当前位置:文档之家› 金属焊接性总结

金属焊接性总结

金属焊接性总结
金属焊接性总结

1.金属焊接性:指同质材料或异质材料在制造工艺条件下,能够形成完整接头并满足预期使用要求的能力。包括(工艺焊接性和使用焊接性)。

2.工艺焊接性:金属或材料在一定的焊接工艺条件下,能否获得优质致密无缺陷和具有一定使用性能的焊接接头能力。

3.使用焊接性:指焊接接头和整体焊接结构满足各种性能的程度,包括常规的力学性能。

4.影响金属焊接性的因素:1、材料本因素2、设计因素3、工艺因素4、服役环境

5.评定焊接性的原则:(1)评定焊接接头中产生工艺缺陷的倾向,为制定合理的焊接工艺提供依据;(2)评定焊接接头能否满足结构使用性能的要求。

6.实验方法应满足的原则:1、可比性2、针对性3、再现性4、经济性

7.常用焊接性试验方法

A:斜Y坡口焊接裂纹试验法: 此法主要用于评定碳钢和低合金高强钢焊接热影响区对冷裂纹的敏感性。B:插销试验

C:压板对接焊接裂纹试验法

D:可调拘束裂纹试验法

一问答:“小铁研”实验的目的是什么,适用于什么场合?了解其主要实验步骤,分析影响实验结果稳定性的因素有哪些?

答:1、目的是用于评定用于评定碳钢和低合金高强钢焊接热影响区对冷裂纹的敏感性。评定碳钢和低合金高强钢焊接热影响区对冷裂纹的敏感性时,影响结果稳定因素焊接接头拘束度预热温度角变形和未焊透。(一般认为低合金钢“小铁研实验”表面裂纹率小雨20%时。用于一般焊接结构是安全的)

三合金结构钢的焊接

低碳调质钢的焊接性分析

低碳调质钢主要是作为高强度的焊接结构用钢,因此含碳量限制的较低,在合金成分的设计上考虑了焊接性的要求。低碳调质钢碳的质量分数不超过0.18%,焊接性能远优于中碳调质钢。由于这类钢的焊接热影响区是低碳马氏体,马氏体转变温度Ms较高,所形成的马氏体具有“自回火”特性,使得焊接冷裂纹倾向比中碳调质钢小。

焊缝强韧性匹配:

焊缝强度匹配系数S=(σb)w/(σb)b,是表征接头力学非均质性的参数之一,(σb)w为焊缝强度,(σb)b为母材强度。当(σb)w/(σb)b>1时,为高强匹配;=1为等强匹配。<1为低强匹配低碳调质钢热影响区获得细小的低碳马氏体(ML)组织或下贝氏体(B L)组织时,韧性良好,而韧性最佳的组织为ML与低温转变贝氏体组织(B L)的混合组织下贝氏体的板条间结晶位相差较大,有效晶粒直径取决于板条宽度,比较微细,韧性良好,当ML与B L混合生成时,原奥氏体晶粒被先析出的B L有效地分割,促使ML有更多的形核位置,且限制了ML的生长,因此ML+B L混合组织有效晶粒最为细小。

Ni是发展低温钢的一个重要元素。为了提高钢的低温性能,可加入Ni元素,形成含Ni的铁素体低温钢,如1.5Ni钢等在提高Ni的同时,应降低含碳量和严格限制S、P的含量及N、H、O的含量,防止产生时效脆性和回火脆性等。这类钢的热处理条件为正火、正火+回火和淬火+回火等。

○1在低温钢中由于含碳量和杂质S、P的含量控制的都很严格,所以液化裂纹在这类钢中不是很明显。○2另一个问题是回火脆性,要控制焊后回火温度和冷却速度。

低温钢焊接的工艺特点:除要防止出现裂纹外,关键是要保证焊缝和热影响区的低温韧性,这是制定低温钢焊接工艺的一个根本出发点。

9Ni钢具有优良的低温韧性但用与9Ni钢相似的铁素体焊材时所得焊缝的韧性很差。这除了与铸态焊缝组

织有关外,主要与焊缝中的含氧量有很大的关系。与9Ni钢同质的11Ni铁素体焊材,只有在钨极氩弧焊时才能获得良好的低温韧性。因为此时能使焊缝金属中氧的质量分数降低到与母材相同的0.05%以下。

