当前位置:文档之家› 激光切割基础知识

激光切割基础知识

激光切割基础知识
激光切割基础知识

激光切割加工基础知识

第一部分 激光切割的原理和功能

一、激光切割的原理

激光切割是由电子放电作为供给能源,通过 He 、N 2、CO 2 等混合气体为激发媒介,利用反射镜组聚焦产生激光光束,从而对材料进行切割。

激光切割的过程:在数控程序的激发和驱动下,激光发生器内产生出特定模式和类型的激光,经过光路系统传送到切割头,并聚焦于工件表面,将金属熔化;同时, 喷嘴从与光束平行的方向喷出辅助气体将熔渣吹走;在由程控的伺服电机驱动下,切割头按照预定路线运动,从而切割出各种形状的工件。

图1:激光切割示意图

二、机床结构

SLCF-X15×40F 数控激光切割机是意大利普瑞玛(PRIMA )工业公司的主导机型——悬臂式飞行光路结构的激光切割机,加工板材尺寸为1500×4000毫米,配有交换工作台。

(一) 该机型的主要特点如下:

● 悬臂式开式结构,可从三个方向上下料,人机接近性极好,可放置超长超宽的

板材。

● 可移动式切割工作台与主机分离,柔性大。可加装焊接、切管等功能。

● 精密传动部件不在切割区域内,防护容易,也不会由于工作台及床身切割热变

形影响机床的精度。

● 从根本上消除了电器双边同步锁产生的误差,避免了横梁的扭动,使得光路稳

定,切割精度提高。

● 配有高速的Z 轴系统,同时可通过数控系统控制辅助气体的压力、流量等,大

大提高了加工效率。

● 新型的PM —400V2.0智能化编程软件,具有蛙跳、共边切割、优化套排料、高

效穿孔、尖角处理等功能。

● 具有先进的多腔分室除尘系统,比单纯的抽风系统除尘效果更高。

1—激光器;2—激光束;3—全反射棱镜;4—聚焦物镜;5—工件;6—工作台

(二)机床的结构主要由以下几部分组成:

1、床身

全部光路安置在机床的床身上,床身上装有横梁、切割头支架和切割头工具,通过特殊的设计,消除在加工期间由于轴的加速带来的振动。机床底部分成几个排气腔室,当切割头位于某个排气室上部时,阀门打开,废气被排出。通过支架隔架,小工件和料渣落在废物箱内。

2、工作台

移动式切割工作台与主机分离,柔性大,可加装焊接、切管等功能。配有两张1.5米×4米的工作台可供交换使用,当一个工作台在进行切割加工的同时,另一张工作台可以同时进行上下料操作,有效提高工作效率。两个工作台可通过编程或按钮自动交换。

工作台下方配有小车收集装置,切割的小料及金属粉末会集中收集在小车中。

3、切割头

是光路的最后器件,其内置的透镜将激光光束聚焦,标准切割头焦距有 5 英寸和 7.5 英寸(主要用于割厚板)两种。良好的切割质量与喷嘴和工件的间距有关,本机切割头使用德国PRECITEC公司生产的非接触式电容传感头,在切割过程中可实现自动跟踪与修正工件表面与喷嘴的间距,调整激光焦距与板材的相对位置,以消除因被切割板材的不平整对切割材料造成的影响。自动找准材料的摆放位置(红光指示器)。

4、控制系统

控制系统包括数控系统(集成可编程序控制器PLC)、电控柜及操作台。PMC-1200数控系统由32位CPU控制单元、数字伺服单元、数字伺服电机、电缆等组成,采用全中文才做界面,10.4"彩色液晶显示器,能实现机外编程计算机与机床的控制系统进行数据传输通讯(具有232接口),具有加速、突变限制;具有图形显示功能,可对激光器的各种状态进行在线和动态控制功能。

5、激光控制柜

控制和检查激光器的功能,并显示系统的压力、功率、放电电流和激光器的运行模式。

6、激光器

采用原装进口德国ROFIN公司SLAB3000W型激光发生器,是目前世界先进的RF 激励板式放电的二氧化碳激光器。其心脏是谐振腔, 激光束就在这里产生,激光气体是由二氧化碳﹑氮气﹑氦气的混合气体,通过涡轮机使气体沿谐振腔的轴向高速运动,气体在前后两个热交换器中冷却,以利于高压单元将能量传给气体。

7、冷却设备

冷却激光器、激光气体和光路系统。

8、除尘装置

内置管道及风机,改善了工作环境。切割区域内装有大通径除尘管道及大全压的离心式除尘风机,加之全封闭的机床床身及分段除尘装置,具有较好的除尘效果。

9、供气系统

包括气源、过滤装置和管路。气源含瓶装气和压缩空气(空气压缩机、冷干机)。

(三)设备的技术参数

(四)ROFIN 3000W CO2激光发生器技术参数

三、切割方法

不同的材料,切割方法不一样,主要分为熔化切割、氧化切割、气化切割、导向断裂切割等。

1、熔化切割

在激光熔化切割中,工件材料在激光束的照射下局部熔化,熔化的液态材料被气体吹走,形成切缝,切割仅在液态下进行,故称为熔化切割。切割时在与激光同轴的方向供给高纯度的不活泼气体,辅助气体仅将熔化金属吹出切缝,不与金属反应。这种切割方法的激光功率密度在107W/cm2左右。

●激光光束配上高纯惰性切割气体促使熔化的材料离开割缝,而气体本身不参

于切割。

●最大切割速度随着激光功率的增加而增加,随着板材厚度的增加和材料熔化

温度的增加而几乎反比例地减小。在激光功率一定的情况下,限制因数就是割缝处的气压和材料的热传导率。

2、氧化切割

与熔化切割不同,激光氧化切割使用活泼的氧气作为辅助气体。由于氧与已经炽热了的金属材料发生化学反应,释放出大量的热,结果是材料进一步被加热。

●材料表面在激光束照射下很快被加热到燃点温度,与氧气发生激烈的燃烧反

应,放出大量热量,在此热量作用下,材料内部形成充满蒸汽的小孔,而小孔周围被熔化的加工材料所包围。

●燃烧物质转移成熔渣,控制氧和加工材料的燃烧速度,氧气流速越高,燃烧

化学反应和去除熔渣的速度也越快。但是,如果氧气速度过快,将导致割缝出口处的反应产物即金属氧化物的快速冷却,对切割质量造成不利影响。

●切割过程存在两个热源:激光束照射能和化学反应所产生的热能。据估计,

切割碳钢时,氧化反应所产生的热能占切割所需能量的60%。

●在氧化切割过程中,如果氧化燃烧的速度高于激光束移动的速度,割缝将变

宽且粗糙,反之,如果移动速度慢,则割缝窄而光滑。

3、气化切割

激光束焦点处功率密度非常高,可达106W/cm2以上,激光光能转换成热能,保持在极小的范围内,材料很快被加热至气化温度,部分材料气化为蒸汽逸去,部分材料被辅助气体吹走,随着激光束与材料之间的连续不断的相对运动,便形成宽度很窄(如0.2mm)的割缝。这种切割方法的功率密度在108W/cm2左右。一些不能熔化的材料如木材、碳素材料和某些塑料即通过这种方法进行切割。

●激光氧化切割在加工精密模型和尖角时是不好的(有烧掉尖角的危险)。可以

使用脉冲模式的激光来限制热影响。

●所用的激光功率决定切割速度。在激光功率一定的情况下,限制因数就是氧

气的供应和材料的热传导率。

4、导向断裂切割

对于容易受热破坏的脆性材料,通过激光束加热进行高速、可控的切断,称为导向断裂切割。这种切割过程主要内容是:激光束加热脆性材料小块区域,引起该区域大的热梯度和严重的机械变形,导致材料形成裂缝。只要保持均衡的加热梯度,激光束可引导裂缝在任何需要的方向产生。

选择切割方法,需考虑它们的特点和板件的材料,有时也要考虑切割的形状。由于气化相对熔化需要更多的热量,因此激光熔化切割的速度比激光气化切割的速度快,激光氧化切割则借助氧气与金属的反应热使速度更快;同时,氧化切割的切缝宽,粗糙度高,热影响区大因此切缝质量相对较差,而熔化切割割缝平整,表面质量高,气化切割因没有熔滴飞溅,切割质量最好。另外,熔化切割和气化切割可获得无氧化切缝,对于有特殊要求的切割有重要意义。

一般的材料可用氧化切割完成,如果要求表面无氧化,则须选择熔化切割,气化切割一般用于对尺寸精度和表面光洁度要求很高的情况,故其速度也最低。另外,切割的形状也影响切割方法,在加工精细的工件和尖锐的角时,氧化切割可能是危险的,因为过热会使细小部位烧损。

四、运行模式

激光器经常运行在连续输出模式,为了得到最佳的切割质量,对于给定的材料,有必要调整进给速率,例如拐弯时的加速,减速和延时。因此,在连续输出模式下,降低功率是不够的,必须通过变化脉冲来调整激光功率。

表4:各种不同的激光运行模式、应用范围和举例.

