当前位置:文档之家› 晶钻模态分析软件系列三锤击法模态实验

晶钻模态分析软件系列三锤击法模态实验

晶钻模态分析软件系列三锤击法模态实验
晶钻模态分析软件系列三锤击法模态实验

锤击法是单操作员实验模态测试的基本方法。EDM-Modal 的锤击法提供流程化的操作界面,方便用户完成所有设置和实验。

锤击法模态实验的设计,旨在帮助用户快速定义采集参数,将更多的时间可以花在分析上。触发设置界面让用户定义触发方式,触发预览界面显示当前激励和响应的测点名称,触发后采集的激励和响应波形,以及平均的次数;其窗口的尺寸大小可手动调整。手动触发是默认的触发类型,在些类型下当激励达到设置触发值,则激励和响应波形会被显示,用户可以接受/拒绝当前帧。

当选择接受则进行下一帧测试,直到达到平均次数,完成当前测点的测试。驱动点选择是锤击法特有的一个功能子模块,用于方便用户选择哪个测点适合用作固定的激励点或参考点。用户设置几个要测试的驱动点,通过试敲击得到他们的FRF数据,然后判断出最适合的驱动点。EDM简化了此重要的预实验的数据管理。

当开始实际的测量后,采集状态表格会显示所有的DOFs状态(状态包括:未测量,已测量和正在测量),方便用户即时了解所有测点的状态。当测点完成后点“Next Point”或“Previous Point”移动软件上的当前测点。“Roving

Setup”,可集中设置游击方式,每个通道对应的测点和方向。

锤击法实验过程一个常见的问题是会出现“double hit”。我们提供了自动检测“double hit”的过程,让用户自动或手动拒绝有双击的敲击。锤击法实验采集的结果会自动添加到模态分析的数据选择模块,这样模态数据采集和分析可无缝对接。

★EDM Modal 锤击法模态实验主要特征如下:

①直观的流程化操作过程。

②几何模型贯穿整个测试过程。

③响应和激励两种游击方式。

④自动或手动移动测点。

⑤自动或手动触发模式。

⑥可变尺寸的触发观览窗口。

⑦双击锤击识别,开/关,自动/手动拒绝。

⑧驱动点设置。

⑨测试状态声音和图形反馈H1,H2,H3和Hv方式计算FRF 测点测试状态显示表格。

★EDM Modal模态支持的功能如下:

①几何模型的创建/编辑/导入/导出/动画。

②工作变形分析(ODS)

③锤击法模态实验

④SIMO与MIMO FRF模态测试

⑤SIMO正弦扫频模态测试

⑥SIMO与MIMO步进正弦模态测试

⑦工作模态测试,SSI模态识别算法

⑧多参考点模态分析Poly-X (p-LSCF) 模态分析

杭州锐达数字技术有限公司是美国晶钻仪器公司中国总代理,专注于振动控制、数据采集、模态分析、动态信号分析、故障诊断、综合环境测试领域,产品包括手持一体化动态信号分析仪、多通道动态数据采集系统、振动控制系统、多轴振动控制系统、三综合试验系统和远程状态监测系统,解决方案包括NVH测试、新能源电池测试、结构模态分析、故障诊断监测、机械性能测试、转子动力学测试、疲劳可靠性测试、综合环境测试。更多详情请拨打联系电话或登录杭州锐达数字技术有限公司咨询。

各种模态分析方法总结与比较

各种模态分析方法总结与比较 一、模态分析 模态分析是计算或试验分析固有频率、阻尼比和模态振型这些模态参数的过程。 模态分析的理论经典定义:将线性定常系统振动微分方程组中的物理坐标变换为模态坐标,使方程组解耦,成为一组以模态坐标及模态参数描述的独立方程,以便求出系统的模态参数。坐标变换的变换矩阵为模态矩阵,其每列为模态振型。 模态分析是研究结构动力特性一种近代方法,是系统辨别方法在工程振动领域中的应用。模态是机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。这些模态参数可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。这个分析过程如果是由有限元计算的方法取得的,则称为计算模记分析;如果通过试验将采集的系统输入与输出信号经过参数识别获得模态参数,称为试验模态分析。通常,模态分析都是指试验模态分析。振动模态是弹性结构的固有的、整体的特性。如果通过 AHA12GAGGAGAGGAFFFFAFAF

模态分析方法搞清楚了结构物在某一易受影响的频率范围内各阶主要模态的特性,就可能预言结构在此频段内在外部或内部各种振源作用下实际振动响应。因此,模态分析是结构动态设计及设备的故障诊断的重要方法。 模态分析最终目标是在识别出系统的模态参数,为结构系统的振动特性分析、振动故障诊断和预报以及结构动力特性的优化设计提供依据。 AHA12GAGGAGAGGAFFFFAFAF

AHA12GAGGAGAGGAFFFFAFAF 二、各模态分析方法的总结 (一)单自由度法 一般来说,一个系统的动态响应是它的若干阶模态振型的叠加。但是如果假定在给定的频带内只有一个模态是重要的,那么该模态的参数可以单独确定。以这个假定为根据的模态参数识别方法叫做单自由度(SDOF)法n1。在给定的频带范围内,结构的动态特性的时域表达表示近似为: ()[]}{}{T R R t r Q e t h r ψψλ= 2-1 而频域表示则近似为: ()[]}}{ {()[]2ωλωψψωLR UR j Q j h r t r r r -+-= 2-2 单自由度系统是一种很快速的方法,几乎不需要什么计算时间和计算机内存。 这种单自由度的假定只有当系统的各阶模态能够很好解耦时才是正确的。然而实际情况通常并不是这样的,所以就需要用包含若干模态的模型对测得的数据进行近似,同时识别这些参数的模态,就是所谓的多自由度(MDOF)法。 单自由度算法运算速度很快,几乎不需要什么计算和计

