当前位置:文档之家› 核矩阵近似的研究及其在支持向量机中的应用

核矩阵近似的研究及其在支持向量机中的应用

(完整word版)支持向量机(SVM)原理及应用概述分析

支持向量机(SVM )原理及应用 一、SVM 的产生与发展 自1995年Vapnik (瓦普尼克)在统计学习理论的基础上提出SVM 作为模式识别的新方法之后,SVM 一直倍受关注。同年,Vapnik 和Cortes 提出软间隔(soft margin)SVM ,通过引进松弛变量i ξ度量数据i x 的误分类(分类出现错误时i ξ大于0),同时在目标函数中增加一个分量用来惩罚非零松弛变量(即代价函数),SVM 的寻优过程即是大的分隔间距和小的误差补偿之间的平衡过程;1996年,Vapnik 等人又提出支持向量回归 (Support Vector Regression ,SVR)的方法用于解决拟合问题。SVR 同SVM 的出发点都是寻找最优超平面(注:一维空间为点;二维空间为线;三维空间为面;高维空间为超平面。),但SVR 的目的不是找到两种数据的分割平面,而是找到能准确预测数据分布的平面,两者最终都转换为最优化问题的求解;1998年,Weston 等人根据SVM 原理提出了用于解决多类分类的SVM 方法(Multi-Class Support Vector Machines ,Multi-SVM),通过将多类分类转化成二类分类,将SVM 应用于多分类问题的判断:此外,在SVM 算法的基本框架下,研究者针对不同的方面提出了很多相关的改进算法。例如,Suykens 提出的最小二乘支持向量机 (Least Square Support Vector Machine ,LS —SVM)算法,Joachims 等人提出的SVM-1ight ,张学工提出的中心支持向量机 (Central Support Vector Machine ,CSVM),Scholkoph 和Smola 基于二次规划提出的v-SVM 等。此后,台湾大学林智仁(Lin Chih-Jen)教授等对SVM 的典型应用进行总结,并设计开发出较为完善的SVM 工具包,也就是LIBSVM(A Library for Support Vector Machines)。LIBSVM 是一个通用的SVM 软件包,可以解决分类、回归以及分布估计等问题。 二、支持向量机原理 SVM 方法是20世纪90年代初Vapnik 等人根据统计学习理论提出的一种新的机器学习方法,它以结构风险最小化原则为理论基础,通过适当地选择函数子集及该子集中的判别函数,使学习机器的实际风险达到最小,保证了通过有限训练样本得到的小误差分类器,对独立测试集的测试误差仍然较小。 支持向量机的基本思想:首先,在线性可分情况下,在原空间寻找两类样本的最优分类超平面。在线性不可分的情况下,加入了松弛变量进行分析,通过使用非线性映射将低维输

支持向量机的实现

模式识别课程大作业报告——支持向量机(SVM)的实现 姓名: 学号: 专业: 任课教师: 研究生导师: 内容摘要

支持向量机是一种十分经典的分类方法,它不仅是模式识别学科中的重要内容,而且在图像处理领域中得到了广泛应用。现在,很多图像检索、图像分类算法的实现都以支持向量机为基础。本次大作业的内容以开源计算机视觉库OpenCV为基础,编程实现支持向量机分类器,并对标准数据集进行测试,分别计算出训练样本的识别率和测试样本的识别率。 本报告的组织结构主要分为3大部分。第一部分简述了支持向量机的原理;第二部分介绍了如何利用OpenCV来实现支持向量机分类器;第三部分给出在标准数据集上的测试结果。 一、支持向量机原理概述

在高维空间中的分类问题实际上是寻找一个超平面,将两类样本分开,这个超平面就叫做分类面。两类样本中离分类面最近的样本到分类面的距离称为分类间隔。最优超平面指的是分类间隔最大的超平面。支持向量机实质上提供了一种利用最优超平面进行分类的方法。由最优分类面可以确定两个与其平行的边界超平面。通过拉格朗日法求解最优分类面,最终可以得出结论:实际决定最优分类面位置的只是那些离分类面最近的样本。这些样本就被称为支持向量,它们可能只是训练样本中很少的一部分。支持向量如图1所示。 图1 图1中,H是最优分类面,H1和H2别是两个边界超平面。实心样本就是支持向量。由于最优超平面完全是由这些支持向量决定的,所以这种方法被称作支持向量机(SVM)。 以上是线性可分的情况,对于线性不可分问题,可以在错分样本上增加一个惩罚因子来干预最优分类面的确定。这样一来,最优分类面不仅由离分类面最近的样本决定,还要由错分的样本决定。这种情况下的支持向量就由两部分组成:一部分是边界支持向量;另一部分是错分支持向量。 对于非线性的分类问题,可以通过特征变换将非线性问题转化为新空间中的线性问题。但是这样做的代价是会造成样本维数增加,进而导致计算量急剧增加,这就是所谓的“维度灾难”。为了避免高维空间中的计算,可以引入核函数的概念。这样一来,无论变换后空间的维数有多高,这个新空间中的线性支持向量机求解都可以在原空间通过核函数来进行。常用的核函数有多项式核、高斯核(径向基核)、Sigmoid函数。 二、支持向量机的实现 OpenCV是开源计算机视觉库,它在图像处理领域得到了广泛应用。OpenCV 中包含许多计算机视觉领域的经典算法,其中的机器学习代码部分就包含支持向量机的相关内容。OpenCV中比较经典的机器学习示例是“手写字母分类”。OpenCV 中给出了用支持向量机实现该示例的代码。本次大作业的任务是研究OpenCV中的支持向量机代码,然后将其改写为适用于所有数据库的通用程序,并用标准数据集对算法进行测试。本实验中使用的OpenCV版本是,实验平台为Visual

