当前位置:文档之家› 多波形信号发生器及滤波器222

多波形信号发生器及滤波器222

多波形信号发生器及滤波器222
多波形信号发生器及滤波器222

多波形信号发生器(理论设计部分)

电子电路中,信号源是必备的,在电路中,所需要的信号由信号源提供。而现在使用最多的信号主要是正弦波,脉冲波,三角波,锯齿波等等,本讲介绍一种能同时产生脉冲波和三角波的电路的设计与实验。三角波的产生可以利用电容器的充放电过程(积分电路)来实现,因为三角波要求电位变化是线性的,即均匀变化,可以利用运算放大器产生一个对电容充放电电流恒定的电路,充电和放电过程可以由脉冲信号控制,而脉冲信号的形成也可以由运算放大器来完成,脉冲波可以由运算放大器构成比较器来产生。从以上讨论可知,电路利用的主要器件是运算放大器。

运算放大器的基本概念

1运算放大器是电子电路中最常用的电

子器件之一,利用运算放大器可以构成比

较器,电压跟随器(隔离电路),比例放

大器,运算电路,信号发生器,滤波器等

多种用途的电路。

2 运算放大器的电路符号如图所示,它有两个输入端{其中(+)叫做同相输入端,(-)叫做反相输入端},一个输出端。

3 运算放大器具有两个重要的特性,一是两个输入端的输入阻抗都很大,一般都在106Ω以上,二是开环放大倍数很大,一般都在105倍以上。

4 当运算放大器开环(在输出端和输入端不加反馈电路)使用时, 1 一般都会工作在饱和状态(原因是:两输入端加上电压信号,输出端的电压受到电源电压的限制其最大值高不能超过电源正电压,低不能低于电源负电压),当V+ > V- 时,输出高电平(接近电源正电压),当V+ < V- 时,输出低电平(接近电源负电压)。这就是一个比较器。

5 当运算放大器闭环{在输出端和反相输入端(-)加反馈电路}使用时,运算放大器的运用非常灵活,可以构成各种各样的电路,但无论是分析还是设计电路,只要掌握以下两点:一是因为输入阻抗很大使得输入电流很小而忽略认为两输入端的电流为0(虚断路,如LM358输入端电流45nA),一是因为开环放大倍数很大使得两输入端的电压很小而忽略认为两输入端的电压为0(虚短路,如LM358输出信号幅度1V,两输入端电压最大仅为10μV),由以运算放大器为核心器件构成的电路的分析与设计就变得非常简单与方便。

常用的通用运算放大器LM358和LM324简介

1 通用运算放大器LM358是一块双运放集成电路,内含二个完全一样的运算放大器,引脚8个,引脚编号1,2,3,4,5,6,7,8按如下方法确定:正面朝上,有缺口的一方朝左(或者有圆点的位置在左下),左下第一引脚为1,

然后按逆时针顺序依

次确定2,3,4,5,6,

7,8,即左上脚为8

号引脚。实物图如图所示。8脚接正

电源,4脚接负电源或地GND.引脚3,2,1三个脚组成A运放

2

(其中引脚3为A运放的同相输入端,引脚2为A运放的反相输入端,引脚1为A运放的输出端),引脚5,6,7三个脚组成B运放(其中引脚5为B运放的同相输入端,引脚6为B运放的反相输入端,引脚7为B运放的输出端)。右图为运算放大器LM358电路符号。

2 通用运算放大器LM324简介通用运算放大器LM324是四运放集成电路,内含四个完全一样的运算放大器,

引脚14个,引脚编号1,2,3,4,5,6,7,8,

9,10,11,12,13,14按如下方法确定:正面

朝上,有缺口的一方朝左(或者有圆点的位置在左下),左下第一引脚为1,然后按逆时针顺序依次确定2,3,4,5,6,7,8,9,10,11,12,13,14,即左上脚为14号引脚。实物如图所示。4脚接正电源,11脚接负电源或地GND.引脚3,2,1三个脚组成A运放(其中引脚3为A运放的同相输入端,引脚2为A运放的反相输入端,引脚1为A运放的输出端),引脚5,6,7三个脚组成B运放(其中引脚5为B运放的同相输入端,引脚6为B运放的反相输入端,引脚7为B运放的输出端)。引脚10,9,8三个脚

3 组成C运放(其中引脚10为C运放的同相输入端,引脚9为C运放的反相输入端,引脚8为C运放的输出端)。引脚12,13,14三个脚组成D运放(其中引脚12为D运放的同相输入端,引脚13为D运放的反相输入端,引脚14为D运放的输出端)上图为运算放大器LM324电路符号。

3 运算放大器LM358和LM324的主要参数

电源电压范围单电源+3.0V--+32V,双电源±1.5 V--±16 V 输出高电平大约比电源电压低1.5V,

最大输出端拉电流40mA,最大输出端灌电流20mA,

脉冲波与三角波信号发生器电路结构如图所示。由运放UB,UC,电阻R1,R2,R3,R4,发光二极管D1,D2,电容C构成,其中UB构成比较器,UC,R4,电容C构成积分器,R1,R2构成比较电压产生电路,发光二极管D1,D2构成电压稳定电路。

在最初时刻t0,设比较器输出高电平,则由于D2导通(D1截止),所以Ub=+U D(发光二极管导通电压),而最初时刻,电容器上无电荷,Uc=0,所以Uo=0,可见此时Ud(比较器+端电压)为一个正电压(维持比较器输出高电平)。由于R4上有从左至右电流,

4

所以电容C从左至右充电,电容器电压增大,输出电压从0开始降低为负电压,Ud也就随着Uo的降低而从正电压开始降低,到t1时刻,电容器电压升高到Um,输出电压降低到-Um时,Ud 降低到0,比较器输出状态翻转,输出低电平(注意到比较器比较电压值为0V),Ub也就立即从+ U D降到-U D,Ud突然从0降到一个负电压,R4上产生一个从右至左的电流,电容器放电,电容电

压降低,输出电压升高,Ud电压也跟着升高,到t2时刻,电容器电荷放完,电容电压降到0,输出电压升高到0,注意到此时Ud 还是负电压(因为一端为0,一端为负值,因此中间值必为负值),所以R4上从右至左的电流继续存在,电容器从右至左反向充电,电容器从右至左电压升高,输出电压继续升高,Ud电压继续升高,到t3时刻,电容器从右至左电压升高到Um,输出电压升高到Um,

5 Ud电压上升到0,比较器状态翻转,输出高电平,Ub也跳到+ U D,Ud电压也从0跳到一个正电压,R4上有从左至右电流,电容器反向放电,输出电压降低,Ud电压随着降低,到T4时刻,电容反向放电放完,输出电压降到0(注意到Ud并没降到0),一个周期结束。

从以上分析可知,当输出电压Uo=Um时,输出信号开始转折,即Um是最大值,即三角波信号的幅度。而当Uo=+Um时,Ud=0,Ub=-Ub,以此计算三角波的幅度。

2

1

)

(

R

U

R

U

D

m

-

-

=

注意到运算放大器的虚断路特性,R1和R2电流相等。

所以三角波幅度

D

m

U

R

R

U

2

1

=

电容器电压从0 增加到Um,或者从Um减小到0的过程,就是1/4个周期,即电容器上电压变化Um时,完成四分之一个周期,以此计算三角波的频率。

C

C

CU

Q=

D

m

U

R

R

C

CU

T

I

2

1

4

=

=,

4

R

U

I D

=,

6

三角波周期 2

414R C

R R T =,

三角波频率 C

R R R f 142

4=

利用改变R1或R2的方法调节三角波幅度,利用改变R4的方法调节三角波频率。

若发光二极管采用绿色发光管,管压降约为 2.0V ,设计幅度为2.5V ,则可取R1=15K ,R2=12K 。

设计频率为1000Hz ,取电容为103,则计算出R4=20K 。 若发光二极管采用红色发光管,管压降约为 1.8V ,设计幅度为4.0V ,则可取R1=22K ,R2=10K 。

