铜的要求。因此,粗铜在火法精炼后需要电解精炼以除去有害杂质。铜的电解精炼以火法精炼产出的铜为阳极,以电解产出的薄铜片为阴极,以硫酸和硫酸铜水溶液作电解液。在直流电作用下,阳极铜电化学溶解,在阴极上沉积,杂质则进入阳极泥和电解液中,从而实现铜于杂质的分离。 下图为铜电解精炼一般工艺流程图: 种板阳极 阳极 阳极泥 送阳极泥 处理法精炼 结晶硫酸铜粗硫酸 图1-1铜电解精炼一般工艺流程图: 2、铜阳极 铜电解精炼的原料是火法精炼后烧铸而成的铜阳极。生产中应尽量获得质量良好的铜阳极板。 二、技术条件及技术经济指标的选择 1、操作技术条件 ⑴、电流密度

电流密度是指单位面积上通过的电流安培数。电流密度的范围为200-360A /m 2.。种板电解槽电流密度比普通电解槽电流密度稍低,本设计中普通电解槽电流密度取300 A /m 2,种板电解槽电流密度取230A /m 2。 ⑵、电解液成分 电解液成分主要由硫酸和硫酸铜水溶液组成。其铜和硫酸的含量视电流密度、阳极成分和电解液的纯净度等条件而定。在电解生产中,必须根据具体条件加以掌握,以控制电解液的含铜量处于规定的范围。 ⑶、极距 极距一般指同极中心距。本设计取极距为90mm 。 ⑷、阳极寿命和阴极周期 阳极寿命根据电流密度、阳极质量及残极率来确定,一般为18-24天。阴极周期与电流密度、阳极寿命及劳动组织等因素有关,一般为阳极寿命的1/3。本设计中阳极寿命为18天,阴极寿命为6天。 2、技术经济指标 ⑴、电流效率 电流效率是指电解过程中,阴极实际析出量占理论量的百分比。本设计中电流效率为% ⑵、残极率 残极率是指产出残极量占消耗阳极量的百分比。本设计中残极率17%。 ⑶、电解回收率 铜电解回收率反应在电解过程中铜的回收程度,其计算方法如下: 铜电解回收率×100 %

铜编织线价格

厂家直销@质量保障https://www.doczj.com/doc/4a18484916.html, 铜编织线是制作软连接材料,廊坊伟兴金属材料有限公司位于河北廊坊大城旺村崔四岳工业园区,是专业生产制作编织线软连接,编织线,软绞线,电刷线,防玻套,电器软连接,汽车电缆线,铜排软连接,新能源汽车电池包连接线等产品的专业化厂家,本公司所生产的产品主要是用于航天,军工等装备制造,汽车,电子,新能源汽车,电器制造各方面。 下面为大家介绍关于铜编织线的产品特点及其发展趋势。铜编织线是采用优质软态圆铜线(0.10mm、0.15mm、0.20mm)或镀锡软态圆铜线(0.10mm、0.15mm、0.20mm),以多股(24、36、48锭)经单层或多层编织而成。其产品型号有TZ-20、TZX-20、TZ-15、TZX-15、TZ-10、TZX-10六种。 铜编织线产品发展方向 我国将电线电缆产品按其用途分成五大类,即:裸电线、绕组线、电气装备用电线电缆、电力电缆和通信电缆(包括光缆)。目前,我国这五类产品生产量(价值量)大体上分别占电线电缆总产量的18%、19%、22%、31%和10%。专家分析指出:现阶段我国电线电缆的产品

厂家直销@质量保障https://www.doczj.com/doc/4a18484916.html, 结构比较落后,技术含量低的产品比重过大,技术含量高的产品比重过小。而发达国家如美国上述五类产品所占比例分别为10%、10%、49%、13%和18%,产品结构明显优于我国。虽然我国的电线电缆行业在生产规模、品种发展和产品等级上已发生较大变化,但在发展中还存在三个主要问题: (1)规模增长过猛目前,电线电缆行业总体能力大于需求一倍以上,各大类产品2000年的预测需求数均小于目前生产能力。 (2)低水平重复建设多近几年,电线电缆行业对产品结构的调整重视不够,产品结构矛盾依然突出,高水平产品满足不了需要。例如,从大类看,我国裸电线产量占近1/5,发达国家只占1/10。而在裸电线中,架空线和普通的钢芯铝绞线又占了绝大多数。