增量密度加权近似支持向量机

第39卷 第11期2012年11月计算机科学 Comp uter ScienceVol.39No.11 Nov  2012到稿日期:2012-01-05 返修日期:2012-06-08 本文受国家自然科学基金项目(611700040),河北省自然科学基金项目(F2011201063,F2010-000323 )资助。鲁淑霞(1966-),女,博士,教授,主要研究方向为机器学习与计算智能、支持向量机,E-mail:cmclusx@126.com;崔芳芳(1984-),女,硕士,主要研究方向为支持向量机;忽丽莎(1986-) ,女,硕士,主要研究方向为支持向量机。增量密度加权近似支持向量机 鲁淑霞 崔芳芳 忽丽莎 (河北省机器学习重点实验室 河北大学数学与计算机学院 保定071002 )  摘 要 近似支持向量机(PSVM)是一个正则化最小二乘问题,有解析解,但是它失去了支持向量机(SVM)的稀疏性,使得所有的训练样例都成为支持向量。为了有效地控制近似支持向量机的稀疏性,提出了增量密度加权近似支持向量机(IDWPSVM),它在训练集中选取最基本的支持向量。实验表明,IDWPSVM方法与SVM,PSVM和DWPS-VM方法相比, 其精度相似,收敛速度快,可有效地控制近似支持向量机的稀疏性。关键词 近似支持向量机,密度加权,增量,稀疏性中图法分类号 TP181 文献标识码 A  lncremental Density  Weighted Proximal Support Vector MachineLU Shu-xia CUI Fang-fang  HU Li-sha(Key Lab of Machine Learning,Hebei Province,College of Mathematics and Computer,Hebei University,Baoding  071002,China)  Abstract The proximal support vector machines(PSVM)is a regularized least-squares problem,which has an analyticsolution.However,the PSVM lacks sparseness,and all training dates become support vectors.This paper focused on ef-fectively controling the sparseness of the PSVM.An incremental density weighted proximal support vector machine(IDWPSVM)was proposed,which selects the basis support vectors in the training set.The experiment results showthat the accuracy of the IDWPSVM can is similar with the SVM,PSVM and DWPSVM methods,and convergence speedis faster.The IDWPSVM can effectively control the sparseness of the PSVM.Keywords Proximal support vector machine,Density weight,Increment,Sparseness  1 引言 标准的支持向量机(SVM) [1] 的求解属于二次规划问题,对于大规模数据,SVM的训练时间较长。为了减少时间的复杂度,许多学者提出了SVM的各种变形, 如最小二乘支持向量机(Least Square Supp ort Vector Machines,LSSVM)[2,3] 、近似支持向量机(Proximal Supp ort Vector Machines,PS-VM)[4] 、约简支持向量机(Reduced Supp ort Vector Machines,RSVM)[5] 。文献[6]给出了多类近似支持向量机;文献[7] 提出了一种改进的近似支持向量机。文献[8]是PSVM的增量版本,适合解决大样本和高维数据问题。 标准的PSVM方法是Mang asarian等人基于优化理论提出的,它将SVM的二次规划问题转化为求解线性方程组的问题,可以得到解析解,适合解决大样本问题,但是它使所有训练样例都成为了支持向量,失去了标准SVM的稀疏特性。因此需要对PSVM模型进行稀疏化。文献[9]提出了去除部分样本的方法;文献[10]去掉具有最小引入误差的样本,获得了好的稀疏性能;文献[11]用剪枝法控制稀疏性。为了有效地控制PSVM方法的稀疏性,本文在文献[12]的基础上,提出了增量密度加权近似支持向量机方法, 其从训练集合中选取使得目标函数值最小的点作为支持向量,进而选取所期望 的支持向量的个数,很好地控制了PSVM的稀疏性。 2 密度加权近似支持向量机 2.1 标准的PSVM 标准的PSVM通过拟合两类数据,得到两个平行的间隔面,这两个间隔面通过类中心,使得样本的聚类误差尽可能小, 且两个间隔面的间隔最大。标准的PSVM的优化问题: min (ω,b,ξ )∈Rn+1+mυ‖ξ‖2 + 12 (ωTω+ b2 )s.t.D(Aω-eb)+ξ= e(1 )式中,矩阵A∈Rm×n表示训练集合,A+表示训练集合中正类样本组成的集合,A-表示训练集合中负类样本组成的集合; ξ∈Rm是误差项; ω∈Rn 是法向量;υ为正则化常数;e∈Rm为全1向量;D是一个m×m的对角矩阵, 对角线元素取+1时,对应的点为点集A+中的元素,对角线元素取-1时,对应的点为点集A-中的元素。2.2 密度加权近似支持向量机 标准PSVM的间隔面经过类中心,一般情况下,距离类中心较近点周围的样例个数较多,密度较大,而类中心附近的点是重要的点。标准的PSVM在分类时, 给样例赋予了相同· 491·