设计频率为1000Hz ,取电容为103,则计算出R4=11.36K ,取R4=11K 。

电路按此参数安装元件,计算出电路的三角波信号幅度和频率结果如下:

)(96.38.110

2221V U R R U D m =?==

)(103310

10111022410

1048

333

142Hz C R R R f =??????==

-电源电压大小的确定:为了电路的简单化,电路采用双电源供 电,当然正负电压对称。若三角波的幅度为4V ,则电源正电压高

7

于+6V ,电源负电压低于-6V 就可以,但为了留有充分的余量及方便,电源电压选用正负12V (为常用电源电压)。

另外:a 点输出脉冲波,幅度由运放LM358的供电电压决定,频率与三角波信号频率相同。b 点输出脉冲波,幅度由发光二极管的导通电压决定,频率与三角波信号频率相同

运算放大器UD 和电阻R5,R6构成输出三角波信号幅度调节电路,通过调节R5或者R6的大小可以调节输出信号幅度大小,如固定R5不变,调节R6的大小,当R6调大时,电路放大倍数增大,输出信号幅度增大,当R6调小时,电路放大倍数减小,输出信号幅度减小,注意到这个反相比例放大电路的放大倍数为

5

6

R R A v -= R 所以输出信号幅度为 )(45

6

V R R U O ?=

8

单电源供电电路,电路工作原理与双电源供电电路完全相同。只不过此时公共端不是接地端,而是利用运算放大器产生一个中间电压(电压跟随器)作为公共端。另外由于动态范围只有双电源供电情况下的一半(6V)了,因此三角波信号幅度设计值要相应减小,本电路设计为1.8V 。 本电路设计三角波信号幅度为

)(8.18.110

10

43V U R R U D m =?==

本电路设计三角波信号频率为

)(250010

101010104101048

333

1634Hz C R R R f =??????==- 正弦波信号发生器 在电子电路中,电路所处理的信号大多为正弦波信号,因此,正弦波信号发生器是电子电路中的基本电路,是电子电路中使用的最为广泛的电路之一。因此,要求我们对信号发生器的电路结构以及工作性能有比较明确的了解。本实践项目通过连接正弦波发生器及其测量,进一步熟悉正弦波发生器的电路结构及性能。本实践项目的电路采用RC 正弦波振荡器,而描述RC 正弦波振荡器的最主要的物理量就是电路的固有振荡频率,根据RC 正弦波振荡器的理论可知,电路的固有振荡频率

2

14321C C R R f O π=

若取R3=R4,C1=C2,则f O = 1/(2πRC )

11

因此,我们只要利用示波器测出RC 正弦波振荡器在工作时所产生的信号频率,比较实验测量值在实验误差范围内是否与理论值相

符,就可从感性上进一步了解RC 正弦波振荡器的电路结构以及电路的工作性能。若取R=16K ,C=0.01uF ,则振荡频率 f O = 1/(2πRC )= 1/(2π16K*0.01uF )= 1000Hz

本电路也可取R3=R4=7.5K ,C1=C2=0.022uF ,固有振荡频率f O 约为1000Hz 。

二极管的作用是稳定输出信号的幅度,因D1,D2的并联电阻大约为2R1-R2,而二极管导通电压大约为0.6V (实际上,二极管

12 导通电压与导通电流还是有点关系,有几十毫安时,电压取0.8V ,几毫安时,电压取0.7V ,零点几毫安时,电压取0.6V ),所以输出信号的幅度大约为 V O = [0.6*/(2R1-R2)]*(3R1)

本电路取R2=33K ,R1=22K ,计算得输出信号幅度大约为 V O = (0.6*/11)*(66)=3.6 (V)

二阶低通滤波器 电路如图所示,作为低通滤波器,最重要的是两个指标,一是低通滤波器的截止频率,二是低通滤波器的幅频特性。根据理论分析,如图所示的二阶低通滤波器(取R1=R2=R ,C1=C2=C )的截止频率为

RC

f P π21

=

对截止频率初步的理解是,只有当信号频率小于截止频率的信号才能通过滤波器,而信号频率高于截止频率的信号不能通过滤波器。

如图所示的二阶低通滤波器(取R1=R2=R ,C1=C2=C )的幅频特性是-40dB/10倍频。

对幅频特性初步的理解是,负的分贝数越大,滤波器滤波性能越好。

13

本实践项目电路为了得到更好的滤波效果,采用两级二阶低通滤波器滤波。

改进型二阶低通滤波器的设计:

第一步,在电路中取R1=R2=R ,C1=C2=C ,首先选定电容C ,根据截止频率确定R ,因为它们之间的关系为

RC

f P π21

=

本项目选定截止频率为1200HZ ,取C=0.01uF ,计算得电阻R=13.26K ,取R=13K 。

第二步,R3,R4的确定方法,因二阶低通滤波器的Q 值由下式确定:

uP

A Q -=

31

取定Q 值(取1左右),计算出放大倍数A uP ,本项目取Q=1,则A uP =2。根据放大倍数和两个输入端对外接电阻对称条件确定R3和R4。

R

R R R R R R A uP 2//1343

4

=+=+

=

解得 R3 = R4 =-4R = 52K ,可用39K 和13K 串联。

本实践项目滤波器的作用,将三角波滤波后得到正弦波。因三角波是周期性的非正弦波,但根据信号理论,任何周期性的非正弦波都可以认为是多种正弦波的组合,这些正弦波称为基波和谐波, 可以用傅立叶级数求出,一个周期为T (频率为fo ),幅度为Um ,

14 对称时间轴的三角波展开成傅立叶级数结果为

])1

25sin(5

1)123sin(31)12[sin(8

2

22???-?+?-t T t T t T U m ππππ从以上结果可以知道,除基波分量外,谐波分量有3fo ,5fo ,7fo , 9fo ,……,等等,但随着谐波次数的增加,幅值显著减小,因此我们可以设计一个截止频率比三角波频率稍为高一点的滤波器,这样,三角波通过滤波后就只有基波了,其它谐波都被滤波器滤掉了,输出的就是基波,也就是频率与三角波频率相同的正弦波了。

滤波器的阶数越高,通过滤波的方法得到的正弦波就越标准,也就是失真度越小。

本实践项目滤波器的作用,将脉冲波滤波后得到正弦波。因脉冲波是周期性的非正弦波,但根据信号理论,任何周期性的非正弦波都可以认为是多种正弦波的组合,这些正弦波称为基波和谐波, 可以用傅立叶级数求出,一个周期为T (频率为fo ),幅度为Um ,对称时间轴的脉冲波展开成傅立叶级数结果为

])1

25sin(51)123sin(31)12[sin(4

???-?+?+t T

t T t T U m ππππ从以上结果可以知道,除基波分量外,谐波分量有3fo ,5fo ,7fo , 9fo ,……,等等,但随着谐波次数的增加,幅值减小,但注意到 幅值随着频率的升高而减少的速度明显比三角波要小,因此我们可以设计一个截止频率比脉冲波频率稍为高一点的滤波器,这样,脉冲波通过滤波后就只有基波了,其它谐波都被滤波器滤掉了,输出的就是基波,也就是频率与脉冲波频率相同的正弦波了。 滤波器的阶数越高,通过滤波的方法得到的正弦波就越标准,也就是失真度越小。