二、中碳调质钢的焊接性分析

(一)焊缝中的热裂纹中碳调质钢含碳量及合金元素含量都较高,因此液-固相区间

大,偏析也更严重,具有较大的热裂纹倾向。

(二)冷裂纹中碳调质钢由于含碳量高,加入的合金元素多,淬硬倾向明显;由于M s点低,在低温下形成的马氏体一般难以产生自回火效应,冷裂倾向严重。

(三)再热裂纹(四)热影响区的性能变化

1、过热区的脆化

(1)中碳调质钢由于含碳量高,加入的合金元素多,有相当大的淬硬性,因而在焊接过热区内容易产生硬脆的高碳马氏体,冷却速度越大,生成的高碳马氏体越多,脆化倾向越严重。

(2)即使大线能量也难以避免高碳M出现,反而会使M更粗大,更脆。

(3)一般采用小线能量,同时预热、缓冷和后热措施改善过热区性能。

2、热影响区软化

焊后不能进行调质处理时,需要考虑热影响区软化问题。调质钢的强度级别越高,软化问题越严重。软化程度和软化区的宽度与焊接线能量、焊接方法有很大关系。热源越集中的焊接方法,对减小软化越有利。

三、中碳调质钢的焊接工艺特点

(1)中碳调质钢一般在退火状态下焊接,焊后通过整体调质处理才能获得性能满足要求的均匀焊接接头。

(2) 时必须在调质后进行焊接时,热影响区性能恶化往往难以解决。

(3) 焊前所处的状态决定了焊接时出现问题的性质和采取的工艺措施。

一:分析Q345钢的焊接性特点,给出相应的焊接材料及焊接工艺要求。

答:Q345钢属于热轧钢,其碳当量小于0.4%,焊接性良好,一般不需要预热和严格控制焊接热输入,从脆硬倾向上,Q345钢连续冷却时,珠光体转变右移,使快冷下的铁素体析出,剩下富碳奥氏体来不及转变为珠光体,而转变为含碳量高的贝氏体与马氏体具有淬硬倾向,Q345刚含碳量低含锰高,具有良好的抗热裂性能,在Q345刚中加入V、Nb达到沉淀强化作用可以消除焊接接头中的应力裂纹。被加热到1200℃以上的热影响区过热区可能产生粗晶脆化,韧性明显降低,Q345钢经过600℃×1h退火处理,韧性大幅提高,热应变脆化倾向明显减小。;焊接材料:对焊条电弧焊焊条的选择:E5系列。埋弧焊:焊剂SJ501,焊丝H08A/H08MnA.电渣焊:焊剂HJ431、HJ360焊丝H08MnMoA。CO2气体保护焊:H08系列和YJ5系列。预热温度:100~150℃。焊后热处理:电弧焊一般不进行或600~650℃回火。电渣焊900~930℃正火,600~650℃回火

二:Q345与Q390的焊接性有何差异?Q345的焊接工艺是否适用于Q390的焊接,为什么?

答:Q345与Q390都属于热轧钢,化学成分基本相同,只是Q390的Mn含量高于Q345,从而使Q390的碳当量大于Q345,所以Q390的淬硬性和冷裂纹倾向大于Q345,其余的焊接性基本相同。Q345的焊接工艺不一定适用于Q390的焊接,因为Q390的碳当量较大,一级Q345的热输入较宽,有可能使Q390的热输入过大会引起接头区过热的加剧或热输入过小使冷裂纹倾向增大,过热区的脆化也变的严重。

三:低合金高强钢焊接时,选择焊接材料的原则是什么?焊后热处理对焊接材料有什么影响?

答:选择原则:考虑焊缝及热影响区组织状态对焊接接头强韧性的影响。由于一般不进行焊后热处理,要求焊缝金属在焊态下应接近母材的力学性能。中碳调质钢,根据焊缝受力条件,性能要求及焊后热处理情况进行选择焊接材料,对于焊后需要进行处理的构件,焊缝金属的化学成分应与基体金属相近

4.低合金高强钢焊接时,选择焊接材料的原则是什么?焊后热处理对焊接材料有什么影响?