锤击法

锤击法施工设备 锤击法是利用桩锤的冲击克服土对桩的阻力,使桩沉到预定深度或达到持力层。这是最常用的一种沉桩方法。 打桩设备包括桩锤、桩架和动力装置。 (1)桩锤 桩锤是对桩施加冲击,将桩打入土中的主要机具。桩锤主要有落锤、蒸汽锤、柴油锤和液压锤,目前应用最多的是柴油锤。 ①落锤落锤构造简单,使用方便,能随意调整落锤高度。轻型落锤一般均用卷扬机拉升施打。落锤生产效率低、桩身易损失。落锤重量一般为0.5~1.5t,重型锤可达数吨。 ②柴油锤柴油锤利用燃油爆炸的能量,推动活塞往复运动产生冲击进行锤击打桩。柴油锤结构简单、使用方便,不需从外部供应能源。但在过软的土中由于贯入度过大,燃油不易爆发,往往桩锤反跳不起来,会使工作循环中断。另一个缺点是会造成噪音和空气污染等公害,故在城市中施工受到一定限制。柴油锤冲击部分的重量有2.0t,2.5t,3.5t,4.5t,6.0t,7.2t等数种。每分钟锤击次数约40~80次。可以用于大型混凝土桩和钢管桩等。 ③蒸汽锤蒸汽锤利用蒸汽的动力进行锤击。根据其工作情况又可分为单动式汽锤与双动式汽锤。单动式汽锤的冲击体只在上升时耗用动力,下降靠自重;双动式汽锤的冲击体升降均由蒸汽推动。蒸汽锤需要配备一套锅炉设备。 单动式汽锤的冲击力较大,可以打各种桩,常用锤重为3~10t。每分钟锤击数为25~30次。 双动式汽锤的外壳(即汽缸)是固定在桩头上的,而锤是在外壳内上下运动。因冲击频率高(100~200次/min),所以工作效率高。它适宜打各种桩,也可在水下打桩并用于拔桩。锤重一般为0.6~6t。 ④液压锤液压锤是一种新型打桩设备,它的冲击缸体通过液压油提升与降落。冲击缸体下部充满氮气,当冲击缸下落时,首先是冲击头对桩施加压力,接着是通过可压缩的氮气对桩施加压力,使冲击缸体对桩施加压力的过程延长,因此每一击能获得更大的贯入度。液压锤不排出任何废气,无噪音,冲击频率高,并适合水下打桩,是理想的冲击式打桩设备,但构造复杂,造价高。 用锤击沉桩时,为防止桩受冲击应力过大而损坏,力求采用“重锤轻击”。如采用轻锤重击,锤击功能很大一部分被桩身吸收,桩不易打入,且桩头容易打碎。锤重可根据土质、桩的规格等参考表2-1进行选择,如能进行锤击应力计算则更为科学。 表2-1锤重选择表

模态试验及分析的基本步骤

模态试验及分析的基本步骤 1.动态数据的采集及响应函数分析 首先应选取适当的激励方式。激励方式可以是正弦、随机或瞬态中的任何一种。激励方式不同,相应的模态参数识别方法也不同。目前主要有单输入单输出、单输入多输出和多输入多输出三种方法。然后进行数据采集。对于单输入单输出方法要求同时高速采集输入与输出两个点的信号,用不断移动激励点位置或响应点位置的办法取得振型数据;单输入多输出及多输入多输出的方法要求大量通道数据的高速采集,因此要求大量的振动测量传感器或激振器,试验成本极高。在采集信号数据以后,还要在时域或频域对信号进行处理,例如谱分析、传递函数估计、脉冲响应测量以及滤波、相关分析等。 2.建立结构数学模型 根据己知条件,建立一种描述结构状态及特性的模型,作为计算及参数识别的依据,目前一般假定系统为线性的。由于采用的识别方法不同,数学建模可分为频域建模和时域建模。根据阻尼特性及频率藕合程度又可分为实模态和复模态等。 3.参数识别 按识别域的不同可分为频域法、时域法和混合域法。激励方式不同,相应的识别参数方法也不尽相同。并非越复杂的方法识别的结果越可靠。对于目前能够进行的大多数不是十分复杂的结构,只要取得了可靠的频响数据,用简单的识别方法也可能获得良好的模态参数;反之,即使用最复杂的数学模型、最高级的拟合方法,如果频响测量数据不可靠,识别的结果也不会理想。 4.振型动画 参数识别的结果得到了结构的模态参数模型,即一组固有频率、模态阻尼以及相应各阶模态的振型。但是由于结构复杂,由许多自由度组成的振型的数组难以引起对振动直观的想象,所以必须采用振型动画的办法,将放大的振型叠加到原始的几何形状上。

土的击实试验步骤修订稿

土的击实试验步骤 WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-

土的实验 2007-11-08 20:14:01 阅读163 评论1 字号:大中小 土的击实试验步骤 土的CBR实验 土的压实性 工程建设中广泛用到填土,例如路基、土堤、土坝、飞机跑道、平整场地修建建筑物等,都是把土作为建筑材料按一定要求和范围进行堆填而成。显然,未经压实的填土,强度低,压缩性大且不均匀,遇水易发生塌陷等现象。因此,这些填土一般都要经过压实,以减少其沉降量,降低其透水性,提高其强度。特别是高土石坝,往往是方量达数百万方甚至干百万方以上,是质量要求很高的人工填土。进行填土时,通常采用夯实、振动或辗压等方法,使土得到压实。土的压实就是指填土在压实能量作用下,使土颗粒克服粒间阻力而重新排列,使土中的孔隙减小、密度增加,从而使填土在短时间内得到新的结构强度。土的压实在松软地基处理方 面也得到广泛应用。 实践经验表明,压实细粒土宜用夯击机具或压力较大的辗压机具,同时必需控制土的含水量。对过湿的粘性土进行辗压或夯实时会出现软弹现象,填土难以压实;对很干的粘性土进行辗压或夯实时,也不能把填土充分压实。因此,含水量太高或太低的填土都得不到好的压密效果,必须把填土的含水量控制在适当的范围内。压实粗粒土时,则宜采用振动机具,同时充分洒水。两种不同的做法说明细粒土和粗粒土具有不同的压密性质。 11.2.1 粘性土的压实性 研究粘性土的压实性可以在试验室或现场进行。在试验室内研究土的压实性是通过击实试验进行的。试验的仪器和方法见《土工试验方法标准GBJ123-88》。试验时将某一种土配成若干份具有不同含水量的土样。将每份土样装入击实仪内,用完全同样的方法加以击实。击实后,测出压实土的含水量和干密度。以含水量为横坐标,干密度为纵坐标,绘制含水量-干密度曲线如图11-3所示。这种试验称为土的击实试验。 图11-3 粘性土的击实曲线 1. 最优含水量与最大干密度 在一定的压实功能(在试验室压实功能是用击数表示的)下使土最容易压实,并能达到最大密实度时的含水量称为土的最优含水量。在图11-3所示的击实曲线上,峰值干密度对应的含水量就是最优含水量。同一种土,干密度愈大,孔隙比愈小,所以最大干密度相应于击实试