在连续模式下,激光输出的功率是恒定的,这使得进入板料的热量比较均匀,它适合于一般情况下较快速的切割,一方面可以提高工作效率,另一方面也是避免热量集中导致热影响区组织恶变的需要。

调制模式的激光功率是切割速度的函数,它可以通过限制在各点处的功率使进入板料的热量保持在相当的低水平,从而防止切缝边缘的烧伤。由于它的控制比较复杂,因此效率不是很高,只在短时段内使用。

脉冲模式虽可细分为三种情况,实质上只是强度的差别,往往根据材料的特性和结构的精度来选择。

五、激光切割的特点

1、激光切割的切缝窄,工件变形小

激光束聚焦成很小的光点,使焦点处达到很高的功率密度。这时光束输入的热量远远超过被材料反射、传导或扩散的部分,材料很快加热至汽化程度,蒸发形成孔洞。随着光束与材料相对线性移动,使孔洞连续形成宽度很窄的切缝。切边受热影响很小,基本没有工件变形。

切割过程中还添加与被切材料相适合的辅助汽体。碳钢切割时利用氧作为辅助汽体与熔融金属产生放热化学反应氧化材料,同时帮助吹走割缝内的熔渣。切割聚丙烯一类塑料使用压缩空气,棉、纸等易燃材料切割使用惰性汽体。进入喷嘴的辅助汽体还能冷却聚焦透镜,防止烟尘进入透镜座内污染镜片并导致镜片过热。

大多数有机与无机材料都可以用激光切割。在工业制造系统占有份量很重的金属加工业,许多金属材料,不管它是什么样的硬度,都可以进行无变形切割。

当然,对高反射率材料,如金、银、铜和铝合金,它们也是好的传热导体,因此激光切割很困难,甚至不能切割。

激光切割无毛刺、皱折、精度高,优于等离子切割。对许多机电制造行业来说,由于微机程序控制的现代激光切割系统能方便切割不同形状与尺寸的工件,它往往比冲切、模压工艺更被优先选用;尽管它加工速度还慢于模冲,但它没有模具消耗,无须修理模具,还节约更换模具时间,从而节省了加工费用,降低了生产成本,所以从总体上考虑是更合算的。

2、激光切割是一种高能量、密度可控性好的无接触加工

激光束聚焦后形成具有极强能量的很小作用点,把它应用于切割有许多特点。首先,激光光能转换成惊人的热能保持在极小的区域内,可提供:(1)狭窄的直边割缝;(2)最小的邻近切边的热影响区;(3)极小的局部变形。

其次,激光束对工件不施加任何力,它是无接触切割工具,这就意味着:(1)工件无机械变形;(2)无刀具磨损,也谈不上刀具的转换问题;(3)切割材料无须考虑它的硬度,也即激光切割能力不受被切材料的硬度影响,任何硬度的材料都可以切割。

再次,激光束可控性强,并有高的适应性和柔性,因而:(1)与自动化设备相结合很方便,容易实现切割过程自动化;(2)由于不存在对切割工件的限制,激光束具有无限的仿形切割能力;(3)与计算机结合,可整张板排料,节省材料。

3、激光切割具有广泛的适应性和灵活性

与其它常规加工方法相比,激光切割具有更大的适应性。与其他热切割方法相比,同样作为热切割过程,别的方法不能象激光束那样作用于一个极小的区域,结果导致切口宽、热影响区大和明显的工件变形。激光能切割非金属,而其它热切割方法则不能。

六、气体参数的控制

在实际的激光切割过程中,还要有辅助气体的参与。辅助气体不但可以将熔渣及时吹走,还起到冷却工件和清洁透镜的作用,选用不同的辅助气体,更能够改变切割的速度及割缝表面质量,对特殊金属的切割具有重大意义。

影响气体的参数包括气体类型、气体压力和喷嘴直径。

(1)辅助气体类型

辅助气体类型有氧气、空气、氮气和氩气。氧气适合于厚板切割、高速切割和极薄板切割;空气适合于铝板、非金属及镀锌钢板的切割,在一定程度上它可以减少氧化膜且节省成本;氮气作为切割时的保护气体可防氧化膜发生,防止燃烧(在板料较厚时容易发生);氩气用于钛金属切割。

(2)气体压力

气体压力分高压和低压两种,根据激光机的技术参数,高压最大为20兆帕,

低压最大为 5 兆帕。选择压力的依据有板料厚度、切割速度、熔化金属的粘度和激光功率。当料厚较大,切速较快,金属液体的粘度较高时,可选用高一些的压力;相反,对于薄料、慢速切割或液态粘度小的金属,则可选择适当的低压。功率较大时适当增加气体压力对冷却周围材料是有益的,它适用于有特殊要求的场合。不管选用怎样的压力,其原则都是在保证吹渣效果的前提下尽可能经济。

(3)喷嘴直径

喷嘴直径的选取与气体压力的选择原则上是一样的,但它还与切割方法有关。对于以氧气作为辅助气体的切割,由于金属的燃烧,割缝较宽,要想迅速有效地吹走熔渣,得选用大直径的喷嘴才行,对于采用脉冲切割的场合,割缝较小,不宜选用太大的喷嘴。有时喷嘴大小的选择会与压力选择相矛盾,在不能两全的情况下,通过调节喷嘴与切缝的距离也能起到一定的作用。

常用的喷嘴直径是1.5和2.0的。

七、材料特性与激光加工的关系

工件切割的结果可能是切缝干净,也可能相反,切缝底部挂渣或切缝上带有烧痕,其中很大的一部分是由材料引起的。影响切割质量的因素有:合金成分、材料显微结构、表面质量、表面处理、反射率、热导率、熔点及沸点。

通常合金成分影响材料的强度﹑可焊性﹑高氧化性和耐腐蚀性,所以含碳量越高越难切割;晶粒细小切缝品质好;如果材料表面有锈蚀,或有氧化层,熔化时因氧化层与金属的性质不同,使表面产生难熔的氧化物,也增加了熔渣,切缝会呈不规则状;表面粗造减少了反光度,提高热效率,经喷丸处理后切割质量要好许多。导热率低则热量集中,效率高。

因此,越是晶粒细小、表面粗糙、无锈蚀、导热率低的材料越容易加工,而含碳量高、表面有镀层或涂漆、反光率高的材料较难切割。含碳量高的金属多属于熔点比较高的金属,由于难以熔化,增加了切穿的时间。一方面,它使得割缝加宽,表面热影响区扩大,造成切割质量的不稳定;另一方面,合金成分含量高,使液态金属的粘度增加,使飞溅和挂渣的比率提高,加工时对激光功率、气吹压力的调节都提出了更高的要求。镀层和涂漆加强的光的反射,使熔融因难;同时,也增加了熔渣的产生。

八、激光切割应注意的问题

前面分析了激光切割最主要的几个技术参数,它们决定了切割工艺的主要方面,但并不是只要把握了这就一定能加工出高质量的产品,还有几个问题是特别需要引起注意的:

1、切速的选择

激光切割的速度最大可达200—300mm/s,实际加工时往往只有最大速的 1/3 —1/2,因为速度越高,伺服机构的动态精度就越低,直接影响切割质量。有实

验表明,切割圆孔时,切速越高,孔径越小,加工的孔圆度就越差。只有在长边直线切割时才可以使用最大速切割以提高效率。

2、切割的引线和尾线

在切割操作中,为了使割缝衔接良好,防止始端和终点烧伤,常常在切割开始和结束处各引一段过渡线,分别称作引线和尾线。引线和尾线对工件本身是没有用的, 因此要安排在工件范围之外,同时注意不能将引线设置在尖角等不易散热处。引线与割缝的连接尽量采用圆弧过渡,使机器运动平稳并避免转角停顿造成烧伤。

3、尖角的加工

用走圆弧加工出钝角

如有可能,避免加工没有圆弧的角。带圆弧的角有下列好处:a)轴运动的动态性能好;b)热影响区小;c)产生的毛刺少。对于不带圆角的边角,可以设定的最大半径是切缝宽度的一半。此时切割出来的边角是没有圆角的。

图2:走圆弧法加工钝角

用圆孔成角法在薄板上切割尖角

当在薄板上高速切割时,建议使用圆孔成角法切割尖角,它有下列好处:a)切割尖角时,轴向变化均匀;b)切角时,切速恒定;c)防止了轴振动,避免毛刺生成;d)尖角处的热影响区小。

图3:圆孔成角法加工锐角

用延时法在厚板上切割尖角

切割厚板时,如果还使用圆孔成角法,尖角周围会过热,此时应采用参数:“Critical angle ,dwell time”来切割尖角,机器运动到尖角处,停顿特定的时间,然后继续转向运动。

九、激光所用气体

激光所用气体包括激光器工作和保护气体以及切割辅助气体。

激光器工作气体用于产生激光,保护气体用于保护光学器件、驱动光闸。激光器工作气体由氦气、氮气、二氧化碳气体按照一定比例混合,这个比例在工厂

预定好,确保最佳性能,不要随便调整,比例不当,可能会造成激光系统的失效和高压电源的损害。激光器所用气体均为高纯度,均在 99.999%以上.

切割辅助气体主要是 N2或 O2,有的材料切割可以使用压缩空气作为切割辅助气体。N2切割的切割面比较光亮;O2切割的切割面由于材料被氧化而发黑。切割辅助气体的纯度越高,切割面的质量越好。

第二部分激光切割工艺切割工艺与下述因素关系紧密:

激光模式

激光功率

焦点位置

喷嘴高度

喷嘴直径

辅助气体

辅助气体纯度

辅助气体流量

辅助气体压力

切割速度

板材材质

板材表面质量(如生锈、异物等)

与切割相关的各工艺参数如下图所示。

图4:切割工艺参数

一、激光模式

激光器的模式对切割影响很大,切割时要求到达钢板表面的模式较好。这与激光器本身的模式和外光路镜片的质量有直接的关系。

激光束横截面上光强的分布情况称为激光横模。一般笼统地把横模当作激光模式。用符号TEMmn表示各种横向模式。TEM表示横向电磁波,m、n均为正整数,分别表示在x轴和y轴方向上光强为零的那些点的序数,称为模式序数。下图示出了几种不同的激光束横模的光斑。TEM00模又称基模,其光斑中任何一点光强都不为零。若光斑在x方向上有一点光强为零,称为TEM10模;在y方向上有一点光强为零,称为TEM01模。以此类推,模式序数m和n越大,光斑中光强为零的点的数目越多。有不同横向模式的激光束称为多模。

图5:模式光斑

上图中,TEM00模,称为基模。TEM*01模,是单环模,也叫准基模。为了与TEM01区分,特地加上星号*。TEM01模与TEM10模其实可视为相同的模式,因为X、Y 轴原本就是人为划分的。下面示出的是几种模式的立体图。

图6:TEM00模式立体图

图7:TEM20模式立体图图8:TEM23模式立体图

图9:多模

二、焦点位置

焦点位置是一个关键参数,应正确调节焦点位置。

1. 焦点位置与切割面的关系

焦点位置示意图特征

零焦距

焦点在工件

表面切幅

喷嘴

适用于5毫米以下薄碳钢等。

(切断面)

焦点在工件上表面,所以,切割光滑,下

表面则不光滑。

2. 焦点位置对切割断面的影响

3. 焦点寻找

焦点确定的方法和步骤:

1)取下喷嘴,Z轴下降,距板面2~3mm。

2)执行寻找焦点子程序1991。

(CALL 1991)

速率倍率设为100%。

3)移动Y轴到划痕最细处。

4)计算焦点位置Z f

焦点位置为Z f=Z+Y×0.5

其中:Z——当前Z轴坐标;Y——当前Y轴坐标。5)装上喷嘴,将焦点微调调至刻度5。

6)手动切换到随动。

7)调节焦点,使Z轴坐标达到Z f的值,锁紧切割头。

此时焦点位于板面。

三、喷嘴

喷嘴形状、喷嘴孔径、喷嘴高度(喷嘴出口与工件表面之间的距离)等,均会影响切割的效果。

图10:喷嘴

1. 喷嘴的作用

(1)防止熔渍等杂物往上反弹,穿过喷嘴,污染聚焦镜片。

(2)控制气体扩散面积及大小,从而控制切割质量。

图11:没有喷嘴时,气体喷出的情况

图12:有喷嘴时,气体喷出的情况

2. 喷嘴与切割品质的关系

喷嘴出口孔中心与激光束的同轴度是影响切割质量优劣的重要因素之一,工件越厚,影响越大。

当喷嘴发生变形或有熔渍时,将直接影响同轴度。

故喷嘴应小心保存,避免碰伤以免造成变形。喷嘴形状和尺寸的制造精度高,安装时应注意方法正确。

如果由于喷嘴的状况不良,从而需要要改变切割时的各项条件,那就不如更换新的喷嘴。

如果喷嘴与激光不同轴,将对切割质量产生如下影响。

a.对切割断面的影响

如图所示,当辅助气体从喷嘴吹出时,气量不均匀,出现一边有熔渍,另一边没有的现象。对切割3mm以下薄板时,它的影响较小,切割3mm以上时,影响较严重,有时无法切透。

图13:同轴度对切割断面的影响

b.对尖角的影响

工件有尖角或角度较小时,容易产生过熔现象,厚板则可能无法切割。

c.对穿孔的影响

穿孔不稳定,时间不易控制,对厚板会造成过熔,且穿透条件不易掌握。对薄板影响较小。

3. 喷嘴孔与激光束同轴度的调整

喷嘴孔与激光束的同轴度的调整步骤如下:

(1)在喷嘴的出口端面涂抹印泥(一般以红色为好),将不干胶带贴在喷嘴出口端面上。如图所示。

图14:调整同轴步骤1

(2)用10~20瓦的功率,手动打孔。

(3)取下不干胶纸,注意保持其方向,以便与喷嘴相比照。

(4)正常情况下,不干胶纸上会留下一个黑点,是被激光烧损的。但如果喷嘴中心偏离激光束中心过大时,将无法看到这个黑点(激光束射到了喷嘴的壁上)。

图15:喷嘴偏离太大

(5)如果打出的中心点时大时小,请注意条件是否一致,聚焦镜是否松动。

图16:聚焦镜松动

(6)注意观察黑点偏离喷嘴中心的方向,调整喷嘴位置。

图17:调整喷嘴位置,与激光束同轴

4. 喷嘴孔径

孔径大小对切割质量和穿孔质量有关键性的影响。

如果喷嘴孔径过大,切割时四处飞溅的熔化物,可能穿过喷嘴孔,从而溅污镜片。孔径越大,几率越高,对聚焦镜保护就越差,镜片寿命也就越差。

?喷嘴孔径的比较

喷嘴孔径气体流速(量)熔融物去除能力

小快大

大慢小

?喷嘴φ1、φ1.5的差异

喷嘴直径薄板(3mm以下)

厚板(3mm以上)

切割功率较高,散热时间较长,切割时间亦较长

φ1 切割面较细气体扩散面积小,不太稳定,基本可用

φ1.5 切割面会较粗,转角地方易有溶渍气体扩散面积大,气体流速较慢,切割时较稳定

5. 喷嘴高度的调整

喷嘴高度即喷嘴出口与工件表面之间的距离。此高度设定范围在0.5mm~4.0mm 之间,而切割时一般我们会设定在0.7mm~1.2mm,过低会导致喷嘴易碰撞到工件表面,过高会降低辅助气体的浓度和压力,造成切割质量下降。打孔时此高度要比切割