电解铝工艺流程-编写

电解铝工艺流程 电解铝就就是通过电解得到得铝,现代金属铝得生产主要采用冰晶石-氧化铝融盐电解法。生产工艺流程如图1所示。

1、铝电解工艺 直流电通入电解槽,电解槽温度控制在940-960℃,熔融冰晶石就是溶剂,氧化铝作为溶质,以炭素体作为阳极,铝液做为阴极,使溶解于电解质中得氧化铝在槽内得阴、阳两极发生电化学反应。在阴极电解析出金属铝,在阳极电解析出与气体.铝液定期用真空抬包析出,经过净化澄清后,浇铸成商品铝锭. 阳极气体经净化后,废气排空,回收得氟化物等返回电解槽. 电解铝得主要设备就是电解槽,现代铝工业主要有两种形式得槽式分别为自焙阳极电解槽与预焙阳极电解槽。以下为两种槽得比较: 图一:两种类型电解槽得比较 目前世界上大部分国家及生产企业都在使用大型预焙槽,槽得电流强度 很大,不仅自动化程度高,能耗低,单槽产量高,而且满足了环保法规得要求。 从铝电解槽得发展来瞧,目前电流强度达到17-22KA得大型化各类阳极电解槽,产铝量为1200-1500Kg/d,电能消耗降低到13、5KW*H。下图为一

种铝电解槽参数 图二:一种铝电解槽配置图 2、电解烟气干法净化 2、1干法净化原理 干法净化就就是以某种固体物质吸附另一种气体物质所完成得净化过程。具有吸附作用得物质称吸附剂,被吸附得物质叫吸附质。铝电解含氟烟气得干法净化使用电解铝生产用得氧化铝,作为吸附剂吸附烟气中得氟化氢等大气污染物来完成对烟气得净化。氧化铝对氟化氢得吸附过程分三个步骤: (1)氟化氢在气相中不断扩散,通过氧化铝表面气膜到达氧化铝表面.

(2)氟化氢受氧化铝离子极化得化学键力得作用,形成化学吸附。 (3)被吸附得氟化氢与氧化铝发生化学反应,生成表面化合物―氟化铝。氟化氢得吸附率可达98%~99%,沥青烟得吸附率在95%以上。载有氟与沥青烟得氧化铝由布袋除尘器分离后供电解使用。回收得氟返回电解槽可补充电解生产过程中损失得氟元素,沥青焦油返槽后可逐步被烧掉。 2、2干法净化工艺流程 图3干法净化工艺流程图 干法净化工艺流程包括电解槽集气、吸附反应、气固分离、氧化铝输送、机械排风等五个部分,如图3所示。 (1)电解槽集气。电解槽散发得烟气呈无组织扩散状态,为了有效地控制污染,必须对电解槽进行密封。收集得烟气通过电解槽得排烟支管汇

如何计算铜编织带软连接的截面积

如何计算铜编织带软连接的截面积? 简介:铜编织带软连接又叫铜编织线软连接,用冷压方法压制而成,是在编织带两边焊接铜管,经过处理做成软连接,可根据客户不同的需求打孔,镀锡等。 导线材料:铜编织线、铜编织带、镀锡铜编织线、镀锡铜编织带、铜绞线。铜编织带是用无氧铜丝编织,线经0.10mm,0.12mm,0.15mm单丝,根据客户要求,柔软度,通电强度等特制而成。 接触面材料:OT端子、DT端子、铜管(表面可根据客户要求镀银、锡、镍等) 压接方式:用冷压的方式制成,按照厚度要求或根据客户参数要求采用不同的冲床、液压机进行压接。 绝缘材料:本公司标准设计无绝缘材料,可根据客户要求使用PVC绝缘套管或热宿管加以绝缘保护固定。 工艺:用裸铜线、铜编织线,作为导体,两端采用铜端子,接头尺寸按客户要求 生产,用冷压方法压制而成。可根据客户要求镀锡镀银。再通过特殊处理,做成高强度大电流软连接。 产品性能:导电率高,表面平整,光亮,接触面好,导电性能优越。适用性强,柔软度佳,安装方便,易散热,耐弯曲。 适用范围:主要用于非水平方向的带电运动及中、低压断路器,适用于各种高低压电器、真空电器、矿用防爆开关及汽车、机车、汽车电池、动力电池等相关产品做软连接用。广泛用于发电机、变压器、开关、母