实验十 用锤击法测量简支梁的模态参数

实验十用锤击法测量简支梁的模态参数 一、实验目的 1、了解测力法实验模态分析原理。 2、掌握用锤击法测试结构模态参数的方法。 二、实验系统框图 图1-2-19 测试系统框图 三、实验原理 目前,结构的特性参数测量主要有三种方法:经典模态分析、运行模态分析(OMA)和运行变形振型分析(ODS)。 1、经典模态分析也称实验模态分析,它是通过给结构施加一个激振力,激起结构振动,测量结构响应及激振力之间的频率响应函数,来寻求结构的模态参数。因此,实验模态分析方法也称测力法模态分析。在测量频率响应函数时,可采用力锤和激振器两种激励方式。力锤激励方式简单易行,特适合现场测试,一般支持快速的多参考技术和小的各向同性结构。由于力锤移动方便,在这种激励方式下,一般采用的是多点激励,单点响应方式,即测量的是频率响应函数矩阵中的一行。激振器激励时,由于激振器安装比较困难,多采用单点激励、多点响应的方法,即测量的是频率响应函数矩阵中的一列。这种激励方式可使用多种激励信号,且激振能量较大,适合于大型或复杂结构。 2、运行模态分析与经典模态分析相比,不需要输入力,只通过测量响应来决定结构的模态参数,以此,这种分析方法也称为不测力法模态分析。其优点在于无需激励设备,测试时不干扰结构的正常工作,且测试的响应代表了结构的真实工作环境,测试成本低,方便和快速。测量能够被一次完成(快速,数据一致性好)或多次完成(受限于传感器的数量),若一次测量(一个数据组)时,不需要参考传感器。而多次测量(多个数据组)时,对所有的数据组,需要一个或多个固定的加速度传感器作为参考。 3、运行变形振型分析中,测量并显示结构在稳态、准稳态或瞬态运行状态过程中的振动模式。引起振动的因素包括发动机转速、压力、温度、流动和环境力等。ODS分析包括时域ODS、频谱域ODS(FFT或者Order)、非稳态升/降速ODS。

晶钻模态分析软件系列十标准模态分析(Standard Modal Analysis)

EDM-Modal 模态分析软件的标准模态分析是一套完整的分析流程,包括从FRF数据选择到模态参数识别,再到结果验证和振型动画。 模态实验完成后,所有的FRF数据可用来进行下一步的模态分析。用户也可以从外部导入需要的FRF数据,增加或替换某些FRF信号。编辑完成的FRF 数据列表可导出到本地成为一个已选择集合,也可以导入已选择的集合直接用于分析。这些操作集中在“模态数据选择”模块。所有的FRF数据都能在模块浏览,同时几何模型显示已选择信号的测点,信号窗口分单独显示和集中显示两种方式浏览信号。 单击“模态参数”健,模态辨识过程将被启动。模态指示函数(MIF),包括MMIF,CMIF, RMIF,虚部集总,以及Mag集总,有助于指示重根和高度偶合的根(模态)。 稳态图(Stability Diagram)是模态参数识别的一种迭代方法。在标准模态分析中,我们使用最小二乘复指数法(LSCE)识别出所有极点。在稳态图中可以选择稳定的物理极点(而不是计算极点),使用最小二乘频域法进行用于下一步的振型计算。 计算出的振型结果将被保存并用以进行振型的动画显示。模态置信准则

(MAC)和FRF综合都可用来验证模态参数的正确性。 ★EDM Modal 标准模态分析主要特征如下: ①易用的模态数据选择 ②采用反卷积使信号平滑(仅限OMA模态测试) ③模态指示函数:Multivariate MIF, Complex MIF, Real MIF, Image Sum 自定义需要进行参数辨识的频段 ④稳态图 ⑤提供曲线拟合算法LSCE ⑥模态形状计算的最小二乘频域(LSFD)算法 ⑦可编辑的模态振型表 ⑧模态振型动画自/互MAC计算和显示 ⑨拟合FRF与测量FRF对比输入/输出振型:UFF格式 ★EDM Modal模态支持的功能如下: ①几何模型的创建/编辑/导入/导出/动画。 ②工作变形分析(ODS) ③锤击法模态实验

ansys模态分析详解

?ANSYS动力学分析指南 作者: 安世亚太 第一章模态分析 §1.1模态分析的定义及其应用 模态分析用于确定设计结构或机器部件的振动特性(固有频率和振型),即结构的固有频率和振型,它们是承受动态载荷结构设计中的重要参数。同时,也可以作为其它动力学分析问题的起点,例如瞬态动力学分析、谐响应分析和谱分析,其中模态分析也是进行谱分析或模态叠加法谐响应分析或瞬态动力学分析所必需的前期分析过程。 ANSYS的模态分析可以对有预应力的结构进行模态分析和循环对称结构模态分析。前者有旋转的涡轮叶片等的模态分析,后者则允许在建立一部分循环对称结构的模型来完成对整个结构的模态分析。 ANSYS产品家族中的模态分析是一个线性分析。任何非线性特性,如塑性和接触(间隙)单元,即使定义了也将被忽略。ANSYS提供了七种模态提取方法,它们分别是子空间法、分块Lanczos法、PowerDynamics法、缩减法、非对称法、阻尼法和QR阻尼法。阻尼法和QR阻尼法允许在结构中存在阻尼。后面将详细介绍模态提取方法。 §1.2模态分析中用到的命令 模态分析使用所有其它分析类型相同的命令来建模和进行分析。同样,无论进行何种类型的分析,均可从用户图形界面(GUI)上选择等效于命令的菜单选项来建模和求解问题。 后面的“模态分析实例(命令流或批处理方式)”将给出进行该实例模态分析时要输入的命令(手工或以批处理方式运行ANSYS时)。而“模态分析实例(GUI方式)” 则给出了以从ANSYS GUI中选择菜单选项方式进行同一实例分析的步骤。(要想了解如何使用命令和GUI选项建模,请参阅<>)。<>中有更详细的按字母顺序列出的ANSYS命令说明。§1.3模态提取方法 典型的无阻尼模态分析求解的基本方程是经典的特征值问题: 其中: =刚度矩阵, =第阶模态的振型向量(特征向量), =第阶模态的固有频率(是特征值), =质量矩阵。 有许多数值方法可用于求解上面的方程。ANSYS提供了7种方法模态提取方法,下面分别进行讨论。