高度略高,高度设定在3.5mm~4mm,这样有效防止打孔时所产生的飞溅物污染聚焦镜。

图18:喷嘴高度

图19:电容传感器控制盒

调节EG495调节盒上带刻度电位器,其刻度基本上代表喷嘴与板面之间的距离(0.5到10mm)。比如,刻度为1.5,喷嘴与板面之间的距离为1.6mm左右。

随动传感器

随动传感器的调整,务必按照要领进行。

四、切割速度

切割速度直接影响切口宽度和切口表面粗糙度。不同材料的板厚,不同的切割气体压力,切割速度有一个最佳值,这个最佳值约为最大切割速度的80%。

1. 速度过快

如果切割速度过快,可能造成以下后果。

1) 可能无法切透,火花乱喷。

2) 有些区域可以切透,但有些区域无法切透。

3) 整个断面较粗,但不产生溶渍。

4) 切割断面呈斜条纹路,且下半部产生溶渍。

图20:速度过快

2. 速度太慢

1)造成过熔,切断面较粗糙。

2)切缝变宽,尖角部位整个溶化。

3)影响切割效率。

3. 确定适当的切割速度

从切割火花判断进给速度可否增快或减慢

1)火花由上往下扩散

图21:切割速度正常

激光切割机技术参数...

FIBERBLADE Cutting System 光纤激光切割机 一、Messer激光切割系统介绍 1、机器原理 梅塞尔公司在工业用激光切割机的开发和制造领域已有近40年的经验. 其激光技术得到 了世界范围的认可, 并在许多不同领域得到应用. 划时代的技术发展, 如专利激光切割头, 表明了梅塞尔公司的技术能力. 在此领域为激光加工建立的新标准将为客户带来巨大的利益. 产品系列包括: 2维激光切割系统 3维激光切割系统

激光焊接系统 自动化设备 装料及卸料系统 通过与世界领先的激光器厂商的常年合作, 保证机器与激光的最佳组合. 其大激光功率及用户友好式的CNC数控系统适应高速切割及广泛的生产制造领域. Fiberblade具备良好的动态性能, 在宽广范围内可实现切割与零件重量无关的高精度无挂渣的成品零件. 机器配合编程软件及相应自动套料程序, 可实现快速高效的零件编程, 扩展机器应用. 应用激光束作为工具, 切割速度快, 成品部件割缝窄, 精度高. 可无困难地实现复杂轮廓的切割. 切口边缘光洁、无毛刺, 绝大多数场合下无需后续处理. Fiberblade主要应用领域为金属加工, 特别是碳钢、不锈钢和铝材. 该系统既可应用氧气切割, 也可采用保护气体实现高压切割. 经测试其可切割性后, 该系统可切割金属合金、塑料以及非金属材料机器设计理念除了实现最佳切割结果外, 同样关注环境保护问题. 采用抽烟除尘装置可满足最严格的排放标准. 机器可满足现有安全规程, 满足相关CE标准. 2、功能描述

Fiberblade激光切割机,是一个集最新动力工程,电脑数控和光纤激光器技术的全新技术 发展水平的设计它是市面上最先进的紧凑型中规格工业级光纤激光切割系统;无需激光器 维护的低维修费系统,高效率、低功耗。 机器工作台采用交换式工作台系统,减少上料时间. 该系统交替使用两块台面. 切割一块台面上的板材, 同时另一块台面位于工作区域外. 操作员可取下成品部件并换上新板, 机器同时进行切割. 另一台面上的工件完成后, 由工作区域换出, 新板就位. 板材置于工作台支架上并确定位置后, 切割头随垂直定位轴下降. 传感控制器保证切割头维持正确定位, 可避免板材变形引起的问题. 激光束通过光纤传输到切割头上, 然后由透镜聚焦. 切割头沿工件轮廓移动, 但不与工件接触, 激光束和切割气体通过割嘴聚集到工件上. 横向运动通过溜板滑动定位实现. 纵向运动由车架自行移动实现. 两套同步驱动伺服电机确保设备的高精度, 轴向运动的高加速度, 可变激光功率控制, 可切割如窄条, 尖角等的复杂图形部件. 通过CNC数控系统可自动设定切割参数如气体种类, 气体压力, 激光参数. CNC数控系统内的切割数据及图形数据的分离, 可实现快速变化的工作要求, 并增加机器功能的灵活性, 适用范围更广. 由随动式直接抽风系统, 把切割过程中产生的尘粒抽出, 并经过烟尘过滤后, 达到安全及环境规范的排放要求. 二、标准配置介绍 1、机器构造

激光切割机工艺手册

第一章激光切割方法 1.1 激光熔化切割 在激光熔化切割中,工件被局部熔化后借助气流把熔化的材料喷射出去。因为材料的转移只发生在其液态情况下,所以该过程被称作激光熔化切割。 激光光束配上高纯惰性切割气体促使熔化的材料离开割缝,而气体本身不参于切割。 ——激光熔化切割可以得到比气化切割更高的切割速度。气化所需的能量通常高于把材料熔化所需的能量。在激光熔化切割中,激光光束只被部分吸收。 ——最大切割速度随着激光功率的增加而增加,随着板材厚度的增加和材料熔化温度的增加而几乎反比例地减小。在激光功率一定的情况下,限制因数就是割缝处的气压和材料的热传导率。 ——激光熔化切割对于铁制材料和钛金属可以得到无氧化切口。 ——产生熔化但不到气化的激光功率密度,对于钢材料来说,在104W/cm2~105 W/cm2之间。 1.2 激光火焰切割 激光火焰切割与激光熔化切割的不同之处在于使用氧气作为切割气体。借助于氧气和加热后的金属之间的相互作用,产生化学反应使材料进一步加热。由于此效应,对于相同厚度的结构钢,采用该方法可得到的切割速率比熔化切割要高。 另一方面,该方法和熔化切割相比可能切口质量更差。实际上它会生成更宽的割缝、明显的粗糙度、增加的热影响区和更差的边缘质量。 ——激光火焰切割在加工精密模型和尖角时是不好的(有烧掉尖角的危险)。可以使用脉冲模式的激光来限制热影响。 ——所用的激光功率决定切割速度。在激光功率一定的情况下,限制因数就是氧气的供应和材料的热传导率。 1.3 激光气化切割 在激光气化切割过程中,材料在割缝处发生气化,此情况下需要非常高的激光功率。 为了防止材料蒸气冷凝到割缝壁上,材料的厚度一定不要大大超过激光光束的直径。该加工因而只适合于应用在必须避免有熔化材料排除的情况下。该加工实际上只用于铁基合金很小的使用领域。 该加工不能用于,象木材和某些陶瓷等,那些没有熔化状态因而不太可能让材料蒸气再凝结的材料。另外,这些材料通常要达到更厚的切口。