线、工业电炉、整流设备、电解冶炼设备、焊接设备及其他大电流设备中做柔性导电连接。 优势:解决了传统母线在使用过程中易发热、高能耗等缺点,具有节能降耗、导电性能超群、使用寿命长、免维护、外形美观、安装方便等特点。本公司采用先进的原子扩散工艺,专业生产各种高低压电器设备用软连接、导电带、母线伸缩节。 钻孔:雅杰电子标准设计无钻孔要求,可根据图纸或客户参数要求在接触面钻孔。 特殊设计:可根据用户要求或图纸参数要求进行辅助的车床、洗床、切床等设备加工。 铜编织带软连接是铜编织带作为导体,两端选用铜管,铜管表面镀锡处置,接头标准按客户需要出产,再通过格外处置,做成软连接、软接地。导电率高、抗疲劳能力强。 铜编织带软连接规格(截面积)计算公式: 拿25平方来说,常规的规格是48*30*1/0.15,48指机器的碇数,即由多少股铜丝组成。30指每股里面有30根铜丝,1指单层,有时候我们会看到2,3等数字,则表示双层、三层。斜杠后面的0.15是指铜丝的单丝线径是0.15mm。 圆的面积计算公式:圆周率?半径?半径, 所以铜编织线的计算公式就是总共多少根铜丝*圆周率?半径?半径,即1440*0.075*0.075*3.14=25.434平方,标称25平方。

山铝电解铝厂电解槽设计特点

《山东冶金》2006年第4期 -------------------------------------------------------------------------------- 山铝电解铝厂电解槽设计特点 王庆义 (山东工业职业学院,山东淄博256414) 摘要:山铝电解铝厂在技术改造中采用200kA预焙阳极电解槽取代60kA自焙槽,该槽型具有优异的磁流体稳定性,合理的电热场设计,采用了窄加工面、阳极升降、“船形”槽壳、实腹板梁等多项先进技术和高性能的内衬材料。目前,电解槽已连续生产986天,电流效率达到了94.5 %,吨铝直流电能消耗13100 kW.h,氟化氢和粉尘等主要污染物排放量全部达到了国家排放标准。 关键词:电解槽;技术改造;设计特点;电流效率 中图分类号:TF821文献标识码:A文章编号:1004-4620(2006)04-0031-02 Design Characteristics of the Electrolytic Tank in the Electrolytic Aluminum Plant of Shanlv WANG Qing-yi (Shandong Industrial Vocational College, Zibo 256414, China) Abstract:200kA prebaked anode cell is adopted by in the Electrolytic Aluminum Plant of Shandong Aluminum Co., Ltd instead of 60kA self-baking cell in technical modification. This prebaked anode cell has excellent magnetohydrodynamic stability and reasonable electric heating field design and adopts new techniques such as narrow treating surface, the anode rise and drop, ship-pattern pot shell and solid web plate girder; and inner lining of high performance. The electrolytic tank has kept running for 986 days up to now,the power yield reaches 94.5 %,while the direct electric power consumption is only 13100 kW.h, furthermore, the discharge of main pollutants such as hydrogen fluoride and dust etc is up to the national effluent standard. Key words:electrolytic tank; technical modification; design characteristic; power yield 1 前言 山东铝业股份有限公司电解铝厂(简称山铝电解铝厂)60kA自焙槽工艺始建于1958年,由于自焙槽自身的结构特点,难以实现自动化控制和解决电解烟气污染的问题,因此技术经济指标较差,生产成本也相对较高。自焙槽与预焙槽在电流效率上相差约4%~5%,吨铝直流电耗相差1000kW.h左右,造成能源与资源的浪费。为此,山铝电解铝厂从2002年起开始对自焙槽实施预焙化改造,采用200kA预焙阳极电解槽取代60kA自焙槽,以彻底解决自焙槽烟气的环境污染问题,为提高电解铝厂技术装备水平,实现低耗高效奠定了基础。 2 200kA预焙阳极电解槽的设计特点 现代铝电解槽以高效、节能、长寿为特征,而电解槽的设计无疑十分关键。铝生产的实践证明,电解槽的稳定性是获得良好生产指标的根本保证。磁流体的稳定性、热平衡、电解