支持向量机分类器

支持向量机分类器 1 支持向量机的提出与发展 支持向量机( SVM, support vector machine )是数据挖掘中的一项新技术,是借助于最优化方法来解决机器学习问题的新工具,最初由V.Vapnik 等人在1995年首先提出,近几年来在其理论研究和算法实现等方面都取得了很大的进展,开始成为克服“维数灾难”和过学习等困难的强有力的手段,它的理论基础和实现途径的基本框架都已形成。 根据Vapnik & Chervonenkis的统计学习理论 ,如果数据服从某个(固定但未知的)分布,要使机器的实际输出与理想输出之间的偏差尽可能小,则机器应当遵循结构风险最小化 ( SRM,structural risk minimization)原则,而不是经验风险最小化原则,通俗地说就是应当使错误概率的上界最小化。SVM正是这一理论的具体实现。与传统的人工神经网络相比, 它不仅结构简单,而且泛化( generalization)能力明显提高。 2 问题描述 2.1问题引入 假设有分布在Rd空间中的数据,我们希望能够在该空间上找出一个超平面(Hyper-pan),将这一数据分成两类。属于这一类的数据均在超平面的同侧,而属于另一类的数据均在超平面的另一侧。如下图。 比较上图,我们可以发现左图所找出的超平面(虚线),其两平行且与两类数据相切的超平面(实线)之间的距离较近,而右图则具有较大的间隔。而由于我们希望可以找出将两类数据分得较开的超平面,因此右图所找出的是比较好的超平面。 可以将问题简述如下: 设训练的样本输入为xi,i=1,…,l,对应的期望输出为yi∈{+1,-1},其中+1和-1分别代表两类的类别标识,假定分类面方程为ω﹒x+b=0。为使分类面对所有样本正确分类并且具备分类间隔,就要求它满足以下约束条件: 它追求的不仅仅是得到一个能将两类样本分开的分类面,而是要得到一个最优的分类面。 2.2 问题的数学抽象 将上述问题抽象为: 根据给定的训练集

支持向量机及支持向量回归简介

3.支持向量机(回归) 3.1.1 支持向量机 支持向量机(SVM )是美国Vapnik 教授于1990年代提出的,2000年代后成为了很受欢迎的机器学习方法。它将输入样本集合变换到高维空间使得其分离性状况得到改善。它的结构酷似三层感知器,是构造分类规则的通用方法。SVM 方法的贡献在于,它使得人们可以在非常高维的空间中构造出好的分类规则,为分类算法提供了统一的理论框架。作为副产品,SVM 从理论上解释了多层感知器的隐蔽层数目和隐节点数目的作用,因此,将神经网络的学习算法纳入了核技巧范畴。 所谓核技巧,就是找一个核函数(,)K x y 使其满足(,)((),())K x y x y φφ=,代 替在特征空间中内积(),())x y φφ(的计算。因为对于非线性分类,一般是先找一个非线性映射φ将输入数据映射到高维特征空间,使之分离性状况得到很大改观,此时在该特征空间中进行分类,然后再返会原空间,就得到了原输入空间的非线性分类。由于内积运算量相当大,核技巧就是为了降低计算量而生的。 特别, 对特征空间H 为Hilbert 空间的情形,设(,)K x y 是定义在输入空间 n R 上的二元函数,设H 中的规范正交基为12(),(),...,(), ...n x x x φφφ。如果 2 2 1 (,)((),()), {}k k k k k K x y a x y a l φφ∞ == ∈∑ , 那么取1 ()() k k k x a x φφ∞ ==∑ 即为所求的非线性嵌入映射。由于核函数(,)K x y 的定义 域是原来的输入空间,而不是高维的特征空间。因此,巧妙地避开了计算高维内 积 (),())x y φφ(所需付出的计算代价。实际计算中,我们只要选定一个(,)K x y ,

支持向量机原理及应用(DOC)

支持向量机简介 摘要:支持向量机方法是建立在统计学习理论的VC 维理论和结构风险最小原理基础上的,根据有限的样本信息在模型的复杂性(即对特定训练样本的学习精度)和学习能力(即无错误地识别任意样本的能力)之间寻求最佳折衷,以求获得最好的推广能力 。我们通常希望分类的过程是一个机器学习的过程。这些数据点是n 维实空间中的点。我们希望能够把这些点通过一个n-1维的超平面分开。通常这个被称为线性分类器。有很多分类器都符合这个要求。但是我们还希望找到分类最佳的平面,即使得属于两个不同类的数据点间隔最大的那个面,该面亦称为最大间隔超平面。如果我们能够找到这个面,那么这个分类器就称为最大间隔分类器。 关键字:VC 理论 结构风险最小原则 学习能力 1、SVM 的产生与发展 自1995年Vapnik 在统计学习理论的基础上提出SVM 作为模式识别的新方法之后,SVM 一直倍受关注。同年,Vapnik 和Cortes 提出软间隔(soft margin)SVM ,通过引进松弛变量i ξ度量数据i x 的误分类(分类出现错误时i ξ大于0),同时在目标函数中增加一个分量用来惩罚非零松弛变量(即代价函数),SVM 的寻优过程即是大的分隔间距和小的误差补偿之间的平衡过程;1996年,Vapnik 等人又提出支持向量回归 (Support Vector Regression ,SVR)的方法用于解决拟合问题。SVR 同SVM 的出发点都是寻找最优超平面,但SVR 的目的不是找到两种数据的分割平面,而是找到能准确预测数据分布的平面,两者最终都转换为最优化问题的求解;1998年,Weston 等人根据SVM 原理提出了用于解