答:选择原则:考虑焊缝及热影响区组织状态对焊接接头强韧性的影响。由于一般不进行焊后热处理,要求焊缝金属在焊态下应接近母材的力学性能。中碳调质钢,根据焊缝受力条件,性能要求及焊后热处理情况进行选择焊接材料,对于焊后需要进行处理的构件,焊缝金属的化学成分应与基体金属相近。

5.分析低碳调质钢焊接时可能出现的问题?简述低碳调质钢的焊接工艺要点,典型的低碳调质钢如

(14MnMoNiB、HQ70、HQ80)的焊接热输入应控制在什么范围?在什么情况下采用预热措施,为什么有最低预热温度要求,如何确定最高预热温度。

答:焊接时易发生脆化,焊接时由于热循环作用使热影响区强度和韧性下降。焊接工艺特点:焊后一般不需热处理,采用多道多层工艺,采用窄焊道而不用横向摆动的运条技术。。典型的低碳调质钢的焊接热输入应控制在Wc?0.18%时不应提高冷速,Wc?0.18%时可提高冷速(减小热输入)焊接热输入应控制在小于481KJ/cm当焊接热输入提高到最大允许值裂纹还不能避免时,就必须采用预热措施,当预热温度过高时不仅对防止冷裂纹没有必要,反而会使800~500℃的冷却速度低于出现脆性混合组织的临界冷却速度,使热影响区韧性下降,所以需要避免不必要的提高预热温度,包括屋间温度,因此有最低预热温度。通过实验后确定钢材的焊接热输入的最大允许值,然后根据最大热输入时冷裂纹倾向再来考虑,是否需要采取预热和预热温度大小,包括最高预热温度。

6.低碳调质钢和中碳调质钢都属于调质钢,他们的焊接热影响区脆化机制是否相同?为什么低碳钢在调质状态下焊接可以保证焊接质量,而中碳调质钢一般要求焊后热处理?

答:低碳调质钢:在循环作用下,t8/5继续增加时,低碳钢调质钢发生脆化,原因是奥氏体粗化和上贝氏体与M-A组元的形成。中碳调质钢:由于含碳高合金元素也多,有相当大淬硬倾向,马氏体转变温度低,无自回火过程,因而在焊接热影响区易产生大量M组织大致脆化。低碳调质钢一般才用中、低热量对母材的作用而中碳钢打热量输入焊接在焊后进行及时的热处理能获得最佳性能焊接接头。

8.同一牌号的中碳调质钢分别在调质状态和退火状态进行焊接时焊接工艺有什么差别?为什么中碳调质钢一般不在退火的状态下进行焊接?答:在调质状态下焊接,若为消除热影响区的淬硬区的淬硬组织和防止延迟裂纹产生,必须适当采用预热,层间温度控制,中间热处理,并焊后及时进行回火处理,若为减少热影响的软化,应采用热量集中,能量密度越大的方法越有利,而且焊接热输入越小越好。

在退火状态下焊接:常用焊接方法均可,选择材料时,焊缝金属的调质处理规范应与母材的一致,主要合金也要与母材一致,在焊后调质的情况下,可采用很高的预热温度和层间温度以保证调质前不出现裂纹。因为中碳调质钢淬透性、淬硬性大,在退火状态下焊接处理不当易产生延迟裂纹,一般要进行复杂的焊接工艺,采取预热、后热、回火及焊后热处理等辅助工艺才能保证接头使用性能。

10低温钢用于-40度和常温下使用时在焊接工艺和材料上选择是否有所差别?why?

答:低温钢为了保证焊接接头的低温脆化及热裂纹产生要求材料含杂质元素少,选择合适的焊材控制焊缝成分和组织形成细小的针状铁素体和少量合金碳化物,可保证低温下有一定的A K要求。对其低温下的焊接工艺选择采用SMAW时用小的线能量焊接防止热影响区过热,产生W F和粗大M,采用快速多道焊减少焊道过热。采用SAW时,可用振动电弧焊法防止生成柱状晶。

第四章不锈钢及耐热钢的焊接

不锈钢:指在大气环境下及有侵蚀性化学介质中使用的钢。

耐热钢:包括抗氧化钢和热强钢。抗氧化钢指在高温下具有抗氧化性能的钢,对高温强度要求不高。

热强钢:指在高温下即具有抗氧化能力,又要具有高温强度。

热强性:指在高温下长时工作时对断裂的抗力(持久强度),或在高温下长时工作时抗塑性变形的能力(蠕变抗力)。

※部分概念:

1.铬当量:在不锈钢成分与组织间关系的图中各形成铁素体的元素,按其作用的程度折算成Cr元素(以Cr的作用系数为1)的总和,即称为Cr当量。

2.镍当量:不锈钢成分与组织间关系的图中各形成奥氏体的元素按其作用的程度,折算成Ni元素(以Ni 的作用系数为1)的总和,即称为Ni当量。

3. 4750 C脆化: 高铬铁素体不锈钢在400~540度范围内长期加热会出现这种脆性,由于其最敏感的温度在475度附近,故称475度脆性,此时钢的强度、硬度增加,而塑性、韧性明显下降。

4.凝固模式:凝固模式首先指以何种初生相(γ或δ)开始结晶进行凝固过程,其次是指以何种相完成凝

固过程。四种凝固模式:以δ相完成凝固过程,凝固模式以F表示;初生相为δ,然后依次发生包晶反应和共晶反应,凝固模式以FA表示;初生相为γ,然后依次发生包晶反应和共晶反应,凝固模式以AF表示;初生相为γ,直到凝固结束不再发生变化,用A表示凝固模式。

5.应力腐蚀裂纹:在应力和腐蚀介质共同作用下,在低于材料屈服点和微弱的腐蚀介质中发生的开裂形式

6.σ相脆化:σ相是一种脆硬而无磁性的金属间化合物相,具有变成分和复杂的晶体结构。

25-20钢焊缝在800~875℃加热时,γ向σ转变非常激烈。在稳定的奥氏体钢焊缝中,可提高奥氏体化元素镍和氮,克服σ脆化。

7、晶间腐蚀:在晶粒边界附近发生的有选择性的腐蚀现象。

8、贫铬机理:过饱和固溶的碳向晶粒边界扩散。与边界附近的铬形成铬的碳化物CR23C16或(Fe、Cr)C6并在晶界析出,由于碳比铬扩散的快的多,铬来不及从晶内补充到晶界附近,以至于邻近晶界的晶粒周边层Cr的质量分数低于12%,即所谓“贫铬”现象

奥氏体不锈钢焊接性分析

(一)接头耐蚀性

1、晶间腐蚀有代表性的18-8钢焊接接头,有三个部位出现晶间腐蚀现象,包括焊缝区腐蚀、敏化区腐蚀、熔合区腐蚀。

(1)焊缝区晶间腐蚀

防止焊缝区晶间腐蚀,采取措施有:错误!未找到引用源。通过焊接材料,使焊缝金属或者成为超低碳情况,或含有足够的稳定化元素Nb,一般希望Nb≥8%或Nb≈1%;错误!未找到引用源。调整焊缝成分以获得一定的铁素体(δ)相。

焊缝中δ相的作用:一是可以打乱单一γ相柱状晶的方向性,不致形成连续贫铬层;二是δ相富Cr,有良好的供Cr条件,可减少γ晶粒形成贫铬层。常希望焊缝中存在4%~12%的δ相。

(2)HAZ敏化区晶间腐蚀

错误!未找到引用源。HAZ敏化区晶间腐蚀,指焊接热影响区中加热峰值温度处于敏化加热区间的部位所发生的晶间腐蚀。

错误!未找到引用源。只有普通18-8钢才会有敏化区存在,含Ti或Nb的18-8Ti或18-8Nb,以及超低碳的18-8钢,不易有敏化区出现。防止18-8钢敏化区腐蚀,在焊接工艺上应采取快速过程,以减少处于敏化加热去区间。

(3)熔合区刀口腐蚀

在熔合区产生的晶间腐蚀,有如刀削切口形式,故称为“刀口腐蚀”。刀口腐蚀只发生在含Nb或含Ti的18-8Nb或18-8Ti钢的熔合区。其实质是因M23C6沉淀而形成贫铬层。18-8Ti在焊接时熔合区高温过热,大部分TiC溶解,冷却时,碳在晶界附近成为过饱和状态,再经过450~850℃中温加热,在晶界将发生M23C6沉淀而形成晶界贫铬。越靠近熔合线,贫铬越严重,因此形成“刀口腐蚀”。

2、应力腐蚀开裂SCC: 应力加腐蚀介质

(1)焊接应力作用应力腐蚀开裂的拉应力来源于焊接残余应力超过30%。在氯化物介质中,引起SCC 的临界应力接近奥氏体钢的屈服点。在高温高压水中,引起SCC的临界应力远小于屈服点。防止应力腐蚀开裂,退火消除焊接残余应力最为重要。