电解铝工艺流程-编写

电解铝工艺流程 电解铝就是通过电解得到的铝,现代金属铝的生产主要采用冰晶石-氧化铝融盐电解法。生产工艺流程如图1所示。

1. 铝电解工艺 直流电通入电解槽,电解槽温度控制在940-960℃,熔融冰晶石是溶剂,氧化铝作为溶质,以炭素体作为阳极,铝液做为阴极,使溶解于电解质中的氧化铝在槽内的阴、阳两极发生电化学反应。在阴极电解析出金属铝,在阳极电解析出CO和 CO气体。铝液定期用真空抬包析出,经过净化澄清后,浇铸成2 商品铝锭。阳极气体经净化后,废气排空,回收的氟化物等返回电解槽。 电解铝的主要设备是电解槽,现代铝工业主要有两种形式的槽式分别为自焙阳极电解槽和预焙阳极电解槽。以下为两种槽的比较: 图一:两种类型电解槽的比较 目前世界上大部分国家及生产企业都在使用大型预焙槽,槽的电流强度 很大,不仅自动化程度高,能耗低,单槽产量高,而且满足了环保法规的要求。从铝电解槽的发展来看,目前电流强度达到17-22KA的大型化各类阳极 电解槽,产铝量为1200-1500Kg/d,电能消耗降低到13.5KW*H。下图为一

种铝电解槽参数 图二:一种铝电解槽配置图 2. 电解烟气干法净化 2.1干法净化原理 干法净化就是以某种固体物质吸附另一种气体物质所完成的净化过程。具有吸附作用的物质称吸附剂,被吸附的物质叫吸附质。铝电解含氟烟气的干法净化使用电解铝生产用的氧化铝,作为吸附剂吸附烟气中的氟化氢等大气污染物来完成对烟气的净化。氧化铝对氟化氢的吸附过程分三个步骤: (1)氟化氢在气相中不断扩散,通过氧化铝表面气膜到达氧化铝表

面。 (2)氟化氢受氧化铝离子极化的化学键力的作用,形成化学吸附。 (3)被吸附的氟化氢和氧化铝发生化学反应,生成表面化合物―氟化铝。氟化氢的吸附率可达98%~99%,沥青烟的吸附率在95%以上。载有氟和沥青烟的氧化铝由布袋除尘器分离后供电解使用。回收的氟返回电解槽可补充电解生产过程中损失的氟元素,沥青焦油返槽后可逐步被烧掉。 2.2干法净化工艺流程 图3干法净化工艺流程图 干法净化工艺流程包括电解槽集气、吸附反应、气固分离、氧化铝输送、机械排风等五个部分,如图3所示。 (1)电解槽集气。电解槽散发的烟气呈无组织扩散状态,为了有效