支持向量机(SVM)算法推导及其分类的算法实现

支持向量机算法推导及其分类的算法实现 摘要:本文从线性分类问题开始逐步的叙述支持向量机思想的形成,并提供相应的推导过程。简述核函数的概念,以及kernel在SVM算法中的核心地位。介绍松弛变量引入的SVM算法原因,提出软间隔线性分类法。概括SVM分别在一对一和一对多分类问题中应用。基于SVM在一对多问题中的不足,提出SVM 的改进版本DAG SVM。 Abstract:This article begins with a linear classification problem, Gradually discuss formation of SVM, and their derivation. Description the concept of kernel function, and the core position in SVM algorithm. Describes the reasons for the introduction of slack variables, and propose soft-margin linear classification. Summary the application of SVM in one-to-one and one-to-many linear classification. Based on SVM shortage in one-to-many problems, an improved version which called DAG SVM was put forward. 关键字:SVM、线性分类、核函数、松弛变量、DAG SVM 1. SVM的简介 支持向量机(Support Vector Machine)是Cortes和Vapnik于1995年首先提出的,它在解决小样本、非线性及高维模式识别中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中。支持向量机方法是建立在统计学习理论的VC 维理论和结构风险最小原理基础上的,根据有限的样本信息在模型的复杂性(即对特定训练样本的学习精度,Accuracy)和学习能力(即无错误地识别任意样本的能力)之间寻求最佳折衷,以期获得最好的推广能力。 对于SVM的基本特点,小样本,并不是样本的绝对数量少,而是与问题的复杂度比起来,SVM算法要求的样本数是相对比较少的。非线性,是指SVM擅长处理样本数据线性不可分的情况,主要通过松弛变量和核函数实现,是SVM 的精髓。高维模式识别是指样本维数很高,通过SVM建立的分类器却很简洁,只包含落在边界上的支持向量。

支持向量机理论与应用研究综述_张博洋

第19期2015年10月No.19October,2015 无线互联科技 Wireless Internet Technology 支持向量机(Support Vector Machine,SVM)是通过分析统计理论基础上形成的模式分类方法。上述方式在实际实施的时候,依据最小化风险的基本原则有效增加系统的泛化作用,也是一种为了得到最小误差实施的决策有限训练样中的独立测试集,能够适当分析和解决学习问题、选择模型问题、维数灾难问题等。研究SVM主要就是分析支持向量机自身性质,此外还分析提高应用支持向量机的广度和深度,在文本分类、模式分类、分析回归、基因分类、识别手写字符、处理图像等方面得到应用。1 支持向量机的原理分析1.1 结构风险最小化 依据能够应用的有限信息样本,不能合理计算分析期望风险,所以,传统方式应用主要是经验风险最小化(ERM)标准, 利用样本对风险进行定义: 基于统计学理论分析函数集以及实际经验风险的关系,也就是推广性的界。总结分析上述问题,能够得到实际风险 和经验风险之间概率1-符合以下条件关系: 其中l是训练集样本数,h为函数集VC维,体现高低复杂 性,从上述理论基础可以发现,通过两部分构成学习机实际风险:一是置信范围;二是经验风险也就是训练误差。机器学习的时候不仅需要经验风险,还要尽可能缩小VC维符合置信范围,保证能够获得实际比较小的风险,实际上就是结构风险最小化SRM (Structure Risk Minimization)原则[1]。1.2 支持向量机 支持向量机实际上从最优化线性分析分类超平面形成技术,分析情况的时候,最基本理念就是2类线性。支持向量机学习的主要目的就是能够发现最优超平面,不仅需要正确分开2类样本,还能够具备最大的分类间隔。分类间隔就是说距离超平面最近的2类分类样本,并且可以与2类分类平面间距平行。分析线性分类问题,假设T是训练集: {(x 1,y 2),...,(x l ,y l )}∈(X×Y)l ,其中x i ∈x=R n ,yi ∈y={-1,1},i=1,2,...,l。假设(ωx)+b=0是超平面,超平面和训练集之间的集合间距就是1/ω。可以通过以下方式找到最大间隔超平面问题中的原始优化问题: b w min )(ωτ=1/2ω2 , S.t. y i ((ωx i )+b)≥1,i=1,...,l 利用Wolfe对偶定理,能够等价原始最优化问题得到相 关对偶问题: α≥0,i=1,...,l, 此时能够得到最优解就是引入松弛变量以后能够得到等价对偶问 题: 其中,C (C>0)是惩罚因子。1.3 核函数 很多不可分线性问题,在某个高位特征空间中合理筛选符合分类样本情况的非线性变换映射,确保能够得到高维空间目标样本线性可分。依据上述方式进行计算的时候,仅仅只是计算训练样本内积,需要依据原空间来实现函数,不需要分析变换形式,依据泛函基本理论,一种核函数K (x,x /)需要充分符合Mercer ,与某空间变化内积对应。 假设对应变化核函数是K (x,x /),K (x,x /)=(φ(x),φ(x /)),依据之前分析的原始对偶问题,得到相应的决策函数就是: f (x)=sgn *) ),(*(1 b i x x i K y i l i +∑=α,有3种常见的核函数,一是径向有机函数(RBF) : 二是多项式核函数: 作者简介:张博洋(1990-),男,天津,硕士研究生;研究方向:数据挖掘。 支持向量机理论与应用研究综述 张博洋 (北京交通大学 计算机与信息技术学院,北京 100044) 摘 要:文章研究支持向量机技术,分析支持向量机的运行基本原理,研究支持向量机技术中的多类问题和选择核函数,并 且从人脸检测、文本分类、处理图像、识别手写字符等方面合理分析支持向量机,为进一步应用和发展支持向量机技术提供依据和保证。关键词:支持向量机;理论;应用;综述