土工击实试验方法研究

土工击实实验方法的研究 击实实验是建筑物地基、道路地基、室内地坪及场地平整等施工和验收的重要依据。笔者基于工作中积累的实际操作经验,介绍击实实验的方法及其要点,对其进行研究,以期获得对施工有指导意义的数据。 1 研究土击实性的意义 用土作为填筑材料,如修筑道路、堤坝、机场跑道、运动场、建筑物地基及基础回填等,工程中经常遇到填土压实的问题。经过搬运未经压实的填土,原状结构已被破坏,孔隙、空洞较多,土质不均匀,压缩量大,强度低,抗水性能差。为改善填土的工程性质,提高土的强度,降低土的压缩性和渗透性,必须按一定的标准,采用重锤夯实、机械碾压或振动等方法将土压实到一定标准,以满足工程的质量标准。 研究土的填筑特性,常用现场填筑实验和室内击实实验两种方法。前者是在现场选一实验地段,按设计要求和施工方法进行填土,并同时进行有关的测试工作,以查明填筑条件(包括土料、堆填方法,压实机械等)与填筑效果的关系。该方法能反应施工的实际情况,但需时间和费用较多,只在重大工程中进行。室内土工击实实验是近似的模拟现场填筑的一种半经验性的实验。实验时,在一定条件下用锤击法将土击实,以研究土在不同击实功能下的击实特性,以便获取设计数值,为工程设计提供初步的填筑标准。该方法是目前研究填土击实特性的重要方法。[1] 2 土工击实实验方法 土工击实实验是研究土压实性能的基本方法,也是建筑工程必须实验的工程之一。实验采用击实仪法,即通过锤击使土密实,测定土样在一定击实功能的作用下达到最大密度时的含水量(最优含水量)和此时的干密度(最大干密度)。为了满足工程需要,必须制定土的压实标准。通常,工地压实质量控制采用压实度,计算式为: K= ρ d / ρdmax 式中,k为压实度,% ;ρd为工地碾压的干密度,g/cm3。ρdmax为室内实验最大干密度,g/cm3 。 若k越接近100% ,则压实质量越高。对于受力主层或者重要工程K要求大些;对于非受力主层或次要工程,k值可小些[2]。 3 土工击实实验曲线 室内击实实验,击实功瞬时作用于土,土的含水量基本不变。在同一击实功作用下,一定范围内增加含水量,土的干密度增大,但含水量增加到一定程度后,土的干密度就变小。根据这一规律可以得到在一定击实功作用下含水量W与干

模态分析意义

模态分析意义模态分析是研究结构动力特性一种近代方法,是系统辨别方法在工程振动领域中的应用。模态是机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。这些模态参数可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。这个分析过程如果是由有限元计算的方法取得的,则称为计算模态分析;如果通过试验将采集的系统输入与输出信号经过参数识别获得模态参数,称为试验模态分析。通常,模态分析都是指试验模态分析。振动模态是弹性结构的固有的、整体的特性。如果通过模态分析方法搞清楚了结构物在某一易受影响的频率范围内各阶主要模态的特性,就可能预言结构在此频段内在外部或内部各种振源作用下实际振动响应。因此,模态分析是结构动态设计及设备的故障诊断的重要方法。机器、建筑物、航天航空飞行器、船舶、汽车等的实际振动千姿百态、瞬息变化。模态分析提供了研究各种实际结构振动的一条有效途径。首先,将结构物在静止状态下进行人为激振,通过测量激振力与胯动响应并进行双通道快速傅里叶变换(FFT)分析,得到任意两点之间的机械导纳函数(传递函数)。用模态分析理论通过对试验导纳函数的曲线拟合,识别出结构物的模态参数,从而建立起结构物的模态模型。根据模态叠加原理,在已知各种载荷时间历程的情况下,就可以预言结构物的实际振动的响应历程或响应谱。近十多年来,由于计算机技术、

FFT 分析仪、高速数据采集系统以及振动传感器、激励器等技术的发展,试验模态分析得到了很快的发展,受到了机械、电力、建筑、水利、航空、航天等许多产业部门的高度重视。已有多种档次、各种原理的模态分析硬件与软件问世。在各种各样的模态分析方法中,大致均可分为四个基本过程:(1)动态数据的采集及频响函数或脉冲响应函数分析1)激励方法。试验模态分析是人为地对结构物施加一定动态激励,采集各点的振动响应信号及激振力信号,根据力及响应信号,用各种参数识别方法获取模态参数。激励方法不同,相应识别方法也不同。目前主要由单输入单输出(SISO)、单输入多输出(SIMO)多输入多输出(MIMO)三种方法。以输入力的信号特征还可分为正弦慢扫描、正弦快扫描、稳态随机(包括白噪声、宽带噪声或伪随机)、瞬态激励(包括随机脉冲激励)等。2)数据采集。SISO 方法要求同时高速采集输入与输出两个点的信号,用不断移动激励点位置或响应点位置的办法取得振形数据。SIMO 及MIMO 的方法则要求大量通道数据的高速并行采集,因此要求大量的振动测量传感器或激振器,试验成本较高。3)时域或频域信号处理。例如谱分析、传递函数估计、脉冲响应测量以及滤波、相关分析等。(2)建立结构数学模型根据已知条件,建立一种描述结构状态及特性的模型,作为计算及识别参数依据。目前一般假定系统为线性的。由于采用的识别方法不同,也分为频域建模和时