15

多波形信号发生器(实践制作测试部分)

仔细研究电路原理图,集成块LM324中有八个运算放大器(四个LM358),弄清楚它们各自的两个输入端(同相输入端的反相输入端)和一个输出端,并弄清楚它们各自的作用。一个运算放大器是用于比较器并同时产生脉冲波(注意到比较器的一端电位是固定的,另一端的电位是变化的,分析这一端的电位变化过程是理解本电路工作原理的关键所在);一个运算放大器是用于积分电路并同时产生三角波(这部分电路的分析主要是电容器的充放电过程的分析以及随着电容器充放电过程的进行其电容器电压的变化和输出电压的变化);二个运算放大器构成一级二阶低通滤波器(其中一个运算放大器用于隔离),另二个运算放大器构成另一个低通滤波器,一个运算放大器构成正弦波信号发生器,一个运算放大器构成正弦波信号的反相比例放大器。

电路中,三角波(包括脉冲波)集中频率可以通过改变电阻R4或电容C1调节(在R4旁并电阻或在C1旁并电容),正弦波信号频率可以通过改变电阻R20而调节(在R20旁并电阻),正弦波信号幅度可以通过改变电阻R22而调节(在R22旁并电阻)。

当以上问题弄清以后,试设计三角波幅度为2.5V ,频率为 1000HZ 的多波形信号发生器。将其讨论过程以及设计过程写入报告中。

仔细研究印刷电路板,在本印刷电路板上将要装配的器件有:普通1/4W 电阻器,瓷片电容器,发光二极管,运放集成块LM358,输入和输出接口等等。请仔细研究印刷电路上的图形或符号,确定各位置所装配的是何种元件。若是发光二极管,还要弄清板上的对

16 应“+”极和“-”极,对于集成块LM358,要弄清楚各脚在印刷板上的相应位置。

仔细研究元器件,各电阻器及其阻值,精度,功率,电阻阻值可从电阻上所标的色码直接读出,或者用万能表的欧姆档直接测量确定。各瓷片电容的电容量(标注在电容上)。各发光二极管及其”+””-“极。集成块LM358的脚编号1,2,3,4,5,6,7,8的确认。

认真焊接。按照印刷板上器件编号找到相应的元件,按以下顺序焊接:电阻,IC座,瓷片电容,发光二极管,接口。焊接过程中注意以下问题:

1各发光二极管”+””-“极。

2集成块LM358的脚1,2,3,4,5,6,7,8在印刷板上的对应位置。

17

3J1要与前后续电路的输入输出电源接口方位相一致,因此要注意其方位。不要接错电源。

仔细观察各焊接点,检查有无短路现象和虚焊现象。

认真测量。在观察所焊接的电路板处于正常状态后,将12V 和-12V电源接入到J1接口。

观察:两个发光二极管是否正常发光。

在不改变C1和R4的条件下,用示波器测量三角波信号的幅度和频率。

滤波器分别接入脉冲波和三角波,测量二个滤波器的输出信号波形。

测量正弦波频率,改变R20(方法是在R20旁边并上一个电阻),测量信号频率。

测量正弦波幅度,改变R22(方法是在R22旁边并上一个电阻),测量信号幅度。

在改变C1和R4的条件下,用示波器测量三角波信号的幅度和频率。

注意:C1和R4的改变方法:在C1的附近有一个标注“C1”座子,在此座子上插上电容,这样就在C1两端并上了一个电容,从而改变电容值。在R4的附近有一个标注“R4”座子,在此座子上插上电阻,这样就在R4两端并上了一个电阻,从而改变电阻值。

设计表格并将实验测量值,理论值,对应的可调电阻,可调电容值记录在表格中。

18

多功能信号发生器设计报告.doc

重庆大学城市科技学院电气学院EDA课程设计报告 题目:多功能信号发生器 专业:电子信息工程 班级:2006级03班 小组:第12组 学号及姓名:20060075蒋春 20060071冯志磊 20060070冯浩真 指导教师:戴琦琦 设计日期:2009-6-19

多功能信号发生器设计报告 一、设计题目 运用所掌握的VHDL语言,设计一个信号发生器,要求能输出正弦波、方波、三角波、锯齿波,并且能改变其输出频率以及波形幅度,能在示波器上有相应波形显示。 二、课题分析 (1).要能够实现四种波形的输出,就要有四个ROM(64*8bit)存放正弦波、方波、三角波、锯齿波的一个周期的波形数据,并且要有一个地址发生器来给ROM提供地址,ROM给出对应的幅度值。 (2).因为要设计的是个时序电路,所以要实现输出波形能够改变频率,就必须对输入的信号进行分频,以实现整体的频率的改变。 (3).设计要求实现调幅,必须对ROM输出的幅度信息进行处理。最简单易行的方法是对输出的8位的幅度进行左移(每移移位相当于对幅度值行除以二取整的计算),从而达到幅度可以调节的目的。同时为了方便观察,应再引出个未经调幅的信号作为对比。 三、设计的具体实现 1、系统概述 系统应该由五个部分组成:分频器(DVF)、地址发生器(CNT6B)、四个ROM 模块(data_rom_sin、data_rom_sqr、data_rom_tri、data_rom_c)、四输入多路选择器mux、幅度调节单元w。 2、单元电路设计与分析 外部时钟信号经过分频器分频后提供给地址发生器和ROM,四个ROM的输出接在多路选择器上,用于选择哪路信号作为输出信号,被选择的信号经过幅度调节单元的幅度调节后连接到外部的D/A转换器输出模拟信号。 (1)分频器(DVF) 分频器(DVF)的RTL截图

多波形函数信号发生器方案

个人资料整理仅限学习使用中文摘要

英文摘要

目录 1 引言.......................................................... - 1 - 2函数信号发生器设计要求及过程.................................. - 2 - 2.1函数信号发生器设计要求 (2) 2.2函数信号发生器电路设计的基本原理 (2) 2.3运算放大器的介绍 (3) 2.3.1迟滞电压比较器......................................... - 3 - 2.3.2 积分电路.............................................. - 5 - 2.4差分放大器的介绍 (6) 3总体电路设计 (7) 3.1方波—三角波产生电路的设计 (7) 3.2三角波—正弦波变换电路的设计 (11) 4.1EWB软件的简介 (15) 4.1.1 EWB软件的概述........................................ - 15 - 4.1.2 EWB软件的基本操作方法................................ - 15 - 4.2函数信号发生器的仿真过程及结果 (16) 4.2.1使用EWB对电路进行设计和实验仿真的基本步骤............. -16 - 4.2.2方波—三角波信号发生器电路的装调及仿真结果............ - 16 - 4.2.3三角波—正弦波变换电路的装调和仿真.................... - 17 - 结论........................................................... - 20 - 参考文献