支持向量机(SVM)原理及应用概述

支持向量机(SVM)原理及应用 一、SVM得产生与发展 自1995年Vapnik(瓦普尼克)在统计学习理论得基础上提出SVM作为模式识别得新方法之后,SVM一直倍受关注。同年,Vapnik与Cortes提出软间隔(soft margin)SVM,通过引进松弛变量度量数据得误分类(分类出现错误时大于0),同时在目标函数中增加一个分量用来惩罚非零松弛变量(即代价函数),SVM得寻优过程即就是大得分隔间距与小得误差补偿之间得平衡过程;1996年,Vapnik等人又提出支持向量回归 (Support Vector Regression,SVR)得方法用于解决拟合问题。SVR同SVM得出发点都就是寻找最优超平面(注:一维空间为点;二维空间为线;三维空间为面;高维空间为超平面。),但SVR得目得不就是找到两种数据得分割平面,而就是找到能准确预测数据分布得平面,两者最终都转换为最优化问题得求解;1998年,Weston等人根据SVM原理提出了用于解决多类分类得SVM方法(MultiClass Support Vector Machines,MultiSVM),通过将多类分类转化成二类分类,将SVM应用于多分类问题得判断:此外,在SVM算法得基本框架下,研究者针对不同得方面提出了很多相关得改进算法。例如,Suykens 提出得最小二乘支持向量机(Least Square Support Vector Machine,LS—SVM)算法,Joachims等人提出得SVM1ight,张学工提出得中心支持向量机 (Central Support Vector Machine,CSVM),Scholkoph与Smola基于二次规划提出得vSVM等。此后,台湾大学林智仁(Lin ChihJen)教授等对SVM得典型应用进行总结,并设计开发出较为完善得SVM工具包,也就就是LIBSVM(A Library for Support Vector Machines)。LIBSVM就是一个通用得SVM软件包,可以解决分类、回归以及分布估计等问题。 二、支持向量机原理 SVM方法就是20世纪90年代初Vapnik等人根据统计学习理论提出得一种新得机器学习方法,它以结构风险最小化原则为理论基础,通过适当地选择函数子集及该子集中得判别函数, 使学习机器得实际风险达到最小,保证了通过有限训练样本得到得小误差分类器,对独立测试集得测试误差仍然较小。 支持向量机得基本思想:首先,在线性可分情况下,在原空间寻找两类样本得最优分类超平面。在线性不可分得情况下,加入了松弛变量进行分析,通过使用非线性映射将低维输入空

支持向量机的研究进展

竺竺兰兰兰./// 0引言 支持向量机的研究进展 陈俏 , 曹根牛 , 谢丽娟 (西安科技大学理学院,西安710054) ★ 摘要:支持向量机是一种新的机器学习方法。对于支持向量机的算法、模型的选择及支持向量机的扩展进行了阐述及总结.并提出支持向量机的发展趋势和研究方向。 关键词:支持向量机;二次规划;特征空问;核函数 支持向量机(SupportVectorMachine,SVM)是二十世纪九十年代中期Vapnik等人提出的一种基于统计学的新型机器学习方法【1.21。采用结构风险最小化准则fStruturalRiskMinimization,SRM)训练学习机器,具有很好的学习能力,尤其是泛化能力,主要优点有:支持向量机将学习问题归结为一个凸二次规划问题。从理论上说.得到的将是全局最优解。解决了在神经网络方法中无法避免的局部极值问题:支持向量机通过非线性变换将数据映射到高维特征空间,使数据在高维空间中可以用线性判别函数分类.保证机器有较好的推广能力:支持向量机巧妙地解决了维数问题,算法复杂度与样本维数无关。目前,支持向量机已广泛应用于时间序列分析、回归分析、聚类分析、动态图像的人脸跟踪、信号处理、语音识别、图像分类和控制系统等诸多领域。 1支持向量机的原理 支持向量机的基本思想是先通过非线性变换把原数据空间变换到某一高维的特征空间.然后在这个新空间中求取最优线性分类面。这种非线性变换通过定义适当的内积函数加以实现。 1.1线性可分的情形 设训练数据为: {l而,j,1)1.如EentYj∈{+1。-1l。i=1.…。m(1)称训练集是线性可分的.如果存在一个超平面,使得: 肌(wrx,+b)一1>t0i=1.2。…。m(2) 称分类超平面叫rx+b=0是最优超平面.如果训练集到它的最小距离最大.或者说它使得分类间隙最大的平面。 显然超平面wrx+b=0是最优的当(鲫,b)且仅当是下面问题的最优解: rai.n}…I; 乳tYf(’‘,rx和)≥113) 称训练集中的输人样本筑为支持向量,显然只有支持向量起作用.从而决定分类结果。 1.2线性不可分的情形 线性不可分就是某些训练样本不满足(2)。为此引入非负的松弛项宣,与处理线性可分问题时的方法类似,构造最优超平面(广义最优超平面)的问题转换为求解下列优化问题: 观虿1…z2+嘻刍 s.tYi(WTx,+b)≥1《(4) 蠡≥0,i=I,2。…。m 其中C>O为正则化参数.用于控制对错分样本的惩罚程度.C越大.对错误的惩罚越重。 1.3非线性的情形 对非线性问题.首先将输入向量通过映射∥:尺q日映射到高维特征空间中.在这个特征空间中构造最优分类超平面训砀(戈)+6=0,将两类点尽可能正确地区分开来,而且使得两类点之间的间隔最大。 ★基金项目:陕西省教育厅专项科研计划项目(No.07JK312) 收稿日期:2009—02—02修稿日期:2009-04—15 作者简介:陈俏(1980一),女,湖北武汉人,硕士研究生,研究方向为支持向量机的研究与应用现代计算机^总第三 O五期v

支持向量机(SVM)原理及应用概述

东北大学 研究生考试试卷 考试科目:信号处理的统计分析方法 课程编号: 09601513 阅卷人: 刘晓志 考试日期: 2012年11月07日 姓名:赵亚楠 学号: 1001236 注意事项 1.考前研究生将上述项目填写清楚.