激光切割机工艺手册

第一章 激光切割方法 1.1 激光熔化切割 在激光熔化切割中,工件被局部熔化后借助气流把熔化的材料喷射出去。因为材料的转移只发生在其液态情况下,所以该过程被称作激光熔化切割。 激光光束配上高纯惰性切割气体促使熔化的材料离开割缝,而气体本身不参于切割。 ——激光熔化切割可以得到比气化切割更高的切割速度。气化所需的能量通常高于把材料熔化所需的能量。在激光熔化切割中,激光光束只被部分吸收。 ——最大切割速度随着激光功率的增加而增加,随着板材厚度的增加和材料熔化温度的增加而几乎反比例地减小。在激光功率一定的情况下,限制因数就是割缝处的气压和材料的热传导率。 ——激光熔化切割对于铁制材料和钛金属可以得到无氧化切口。 ——产生熔化但不到气化的激光功率密度,对于钢材料来说,在104W/cm2~105 W/cm2之间。 1.2 激光火焰切割 激光火焰切割与激光熔化切割的不同之处在于使用氧气作为切割气体。借助于氧气和加热后的金属之间的相互作用,产生化学反应使材料进一步加热。由于此效应,对于相同厚度的结构钢,采用该方法可得到的切割速率比熔化切割要高。 另一方面,该方法和熔化切割相比可能切口质量更差。实际上它会生成更宽的割缝、明显的粗糙度、增加的热影响区和更差的边缘质量。 ——激光火焰切割在加工精密模型和尖角时是不好的(有烧掉尖角的危险)。可以使用脉冲模式的激光来限制热影响。 ——所用的激光功率决定切割速度。在激光功率一定的情况下,限制因数就是氧气的供应和材料的热传导率。 1.3 激光气化切割 在激光气化切割过程中,材料在割缝处发生气化,此情况下需要非常高的激光功率。 为了防止材料蒸气冷凝到割缝壁上,材料的厚度一定不要大大超过激光光束的直径。该加工因而只适合于应用在必须避免有熔化材料排除的情况下。该加工实际上只用于铁基合金很小的使用领域。 该加工不能用于,象木材和某些陶瓷等,那些没有熔化状态因而不太可能让材料蒸气再凝结的材料。另外,这些材料通常要达到更厚的切口。 ——在激光气化切割中,最优光束聚焦取决于材料厚度和光束质量。 ——激光功率和气化热对最优焦点位置只有一定的影响。

大族激光切割工艺p参数

大族激光切割工艺p参数, [table=98%] [tr][td=3,1,604] 切割层1(CUT1)工艺参数 [/td][/tr] [tr][td=63] P100 [/td][td=220] 切割速度 [/td][td=321] 单位: mm/min [/td][/tr] [tr][td=63] P101 [/td][td=220] 切割激光功率 [/td][td=321] 单位: 瓦(W) [/td][/tr] [tr][td=63] P102 [/td][td=220] 最小切割激光功率百分比 [/td][td=321] 单位: 0-100% [/td][/tr] [tr][td=63] P103 [/td][td=220] 切割激光模式(CS/PRC激光器) [/td][td=321] 1=连续, 2=门脉冲(CS/PRC激光器) [/td][/tr] [tr][td=63] P104 [/td][td=220] 切割脉冲频率 [/td][td=321] 1~8:对应激光器上设置的激光脉冲频率(CS/ROFIN激光器) 0-999Hz PRC激光器) [/td][/tr] [tr][td=63] P105

切割脉冲占空比(PRC激光器) [/td][td=321] 1-100% [/td][/tr] [tr][td=63] P106 [/td][td=220] 切割喷嘴高度 [/td][td=321] 单位: [tr][td=63] P107 [/td][td=220] 切割气体压力 [/td][td=321] 单位: [/td][/tr] [tr][td=63] P108 [/td][td=220] 切割气体类型 [/td][td=321] 1=空气, 2=氧气, 3=氮气 [/td][/tr] [tr][td=63] P109 [/td][td=220] 切割头是否提升 [/td][td=321] 单位: 0-50mm [/td][/tr] [tr][td=3,1,604] 穿孔(PIERCE)工艺参数 [/td][/tr] [tr][td=63] P110 [/td][td=220] 穿孔方式 [/td][td=321] 0-3(穿孔方式);0=不穿孔;1=正常穿孔;2=渐进式穿孔;3=强力穿孔 [/td][/tr] [tr][td=63] P111 [/td][td=220] 穿孔激光功率

激光切割基础知识

激光切割加工基础知识 第一部分 激光切割的原理和功能 一、激光切割的原理 激光切割是由电子放电作为供给能源,通过 He 、N 2、CO 2 等混合气体为激发媒介,利用反射镜组聚焦产生激光光束,从而对材料进行切割。 激光切割的过程:在数控程序的激发和驱动下,激光发生器内产生出特定模式和类型的激光,经过光路系统传送到切割头,并聚焦于工件表面,将金属熔化;同时, 喷嘴从与光束平行的方向喷出辅助气体将熔渣吹走;在由程控的伺服电机驱动下,切割头按照预定路线运动,从而切割出各种形状的工件。 图1:激光切割示意图 二、机床结构 SLCF-X15×40F 数控激光切割机是意大利普瑞玛(PRIMA )工业公司的主导机型——悬臂式飞行光路结构的激光切割机,加工板材尺寸为1500×4000毫米,配有交换工作台。 (一) 该机型的主要特点如下: ● 悬臂式开式结构,可从三个方向上下料,人机接近性极好,可放置超长超宽的 板材。 ● 可移动式切割工作台与主机分离,柔性大。可加装焊接、切管等功能。 ● 精密传动部件不在切割区域内,防护容易,也不会由于工作台及床身切割热变 形影响机床的精度。 ● 从根本上消除了电器双边同步锁产生的误差,避免了横梁的扭动,使得光路稳 定,切割精度提高。 ● 配有高速的Z 轴系统,同时可通过数控系统控制辅助气体的压力、流量等,大 大提高了加工效率。 ● 新型的PM —400V2.0智能化编程软件,具有蛙跳、共边切割、优化套排料、高 效穿孔、尖角处理等功能。 ● 具有先进的多腔分室除尘系统,比单纯的抽风系统除尘效果更高。 1—激光器;2—激光束;3—全反射棱镜;4—聚焦物镜;5—工件;6—工作台

激光切割工艺详解-共30页

激光切割工艺 发表于 2009-10-26 20:50 | 只看该作者发表的帖子 1# 本文章共4286字,分3页,当前第1页,快速翻页:123 激光切割工艺 激光切割的工艺参数 (1)光束横模 ① 基模又称为高斯模,是切割最理想的模式,主要出现在功率小于1kW的激光器。 ② 低阶模与基模比较接近,主要出现在1~2kW的中功率激光器。 ③ 多模是高阶模的混合,出现在功率大于3kW的激光器。

切割速度与横模及板厚的关系见图1。由图可以看出,300W的单模激光和500W的多模有同等的切割能力。但是,多模的聚焦性差,切割能力低,单模激光的切割能力优于多模。常用材料的单模激光切割工艺参数见表1,多模激光切割工艺参数见表2。 表1 常用材料的单模激光切割工艺参数 材料 厚度/mm 辅助气体 切割速度/cmmin-1 切缝宽度/mm 功率/W 低碳钢 3.0 O2 60 0.2 250 不锈钢 1.0 O2 150 0.1

40.0 O2 50 3.5 钛合金 10.0 O2 280 1.5 有机透明玻璃10.0 N2 80 0.7 氧化铝 1.0 O2 300 0.1 聚酯地毯

N2 260 0.5 棉织品(多层)15.0 N2 90 0.5 纸板 0.5 N2 300 0.4 波纹纸板 8.0 N2 300 0.4 石英玻璃 1.9

60 0.2 聚丙烯 5.5 N2 70 0.5 聚苯乙烯 3.2 N2 420 0.4 硬质聚氯乙烯7.0 N2 120 0.5 纤维增强塑料3.0 N2

0.3 木材(胶合板)18.0 N2 20 0.7 低碳钢 1.0 N2 450 - 500 3.0 N2 150 6.0 N2 50 1.2 O2

激光切割加工主要参数(精)

激光切割加工主要参数 1.切割速度 给定激光功率密度和材料,切割速度符合一个经验公式,只要在阀值以上,材料的切割速度与激光功率成正比,即增加功率密度,可提高切割速度,切割速度同样与被切割材料密度和厚度成反比,提高切割速度的因素: (1 提高功率(500-3000w; (2改变光束模式; (3减小聚焦光斑大小(如采用短焦距透鏡 对金属材料,其他工艺变量保存不变,激光切割速度可以有一个相对调节范围而仍能保持较满意的切割质量,这种调节范围在切割薄金属时显得比较宽。 2.焦点位置 激光束聚光后光斑大小与透镜焦长成正比,光束经短焦长透镜聚焦后光斑尺寸很小,焦点处功率密度很高,对材料切割很有利,但它的不利之外是焦深很短,调节余量很小,一般比较适用于高速切割薄材,对于厚工件,由于长焦长透镜有较宽焦深,只要具有足够功率密度,用来对它切割比较合适,由于焦点处功率密度最高,在大多数情况下,切割时,焦点位置刚处于工件表面,或稍在工件表面之下,确保焦点与工件相对位置恒定是获得稳定的切割质量的重要条件,有时透镜工作中因冷却不善而受热从而引起焦长变化,这就需及时调整焦点位置。 3. 辅助气体 辅助气体与激光光束同轴喷处,保护透镜免受污染并吹走切割区底部溶渣,对非金属和部分金属材料,使用压缩空气或惰性气体,清除溶化和蒸发材料,同时抑制切割区过度燃烧。