铜铟镓硒薄膜太阳能电池的研究进展及展望

铜铟镓硒薄膜太阳能电池的研究进展及展望 摘要:铜铟镓硒薄膜太阳能电池是多元化合物薄膜电池的重要一员,由于其优越的 综合性能,已成为全球光伏领域研究热点之一。本文阐述了铜铟镓硒薄膜太阳能电 池的特性和竞争优势;介绍了国内外在铜铟镓硒薄膜太阳能电池领域的研究现状; 最后探讨了铜铟镓硒薄膜太阳能电池的应用展望。 关键词:太阳能电池;薄膜;铜铟镓硒;展望 近几年,世界各国加速发展各种可再生能源替代传统的化石能源,以解决日益加剧的温室效应、环境污染和能源枯竭等全球危机。作为理想的清洁能源,太阳能永不枯竭,正成为当今世界最具发展潜力的产业之一。目前,太阳能电池市场主要产品是单晶硅和多晶硅太阳能电池,占市场总额的80%以上。由于晶硅电池的高成本和生产过程的高污染,成本更低、生产过程更加环保的薄膜太阳能电池得到快速发展。现阶段,有市场前景的薄膜太阳能电池有3种,分别是非晶硅、碲化镉(CdTe)和铜铟镓硒(CuInGaSe2,一般简称CIGS)薄膜太阳能电池。作为直接带隙化合物半导体,铜铟镓硒吸收层吸收系数高达105cm-1,转化效率是所有薄膜太阳能电池中最高的,已成为全球光伏领域研究热点之一,即将成为新一代有竞争力的商业化薄膜太阳能电池。 1 铜铟镓硒薄膜太阳能电池的特性和竞争优势 太阳能电池的材料一般要求主要包括:半导体材料的禁带宽度适中;光电转化效率比较高;材料制备过程和电池使用过程中,不存在环境污染;材料适合规模化、工业化生产,且性能稳定。经过数十年电子工业的研究发展,作为半导体材料硅的提炼、掺杂和加工等技术已经非常成熟,所以,现在的商品太阳能电池主要硅基的[1]。但是,硅是间接带隙半导体材料,在保证电池一定转化效率前提下,其吸收层厚度一般要求150~300微米以上,理论极限效率为29%,按目前技术路线,提升效率的难度已经非常巨大[2]。同时考虑到加工过程近40%的材料损耗,材料成本是硅太阳能电池的最主要构成。另外,其材料生产过程的高温提炼、高温扩散导致其制备过程能耗高,这使其能量偿还周期长,整体成本高。尽管经过近几年的规模化发展,市场价格得到大幅下降,其每瓦成本仍高于2美元。如果再考虑到其制备过程的高污染,更增加了其环境治理社会成本,这些都严重制约了其竞争优势。相比较,薄膜太阳能电池具有较大的成本下降空间,同时它能够以多种方式嵌入屋顶和墙壁,非常适合光电一体化建筑和大型并网电站项目。在这种情况下,薄膜太阳能电池引起了人们的重视,近几年成了科技工作者的研究重点。从全球范围来看,光伏产业近期仍将以高效晶体硅电池为主。但向薄膜

电解槽设计模版

课程设计说明书 题 目: 年产x x 万吨铝电解槽设计 学生姓名: 学 院: 材料科学与工程 班 级: 冶金06-x x 指导教师: 2009年xx 月 学校代码: 10128 学 号:xxxxxxxxxxx

内蒙古工业大学课程设计(论文)任务书 课程名称:冶金工程课程设计学院:班级:冶金06 - xx 学生姓名: ___ 学号: _ 指导教师: 一、题目 铝电解槽的设计(年产铝量20万吨) 二、目的与意义 1.通过课程设计,巩固、加深和扩大在冶金工程专业课程及相关课程教育中所学到的知识,训练学生综合运用这些知识去分析和解决工程实际问题的能力。 2.学习冶金炉设计的一般方法,了解和掌握常用冶金设备或简单冶金设备的设计方法、设计步骤,为今后从事相关的专业课程设计、毕业设计及实际的工程设计打好必要的基础。 3.使学生在计算、制图、运用设计资料。熟练有关国家标准、规范、使用经验数据、进行经验估算等方面受全面的基础训练。 三、要求(包括原始数据、技术参数、设计要求、图纸量、工作量要求等) 设计年产量20万吨的电解槽,冶金工程基础课程设计一般要求学生完成以下工作:电解槽装配图一张(0 号图纸);零件工作图一张(铝电解母排);设计计算说明书一份(要求用A4 纸)。 四、工作内容、进度安排 课程设计可分为以下几个阶段进行。 1.设计准备 (1)阅读和研究设计任务书,明确设计任务与要求;分析设计题目。 (2)参阅有关内容,明确并拟订设计过程和进度计划。 2.装配草图的设计与绘制 (1)装配草图的设计准备工作,主要是分析和选定设计方案。 (2)初绘装配草图。 (3)完成装配草图,并进行检查与修正。 3.装配工作图的绘制与完成 (1)绘制装配图。 (2)标注尺寸、配合及零件序号。 (3)编写零件明细表、标题栏、技术特性及技术要求等。 五、主要参考文献 [1]成大先主编.机械设计手册.第一卷.第五版.北京:化学工业出版社1969. [2]郭鸿发主编.冶金工程设计设计基础.第一册.北京:冶金工业出版社,2006. [3]唐谟唐主编.火法冶金设备.中南大学出版社,2003. 审核意见 系(教研室)主任(签字) 指导教师下达时间年月日 指导教师签字:_______________

年产2.8万吨电解槽厂房设计.