(2)合金成分的作用材质与介质有一定的匹配性才会发生SCC。焊缝中含有一定量的δ有利于提高氯化物介质中耐SCC性能。在氯化物介质中提高镍含量有利。Si能使氧化膜致密而有利。如果SCC的根源是点蚀坑,Mo有利于防止。超低碳有利于防止SCC。

3、点蚀不锈钢的点蚀较难控制

含Mo钢耐点蚀性能比不含的要好。18-8 Mo比18-8耐点蚀性能好。双相钢的耐点蚀性能最好。为提高点蚀性能,一方面须减少Cr、Mo的偏析;另一方面采用较母材更高Cr、Mo含量的超合金化焊接材料,提高含Ni量。

产生热裂纹的原因?

1、奥氏体钢的导热系数小和线胀系数大,在焊接局部加热和冷却条件下,接头在冷却过程中可形成较大的拉应力。

2、奥氏体钢易于联生结晶形成方向性强的柱状晶的焊缝组织,有利于有害杂质偏析,而促使形成晶间液膜。

3、奥氏体钢及焊缝的合金组成复杂,不仅S、P、Sn、Sb之类会形成易溶液膜,一些合金元素因溶解度有限(如Si、Nb),也可能形成易溶共晶。

选择焊接材料注意问题:

1、应坚持“适用性原则”。

2、根据所选各焊接材料的具体成分来确定是否适用。

3、考虑具体应用的焊接方法和工艺参数可能造成的熔合比大小。

4、根据技术条件规定的全面焊接性要求来确定合金化程度

5、不仅要重视焊缝金属合金系统,而且要注意具体合金成分在该合金系统中的作用;不仅考虑使用性能的要求,要考虑防止焊接缺陷的工艺焊接性要求。

焊接工艺要点:

1、合理选择焊接方法

2、控制焊接参数

3、接头设计合理性应给予足够的重视

4、尽可能控制焊接工艺的稳定以保证焊缝金属成分稳定

5、控制焊缝成形

6、防止工件表面污染

(141页重点略)(注意)

马氏体不锈钢焊前热处理和焊后热处理的特点:

答:采用同质焊缝焊接马氏体不锈钢时,为防止接头形成冷裂纹,易采取预热措施。预热温度的选择与材料的厚度,填充金属的种类,焊接方法和接头的拘束度有关,其中与碳含量关系最大。

马氏体不锈钢预热温度不宜过高,否者使奥氏体晶粒粗大,并且随冷却温度降低,还会形成粗大铁素体加晶界碳化物组织,使焊接接头塑性和强度均有所下降。

焊后热处理的目的是降低焊缝和热影响区的硬度,改善其塑性和韧性,同时减少焊接残余应力。

焊后热处理必须严格限制焊件的温度,焊件焊后不可随意从焊接温度直接升温进行回火热处理。

3. 18-8型不锈钢焊接接头区域在那些部位可能产生晶间腐蚀,是由于什么原因造成?如何防止?答:18-8型焊接接头有三个部位能出现腐蚀现象:{1}焊缝区晶间腐蚀。产生原因根据贫铬理论,碳与晶界附近的Cr形成Cr23C6,并在在晶界析出,导致γ晶粒外层的含Cr量降低,形成贫Cr层,使得电极电位下降,当在腐蚀介质作用下,贫Cr层成为阴极,遭受电化学腐蚀;{2}热影响区敏化区晶间腐蚀。是由于敏化区在高温时易析出铬的碳化物,形成贫Cr层,造成晶间腐蚀;{3}融合区晶间腐蚀{刀状腐蚀}。只发生在焊Nb 或Ti的18-8型钢的融合区,其实质也是与M23C6沉淀而形成贫Cr有关,高温过热和中温敏化连过程依次作用是其产生的的必要条件。防止方法:{1}控制焊缝金属化学成分,降低C%,加入稳定化元素Ti、Nb;{2}控制焊缝的组织形态,形成双向组织{γ+15%δ};{3}控制敏化温度范围的停留时间;{4}焊后热处理:固溶处理,稳定化处理,消除应力处理。

5.奥氏体钢焊接时为什么常用“超合金化”焊接材料?