4. 辅助气体气压 大多数金属激光切割则使用活性气体(氧气,形成与灼热金属发生氧化放热反应,这部分附加热量可提高切割速度1/3—1/2 当高速切割薄板材时,需要较高的气体压力防止切口背面沾渣,当材料厚度或切割速度较慢时,气体压力可以适当的降低。 5. 激光输出功率 激光功率大小和模式好坏都会对切割发生重要的影响,实际操作时,常常设置最大功率以获得高的切割速度或用以切割较厚的材料。

激光切割常识

参考资料:金运激光直接用空气压缩机,然后接空干机,这样效果还可以,但是这样不是长久之计呀,开展会的时间那不是很吵?现在就想用氮气、氧气,但是为什么用氧气切割出来的东西边缘都被烧溶了,我用的是气体保护焊机上面的那个减压阀,问题应该出现在这上面吧?是不是要去买一个增压阀?另外,氮气的效果怎么样?在切割的时候,气要调多大?找快不锈钢,加工设置功率要求不是很高,只要合理的焦距,用氮气割,端面效果很舒服的,至于烧熔,我觉的功率太高,因为空气中其实也有氮气氧气,同样的条件,氧化程度空气要缓一点,纯氧或纯氮气要剧烈,我个人认为的哦,反正端面处多用氧化原理分析分析,可能会理的通一点激光加工是一种热加工,在加工时会产生热影响,热量集中产生应力会使板材变形。小范围内热量过度集中会使材料产生燃烧氧化。这些都对材料有不利的影响。 根据不同材料,不同切割要求,使用不同的切割辅助气体,其目的在于得到最佳的切割质量。 切割有色板如不锈钢或铝板,一般采用氮气作为辅助气体,起到冷却及保护作用。而碳钢切割使用氧气,起到冷却及加速燃烧加速切割的目的。我同意你的观点~~ 但是在切割不锈钢和铝板时,氮气做为辅助气体来切割的话,由于切割时是大功率,大气压,难免会产生等离子云(蓝光)的出现,这样~会容易使切割头撞到板子上俗称“栽头”。所以在气割不锈钢时得采用氮气作为辅助气体时同时氧气也得打开~~ 建议打孔时,使用氧气作为辅助气体~~ 其实~切割不锈钢时,氧气也单独作为辅助气体~~这样加快燃烧~~ 前提,精度不精确,客户要求不高的情况下根据材质的不同,所使用的气体不

一样。SUS 一般使用氮气(根据板厚的不同分为高压和低压),铝一般使用Easy ,SS 材有用氧气的,那主要是针对厚板(20.00mm 以上)关于精度问题,根据机器的品牌还有你所执行的标准而不一样,我现在用的是AMADA 的机器,(ISO9001 )这个在机器上可以调,一般情况下误差会在+/-0.01 用氧气切,功率不能太高,表面保护的最好用氮气,用氮气气压一般开到8.0 到9.5 最好,氮气切割效果要好一些巴,但是如果激光参数调整合适了,氧气效果也不错,我现在都是用氧气,效果还可以,如果对重铸层砚秋不是很严足够了不锈钢氧,氮,空气都可以用,碳钢板也可以。如果要求高精度加工,不锈钢采用氮,无需高纯氮。如果为了减少成本,可以用空气切割不锈钢,但是反面有细微毛刺,用砂纸稍微划一下就可以打掉,但是边缘呈灰黑色,对空压机供气量和气压稳定性要求较高。1.5MM 以下碳钢板可以用空气和氮气切割,焊渣虽然可以控制,但是一旦出现焊渣,只有用砂轮片磨了,建议最好用氧气。 激光切割机及工艺控制参数 1、激光发生器 对于激光切割的用途而言,除了少数场合采用YAG固体激光器外,绝大部分采用电-光转换效率较高并能输出较高功率的C02气体激光器。由于激光切割对光束质量要求很高,所以不是所有的激光器都能用作切割的。 2、数控切割机床。

激光切割机图示说明

激光切割机软件使用说 明 (图文笔记版) 一、总体功能概述 ⑴操作软件的三大版块: 图一、ByVision主菜单操作界面。图二、HANDLING-OPERATION操作界面 图三、LaserView操作界面

⑵控制按键的两个部分:图一、操控手柄。

图二、屏幕右侧按键。 停止自动操作如自动交换工作台 释放切割头

二、激光切割机每个版块的具体功能介绍 ⑴ByVision(用户名:CH 密码:1) ①“MAIN(F5)”主菜单:其中包括“管理员”、“视图”、“诊断”、“清屏”、 “信息”、“关闭”。 “管理员”、“视图”:已设置好,一般无需改动。一般级别无法修改的。“诊断”:用于显示机床的通讯状态,绿灯通讯为正常,红灯通讯中断或未建立通讯或没有该硬件(如Byloder)。前两个灯为绿,后一个灯为红,此时为正常。具体的机型不同而有异。 “清屏”:点击后屏幕为白色,此时触摸功能关闭,就可用布来擦拭屏幕。

登录/注销:用于不同级别的用户进入系统,权限不一样的。 详细内容:当提示框出现提示内容的时候,由于显示的内容有限,当出现”……”的提示时可以在详细内容中看见全部的报警和故障。可以用该菜单中的RESET 键进行复位等操作。 信息:关于该机器的全部软件的版本。 关闭:内有可选择的关闭对话框。一般用关闭Byvision项目。 语言选择:根据国旗代表不同的语言。一般英语的故障解释比较确切。 有故障时候尽量用英语将信息记录下来,便于准确判断。 ②“HAND(F6)”手动菜单:其中包括“设置参数机床”、“参数”、“手动功 能”、“特殊功能”“CNC”、“SERV”、“STOP PART”、“STOP WORK”。

大族激光切割工艺p参数

大族激光切割工艺p参数-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

大族激光切割工艺p参数, [table=98%] [tr][td=3,1,604] 切割层1(CUT1)工艺参数 [/td][/tr] [tr][td=63] P100 [/td][td=220] 切割速度 [/td][td=321] 单位: mm/min [/td][/tr] [tr][td=63] P101 [/td][td=220] 切割激光功率 [/td][td=321] 单位: 瓦(W) [/td][/tr] [tr][td=63] P102 [/td][td=220] 最小切割激光功率百分比 [/td][td=321] 单位: 0-100% [/td][/tr] [tr][td=63] P103 [/td][td=220] 切割激光模式(CS/PRC激光器) [/td][td=321] 1=连续, 2=门脉冲(CS/PRC激光器) [/td][/tr] [tr][td=63] P104 [/td][td=220] 切割脉冲频率 [/td][td=321] 1~8:对应激光器上设置的激光脉冲频率(CS/ROFIN激光器) 0-999Hz PRC激光器) [/td][/tr] [tr][td=63] P105

[/td][td=220] 切割脉冲占空比(PRC激光器) [/td][td=321] 1-100% [/td][/tr] [tr][td=63] P106 [/td][td=220] 切割喷嘴高度 [/td][td=321] 单位: 0.5-10.0mm [/td][/tr] [tr][td=63] P107 [/td][td=220] 切割气体压力 [/td][td=321] 单位:0.5-8.0bar [/td][/tr] [tr][td=63] P108 [/td][td=220] 切割气体类型 [/td][td=321] 1=空气, 2=氧气, 3=氮气 [/td][/tr] [tr][td=63] P109 [/td][td=220] 切割头是否提升 [/td][td=321] 单位: 0-50mm [/td][/tr] [tr][td=3,1,604] 穿孔(PIERCE)工艺参数 [/td][/tr] [tr][td=63] P110 [/td][td=220] 穿孔方式 [/td][td=321] 0-3(穿孔方式);0=不穿孔;1=正常穿孔;2=渐进式穿孔;3=强力穿孔 [/td][/tr] [tr][td=63] P111 [/td][td=220]