东北大学有色冶金课程设计 (铜电解) 题目:年产2.8万吨铜电解车间设计班级:冶金工程1103 姓名:马林林 学号:20110075

目录 1.概述 ............................................................................................. - 3 - 1.1电解精炼的目的和任务................................................................................................ - 3 - 1.2电铜的质量标准............................................................................................................ - 3 - 1.2.1高纯阴极铜(Cu-CATH-1)化学成分.................................................................. - 3 - 1.2.2一号铜化学成分的质量分数............................................................................. - 4 - 1.3铜电解一般工艺流程.................................................................................................... - 4 - 2.冶金计算..................................................................................... - 5 - 2.1已知条件........................................................................................................................ - 5 - 2.2 计算............................................................................................................................... - 5 - 3.主体设备设计............................................................................. - 7 - 3.1电解槽材质与结构........................................................................................................ - 7 - 3.2商品电解槽总数............................................................................................................ - 8 - 3.3电解槽的极板数............................................................................................................ - 8 - 3.4电解槽尺寸的确定........................................................................................................ - 9 - 3.5种板电解槽数................................................................................................................ - 9 - 3.6净液量及脱铜槽数...................................................................................................... - 10 - 3.6.1净液量............................................................................................................... - 10 - 3.6.2脱铜槽数........................................................................................................... - 11 - 3.7槽边导电排、槽间导电板和阴极导电棒的选择与计算.......................................... - 11 - 3.7.1槽边导电排....................................................................................................... - 11 - 3.7.2 槽间导电板...................................................................................................... - 12 - 3.7.3 阴极导电棒...................................................................................................... - 12 - 3.8设计总结........................................................................................................................ - 9 - 4.图纸 ........................................................................................... - 12 - 5.参考文献................................................................................... - 12 -

关于编制铜铟镓硒CIGS薄膜太阳能电池项目可行性研究报告编制说明

铜铟镓硒CIGS薄膜太阳能电池项 目 可行性研究报告 编制单位:北京中投信德国际信息咨询有限公司 编制时间:https://www.doczj.com/doc/4a18484916.html, 高级工程师:高建

关于编制铜铟镓硒CIGS 薄膜太阳能电池项 目可行性研究报告编制说明 (模版型) 【立项 批地 融资 招商】 核心提示: 1、本报告为模板形式,客户下载后,可根据报告内容说明,自行修改,补充上自己项目的数据内容,即可完成属于自己,高水准的一份可研报告,从此写报告不在求人。 2、客户可联系我公司,协助编写完成可研报告,可行性研究报告大纲(具体可跟据客户要求进行调整) 编制单位:北京中投信德国际信息咨询有限公司 专 业 撰写节能评估报告资金申请报告项目建议书 商业计划书可行性研究报告

目录 第一章总论 (1) 1.1项目概要 (1) 1.1.1项目名称 (1) 1.1.2项目建设单位 (1) 1.1.3项目建设性质 (1) 1.1.4项目建设地点 (1) 1.1.5项目主管部门 (1) 1.1.6项目投资规模 (2) 1.1.7项目建设规模 (2) 1.1.8项目资金来源 (3) 1.1.9项目建设期限 (3) 1.2项目建设单位介绍 (3) 1.3编制依据 (3) 1.4编制原则 (4) 1.5研究范围 (5) 1.6主要经济技术指标 (5) 1.7综合评价 (6) 第二章项目背景及必要性可行性分析 (8) 2.1项目提出背景 (8) 2.2本次建设项目发起缘由 (8) 2.3项目建设必要性分析 (8) 2.3.1促进我国铜铟镓硒CIGS薄膜太阳能电池产业快速发展的需要 (9) 2.3.2加快当地高新技术产业发展的重要举措 (9) 2.3.3满足我国的工业发展需求的需要 (9) 2.3.4符合现行产业政策及清洁生产要求 (9) 2.3.5提升企业竞争力水平,有助于企业长远战略发展的需要 (10) 2.3.6增加就业带动相关产业链发展的需要 (10) 2.3.7促进项目建设地经济发展进程的的需要 (11) 2.4项目可行性分析 (11) 2.4.1政策可行性 (11) 2.4.2市场可行性 (11) 2.4.3技术可行性 (12) 2.4.4管理可行性 (12) 2.4.5财务可行性 (13) 2.5铜铟镓硒CIGS薄膜太阳能电池项目发展概况 (13)