标准击实实验

标准击实实验(轻击)中的击实功是怎样确定的?我真的具体的值,现要具体的计算公式。谢谢。 是不是75mgh/v ? 式中m 位击锤质量,h 为落高, g 为重力加速度,v 为筒体积。 第六章 土的击实试验 一、试验目的 在标准击实方法下测定土的最大干密度和最优含水率,为控制路堤、土坝或填土地基等的密实度及质量评价,提供重要依据。 二、基本原理 击实仪法是用锤击,使土密度增大,目的是在室内利用击实仪,测定土样在一定击实功能作用下达到最大密度时的含水率(最优含水率)和此时的干密度(最大干密度),借以了解土的压实特性。 目前国内常用的击实方法有两种: (1)轻型击实:适用于粒径小于5mm 的细粒土,锤底直径为51mm ,击锤质量为2.5kg ,落距为305mm ,单位体积击实功为591.6kJ /m 3;分3层夯实,每层25击。 (2)重型击实:适用于粒径不大于40mm 的土。击实筒内径为152mm ,筒高116mm ,击锤质量为4.5kg ,落距为457mm ,单位体积击实功为2682.7kJ /3 m (其他与轻型击实相同);分5层击实,每层56击。 三、仪器设备 (1)击实仪(图6-1):主要由击实筒和击锤组成。 (2)天平:称量为200g ,感量为0.01g ;称量为2kg ,感量为1g ; (3)台秤:称量为l0kg ,感量为5g ; (4)推土器; (5)筛:孔径为5mm ; (6)其它:喷水设备、碾土设备、修土刀、小量筒、盛土盘、测含 水率设备及保温设备等。 四、操作步骤 1、取一定量的代表性风干土样,对于轻型击实试验为20kg ,对于重 型击实试验为50kg 。 2、将风干土样碾碎后过5mm 的筛(轻型击实试验)或过20mm 的筛(重型击实试验),将筛下的土样搅匀,并测定土样的风干含水率。 3、根据土的塑限预估最优含水率,加水湿润制备不少于5个含水率的试样,含水率一次相差为2%,且其中有两个含水率大于塑限,两个含水率小于塑限,一个含水率接近塑限。 按式(6-1)计算制备试样所需的加水量: )()1(000w w w m m w -?+= (6-1) 图6-1 击实仪 1-击实筒;2-护筒;3-导筒; 4-击锤;5-底板

https://www.doczj.com/doc/4f6762621.html,b操作指导书-锤击测试Impact-Testing

https://www.doczj.com/doc/4f6762621.html,b操作指导书-锤击测试Impact-Testing

https://www.doczj.com/doc/4f6762621.html,b操作指南——锤击测试Impacting Testing

2016年1月

序言 这个部分介绍https://www.doczj.com/doc/4f6762621.html,b的锤击法测试Impact Testing模块的常用操作,工作界面的详细内容及略掉部分参见《LMS Test Lab帮助中译文_锤击测试Impact Testing》,主要针对目前能够进行且经常进行的实验。因作者水平有限,讹误在所难免。

目录 序言 (1) 目录 (2) 1.锤击测试Impact Testing概述 (1) 1.1 工作界面 (1) 1.2 模块功能 (1) 1.3 锤击测试流程 (2) 1.3.1 测试准备 (2) 1.3.2 软件打开方法 (2) 1.3.2 软件流程 (3) 1.4 常见问题 (4) 1.4.1 电脑与数采的网络连接 (4) 1.4.2 软件无法启动 (4) 2 文档Documentation与数据Navigator (6) 2.1 文档 (6) 2.1.1 工作界面 (6) 2.1.2 常用操作 (7) 2.2 数据 (8) 3.通道设置Channel Setup (9) 3.1 工作界面 (9) 3.2 常用操作 (10)

3.2.1 设置通道属性可见性 (10) 3.2.2 力锤通道设置 (11) 3.2.3 加速度传感器通道设置 (12) 3.2.4 加载与保存通道设置 (14) 3.3 术语简介 (15) 3.3.1 通道类型 (15) 3.3.2 输入通道Input Channels.. 16 4.校准Calibration (19) 4.1 工作界面 (19) 4.2 常用操作 (19) 4.2.1 加速度传感器校准 (19) 4.3 术语简介 (21) 5.锤击示波Impact Scope (22) 5.1 工作界面 (22) 5.2 常用操作 (23) 5.2.1 采样参数 (23) 5.2.2 量程设定 (23) 5.2.3 示波设置与观察 (24) 5.2.4 触发设置 (25) 5.2.5 其它 (25) 5.3 术语简介....... 错误!未定义书签。 6.锤击设置Impact Setup (26)

https://www.doczj.com/doc/4f6762621.html,b中文操作指南全.pdf

LMS https://www.doczj.com/doc/4f6762621.html,b中文操作指南 比利时LMS国际公司北京代表处 2009年 6月

内容 ? Desktop桌面操作 ? Geometry几何建模 ? Signature信号特征测试分析 ? Impact锤击法模态测试 ? Spectral Testing谱分析 ? Modal Analysis模态分析 ? Modification Prediction模态修改预测? ODS工作变形分析 ? OMA运行模态分析

LMS https://www.doczj.com/doc/4f6762621.html,b中文操作指南— Desktop桌面操作 比利时LMS国际公司北京代表处 2009年2月

LMS https://www.doczj.com/doc/4f6762621.html,b中文操作指南 — Desktop桌面操作 目录 1.开始 (2) 2.浏览数据 (3) 3.显示数据 (4) 3.1.测试的数据 (4) 3.2.图形拷贝 (8) 3.3.几何图形显示 (8) 4.数据调理 (10) 5.搜索功能 (11) 6.Documentation 界面 (13) 6.1.添加附件 (13) 6.2.添加模板 (14) 6.3.添加用户属性 (15) 7.导入外部数据 (17)

1. 开始 ? 启动 LMS https://www.doczj.com/doc/4f6762621.html,b Desktop 从 开始菜单 ? 所有程序 ? LMS https://www.doczj.com/doc/4f6762621.html,b 9A ? Desktop 或者通过 桌面的快捷图标 软件打开后,通过底部的导航条,可以看到两个界面:Documentation 和 Navigator 。默认会打开一个空白的Project ,软件激活“Navigator”页面中的“Data Viewing”子页面。可以浏览数据,图形显示数据。 页面 在LMS https://www.doczj.com/doc/4f6762621.html,b 资源管理器中可以看到Project ,另外还有: My Computer: 资源管理器最后一个项目。可以浏览您电脑中的数据。 My Links: 此处可以链接常用Project 的快捷方式,首先从“My Computer”找到 Project ,右键单击Copy ,然后到 “My Links”右键单击Paste as link 。 Search Results: LMS https://www.doczj.com/doc/4f6762621.html,b 软件可以进行搜索,搜索的结果放在此处。 Input Basket: 暂时存放准备作处理的数据。 Online Data: 此目录可浏览采集时定义的在线数据。 Workspace: 和Windows 中的Workspace 一样,暂时存放数据。