2.字迹要清楚,保持卷面清洁. 3.交卷时请将本试卷和题签一起上交. 4.课程考试后二周内授课教师完成评卷工作,公共课成绩单与试卷交 研究生院培养办公室,专业课成绩单与试卷交各学院,各学院把成 绩单交研究生院培养办公室. 东北大学研究生院培养办公室 支持向量机(SVM)原理及应用 目录 一、SVM的产生与发展 (3) 二、支持向量机相关理论 (4) (一)统计学习理论基础 (4) (二)SVM原理 (4) 1.最优分类面和广义最优分类面 (5) 2.SVM的非线性映射 (7)

3.核函数 (8) 三、支持向量机的应用研究现状 (9) (一)人脸检测、验证和识别 (10) (二)说话人/语音识别 (10) (三)文字/手写体识别 (11) (四)图像处理 (11) (五)其他应用研究 (12) 四、结论和讨论 (12) 支持向量机(SVM )原理及应用 一、SVM 的产生与发展 自1995年Vapnik 在统计学习理论的基础上提出SVM 作为模式识别的新方法之后,SVM 一直倍受关注。同年,Vapnik 和Cortes 提出软间隔(soft margin)SVM ,通过引进松弛变量i ξ度量数据i x 的误分类(分类出现错误时i ξ大于0),同时在目 标函数中增加一个分量用来惩罚非零松弛变量(即代价函数),SVM 的寻优过程即

支持向量机(SVM)原理及

支持向量机(SVM)原理及应用概述

支持向量机(SVM )原理及应用 一、SVM 的产生与发展 自1995年Vapnik (瓦普尼克)在统计学习理论的基础上提出SVM 作为模式识别的新方法之后,SVM 一直倍受关注。同年,Vapnik 和Cortes 提出软间隔(soft margin)SVM ,通过引进松弛变量i ξ度量数据i x 的误分类(分类出现错误时i ξ大于0),同时在目标函数中增加一个分量用来惩罚非零松弛变量(即代价函数),SVM 的寻优过程即是大的分隔间距和小的误差补偿之间的平衡过程;1996年,Vapnik 等人又提出支持向量回归 (Support Vector Regression ,SVR)的方法用于解决拟合问题。SVR 同SVM 的出发点都是寻找最优超平面(注:一维空间为点;二维空间为线;三维空间为面;高维空间为超平面。),但SVR 的目的不是找到两种数据的分割平面,而是找到能准确预测数据分布的平面,两者最终都转换为最优化问题的求解;1998年,Weston 等人根据SVM 原理提出了用于解决多类分类的SVM 方法(Multi-Class Support Vector Machines ,Multi-SVM),通过将多类分类转化成二类分类,将SVM 应用于多分类问题的判断:此外,在SVM 算法的基本框架下,研究者针对不同的方面提出了很多相关的改进算法。例如,Suykens 提出的最小二乘支持向量机 (Least Square Support Vector Machine ,LS —SVM)算法,Joachims 等人提出的SVM-1ight ,张学工提出的中心支持向量机 (Central Support Vector Machine ,CSVM),Scholkoph 和Smola 基于二次规划提出的v-SVM 等。此后,台湾大学林智仁(Lin Chih-Jen)教授等对SVM 的典型应用进行总结,并设计开发出较为完善的SVM 工具包,也就是LIBSVM(A Library for Support Vector Machines)。LIBSVM 是一个通用的SVM 软件包,可以解决分类、回归以及分布估计等问题。 二、支持向量机原理 SVM 方法是20世纪90年代初Vapnik 等人根据统计学习理论提出的一种新的机器学习方 法,它以结构风险最小化原则为理论基础,通过适当地选择函数子集及该子集中的判别函数,使学习机器的实际风险达到最小,保证了通过有限训练样本得到的小误差分类器,对独立测试集的测试误差仍然较小。 支持向量机的基本思想:首先,在线性可分情况下,在原空间寻找两类样本的最优分类超平面。在线性不可分的情况下,加入了松弛变量进行分析,通过使用非线性映射将低维输