铜编织带规格参数

铜编织带顾名思义是通过编织的方式制作而成的,而编织工艺有很多,为常用的就是牵引线相互交叉编织。具体的操作方式如下: 首先将铜线经络筒、卷纬形成纬线管后,插在编织机的固定齿座上,并沿8字形轨道回转移动。在锭数数量不同的基础上,得到的铜编织带外形也有有区别的,如果锭数为偶数的话将编织成管状的铜编织带;如果锭数为奇数,织成的铜编织带就是扁片状。 随着对编织机进行的技术改造,不仅工艺的效率有了很大的提高,编织成的产品质量也有了明显改善,从而使得铜编织带的应用范围更广。 铜编织带/线采用优质裸铜圆丝或镀锡铜圆丝编织而成的带状导体,采用目前国内先进的8代多头编织机生产,机台规格齐全、产品种类丰富、日单产量大,可满足各类结构产品的需求。 组成结构:(1)股数*根数*套数/单丝线径 (2)股数*根数*密数/单丝线径 产品型号:TZ(代表紫铜编织带/线)TZX(代表镀锡铜编织带/线) (1)TZ-15/10TZ-代表材质(紫铜线)15代表单丝线径0.15mm,10-代表截面积10平方 (2)TZX-12/12TZX-代表材质(镀锡铜线)12代表单丝线径0.12mm,12-代表截面积12平方产品分类:

(1)紫铜编织带/线:材质为紫铜圆线,其编织常规线径为0.12mm、0.15mm,产品表面平整,电阻小,颜色为金黄色也称之为铜本色,紫铜编织带/线电气参数(20℃)不大于0.0223Ωmm2/m (2)镀锡铜编织带/线:材质为镀锡圆线,其编织常规单丝线径为0.12mm、0.15mm,产品表面光洁、抗氧化,颜色为银灰色,镀锡铜编织带/线 电气参数:(20℃)不大于0.0234Ωmm2/m常用规格:2mm2、2.5mm2、3.5mm2、4mm2、6mm2、8mm2、10mm2、12mm2、16mm2、20mm2、25mm2、35mm2、50mm2、75mm2、95mm2、100mm2、120mm2 常用单丝线径:0.10mm、0.12mm、0.15mm,也可根据用户要求定制单丝0.04、0.05、0.06、0.07、0.08、0.20、0.25的编织带/线 性能特点:导电率高、载流量大、电阻小用途:常用于电气装置、开关电器、电炉、蓄电池、设备、机械、汽车、接地等行业,主要用于导电、输电、非水平方向的带电运动及中低压电器中作为电力配套元件使用。

中国铜铟镓硒(CIGS)薄膜太阳能电池未来发展趋势报告

2010-2012年中国铜铟镓硒(CIGS)薄膜太阳能电池市场全景调查及未来发展趋势报告 报告简介 报告目录、图表部份 目录 第一章铜铟镓硒(CIGS)薄膜太阳能电池概述 1 第一节太阳能电池的分类 1 一、硅系太阳能电池 1 二、多元化合物薄膜太阳能电池 3 三、聚合物多层修饰电极型太阳能电池 3 四、纳米晶化学太阳能电池 5 第二节铜铟硒(CIS)薄膜太阳能电池介绍7 一、CIS太阳电池的结构7 二、CIS太阳电池的特点7 三、生产高效CIS太阳电池的难点8 第三节铜铟镓硒(CIGS)薄膜太阳能电池介绍8 一、CIGS太阳能电池基本概念8 二、CIGS太阳电池的结构9 三、CIGS薄膜太阳电池的优势9 四、CIGS薄膜三种制备技术的特点10 第二章2008-2009年世界CIGS薄膜太阳能电池产业发展状况分析12 第一节2008-2009年世界薄膜太阳能电池的发展分析12 一、全球薄膜太阳能电池产业迅速发展12 二、三种薄膜太阳能电池进入规模生产12 三、薄膜太阳能电池企业纷纷布局14 第二节2008-2009年世界CIGS薄膜太阳能发展概况14