信号发生器概述

信号发生器概述 凡是产生测试信号的仪器,统称为信号源,也称为信号发生器,它用于产生被测电路所需特定参数的电测试信号。 信号源是根据用户对其波形的命令来产生信号的电子仪器。信号源主要给被测电路提供所需要的已知信号(各种波形),然后用其它仪表测量感兴趣的参数。可见信号源在电子实验和测试处理中,并不测量任何参数,而是根据使用者的要求,仿真各种测试信号,提供给被测电路,以达到测试的需要。 信号源的分类和作用 信号源有很多种分类方法,其中一种方法可分为混和信号源和逻辑信号源两种。其中混和信号源主要输出模拟波形;逻辑信号源输出数字码形。混和信号源又可分为函数信号发生器和任意波形/函数发生器,其中函数信号发生器输出标准波形,如正弦波、方波等,任意波/函数发生器输出用户自定义的任意波形;逻辑信号发生器又可分为脉冲信号发生器和码型发生器,其中脉冲信号发生器驱动较小个数的的方波或脉冲波输出,码型发生器生成许多通道的数字码型。如泰克生产的AFG3000系列就包括函数信号发生器、任意波形/函数信号发生器、脉冲信号发生器的功能。 另外,信号源还可以按照输出信号的类型分类,如射频信号发生器、扫描信号发生器、频率合成器、噪声信号发生器、脉冲信号发生器等等。信号源也可以按照使用频段分类,不同频段的信号源对应不同应用领域。 下面我们将对函数信号发生器和任意波形/函数发生器做简要介绍: 1、函数信号发生器 函数发生器是使用最广的通用信号源,提供正弦波、锯齿波、方波、脉冲波等波形,有的还同时具有调制和扫描功能。 函数波形发生器在设计上分为模拟式和数字合成式。众所周知,数字合成式函数信号源(DDS)无论就频率、幅度乃至信号的信噪比(S/N)均优于模拟式,其锁相环(PLL)的设计让输出信号不仅是频率精准,而且相位抖动(phaseJitter)及频率漂移均能达到相当稳定的状态,但数字式信号源中,数字电路与模拟电路之间的干扰始终难以有效克服,也造成在小信号的输出上不如模拟式的函数信号发生器,如今市场上的大部分函数信号发生器均为DDS信号源。 2、任意波形发生器 任意波形发生器,是一种特殊的信号源,不仅具有一般信号源波形生成能力,而且可以仿真实际电路测试中需要的任意波形。在我们实际的电路的运行中,由于各种干扰和响应的存在,实际电路往往存在各种缺陷信号和瞬变信号,如果在设计之初没有考虑这些情况,有的将会产生灾难性后果。任意波发生器可以帮您完成实验,仿真实际电路,对您的设计进行全面的测试。 由于任意波形发生往往依赖计算机通讯输出波形数据。在计算机传输中,通过专用的波

函数信号发生器课程设计报告书

信号发生器 一、设计目的 1.进一步掌握模拟电子技术的理论知识,培养工程设计能力 和综合分析问题、解决问题的能力。 2.基本掌握常用电子电路的一般设计方法,提高电子电路的 设计和实验能力。 3.学会运用Multisim10仿真软件对所作出的理论设计进行 仿真测试,并能进一步完善设计。 4.掌握常用元器件的识别和测试,熟悉常用仪表,了解电路 调试的基本方法。 二、设计容与要求 1.设计、组装、调试函数信号发生器 2.输出波形:正弦波、三角波、方波 3.频率围:10Hz-10KHz围可调 4.输出电压:方波V PP<20V, 三角波V PP=6V, 正弦波V PP>1V 三、设计方案仿真结果 1.正弦波—矩形波—三角波电路 原理图:

首先产生正弦波,再由过零比较器产生方波,最后由积分电路产生三角波。正弦波通过RC串并联振荡电路(文氏桥振荡电路)产生,利用集成运放工作在非线性区的特点,由最简单的过零比较器将正弦波转换为方波,然后将方波经过积分运算变换成三角波。 正弦—矩形波—三角波产生电路: 总电路中,R5用来使电路起振;R1和R7用来调节振荡的频率,R6、R9、R8分别用来调节正弦波、方波、三角波的幅值。左边第一个运放与RC串并联电路产生正弦波,中间部分为过零比较器,用来输出方波,最好一个运放与电容组成积分电路,用来输出三角波。

仿真波形: 调频和调幅原理 调频原理:根据RC 振荡电路的频率计算公式 RC f o π21 = 可知,只需改变R 或C 的值即可,本方案中采用两个可变电阻R1和R7同时调节来改变频率。 调幅原理:本方案选用了最简单有效的电阻分压的方式调幅,在输出端通过电阻接地,输出信号的幅值取决于电阻分得的电压多少。其最大幅值为电路的输出电压峰值,最小值为0。 RC 串并联网络的频率特性可以表示为 ) 1(311112 1 2 RC RC j RC j R C j R RC j R f Z Z Z U U F ωωωωω-+=++++=+= = ? ? ? 令,1 RC o =ω则上式可简化为) ( 31 ω ωωωO O j F -+ = ? ,以上频率特性可 分别用幅频特性和相频特性的表达式表示如下:

DSP多波形信号发生器

数字信号处理(DSP) 综合设计性实验报告 学院:电子信息工程学院 班级:自动化 指导教师: 学生: 北京交通大学电工电子教学基地 2014年9月20日

目录 一实验目的 (3) 二实验技术指标与设计要求 (3) 三实验原理 (3) 四实验操作 (4) 五程序设计 (10) 六硬件输出演示 (16) 七实验感想与体会 (22) 八参考文献 (23)

一 实验目的 1 掌握多波形信号发生器的DSP 设计可使学生更加透彻的理解和应用奈奎斯特采样定理,提 高学生系统地思考问题和解决问题的能力。 2 通过对DSP 信号处理器及D/A 转换器的编程,可以培养学生C 语言编程能力以及使用DSP 硬件平台实现数字信号处理算法的能力。 3 学习并掌握使用DSP 产生正弦波、方波、三角波、锯齿波灯信号的原理和算法,并利用GEL 文件实现频率和幅度的自动可调。 4 掌握利用CCS 建立工程、编译与调试代码的基本过程,可以在软件中观察图形及变量,并利用硬件进行输出显示。 5 掌握产生多种波形的理论方法,并比较产生信号的两种主要方法(查表发和计算法)的优缺点。 二 实验技术指标与设计要求 1 基本部分 1) 使用DSP 产生300—16000Hz 的正弦、方波、锯齿波和三角波信号,输出信号的幅度从 0~1VRMS (有效值)。要求使用计算法,并且频率可变、幅度可变。 2) 调节信号的频率和幅度时不能中断程序的运行。(提示:可以使用CCS 下的GEL 语言实现此功能) 2 发挥部分 在实验板的信号输出端分别接入16欧姆和32欧姆负载电阻,信号仍然保持空载时所设定的 输出幅度。 三 实验原理 1 产生连续的波形的方法主要有以下两种方法: 1)查表法:把事先将需要输出的数据计算好,存储在DSP 中,然后依次输出就可以了。查表法的优点是速度快,可以产生频率较高的波形,而且不占用DSP 的计算时间;查表法的缺点是在于需要占用DSP 的内部的存储空间,尤其对采样频率比较大的输出波形,这样,需要占用的内部的空间将更大,而DSP 内部的存储空间毕竟有所限制。这使得查表法的应用场合十分有限。 2)计算法:计算法可以使用泰勒级数展开法进行计算,也可以使用差分方程进行迭代计算或者直接使用三角函数进行计算。计算结果可以边计算边输出,也可以先计算后输出。计算法的使用比查表法灵活。计算法的优缺点正好和查表法相反。即:其优点是不占用DSP 的存储空间,其缺点是占用DSP 的计算时间,使得执行程序的开销变大。 本实验将用第二种方法即计算法产生一个正弦波信号,从DA 输出。正弦函数和余弦函数的泰勒级数数学表达式为: =x sin +-+-+-+---)1(121 9753x x x x x x n n ,x ?),(∞-∞∈