支持向量机SVM分类算法

支持向量机SVM分类算法 SVM的简介 支持向量机(Support Vector Machine)是Cortes和Vapnik于1995年首先提出的,它在解决小样本、非线性及高维模式识别中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中[10]。 支持向量机方法是建立在统计学习理论的VC 维理论和结构风险最小原理基础上的,根据有限的样本信息在模型的复杂性(即对特定训练样本的学习精度,Accuracy)和学习能力(即无错误地识别任意样本的能力)之间寻求最佳折衷,以期获得最好的推广能力[14](或称泛化能力)。 以上是经常被有关SVM 的学术文献引用的介绍,我来逐一分解并解释一下。 Vapnik是统计机器学习的大牛,这想必都不用说,他出版的《Statistical Learning Theory》是一本完整阐述统计机器学习思想的名著。在该书中详细的论证了统计机器学习之所以区别于传统机器学习的本质,就在于统计机器学习能够精确的给出学习效果,能够解答需要的样本数等等一系列问题。与统计机器学习的精密思维相比,传统的机器学习基本上属于摸着石头过河,用传统的机器学习方法构造分类系统完全成了一种技巧,一个人做的结果可能很好,另一个人差不多的方法做出来却很差,缺乏指导和原则。所谓VC维是对函数类的一种度量,可以简单的理解为问题的复杂程度,VC维越高,一个问题就越复杂。正是因为SVM关注的是VC维,后面我们可以看到,SVM解决问题的时候,和样本的维数是无关的(甚至样本是上万维的都可以,这使得SVM很适合用来解决文本分类的问题,当然,有这样的能力也因为引入了核函数)。 结构风险最小听上去文绉绉,其实说的也无非是下面这回事。 机器学习本质上就是一种对问题真实模型的逼近(我们选择一个我们认为比较好的近似模型,这个近似模型就叫做一个假设),但毫无疑问,真实模型一定是不知道的(如果知道了,我们干吗还要机器学习?直接用真实模型解决问题不就可以了?对吧,哈哈)既然真实模型不知道,那么我们选择的假设与问题真实解之间究竟有多大差距,我们就没法得知。比如说我们认为宇宙诞生于150亿年前的一场大爆炸,这个假设能够描述很多我们观察到的现象,但它与真实的宇宙模型之间还相差多少?谁也说不清,因为我们压根就不知道真实的宇宙模型到底是什么。 这个与问题真实解之间的误差,就叫做风险(更严格的说,误差的累积叫做风险)。我们选择了一个假设之后(更直观点说,我们得到了一个分类器以后),真实误差无从得知,但我们可以用某些可以掌握的量来逼近它。最直观的想法就是使用分类器在样本数据上的分类的结果与真实结果(因为样本是已经标注过的数据,是准确的数据)之间的差值来表示。这个差值叫做经验风险Remp(w)。以前的机器学习方法都把经验风险最小化作为努力的目标,但后来发现很多分类函数能够在样本集上轻易达到100%的正确率,在真实分类时却一塌糊涂(即所谓的推广能力差,或泛化能力差)。此时的情况便是选择了一个足够复杂的分类函数(它的VC维很高),能够精确的记住每一个样本,但对样本之外的数据一律分类错误。回头看看经验风险最小化原则我们就会发现,此原则适用的大前提是经验风险要确实能够逼近真实风险才行(行话叫一致),但实际上能逼近么?答案是不能,因为样本数相对于现实世界要分类的文本数来说简直九牛

支持向量机

支持向量机 支持向量机(Support Vector Machine,SVM)是Corinna Cortes和Vapnik等于1995年首先提出的,它在解决小样本、非线性及高维模式识别中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中。 在机器学习中,支持向量机(SVM,还支持矢量网络)是与相关的学习算法有关的监督学习模型,可以分析数据,识别模式,用于分类和回归分析。 简介 支持向量机方法是建立在统计学习理论的VC维理论和结构风险最小原理基础上的,根据有限的样本信息在模型的复杂性(即对特定训练样本的学习精度)和学习能力(即无错误地识别任意样本的能力)之间寻求最佳折中,以期获得最好的推广能力。 我们通常希望分类的过程是一个机器学习的过程。这些数据点是n维实空间中的点。我们希望能够把这些点通过一个n-1维的超平面分开。通常这个被称为线性分类器。有很多分类器都符合这个要求。但是我们还希望找到分类最佳的平面,即使得属于两个不同类的数据点间隔最大的那个面,该面亦称为最大间隔超平面。如果我们能够找到这个面,那么这个分类器就称为最大间隔分类器。 支持原因 支持向量机将向量映射到一个更高维的空间里,在这个空间里建立有一个最大间隔超平面。在分开数据的超平面的两边建有两个互相平行的超平面。建立方向合适的分隔超平面使两个与之平行的超平面间的距离最大化。其假定为,平行超平面间的距离或差距越大,分类器的总误差越小。一个极好的指南是C.J.CBurges的《模式识别支持向量机指南》。 支持向量概述 所谓支持向量是指那些在间隔区边缘的训练样本点。这里的“机(machine,机器)”实际上是一个算法。在机器学习领域,常把一些算法看做是一个机器。 支持向量机(Supportvectormachines,SVM)与神经网络类似,都是学习型的机制,但与神经网络不同的是SVM使用的是数学方法和优化技术。 相关技术支持 支持向量机是由Vapnik领导的AT&TBell实验室研究小组在1963年提出的一种新的非常有潜力的分类技术,SVM是一种基于统计学习理论的模式识别方法,主要应用于模式识别领域。由于当时这些研究尚不十分完善,在解决模式识别问题中往往趋于保守,且数学上比较艰涩,这些研究一直没有得到充分的重视。直到90年代,统计学习理论(StatisticalLearningTheory,SLT)的实现和由于神经网络等较新兴的机器学习方法的研究遇到一些重要的困难,比如如何确定网络结构的问题、过学习与欠学习问题、局部极小点问题等,使得SVM迅速发展和完善,在解决小样本、非线性及高维模式识别问题中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中。从此迅速的发展起来,现在已经在许多领域(生物信息学,文本和手写识别等)