土的击实试验步骤

土的击实试验步骤 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

土的实验 2007-11-08 20:14:01 阅读163 评论1 字号:大中小 土的击实试验步骤 土的CBR实验 土的压实性 工程建设中广泛用到填土,例如路基、土堤、土坝、飞机跑道、平整场地修建建筑物等,都是把土作为建筑材料按一定要求和范围进行堆填而成。显然,未经压实的填土,强度低,压缩性大且不均匀,遇水易发生塌陷等现象。因此,这些填土一般都要经过压实,以减少其沉降量,降低其透水性,提高其强度。特别是高土石坝,往往是方量达数百万方甚至干百万方以上,是质量要求很高的人工填土。进行填土时,通常采用夯实、振动或辗压等方法,使土得到压实。土的压实就是指填土在压实能量作用下,使土颗粒克服粒间阻力而重新排列,使土中的孔隙减小、密度增加,从而使填土在短时间内得到新的结构强度。土的压实在松软地基处理方 面也得到广泛应用。 实践经验表明,压实细粒土宜用夯击机具或压力较大的辗压机具,同时必需控制土的含水量。对过湿的粘性土进行辗压或夯实时会出现软弹现象,填土难以压实;对很干的粘性土进行辗压或夯实时,也不能把填土充分压实。因此,含水量太高或太低的填土都得不到好的压密效果,必须把填土的含水量控制在适当的范围内。压实粗粒土时,则宜采用振动机具,同时充分洒水。两种不同的做法说明细粒土和粗粒土具有不同的压密性质。 11.2.1 粘性土的压实性 研究粘性土的压实性可以在试验室或现场进行。在试验室内研究土的压实性是通过击实试验进行的。试验的仪器和方法见《土工试验方法标准GBJ123-88》。试验时将某一种土配成若干份具有不同含水量的土样。将每份土样装入击实仪内,用完全同样的方法加以击实。击实后,测出压实土的含水量和干密度。以含水量为横坐标,干密度为纵坐标,绘制含水量-干密度曲线如图11-3所示。这种试验称为土的击实试验。 图11-3 粘性土的击实曲线 1. 最优含水量与最大干密度 在一定的压实功能(在试验室压实功能是用击数表示的)下使土最容易压实,并能达到最大密实度时的含水量称为土的最优含水量。在图11-3所示的击实曲线上,峰值干密度对应的含水量就是最优含水量。同一种土,干密度愈大,孔隙比愈小,所以最大干密度相应于击实试验所能达到的最小孔隙比。在某一含水量下,将土压到最密,理论上就是将土中所有的气体都从孔隙中赶走,使土达到饱和。将不同含水量所对应的土体达到饱和状态时的干密度也点绘于

模态分析软件操作

模态分析软件操作说 明及实例 东方振动和噪声技术研究所 1999.3.16 目录 一模态分析的步骤 (2) 1.确定分析的方法 (2) 2.测点的选取、传感器的布置 (2) 3.仪器连接 (3) 4.示波 (3) 5.输入标定值 (3) 6.采样 (4) 7.传递函数分析 (4) 8.进行模态分析 (4) 二模态分析实例 (5)

例一自由梁的模态分析实例 (5) 例二楼房的模态分析实例 (15) 模态分析是一种参数识别的方法,因为模态分析法是在承认实际结构可以运用所谓“模态模型”来描述其动态响应的条件下,通过实验数据的处理和分析,寻求其“模态参数”。 模态分析的关键在于得到振动系统的特征向量(或称特征振型、模态振型)。试验模态分析便是通过试验采集系统的输入输出信号,经过参数识别获得模态参数。具体做法是:首先将结构物在静止状态下进行人为激振(或者环境激励),通过测量激振力与振动响应,找出激励点与各测点之间的“传递函数”,建立传递函数矩阵,用模态分析理论通过对试验导纳函数的曲线拟合,识别出结构的模态参数,从而建立起结构物的模态模型。 东方所研制的模态分析系统,自推出以来参与了许多重大的科研项目如大型航空航天设备(长征火箭、通信卫星、大型雷达、火箭发射平台等)、大桥(火箭激振钱塘江大桥、锤击法激振乌海黄河铁路大桥属国内首次)、大楼、大坝、、机车(汽车)车辆和大型港口机械等,分析精度高、操作简便,尤其是变时基模态分析及高速模态三视图动画技术更是在国内外处于领先地步。 一、模态分析的步骤 1. 确定分析的方法 DASP中提供的模态分析方法有多输入单输出法、单输入多输出法和多输入多输出方法。一般采用较多的是多输入单输出或单输入多输出方法,在这两种方法中选取时,视哪一种方法简便而定,如激励装置大、不好移动但传感器移动方便就选取单输入多输出方法(即单点激励、多点移步拾振);如传感器移动不方便但激励装置小、容易移动就选取多输入单输出方法(即单点拾振、多点移步激励)。 有时结构因为过于巨大和笨重,以至于采用单点激振时不能提供足够的能量,将我们所感兴趣的模态都激励出来;其次,结构在同一频率时可能有多个模态,这样单点激振就不能把它们分离出来,这时就要采取两个甚至多个激励来激发结构的振动,即采取多输入多输出方法。 在DASP中进行模态分析时,由于采用了高弹性聚能力锤和先进的变时基传递函数分析技术,对于象大型铁路桥、火箭发射平台这样的大型结构用力锤敲击就能分析出结构的模态;对于大型的混凝土结构(如大楼)可以以天然脉动作为激励信号进行模态分析。所以在大多数情况下,采取单输入多输出或多输入单输出方法就可完全满足工程需要。 2. 测点的选取、传感器的布置 选择好分析方法后,就要根据结构的特点和试验目的确定测点的数目和布置,以及传感器的安装方法等。