函数波形信号发生器

函数波形发生器设计 摘要 函数信号发生器是一种能够产生多种波形,如三角波、锯齿波、矩形波(含方波)、正弦波的电路。函数信号发生器在电路实验和设备检测中具有十分广泛的用途。通过对函数波形发生器的原理以及构成分析,可设计一个能变换出三角波、正弦波、方波的函数波形发生器。本课题采用由集成运算放大器与晶体管差分放大器共同组成的方波—三角波—正弦波函数发生器的设计方法,先通过比较器产生方波,再通过积分器产生三角波,最后通过差分放大器形成正弦波。波形变换的原理是利用差分放大器传输特性曲线的非线性。 经过仿真得出了方波、三角波、正弦波、方波——三角波转换及三角波——正弦波转换的波形图。 关键字:函数信号发生器、集成运算放大器、晶体管差分放 设计目的、意义 1 设计目的 (1)掌握方波—三角波——正弦波函数发生器的原理及设计方法。 (2)掌握迟滞型比较器的特性参数的计算。 (3)了解单片集成函数发生器8038的工作原理及应用。 (4)能够使用电路仿真软件进行电路调试。 2 设计意义 函数发生器作为一种常用的信号源,是现代测试领域内应用最为广泛的通用仪器之一。 在研制、生产、测试和维修各种电子元件、部件以及整机设备时,都学要有信号源,由它产生不同频率不同波形的电压、电流信号并加到被测器件或设备上,用其他仪器观察、测量被测仪器的输出响应,以分析确定它们的性能参数。信号发生器是电子测量领域中最基本、应用最广泛的一类电子仪器。它可以产生多种波形信号,如正弦波,三角波,方波等,因而广泛用于通信、雷达、导航、宇航等领域。 设计内容 1 课程设计的内容与要求(包括原始数据、技术参数、条件、设计要求等): 1.1课程设计的内容 (1)该发生器能自动产生正弦波、三角波、方波。 (2)函数发生器以集成运放和晶体管为核心进行设计 (3)指标: 输出波形:正弦波、三角波、方波 频率范围:1Hz~10Hz,10Hz~100Hz 输出电压:方波VP-P≤24V,三角波VP-P=8V,正弦波VP-P>1V; (4)对单片集成函数发生器8038应用接线进行设计。 1.2课程设计的要求 (1)提出具体方案 (2)给出所设计电路的原理图。 (3)进行电路仿真,PCB设计。 2 函数波形发生器原理 2.1函数波形发生器原理框图 图2.1 函数发生器组成框图

信号发生器设计(附仿真)

南昌大学实验报告 学生姓名:学号:专业班级: 实验类型:□验证□综合□设计□创新实验日期:实验成绩: 信号发生器设计 一、设计任务 设计一信号发生器,能产生方波、三角波和正弦波并进行仿真。 二、设计要求 基本性能指标:(1)频率范围100Hz~1kHz;(2)输出电压:方波U p-p≤24V,三角波U p-p =6V,正弦波U p-p>1V。 扩展性能指标:频率范围分段设置10Hz~100Hz, 100Hz~1kHz,1kHz~10kHz;波形特性方波t r<30u s(1kHz,最大输出时),三角波r△<2%,正弦波r~<5%。 三、设计方案 信号发生器设计方案有多种,图1是先产生方波、三角波,再将三角波转换为正弦波的组成框图。 图1 信号发生器组成框图 主要原理是:由迟滞比较器和积分器构成方波——三角波产生电路,三角波在经过差分放大器变换为正弦波。方波——三角波产生基本电路和差分放大器电路分别如图2和图4所示。 图2所示,是由滞回比较器和积分器首尾相接形成的正反馈闭环系统,则比较器A1输出的方波经积分器A2积分可得到三角波,三角波又触发比较器自动翻转形成方波,这样即可构成三角波、方波发生器。其工作原理如图3所示。

图2 方波和三角波产生电路 图3 比较器传输特性和波形 利用差分放大器的特点和传输特性,可以将频率较低的三角波变换为正弦波。其基本工作原理如图5所示。为了使输出波形更接近正弦波,设计时需注意:差分放大器的传输特性曲线越对称、线性区越窄越好;三角波的幅值V 应接近晶体管的截止电压值。 m 图4 三角波→正弦波变换电路

图5 三角波→正弦波变换关系 在图4中,RP 1调节三角波的幅度,RP 2 调整电路的对称性,并联电阻R E2 用来减小差 分放大器的线性区。C 1、C 2 、C 3 为隔直电容,C 4 为滤波电容,以滤除谐波分量,改善输出 波形。 波形发生器的性能指标: ①输出波形种类:基本波形为正弦波、方波和三角波。 ②频率范围:输出信号的频率范围一般分为若干波段,根据需要,可设置n个波段范围。 ③输出电压:一般指输出波形的峰-峰值U p-p。 ④波形特性:表征正弦波和三角波特性的参数是非线性失真系数r~和r△;表征方波特性的参数是上升时间t r。 四、电路仿真与分析

函数信号发生器设计报告

函数信号发生器设计报告 一、 设计要求 设计制作能产生正弦波、方波、三角波等多种波形信号输出的波形发生器,具体要求: (1) 输出波形工作频率范围为2HZ ~200KHZ ,且连续可调; (2) 输出频率分五档:低频档:2HZ ~20HZ ;中低频档:20HZ ~200HZ ; 中频档:200HZ ~2KHZ ;中高频档:2KHZ ~20KHZ ;高频档:20KHZ ~200KHZ 。 (3) 输出带LED 指示。 二、 设计的作用、目的 1. 掌握函数信号发生器工作原理。 2. 熟悉集成运放的使用。 3. 熟悉Multisim 软件。 三、 设计的具体实现 3.1函数发生器总方案 采用分立元件,设计出能够产生正弦波、方波、三角波信号的各个单元电路,利用Multisim 仿真软件模拟,调试各个参数,完成单元电路的调试后连接起来,在正弦波产生电路中加入开关控制,选择不同档位的元件,达到输出频率可调的目的。 总原理图:

3.2单元电路设计、仿真 Ⅰ、RC桥式正弦波振荡电路 图1:正弦波发生电路 正弦波振荡器是在只有直流供电、不加外加输入信号的条件下产生正弦波信号的电路。 正弦波产生电路的基本结构是:引入正反馈的反馈网络和放大电路。其中:接入正反馈是产生振荡的首要条件,它又被称为相位条件;产生振荡必须满足幅度条件;要保证输出波形为单一频率的正弦波,必须具有选频特性;同时它还应具有稳幅特性。因此,正弦波产生电路一般包括:放大电路、反馈网络、选频网络、稳幅电路四个部分。根据选频电路回路的不同,正弦波振荡器可分为RC正弦波振荡器、LC正弦波振荡器和石英晶体振荡器。其中,RC正弦波振荡器主要用于产生中低频正弦波,振荡频率一般小于1MHz,满足本次设计要求,故选用RC 正弦波振荡器。

多波形函数信号发生器

多波形函数信号发生器

————————————————————————————————作者:————————————————————————————————日期:

电子课程设计 设计题目:多波型信号发生器 系部:信息工程学院 专业:电子信息工程 班级:1301班 学号:8 姓名:高旭 指导老师:陈亮

目录 一设计要求 (3) 二总体概要设计 (3) 三各单元模块设计与分析······························································································4 3.1 正弦波发生 器 (4) 3.1.1 RC桥式振荡 器····························································································4 3.2方波转化电 路 (6) 3.2.1555定时 片································································································6 3.2.2由555芯片构成的施密特触发 器 (7) 3.2.3方波幅度调节电 路 (8) 3.3三角波转化电路 (8) 3.3.1RC无源积分器 (8) 3.3.2自举电路反相放大器················································································9 四总电路图 (10)