20.ENVI4.3 支持向量机分类原理、操作及实例分析

ENVI4.3 支持向量机分类原理、操作及实例分析 一、支持向量机算法介绍 1.支持向量机算法的理论背景 支持向量机分类(Support Vector Machine或SVM)是一种建立在统计学习理论(Statistical Learning Theory或SLT)基础上的机器学习方法。 与传统统计学相比,统计学习理论(SLT)是一种专门研究小样本情况下及其学习规律的理论。该理论是建立在一套较坚实的理论基础之上的,为解决有限样本学习问题提供了一个统一的框架。它能将许多现有方法纳入其中,有望帮助解决许多原来难以解决的问题,如神经网络结构选择问题、局部极小点问题等;同时,在这一理论基础上发展了一种新的通用学习方法——支持向量机(SVM),已初步表现出很多优于已有方法的性能。一些学者认为,SLT和SVM正在成为继神经网络研究之后新的研究热点,并将推动机器学习理论和技术的重大发展。 支持向量机方法是建立在统计学习理论的VC维(VC Dimension)理论和结构风险最小原理基础上的,根据有限的样本信息在模型的复杂性(即对特定训练样本的学习精度)和学习能力(即无错误地识别任意样本的能力)之间寻求最佳折衷,以期获得最好的推广能力。 支持向量机的几个主要优点有: (1)它是专门针对有限样本情况的,其目标是得到现有信息下的最优解而不仅仅是样本数趋于无穷大时的最优值; (2)算法最终将转化成为一个二次型寻优问题,从理论上说,得到的将是全局最优点,解决了在神经网络方法中无法避免的局部极值问题; (3)算法将实际问题通过非线性变换转换到高维的特征空间(Feature Space),在高维空间中构造线性判别函数来实现原空间中的非线性判别函数,特殊性质能保证机器有较 好的推广能力,同时它巧妙地解决了维数问题,其算法复杂度与样本维数无关; 2.支持向量机算法简介 通过学习算法,SVM可以自动寻找那些对分类有较大区分能力的支持向量,由此构造出分类器,可以将类与类之间的间隔最大化,因而有较好的推广性和较高的分类准确率。 最优分类面(超平面)和支持向量

支持向量机理论及工程应用实例

《支持向量机理论及工程应用实例》 支持向量机理论及工程应用实例 求助编辑百科名片 《支持向量机理论及工程应用实例》共分为8章,从机器学习的基本问题开始,循序渐进地介绍了相关的内容,包括线性分类器、核函数特征空间、推广性理论和优化理论,从而引出了支持向量机的算法,进而将支持向量机应用到实际的工程实例中。《支持向量机理论及工程应用实例》适合高等院校高年级本科生、研究生、教师和相关科研人员及相关领域的工作者使用。《支持向量机理论及工程应用实例》既可作为研究生教材,也可作为神经网络、机器学习、数据挖掘等课程的参考教材。 书名: 支持向量机理论及工程应用实例 作者: 白鹏 张斌 ISBN : 9787560620510 定价: 16.00 元 出版社: 西安电子科技大学出版社 出版时间: 2008 开本: 16 LIBSVM 的简单介绍 2006-09-20 15:59:48 大 中 小 1. LIBSVM 软件包简介 LIBSVM 是台湾大学林智仁(Chih-Jen Lin)博士等开发设计的一个操作简单、易于使用、快速有效的通用SVM 软件包,可以解决分类问题(包括C- SVC 、n - SVC )、回归问题(包括e - SVR 、n - SVR )以及分布估计 (one-class-SVM )等问题,提供了线性、多项式、径向基和S 形函数四种常

用的核函数供选择,可以有效地解决多类问题、交叉验证选择参数、对不平衡样本加权、多类问题的概率估计等。LIBSVM 是一个开源的软件包,需要者都可以免费的从作者的个人主页 处获得。他不仅提供了LIBSVM的C++语言的算法源代码,还提供了Python、Java、R、MATLAB、Perl、Ruby、LabVIEW以及C#.net 等各种语言的接口,可以方便的在Windows 或UNIX 平台下使用。另外还提供了WINDOWS 平台下的可视化操作工具SVM-toy,并且在进行模型参数选择时可以绘制出交叉验证精度的等高线图。 2. LIBSVM 使用方法简介 LibSVM是以源代码和可执行文件两种方式给出的。如果是Windows系列操作系统,可以直接使用软件包提供的程序,也可以进行修改编译;如果是Unix类系统,必须自己编译。 LIBSVM 在给出源代码的同时还提供了Windows操作系统下的可执行文件,包括:进行支持向量机训练的svmtrain.exe;根据已获得的支持向量机模型对数据集进行预测的svmpredict.exe;以及对训练数据与测试数据进行简单缩放操作的svmscale.exe。它们都可以直接在DOS 环境中使用。如果下载的包中只有C++的源代码,则也可以自己在VC等软件上编译生成可执行文件。 3. LIBSVM 使用的一般步骤是: 1)按照LIBSVM软件包所要求的格式准备数据集; 2)对数据进行简单的缩放操作; 3)考虑选用RBF 核函数; 4)采用交叉验证选择最佳参数C与g ; 5)采用最佳参数C与g 对整个训练集进行训练获取支持向量机模型; 6)利用获取的模型进行测试与预测。 4. LIBSVM使用的数据格式 1)训练数据和检验数据文件格式如下:

相关主题
文本预览
相关文档 最新文档