二、全球CIGS电池发展现状16 三、全球铜铟镓硒太阳能电池领导厂商发展概况19 第三节2009-2012年世界CIGS薄膜太阳能电池产业发展趋势分析21 第三章2008-2009年世界主要国家CIGS薄膜太阳能电池发展分析23 第一节2008-2009年世界CIGS薄膜太阳能企业发展动态23 一、IBM与TOK将共同开发新型CIGS太阳能电池23 二、德国SOLIBRO开始提供CIGS太阳能电池23 三、IBM涂布法CIGS太阳能电池转换效率突破12.8%24 四、VEECO公司CIGS薄膜太阳能电池设备获得订单24 五、亚化宣布进军CIGS薄膜太阳能领域25 第二节2008-2009年美国CIGS薄膜太阳能电池发展分析25 一、美国化合物太阳能电池专利权人分析25 二、美国CIGS化合物太阳能电池研发状况26 三、美国CIGS化合物太阳能电池厂商商业化动向27 四、2008年美国CIGS电池转换效率再创历史新高28 第三节2008-2009年日本CIGS薄膜太阳能研发状况28 一、日本研制成功CIGS太阳电池新制法28 二、日本采用CIGS太阳电池技术成功试制图像传感器29 三、日本量产型CIGS型太阳电池模块光电转换率实现15.9% 30 四、日本柔性CIGS太阳能电池单元转换率达全球之首31 第四章2008-2009年国外CIGS太阳电池主要生产企业运营透析32 第一节美国GLOBAL SOLAR ENERGY INC.(GSE)32 一、公司概况32 二、2008年GSE美国CGIS太阳能电池生产厂投产32 三、世界最大CIGS薄膜太阳能电池阵在GSE投入使用32 第二节日本的HONDA SOLTEC CO.,LTD 33 一、公司概况33 二、本田SOLTEC开发出CIGS型太阳能电池33

铜电解槽精炼车间工业设计

铜电解槽精炼车间工艺设计 一、概述 1、粗铜经火法精炼后仍含有一点数量的杂质。这些杂质的存在会使铜的某些物理性质和机械性能变坏,不能满足电气工业对铜的要求。因此,粗铜在火法精炼后需要电解精炼以除去有害杂质。铜的电解精炼以火法精炼产出的铜为阳极,以电解产出的薄铜片为阴极,以硫酸和硫酸铜水溶液作电解液。在直流电作用下,阳极铜电化学溶解,在阴极上沉积,杂质则进入阳极泥和电解液中,从而实现铜于杂质的分离。 下图为铜电解精炼一般工艺流程图: 阳极 阳极泥电解液电解液电铜阳极泥残极 送电解返火法送阳极泥处理送阳极泥返火 精炼槽精炼处理法精炼 粗硫酸 返火法精炼生产精制硫酸镍返回电解精炼 图1-1铜电解精炼一般工艺流程图: 2、铜阳极 铜电解精炼的原料是火法精炼后烧铸而成的铜阳极。生产中应尽量获得质量良好的铜阳极板。 二、技术条件及技术经济指标的选择 1、操作技术条件

⑴、电流密度 电流密度是指单位面积上通过的电流安培数。电流密度的范围为200-360A /m 2.。种板电解槽电流密度比普通电解槽电流密度稍低,本设计中普通电解槽电流密度取300 A /m 2,种板电解槽电流密度取230A /m 2。 ⑵、电解液成分 电解液成分主要由硫酸和硫酸铜水溶液组成。其铜和硫酸的含量视电流密度、阳极成分和电解液的纯净度等条件而定。在电解生产中,必须根据具体条件加以掌握,以控制电解液的含铜量处于规定的范围。 ⑶、极距 极距一般指同极中心距。本设计取极距为90mm 。 ⑷、阳极寿命和阴极周期 阳极寿命根据电流密度、阳极质量及残极率来确定,一般为18-24天。阴极周期与电流密度、阳极寿命及劳动组织等因素有关,一般为阳极寿命的1/3。本设计中阳极寿命为18天,阴极寿命为6天。 2、技术经济指标 ⑴、电流效率 电流效率是指电解过程中,阴极实际析出量占理论量的百分比。本设计中电流效率为% ⑵、残极率 残极率是指产出残极量占消耗阳极量的百分比。本设计中残极率17%。 ⑶、电解回收率 铜电解回收率反应在电解过程中铜的回收程度,其计算方法如下: 铜电解回收率×100 % ⑷、槽电压 槽电压由电解液电阻引起的电压降,金属导体电压降,接触点电压降,克服阳极泥电阻的电压降,浓差极化引起的电压降等组成。普通槽槽电压一般为~;种板槽电压一般为~。 三、主体设备设计

相关主题
文本预览
相关文档 最新文档