土的击实试验作业指导书

土的击实试验作业指导书 1目的和适用范围 本试验方法适用于细粒土。 本试验分轻型击实和重型击实。轻型击实试验适用于粒径不大于20mm勺土,重型击实试验适用于粒径不大于40mm的土。 当土中最大颗粒粒径大于或等于40mm并且大于或等于40mn颗粒粒径的质量含量大于5%时,则应使用大尺寸试筒进行击实试验,或按5.4条进行最大干密度校正。大尺寸试筒要求其最小尺寸大于土样中最大颗粒粒径的5倍以上,并且击实试验的分层厚度应大于土样中最大颗粒粒径的3倍以上。单位体积击实功能控制在 2.677.2? 2687.0KJ/m3 范围内。 当细粒土中的粗粒土总含量大于40%或粒径大于0.005mm颗粒的含量大于土总质量的70%(即d30< 0.005mm时,还应做粗粒土最大干密度试验,其结果与重型击实试验结果比较,最大干密度取两中试验结果的最大值。 2仪器设备 2.1标准击实仪(图T 0131 —1和图T 0131 —2)。击实试验方法和相应设备的主要参数应符合表T0131-1的规定。

图T0131 —1击实筒(单位:mr) a) 小击实筒;b) 大击实 筒; 1 —套筒; 2 —击实筒; 3 —底板; 4 —垫块 表T 0131-1 击实试验方法种类 锤锤 质 量 (k g) 试筒尺寸 试 验方法类 别 底直 径 (c m 落高 (c m 内径 (c m 高 ( cm ) 高 度 ( cm ) 容积 (cm 3 ) 层 数 每 层 击 数 击实 功 (kj/ m3 最大 粒径 (mm 轻I5 2.530101212997327598.225型-15 2.53015..7.72177359598.238

土击实试验因素

土的击实试验影响因素 【摘要】土的击实试验影响因素众多,本文在分析了土的击实试验的意义、原理与方法的基础上,探讨了几点影响土的击实试验的因素。 一、土的击实试验的意义、原理与方法 (一)土的击实试验的意义 土体是道路沿线、土坝等土工构筑物的建筑材料。经过挖掘搬运的土,其原始结构已被破坏,天然含水量也发生了变化。在没有击实或压实之前,其抗剪强度较低,压缩性大且很均匀,遇水后还可能产生湿陷。为了满足建筑物稳定性的要求,必须用夯实或辗压等方法使填土密实,使土的密度增大、强度增高、变形减小、透水性降低,并为路基设计、确定路基设计回弹模量和适宜的路面组合类型、路基压实、防护与加固等提供工程地质依据和必要的设计参数。为此,在选择土料时,必须研究土的击实性。 目前,击实试验是研究土的击实性的常用方法。通过击实试验,确定在什么样的情况下,才使填土达到最好的密实效果。也即找出在击实作用下,土的干密度、含水率之间的关系和基本规律,从而选定适合道路工程需要的含水率和与其相应的干密度。 (二)击实试验原理 击实试验是把某一含水率的土样装入击实筒内,按规定的落距和次数用击锤打击土,然后取出测其含水率和干密度,用一种土配制成多个不同含水率的土样做试验,测得相应的含水率和干密度,其含水

率与干密度的对应关系并绘出ρd-W关系曲线图。 室内击实试验是用一定体积的击实筒和锤击功,用调整试样含水量的方法进行数次击实试验,测得土的最大干密度和其对应的最佳含水量。击实试验以单位体积击实功的大小划分为轻型击实和重型击实两种,设计时按工程需要和调整压实系数进行选择。 (三)击实试验方法 1、击实试验方法选择 目前国内常用的击实方法有两种: (1)轻型击实:适用于粒径小于5mm的细粒土,锤底直径为51mm,击锤质量为2.5kg,落距为305mm,单位体积击实功为591.6kJ/m3;分3层夯实,每层25击。 (2)重型击实:适用于粒径不大于40mm的土,击实筒内径为152mm,筒高116mm,击锤质量为4.5kg,落距为457mm,单位体积击实功为2682.7kJ/;分5层击实,每层56击。 2、击实试验步骤 (1)将击实仪平稳置于刚性基础上,击实筒与底座联接好,安装好护筒,在击实筒内壁均匀涂一薄层润滑油。称取一定量试样倒入击实筒内,分层击实。轻型击实试样为2-5kg,分3层,每层25击;重型击实试样为4-10kg,分5层,每层56击,若分3层,每层94击。每层试样高度宜相等,两层交界处的土面应刨毛。击实完成时,超出击实筒顶的试样高度应小于6mm。 (2)卸下护筒,用直刮刀修平击实筒顶部的试样,拆除底板,

用锤击法和变时基技术进行黄河铁路桥的模态试验分析

用锤击法和变时基技术进行黄河铁路桥的模态试验分析
沈松
应怀樵
雷速华 赵增欣
东方振动和噪声技术研究所,北京,100085
摘要 (1) 用特殊的弹性聚能力锤进行激励 本文介绍了一次用力锤激励铁路桥进行模态分析的 特别试验。1996 年 7 月 24 日,东方振动和噪声技术研究 所(COINV) 使用弹性聚能力锤作为激励设备, 成功地进行 了三道坎黄河铁路大桥的模态试验。由于弹性聚能力锤 延长了力的激励时间,使激励力的能量聚集在低频处, 从而使锤击法进行大型土木结构的模态试验成为可能。 为提高大型结构的传递函数的分析精度,试验中还使用 了一种新的分析方法—变时基(Varied-Time-Base)传递函 数细化分析方法。试验利用每两次列车经过的间隔时间, 保证了整个铁路的运行不受任何影响。本次试验得到了 包括模态质量、模态刚度等各种参数的前四阶模态。在 中国,这是首次利用锤击激励进行的铁路运行实际桥梁 模态试验,具有重要的科研价值。 2 桥梁结构和测点布置 (2) 在传递函数分析中使用了变时基(VTB)方法 (3) 使用 INV306 智能信号采集分析系统, 利用该系统可以 实现数据采集、信号处理、模态分析等工作的现场实 时分析和一体化处理。
1
引言 图 1: 简化结构图和测点布置 三道坎黄河铁路大桥位于内蒙古乌海市。近年来,
其水平振动越来越剧烈,振幅大大超过国家标准中的限 值。为研究其原因,对该桥需做两方面的测试: (1) 水平方向振动幅值.。 (2) 水平方向的模态测试和分析。 本文主要讨论第二方面的问题。对正在运行中的桥 梁进行模态试验是很困难的。本次试验使用了如下一些 新方法:
该桥共有九跨。试验对象为 7#桥墩和 8#桥墩之间的 一跨,该跨长 28 米。虽然其结构很复杂,但可以简化成 两边简支的钢板梁结构。简化的模态结构如图 1 所示。 模态测试采用单输入多输出的方法。点 ‘x’表示了激励点 的位置,在整个结构上则均匀布置了 36 个输出测点,其 中测点 33,34,35,36 位于桥墩上,测点 17,25,24,32 为桥墩 和钢板梁的铰接点。
1