激光切割技术参数详解

激光切割技术参数详解 激光切割机的应用越来越普及,如何高质高效的利用激光技术生产产品,则需要激光切割机操作人员好好学习相关知识,更重要的是要在实践中不断总结经验。下面先搞懂常用的几个激光切割技术参数。 1.专用的装置 减少因聚焦前光束尺寸变化带来的焦点光斑尺寸的变化,国内外激光切割系统的制造商提供了一些专用的装置供用户选用: (1)平行光管。这是一种常用的方法,即在CO2激光器的输出端加一平行光管进行扩束处理,扩束后的光束直径变大,发散角变小,使在切割工作范围内近端和远端聚焦前光束尺寸接近一致。 (2)在切割头上增加一独立的移动透镜的下轴,它与控制喷嘴到材料表面距离(standoff)的Z轴是两个相互独立的部分。当机床工作台移动或光轴移动时,光束从近端到远端F轴也同时移动,使光束聚焦后光斑直径在整个加工区域内保持一致。 (3)控制聚焦镜(一般为金属反射聚焦系统)的水压。若聚焦前光束尺寸变小而使焦点光斑直径变大时,自动控制水压改变聚焦曲率使焦点光斑直径变小。

(4)飞行光路切割机上增加x、y方向的补偿光路系统。即当切割远端光程增加时使补偿光路缩短;反之当切割近端光程减小时,使补偿光路增加,以保持光程长度一致。 2.切割穿孔技术 任何一种热切割技术,除少数情况可以从板边缘开始外,一般都必须在板上穿一小孔。早先在激光冲压复合机上是用冲头先冲出一孔,然后再用激光从小孔处开始进行切割。对于没有冲压装置的激光切割机有两种穿孔的基本方法: (1)爆破穿孔:(Blastdrilling),材料经连续激光的照射后在中心形成一凹坑,然后由与激光束同轴的氧流很快将熔融材料去除形成一孔。一般孔的大小与板厚有关,爆破穿孔平均直径为板厚的一半,因此对较厚的板爆破穿孔孔径较大,且不圆,不宜在要求较高的零件上使用(如石油筛缝管),只能用于废料上。此外由于穿孔所用的氧气压力与切割时相同,飞溅较大。 (2)脉冲穿孔:(Pulsedrilling)采用高峰值功率的脉冲激光使少量材料熔化或汽化,常用空气或氮气作为辅助气体,以减少因放热氧化使孔扩展,气体压力较切割时的氧气压力小。每个脉冲激光只产生小的微粒喷射,逐步深入,因此厚板穿孔时间需要几秒钟。一旦穿孔完成,立即将辅助气体换成氧气进行切割。这样穿孔直径较小,其穿孔质量优于爆破穿孔。为此所使用的激光器不但应具有较高的输出功率;更

激光切割机技术参数

激光切割机技术参数集团标准化工作小组 [Q8QX9QT-X8QQB8Q8-NQ8QJ8-M8QMN]

FIBERBLADE Cutting System 光纤激光切割机 一、Messer激光切割系统介绍 1、机器原理 梅塞尔公司在工业用激光切割机的开发和制造领域已有近40年的经验. 其激光技术得到 了世界范围的认可, 并在许多不同领域得到应用. 划时代的技术发展, 如专利激光切割头, 表明了梅塞尔公司的技术能力. 在此领域为激光加工建立的新标准将为客户带来巨大的利益. 产品系列包括: 2维激光切割系统 3维激光切割系统 激光焊接系统 自动化设备

装料及卸料系统 通过与世界领先的激光器厂商的常年合作, 保证机器与激光的最佳组合. 其大激光功率及用户友好式的CNC数控系统适应高速切割及广泛的生产制造领域. Fiberblade具备良好的动态性能, 在宽广范围内可实现切割与零件重量无关的高精度无挂渣的成品零件. 机器配合编程软件及相应自动套料程序, 可实现快速高效的零件编程, 扩展机器应用. 应用激光束作为工具, 切割速度快, 成品部件割缝窄, 精度高. 可无困难地实现复杂轮廓的切割. 切口边缘光洁、无毛刺, 绝大多数场合下无需后续处理. Fiberblade主要应用领域为金属加工, 特别是碳钢、不锈钢和铝材. 该系统既可应用氧气切割, 也可采用保护气体实现高压切割. 经测试其可切割性后, 该系统可切割金属合金、塑料以及非金属材料机器设计理念除了实现最佳切割结果外, 同样关注环境保护问题. 采用抽烟除尘装置可满足最严格的排放标准. 机器可满足现有安全规程, 满足相关CE标准. 2、功能描述 Fiberblade激光切割机,是一个集最新动力工程,电脑数控和光纤激光器技术的全新技术 发展水平的设计它是市面上最先进的紧凑型中规格工业级光纤激光切割系统;无需激光器 维护的低维修费系统,高效率、低功耗。 机器工作台采用交换式工作台系统,减少上料时间. 该系统交替使用两块台面. 切割一块台面上的板材, 同时另一块台面位于工作区域外. 操作员可取下成品部件并换上新板, 机器同时进行切割. 另一台面上的工件完成后, 由工作区域换出, 新板就位. 板材置于工作台支架上并确定位置后, 切割头随垂直定位轴下降. 传感控制器保证切割头维持正确定位, 可避免板材变形引起的问题. 激光束通过光纤传输到切割头上, 然后由透镜聚焦. 切割头沿工件轮廓移动, 但不与工件接触, 激光束和切割气体通过割嘴聚集到工件上.

激光切割机技术参数

激光切割机技术参数Newly compiled on November 23, 2020

FIBERBLADE Cutting System 光纤激光切割机 一、Messer激光切割系统介绍 1、机器原理 梅塞尔公司在工业用激光切割机的开发和制造领域已有近40年的经验. 其激光技术得 到了世界范围的认可, 并在许多不同领域得到应用. 划时代的技术发展, 如专利激光切割头, 表明了梅塞尔公司的技术能力. 在此领域为激光加工建立的新标准将为客户带来巨大的利益. 产品系列包括: ?2维激光切割系统 ?3维激光切割系统 ?激光焊接系统 ?自动化设备 ?装料及卸料系统 通过与世界领先的激光器厂商的常年合作, 保证机器与激光的最佳组合. 其大激光功率及用户友好式的CNC数控系统适应高速切割及广泛的生产制造领域. Fiberblade具备良好的动态性能, 在宽广范围内可实现切割与零件重量无关的高精度无挂渣的成品零件. 机器配合编程软件及相应自动套料程序, 可实现快速高效的零件编程, 扩展机器应用. 应用激光束作为工具, 切割速度快, 成品部件割缝窄, 精度高. 可无困难地实现复杂轮廓的切割. 切口边缘光洁、无毛刺, 绝大多数场合下无需后续处理. Fiberblade主要应用领域为金属加工, 特别是碳钢、不锈钢和铝材. 该系统既可应用氧气切割, 也可采用保护气体实现高压切割.