多波形信号发生器设计 电子技术课程设计

湖南文理学院课程设计报告 课程名称:电子技术课程设计 教学院部:电气与信息工程学院 专业班级:通信工程08101班 学生姓名:林洪湖(200816020143) 指导教师:邱德润 完成时间:2010 年6月25日 报告成绩:

目录 1.绪论 (3) 信号发生器现状 (3) 2.系统设计 (3) 控制芯片的选择 (4) 3.硬件电路的设计 (4) 3.1基本原理: (4) 3.2各部分电路原理 (8) 4.软件设计 (14) 4.1主程序流程图 (14) 4.2子程序流程图 (15) 5.测试结论 (18) 5.1软件仿真结果 (19) 5.2硬件测试结果 (21) 参考文献 (21)

多波形信号发生器设计 1.绪论 1.1信号发生器现状 波形发生器亦称函数发生器,作为实验用信号源,是现今各种电子电路实验设计应用中必不可少的仪器设备之一。目前,市场上常见的波形发生器多为纯硬件的搭接而成,且波形种类有限,多为锯齿、正弦、方波、三角等波形。 信号发生器作为一种常见的应用电子仪器设备,传统的可以完全由硬件电路搭接而成,如采用555振荡电路发生正弦波、三角波和方波的电路便是可取的路径之一,不用依靠单片机。但是这种电路存在波形质量差,控制难,可调范围小,电路复杂和体积大等缺点。在科学研究和生产实践中,如工业过程控制,生物医学,地震模拟机械振动等领域常常要用到低频信号源。而由硬件电路构成的低频信号其性能难以令人满意,而且由于低频信号源所需的RC很大;大电阻,大电容在制作上有困难,参数的精度亦难以保证;体积大,漏电,损耗显著更是其致命的弱点。一旦工作需求功能有增加,则电路复杂程度会大大增加。 本次用要用到的有函数发生器5G8038、集成振荡器E1648、集成定时器555/556. 2.系统设计 2.1系统方案 方案:采用函数信号发生器5G8038集成模拟芯片,它是一种可以同时产生方波、三角波、正弦波的专用集成电路。但是这种模块产生的波形都不是纯净的波形,会寄生一些高次谐波分量,采用其他的措施虽可滤除一些,但不能完全滤除掉。

信号发生器分析报告

信号发生器报告

————————————————————————————————作者:————————————————————————————————日期:

基于虚拟仪器的信号发生器的设计 【摘要】虚拟仪器是将仪器技术、计算机技术、总线技术和软件技术紧密的融合在一起,利用计算机强大的数字处理能力实现仪器的大部分功能,打破了传统仪器的框架,形成的一种新的仪器模式。 本次设计主要是阐述虚拟信号发生器的前面板和程序框图的设计。设计完的信号发生器的功能包括能够产生正弦波、矩形波、三角波、锯齿波四种信号波形;波形的频率、幅值、相位、偏移量及占空比等参数由前面板控件实时可调。 【关键词】虚拟仪器,信号发生器,LABVIEW 引言 信号发生器作为科学实验必不可少的装置,被广泛地应用到教学、科研等各个领域。高等学校特别是理工科的教学、科研需要大量的仪器设备,例如信号源、示波器等,常用仪器都必须配置多套,但是有些仪器设备价格昂贵,如果按照传统模式新建或者改造实验室投资巨大,造成许多学校仪器设备缺乏或过时陈旧,严重影响教学科研。如果运用虚拟仪器技术构建系统,代替常规仪器、仪表,不但可以满足实验教学的需要、节约大量的经费、降低实验室建设的成本,而且能够提高教学科研的质量与效率。 1.信号发生器的发展 信号发生器是一种悠久的测量仪器,早在20年代电子设备刚出现时它就产生了。随着通信和雷达技术的发展,40年代出现了主要用于测试各种接收机的标准信号发生器,使信号发生器从定性分析的测试仪器发展成定量分析的测量仪器。同时还出现了可用来测量脉冲电路或用作脉冲调制器的脉冲信号发生器。由于早期的信号发生器机械结构比较复杂,功率比较大,电路比较简单,因此发展速度比较慢。直到1964年才出现第一台全晶体管的信号发生器。 自60年代以来信号发生器有了迅速的发展,出现了函数发生器,这个时期的信号发生器多采用模拟电子技术,由分立元件或模拟集成电路构成,其电路结构复杂,且仅能产生正弦波、方波、锯齿波和三角波等几种简单波形,由于模拟电路的漂移较大,使其输出的波形的幅度稳定性差,而且模拟器件构成的电路存在着尺寸大、价格贵、功耗大等缺点,并且要产生较为复杂的信号波形则电路结构非常复杂。自从70年代微处理器出现以后,利用微处理器、模数转换器和数

信号发生器设计---实验报告

信号发生器设计 一、设计任务 设计一信号发生器,能产生方波、三角波和正弦波并进行仿真。 二、设计要求 基本性能指标:(1)频率范围100Hz~1kHz;(2)输出电压:方波U p-p≤24V,三角波U =6V,正弦波U p-p>1V。 p-p 扩展性能指标:频率范围分段设置10Hz~100Hz, 100Hz~1kHz,1kHz~10kHz;波形特性方波t r<30u s(1kHz,最大输出时)用仪器测量上升时间,三角波r△<2%,正弦波r <5%。(计算参数) ~ 三、设计方案 信号发生器设计方案有多种,图1是先产生方波、三角波,再将三角波转换为正弦波的组成框图。 图1 信号发生器组成框图 主要原理是:由迟滞比较器和积分器构成方波——三角波产生电路,三角波在经过差分放大器变换为正弦波。方波——三角波产生基本电路和差分放大器电路分别如图2和图4所示。 图2所示,是由滞回比较器和积分器首尾相接形成的正反馈闭环系统,则比较器A1输出的方波经积分器A2积分可得到三角波,三角波又触发比较器自动翻转形成方波,这样即可构成三角波、方波发生器。其工作原理如图3所示。

图2 方波和三角波产生电路 图3 比较器传输特性和波形 利用差分放大器的特点和传输特性,可以将频率较低的三角波变换为正弦波。(差模传输特性)其基本工作原理如图5所示。为了使输出波形更接近正弦波,设计时需注 应接近晶体意:差分放大器的传输特性曲线越对称、线性区越窄越好;三角波的幅值V m 管的截止电压值。 图4 三角波→正弦波变换电路

图5 三角波→正弦波变换关系 在图4中,RP 1调节三角波的幅度,RP 2调整电路的对称性,并联电阻R E2用来减小差分放大器的线性区。C 1、C 2、C 3为隔直电容,C 4为滤波电容,以滤除谐波分量,改善输出波形。取Ic2上面的电流(看输出) 波形发生器的性能指标: ①输出波形种类:基本波形为正弦波、方波和三角波。 ②频率范围:输出信号的频率范围一般分为若干波段,根据需要,可设置n 个波段范围。(n>3) ③输出电压:一般指输出波形的峰-峰值U p-p 。 ④波形特性:表征正弦波和三角波特性的参数是非线性失真系数r ~和r △;表征方波特性的参数是上升时间t r 。 四、电路仿真与分析 实验仿真电路图如图

信号发生器课程设计报告

目录 一、课题名称 (2) 二、内容摘要 (2) 三、设计目的 (2) 四、设计内容及要求 (2) 五、系统方案设计 (3) 六、电路设计及原理分析 (4) 七、电路仿真结果 (7) 八、硬件设计及焊接测试 (8) 九、故障的原因分析及解决方案 (11) 十、课程设计总结及心得体会 (12)