土的击实试验

土的击实试验 1 依据标准 《公路土工试验规程》JTG E40-2007 2 目的和适用范围 本试验方法适用于细粒土。 本试验分轻型击实和重型击实。轻型击实试验适用于粒径不大于20mm的土。重型击实试验适用于粒径不大于40mm的土。 当土中最大颗粒粒径大于或等于40mm,并且大于或等于40mm颗粒粒径的质量含量大于5%时,则应使用大尺寸试筒进行击实试验,或按5.4条进行最大密度校正。大尺寸试筒要求其最小尺寸大于土样中最大颗粒粒径的5倍以上,并且击实试验的分层厚度应大于土样中最大颗粒粒径的3倍以上。单位体积击实功能控制在2677.2~2687.0kJ/m3范围内。 当细粒土中的粗粒土总含量大于40%或粒径大于0.005mm颗粒的含量大于土总质量的70%(即d30≤0.005mm)时,还应做粗粒土最大干密度试验,其结果与重型击实试验结果比较,最大干密度取两种试验结果的最大值。 3 仪器设备 3.1 标准击实仪。击实试验方法和相应设备的主要参数应符合表1的规定。 表1 击实试验方法种类 3.2 烘箱及干燥器。 3.3 天平:感量0.01g。 3.4 台秤:称量10kg,感量5g。 3.5 圆孔筛:孔径40mm、20mm和5mm各1个。

3.6 拌和工具:400mm×600mm、深70mm的金属盘,土铲。 3.7 其他:喷水设备、碾土器、盛土盘、量筒、推土器、铝盒、修土刀、平直尺等。 4 试样 4.1 本试验可分别采用不同的方法准备试样。各方法可按表2准备试料。 表2 试料用量 4.2 干土法(土不重复使用)。按四分法至少准备5个试样,分别加入不同水分(按2%~3%含水率递增),拌匀后闷料一夜备用。 4.3 湿土法(土不重复使用)。对于高含水率土,可省略过筛步骤,用手拣除大于40mm的粗石子即可。保持天然含水率的第一个土样,可立即用于击实试验。其余几个式样,将土分成小土块,分别风干,使含水率按2%~3%递减。 5 试验步骤 5.1 根据工程要求,按表1规定选择轻型或重型试验方法。根据土的性质(含易击碎风化石数量多少、含水率高低),按表2规定选用干土法(土不重复使用)或湿土法。 5.2 将击实筒放在坚硬的地面上,在筒壁上抹一薄层凡士林,并在筒底(小试筒)或垫块(大试筒)上放置蜡纸或塑料薄膜。取制备好的土样分3~5次倒入筒内。小筒按三层法时,每次约800~900g(其量应使击实后的试样等于或略高于筒高的1/3);按五层法时,每次约400~500g (其量应使击实后的土样等于或略高于筒高的1/5)。对于大试筒,先将垫块放入筒内底板上,按三层法,每层需试样1700g左右。整平表面,并稍加压紧,然后按规定的击数进行第一层土的击实,击实时击锤应自由垂直落下,锤迹必须均匀分布于土样面,第一层击实完后,将试样层面“拉毛”然后再装入套筒,重复上述方法进行其余各层土的击实。小试筒击实后,试样不应高出筒顶面5mm;大试筒击实后,试样不应高出筒顶面6mm。 5.3 用修土刀沿套筒内壁削刮,使试样与套筒脱离后,扭动并取下套筒,齐筒顶细心削平试样,拆除底板,擦净筒外壁,称量,准确至1g。

试验模态分析的两种方法

试验模态分析的两种方法 模态分析是研究结构动力特性一种近代方法,是系统辨别方法在工程振动领域中的应用。模态是机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。这些模态参数可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。通过试验将采集的系统输入与输出信号经过参数识别获得模态参数,称为试验模态分析。通常,模态分析都是指试验模态分析。振动模态是弹性结构的固有的、整体的特性。如果通过模态分析方法搞清楚了结构物在某一易受影响的频率范围内各阶主要模态的特性,就可能预言结构在此频段内在外部或内部各种振源作用下实际振动响应。因此,模态分析是结构动态设计及设备的故障诊断的重要方法。模态分析最终目标在是识别出系统的模态参数,为结构系统的振动特性分析、振动故障诊断和预报以及结构动力特性的优化设计提供依据。 试验模态分析主要有以下两种方法,OROS模态分析软件MODEL 2 完全具备了这两种常用的模态方 法。 锤击法模态测试 用于满足锤击法结构模态试验,以简明、直观的方法测量和处理输入力和响应数据,并显示结果。提供两种锤击方法:固定敲击点移动响应点和固定响应点移动敲击点。用力锤来激励结构,同时进行加速度和力信号的采集和处理,实时得到结构的传递函数矩阵。能够方便地设置测量参数,如触发量级、测量带宽和加窗类型,同时对最优的设置提供建议指导。 激振器法模态测试 主要是通过分析仪输出信号源来控制激振器,激励被测试件,输出信号有先进扫频正弦,随机噪声,正弦,调频脉冲等信号。支持单点激励(SIMO)与多点同时激励法(MIMO)。 1)几何建模 结构线架模型生成,节点数和部件数没有限制,测量点DOF自动加到通道标示;建立几何模型,以3维方式显示测量和分析结果。结构模型可以作为单个部件的装配,及采用不同的坐标系(直角、圆柱、球体坐标系),要求除点的定义外,还可定义线和面,真实的显示试验结构。结构线架模型生成,节点数和部件数没有限制,测量点自由度自动加到通道标示。

相关主题
文本预览
相关文档 最新文档