经测试其可切割性后, 该系统可切割金属合金、塑料以及非金属材料机器设计理念除了实现最佳切割结果外, 同样关注环境保护问题. 采用抽烟除尘装置可满足最严格的排放标准. 机器可满足现有安全规程, 满足相关CE标准. 2、功能描述 Fiberblade激光切割机,是一个集最新动力工程,电脑数控和光纤激光器技术的全新技术发展水平的设计它是市面上最先进的紧凑型中规格工业级光纤激光切割系统;无需激光器维护的低维修费系统,高效率、低功耗。 机器工作台采用交换式工作台系统,减少上料时间. 该系统交替使用两块台面. 切割一块台面上的板材, 同时另一块台面位于工作区域外. 操作员可取下成品部件并换上新板, 机器同时进行切割. 另一台面上的工件完成后, 由工作区域换出, 新板就位. 板材置于工作台支架上并确定位置后, 切割头随垂直定位轴下降. 传感控制器保证切割头维持正确定位, 可避免板材变形引起的问题. 激光束通过光纤传输到切割头上, 然后由透镜聚焦. 切割头沿工件轮廓移动, 但不与工件接触, 激光束和切割气体通过割嘴聚集到工件上. 横向运动通过溜板滑动定位实现. 纵向运动由车架自行移动实现. 两套同步驱动伺服电机确保设备的高精度, 轴向运动的高加速度, 可变激光功率控制, 可切割如窄条, 尖角等的复杂图形部件. 通过CNC数控系统可自动设定切割参数如气体种类, 气体压力, 激光参数. CNC数控系统内的切割数据及图形数据的分离, 可实现快速变化的工作要求, 并增加机器功能的灵活性, 适用范围更广. 由随动式直接抽风系统, 把切割过程中产生的尘粒抽出, 并经过烟尘过滤后, 达到安全及环境规范的排放要求. 二、标准配置介绍 1、机器构造 . 机器 采用有限元分析法 (FEM)精心计算并优化的焊接式结构, 使得机器重量最小, 且具备高度稳定性. 模块特性可满足激光切割的特殊要求, 保证极高的切割精度. .定位轴 平行式导轨(X轴)上装有车架, 横向驱动(Y轴)置于其上.上面安装激光切割头. 同步驱动伺服电机可实现高精度和高动态特性要求. 德国倍福数字式驱动模块德国倍福数字式驱动电机德国Alfa高精度齿轮箱 .板材支撑 工作台由高刚性框架及横向支撑杆构成,与横向车架随动的抽烟风道保证抽烟效果最好. .冷却单元 标准供货范围中包含激光电源配用的冷却单元. 该单元用于冷却激光器. 维持恒定运行温度, 防止热效应, 延长切割透镜寿命, 保证持久的高切割质量. .紧凑型除尘装置 选配美国唐纳森除尘设备。 设备配备符合GBZ2~2002有关环保标准的美国唐纳森 除尘净化过滤吸尘器,以收集切割中产生的金属粉尘。吸尘 器性能参数如下:

激光切割的工艺过程及其参数分析

激光切割的工艺过程及其参数分析 1 激光设备 激光设备采用Trumpf公司激光冲裁复合加工中心。 2 激光束参数 激光系统一般由激光器、激光传输系统、控制系统、运动系统、传感与检测系统组成,其核心为激光器。 激光器为CO2气体脉冲式激光器。光束横截面上光强分布接近高斯分布.具有极好的光束质量,主要性能指标如下: 激光波长:10.61xm 脉冲功率:2.4kW;脉冲宽度;约l0ms 功率密度:107W/cm2;激光发散角:1mrad 激光功率稳定度:2% 激光束焦点直径:Φ0.15-Φ0.30 经实践验证,激光冲裁复合加工中心CO2激光切割加工δ0.5mm-δ6mm板材的工艺特点及相关参数是: 图1 氧气切割碳钢切缝粗糙度与料厚的关系 (1)切口宽度窄(一般为0.15-0.30mm)、精度高(一般孔中心距误差为0.01-0.05mm,轮廓尺寸误差为0.05-0.2mm)、切口表面粗糙度好(一般Rz为1.6-6.41μm),切缝一般不需要再加工即可焊接。 由图2可以看出切缝粗糙度与料厚成正比。

(2)采用2kW激光功率,6mm厚不锈钢的切割速度为1.2m/min;δ2mm厚不锈钢的切割速度为3.6m/min,热影响区微小,变形极小。以上优点足以证明:CO2激光切割成为发展迅速的一种先进加工方法。 由图3可以看出材料的最大切割速度与料厚成反比。 图2 几种常见材料的最大切割速度与料厚的关系 3 工艺过程及工艺参数 3.1 数控编制切割工艺 用Trumpf公司激光冲裁复合加工中心附带的TOPS300工艺编程软件进行数控编程,同时完成材料的下料尺寸计算、排样、工艺参数设定。过程如下: (1)绘图及图形类型的转换(要求零件外轮廓闭合); (2)确定材料、尺寸和零件排样; (3)使用激光切割:圆角工艺(获得锐边倒钝)或回路工艺(获得锐角);自动载入气体类型、切割速度,并设置退料; (4)加工顺序优化,生成数控加工程序,传输程序; 3.2 切割穿孔技术 对于δ0.5mm-δ6mm厚的板材.大多数热切割技术都必须在板上穿一小孔。激光冲压复合机上是用冲头先冲出一孔。然后再用激光从小孑L处开始切割。对于没有冲压装置的激光切割机一般用脉冲穿孔的基本方法——脉冲穿孔:金属对10.6um激光束的起始吸收率只有0.5%~10%。当功率密度超过106W/cm2的聚焦激光束照射到金属表面时。却能在微秒级的时间内很快使表面开始熔化。常用空气或

激光切割机工艺手册

第一章激光切割方法 激光熔化切割 在激光熔化切割中,工件被局部熔化后借助气流把熔化的材料喷射出去。因为材料的转移只发生在其液态情况下,所以该过程被称作激光熔化切割。 激光光束配上高纯惰性切割气体促使熔化的材料离开割缝,而气体本身不参于切割。 ——激光熔化切割可以得到比气化切割更高的切割速度。气化所需的能量通常高于把材料熔化所需的能量。在激光熔化切割中,激光光束只被部分吸收。 ——最大切割速度随着激光功率的增加而增加,随着板材厚度的增加和材料熔化温度的增加而几乎反比例地减小。在激光功率一定的情况下,限制因数就是割缝处的气压和材料的热传导率。 ——激光熔化切割对于铁制材料和钛金属可以得到无氧化切口。 ——产生熔化但不到气化的激光功率密度,对于钢材料来说,在104W/cm2~105 W/cm2之间。 激光火焰切割 激光火焰切割与激光熔化切割的不同之处在于使用氧气作为切割气体。借助于氧气和加热后的金属之间的相互作用,产生化学反应使材料进一步加热。由于此效应,对于相同厚度的结构钢,采用该方法可得到的切割速率比熔化切割要高。 另一方面,该方法和熔化切割相比可能切口质量更差。实际上它会生成更宽的割缝、明显的粗糙度、增加的热影响区和更差的边缘质量。 ——激光火焰切割在加工精密模型和尖角时是不好的(有烧掉尖角的危险)。可以使用脉冲模式的激光来限制热影响。 ——所用的激光功率决定切割速度。在激光功率一定的情况下,限制因数就是氧气的供应和材料的热传导率。 激光气化切割 在激光气化切割过程中,材料在割缝处发生气化,此情况下需要非常高的激

光功率。 为了防止材料蒸气冷凝到割缝壁上,材料的厚度一定不要大大超过激光光束的直径。该加工因而只适合于应用在必须避免有熔化材料排除的情况下。该加工实际上只用于铁基合金很小的使用领域。 该加工不能用于,象木材和某些陶瓷等,那些没有熔化状态因而不太可能让材料蒸气再凝结的材料。另外,这些材料通常要达到更厚的切口。 ——在激光气化切割中,最优光束聚焦取决于材料厚度和光束质量。 ——激光功率和气化热对最优焦点位置是有一定的影响。 ——在板材厚度一定的情况下,最大切割速度反比于材料的气化温度。 ——所需的激光功率密度要大于108W/cm2,并且取决于材料、切割深度和光束焦点位置。 ——在板材厚度一定的情况下,假设有足够的激光功率,最大切割速度受到气体射流速度的限制。 第二章加工过程 “加工过程”指激光光束、加工气体和工件之间的相互作用。 切割过程 该过程发生的区域是切割之前。作用在该切割之前的激光必须加热工件到把材料熔化和气化所需的温度。 切割平面由一个几乎垂直的平面组成,该平面被吸收的激光辐射加热并熔化。 ——在激光火焰切割中,该熔化区被进入割缝的氧气流进一步加热,达到接近沸点的温度。产生的气化把材料移走。同时,借助于加工气体,液化材料从工件下部排出。 ——在激光熔化切割中,液化材料随气体排出,该气体也保护割缝以防氧化。连续的熔化区沿着切割方向逐渐滑移。因而得到一条连续割缝。 激光切割过程的许多重要活动发生在该区域。对这些活动的分析可以得到激光切割的重要信息。

相关主题
文本预览
相关文档 最新文档