一、课题名称:函数信号发生器的设计 二、内容摘要: 函数信号发生器作为一种常用的信号源,是现代测试领域内应用最为广泛的通用仪器之一。在研制、生产、测试和维修各种电子元件、部件以及整机设备时,都要有信号源,由它产生不同频率不同波形的电压、电流信号并加到被测器件或设备上,用其他仪器观察、测量被测仪器的输出响应,以分析确定它们的性能参数。信号发生器是电子测量领域中最基本、应用最广泛的一类电子仪器。它可以产生多种波形信号,如正弦波,三角波,方波等,因而此次课程设计旨在运用模拟电子技术知识来制作一个能同时输出正弦波、方波、三角波的信号发生器。 三、设计目的: 1、进一步掌握模拟电子技术知识的理论知识,培养工程设计能力和综合分析能力、解决问题的能力。 2、基本掌握常用电子电路的一般设计方法,提高电子电路的设计和实验能力。 3、学会运用Multisim仿真软件对所做出来的理论设计进行仿真测试,并能进一步解决出现的基本问题,不断完善设计。 4、掌握常用元器件的识别和测试,熟悉万用表等常用仪表,了解电路调试的基本方法,提高实际电路的分析操作能力。 5、在仿真结果的基础上,实现实际电路。 四、设计内容及要求: 1、要求完成原理设计并通过Multisim软件仿真部分 (1)RC桥式正弦波产生电路,频率分别为300Hz、1KHz、10KHz、500KHz,输出幅值300mV~5V可调、负载1KΩ。 (2)占空比可调的矩形波电路,频率3KHz,占空比可调范围10%~90%,输出幅值3V、负载1KΩ。 (3)占空比可调的三角波电路,频率1KHz,占空比可调范围10%~90%,输出幅值3V、负载1KΩ。 (4)多用信号源产生电路,分别产生正弦波、方波、三角波,频率范围

正弦波函数信号发生器

电子技术课程设计报告 电子技术课程设计报告——正弦波函数信号发生器的设计 作品40% 报告 20% 答辩 20% 平时 20% 总分 100% 设计题目:班级:班级学号:学生姓名:

目录 一、预备知识 (1) 二、课程设计题目:正弦波函数信号发生器 (2) 三、课程设计目的及基本要求 (2) 四、设计内容提要及说明 (3) 4.1设计内容 (3) 4.2设计说明 (3) 五、原理图及原理 (8) 5.1功能模块电路原理图 (9) 5.2模块工作原理说明 (10) 六、课程设计中涉及的实验仪器和工具 (12) 七、课程设计心得体会 (12) 八、参考文献 (12)

一、预备知识 函数发生器是一种在科研和生产中经常用到的基本波形生产期,现在多功能的信号发生器已经被制作成专用的集成电路,在国内生产的8038单片函数波形发生器,可以产生高精度的正弦波、方波、矩形波、锯齿波等多种信号波,这中产品和国外的lcl8038功能相同。产品的各种信号频率可以通过调节外接电阻和电容的参数进行调节,快速而准确地实现函数信号发生器提供了极大的方便。发生器是可用于测试或检修各种电子仪器设备中的低频放大器的频率特性、增益、通频带,也可用作高频信号发生器的外调制信号源。顾名思义肯定可以产生函数信号源,如一定频率的正弦波,有的可以电压输出也有的可以功率输出。下面我们用简单的例子,来说明函数信号发生器原理。 (a) 信号发生器系统主要由下面几个部分组成:主振级、主振输出调节电位器、电压放大器、输出衰减器、功率放大器、阻抗变换器(输出变压器)和指示电压表。 (b) 工作模式:当输入端输入小信号正弦波时,该信号分两路传输,其一路径回路,完成整流倍压功能,提供工作电源;另一路径电容耦合,进入一个反相器的输入端,完成信号放大功能。该放大信号经后级的门电路处理,变换成方波后经输出。输出端为可调电阻。 (c) 工作流程:首先主振级产生低频正弦振荡信号,信号则需要经过电压放大器放大,放大的倍数必须达到电压输出幅度的要求,最后通过输出衰减器来直接输出信号器实际可以输出的电压,输出电压的大小则可以用主振输出调节电位器来进行具体的调节。 它一般由一片单片机进行管理,主要是为了实现下面的几种功能: (a) 控制函数发生器产生的频率; (b) 控制输出信号的波形; (c) 测量输出的频率或测量外部输入的频率并显示; (d) 测量输出信号的幅度并显示; (e) 控制输出单次脉冲。 查找其他资料知:在正弦波发生器中比较器与积分器组成正反馈闭环电路,方波、三角波同时输出。电位器与要事先调整到设定值,否则电路可能会不起振。只要接线正确,接通电源后便可输出方波、三角波。微调Rp1,使三角波的输出幅度满足设计要求,调节Rp2,则输出频率在对应波段内连续可变。 调整电位器及电阻,可以使传输特性曲线对称。调节电位器使三角波的输出幅度经R输出等于U值,这时输出波形应接近正弦波,调节电位器的大小可改善波形。 因为运放输出级由PNP型与NPN型两种晶体管组成复合互补对称电路,输

多功能信号发生器课程设计

《电子技术课程设计》 题目:多功能信号发生器 院系:电子信息工程 专业:xxxxxxxx 班级:xxxxxx 学号:xxxxxxxx 姓名:xxx 指导教师:xxx 时间:xxxx-xx-xx

电子电路设计 ——多功能信号发生器目录 一..课程设计的目的 二课程设计任务书(包括技术指标要求) 三时间进度安排(10周~15周) a.方案选择及电路工作原理; b.单元电路设计计算、电路图及软件仿真; c.安装、调试并解决遇到的问题; d.电路性能指标测试; e.写出课程设计报告书; 四、总体方案 五、电路设计 (1)8038原理, LM318原理, (2)性能\特点及引脚 (3)电路设计,要说明原理 (4)振动频率及参数计算 六电路调试 要详细说明(电源连接情况, 怎样通电\ 先调试后调试,频率调试幅度调试波行不稳调试 七收获和体会

一、课程设计的目的 通过对多功能信号发生器的电路设计,掌握信号发生器的设计方法和测试技术,了解了8038的工作原理和应用,其内部组成原理,设计并制作信号发生器能够提高自己的动手能力,积累一定的操作经验。在对电路焊接的途中,对一些问题的解决能够提高自己操作能力随着集成制造技术的不断发展,多功能信号发射器已经被制作成专用的集成电路。这种集成电路适用方便,调试简单,性能稳定,不仅能产生正弦波,还可以同时产生三角波和方波。它只需要外接很少的几个元件就能实现一个多种波、波形输出的信号发生器。不仅如此,它在工作时产生频率的温度漂移小于50×10-6/℃;正弦波输出失真度小于1%,输出频率范围为0.01Hz~300kHz;方波的输出电压幅度为零到外接电源电压。因此,多功能信号发生器制作的集成电路收到了广泛的应用。 二、课程设计任务书(包括技术指标要求) 任务:设计一个能产生正弦波、方波、三角波以及单脉冲信号发生器。 要求: 1.输出频率为f=20Hz~5kHz的连续可调正弦波、方波和三角波。 2.输出幅度为5V的单脉冲信号。 3.输出正弦波幅度V o= 0~5V可调,波形的非线性失真系数γ≤

基于51单片机的信号发生器设计报告

基于51单片机的信号发生器设计报告 二零一四年十二月十一日

摘要 根据题目要求以及结合实际情况,本文采用一种以AT89C51单片机为核心所构成的波形发生器,可产生方波、三角波、正弦波、锯齿波等多种波形,波形的频率可用程序改变,并可根据需要选择单极性输出或双极性输出,具有线路简单、结构紧凑、性能优越等特点。本设计经过测试,性能和各项指标基本满足题目要求。 关键词:信号发生器 DAC0832芯片 LM358运放 89C51芯片

目录 摘要...................................................................... 目录...................................................................... 第一章绪论................................................................. 1.1单片机概述........................................................... 1.2信号发生器的概述和分类.............................................. 1.3问题重述及要求....................................................... 第二章方案的设计与选择................................................... 2.1方案的比较........................................................... 2.2设计原理 ............................................................. 2.3设计思想 ............................................................. 2.4实际功能 ............................................................. 第三章硬件设计............................................................ 3.1硬件原理框图......................................................... 3.2主控电路 ............................................................. 3.3数、模转换电路....................................................... 3.4按键接口电路......................................................... 3.5时钟电路 ............................................................. 3.6显示电路 ............................................................. 第四章软件设计............................................................ 4.1程序流程图........................................................... 参考文献.................................................................... 附录1 电路原理图 .......................................................... 附录2 源程序............................................................... 附录3 器件清单......................................................

基于lm324多用信号发生器

电子线路课程设计注意事项 1、本课程设计采用抽签形式选择相应题目,一般为4人一组,简 单设计以2人为一组;每组推出一个组长。 2、每组必须完成电路原理图、PCB版图、元器件焊接以及装置通 电试验,以及答辩的PPT。 3、每组组内成员为同一成绩。组内分工要明确,合作要和谐。具 体成绩包括焊接质量(5%)、电路完成情况(60%)、课程设计报告撰写(20%)、答辩(15%)。指导教师有权力根据综合情况调整分数。 4、指导教师为程志友、鲍文霞,按照大家选课时名单填写。 5、具体课程设计报告见附录。 6、未尽事项等候通知,其它事宜可和我联系。

附录: 《电子线路》课程设计报告 基于lm324的多用信号发生题目 器 学院 专业 组长姓名和学 号 学生姓名和学 号 指导教师 2016 年7 月7 日

目录

一选题目的及意义 设计电路的介绍和应用 本次课程设计以四运算放大器LM324为核心器件,通过迟滞比较器和积分器产生方波和三角波。再通过滤波电路和放大电路产生正弦波。它是信号发生器的基本原理电路,通过波形变换电路,可把它做成多用信号发生器。可应用于电子技术工程、通信工程、自动控制、仪器仪表及计算机技术等领域内。几乎所有的电参量在电子测量技术应用中都需要借助信号发生器进行测量。 按其信号波形分为四大类:①正弦信号发生器。主要用于测量电路和系统的频率特性、非线性失真、增益及灵敏度等。按其不同性能和用途还可细分为低频(20赫至10兆赫)信号发生器、高频(100千赫至300兆赫)信号发生器、微波信号发生器、扫频和程控信号发生器、频率合成式信号发生器等。②函数(波形)信号发生器。能产生某些特定的周期性时间函数波形(正弦波、方波、三角波、锯齿波和脉冲波等)信号,频率范围可从几个微赫到几十兆赫。除供通信、仪表和自动控制系统测试用外,还广泛用于其他非电测量领域。③脉冲信号发生器。能产生宽度、幅度和重复频率可调的矩形脉冲的发生器,可用以测试线性系统的瞬态响应,或用作模拟信号来测试雷达、多路通信和其他脉冲数字系统的性能。④随机信号发生器。通常又分为噪声信号发生器和伪随机信号发生器两类。噪声信号发生器主要用途为:在待测系统中引入一个随机信号,以模拟实际工作条件中的噪声而测定系统性能;外加一个已知噪声信号与系统内部噪声比较以测

基于max038的信号发生器设计说明

一、课题名称:函数信号发生器 二、主要技术指标(或基本要求): 1)能精密地产生三角波、锯齿波、矩形波(含方波)、正弦波信号。 2)频率范围从0.1Hz~20MHz,最高可达40MHz,各种波形的输出幅度均为2V(P-P)。 3)占空比调节范围宽,占空比和频率均可单独调节,二者互不影响,占空比最大调节范围是 15%~85%。 4)波形失真小,正弦波失真度小于0.75%,占空比调节时非线性度低于2%。 5)采用±5V双电源供电,允许有5%变化范围,电源电流为80mA,典型功耗400mW,工作温 度范围为0~70℃。 6)内设2.5V电压基准,可利用该电压设定FADJ、DADJ的电压值,实现频率微调和占空比调 节。 7)低阻抗定压输出,输出电阻典型值0.1欧姆,具有输出过载/短路保护。 三、主要工作内容:方案设想,MAX038,OP07,电路原理等资料查询准备。电路原理图设 计绘制,面包板验证设计可行性。之后进行PCB板设计调整,电路板定制,元件采购;裸板 测试,焊接,整机测试。实验设计进行报告反馈 四、主要参考文献: [1]赵涛,辛灿华,姚西霞,陈晓娟,基于MAX038的多功能信号发生器的设计。《机电产品 与创新》 2008.07 [2]蒋金弟,朱永辉,毛培法。MAX038高频精密函数信号发生器原理及应用。《山西电子技 术》 2001 [3]黄庆彩,祖静,裴东兴.基于MAX038的函数信号发生器的设计[J].仪器仪表学报,2004,S1. [4]陈一新.单片高频函数发生器MAX038及其应用[J].中国仪器仪表,2002,04. [5]赵立民.电子技术实验教程[M].北京:机械工业出版社,2004

锯齿波信号发生器课程设计报告

锯齿波信号发生器的设计 技术指标要求: 频率f=500Hz ,V p-p =10V 。 该课题的内容: (一)原理结构说明 一、滞回比较器 在单限比较器中,输入电压在阈值电压附近的任何微小变化,R 都将引起输出电压的跃变,不管这种微小变化是来源于输入信号还是外部干扰。因此,虽然单限比较器很灵敏,但是抗干扰能力差。滞回比较器具有滞回特性,即具有惯性,因此也就具有一定抗干扰能力。从反相输入端输入的滞回比较器电路如图(a)所示,滞回比较器电路中引入了正反馈。 (b)电压传输特性 从集成运放输出端的限幅电路可以看出,uo =±U Z 。集成运放反相输入端电位u N =u I ,同相输入端电位 根据“虚短”u N =u P ,求出的u I 就是阈值电压,因此得出 U Z U Z R 1+R 2 u P = R 1 U Z ±U T = ± R 1

当u I<-U T,u N+U T,uo=-U Z。 当u I>+U T,u N>u P,因而uo=-U Z,所以u P=-U T。u I<-U T,uo=+U Z。 可见,uo从+U Z跃变为-U Z和uo从-U Z跃变为+U Z的阈值电压是不同的,电压传输特性如图(b)所示。 在我们所设计的锯齿波发生器中,滞回比较器由运放U1和电阻 Rb,R1,R4所组成。 通过由稳压管D1,D2和限流电阻R3构成的输出限幅电路,从而输出方波波 形。 其中调节电阻Rb,R1可改变锯齿波的幅值和一定范围的频率。调节滞回 比较器的稳幅输出D1,D2值,可调整方波输出幅值,可改变积分时间,从 而在一定范围内改变锯齿波的频率。 二、积分电路 如图所示的积分运算电路中,由于集成运放的同相输入端通过R’接 地,u N=u P=0,为“虚地”。 电路中电容C的电流等于流过电 阻R的电流 输出电压与电容上电压的关系为 u o=-u c 而电容上电压等于其电流的积分,故

相关主题
文本预览
相关文档 最新文档