答:为提高奥氏体钢的耐点蚀性能,采用较母材更高Cr、Mo含量的“超合金化”焊接材料。提高Ni含量,晶轴中Cr、Mo的负偏析显著减少,更有利于提高耐点蚀性能。

6.铁素体不锈钢焊接中容易出现什么问题?焊条电弧焊和气体保护焊时如何选择焊接材料?在焊接工艺上有什么特点?

答:易出现问题:{1}焊接接头的晶间腐蚀;{2}焊接接头的脆化①高温脆性②σ相脆化③475℃脆化。SMAW 要求耐蚀性:选用同质的铁素体焊条和焊丝;要求抗氧化和要求提高焊缝塑性:选用A焊条和焊丝。CO2气保焊选用专用焊丝H08Cr20Ni15VNAl。焊接工艺特点:{1}采用小的q/v,焊后快冷——控制晶粒长大;{2}采用预热措施,T℃<=300℃——接头保持一定ak;{3}焊后热处理,严格控制工艺——消除贫Cr 区;{4}最大限度降低母材和焊缝杂质——防止475℃脆性产生;{5}根据使用性能要求不同,采用不同焊材和工艺方法。

9.双相不锈钢的成分和性能特点,与一般A不锈钢相比双相不锈钢的焊接性有何不同?在焊接工艺上有什么特点?

答:双相不锈钢是在固溶体中F和A相各占一半,一般较少相的含量至少也要达到30%的不锈钢。这类钢

综合了A不锈钢和F不锈钢的优点,具有良好的韧性、强度及优良的耐氧化物应力腐蚀性能。与一般A不锈钢相比:{1}其凝固模式以F模式进行;{2}焊接接头具有优良的耐蚀性,耐氯化物SCC性能,耐晶间腐蚀性能,但抗H2S的SCC性能较差;{3}焊接接头的脆化是由于Cr的氮化物析出导致;{4}双相钢在一般情况下很少有冷裂纹,也不会产生热裂纹。焊接工艺特点:{1}焊接材料应根据“适用性原则”,不同类型的双向钢所用焊材不能任意互换,可采取“适量”超合金化焊接材料;{2}控制焊接工艺参数,避免产生过热现象,可适当缓冷,以获得理想的δ/γ相比例;{3}A不锈钢的焊接注意点同样适合双相钢的焊接。

第五章有色金属的焊接

冷作硬化:钢材在常温或再结晶温度以下的加工,能显著提高强度和硬度降低塑性和韧性。

焊接时最容易出现的焊接性问题及基本原因,防止的针对性措施:

主要问题是:焊缝中气孔,焊接热裂纹,焊接接头与母材的等强性。

(1)气孔。最常见的缺陷。氢是铝及其合金产生气孔的主要原因,氢的来源有弧柱气氛中的水分,焊接材料及母材中的水分。

针对性措施:减少氢的来源;控制工艺措施。

(2)热裂纹:铝及其合金的线膨胀系数大,在拘束条件下焊接易产生较大的焊接应力。

针对性措施:合金系统的影响;焊丝成分影响;焊接工艺的影响。

1.为什么Al-Mg及al-li合金焊接时易形成气孔?al及其合金焊接时产生气孔的原因是什么?如何防止气孔?为什么纯铝焊接易出现分散小气孔?而al-mg焊接时易出现焊接大气孔?

答:1)氢是铝合金及铝焊接时产生气孔的主要原因。

2)氢的来源非常广泛,弧柱气氛中的水分,焊接材料以及母材所吸附的水分,焊丝及母材表面氧化膜的吸附水,保护气体的氢和水分等都是氢的来源。

3)氢在铝及合金中的溶解度在凝点时可从0.69ml/100g突降至0.036mol/100g相差约20倍,这是促使焊缝产生气孔的重要原因之一。

4)铝的导热性很强,熔合区的冷速很大,不利于气泡的浮出,更易促使形成气孔

防止措施:

1)减少氢的来源,焊前处理十分重要,焊丝及母材表面的氧化膜应彻底清除。2)控制焊接参数,采用小热输入减少熔池存在时间,控制氢溶入和析出时间3)改变弧柱气氛中的性质

原因:1)纯铝对气氛中水分最为敏感,而al-mg合金不太敏感,因此纯铝产生气孔的倾向要大2)氧化膜不致密,吸水强的铝合金al-mg比氧化膜致密的纯铝具有更大的气孔倾向,因此纯铝的气孔分数小,而al-mg 合金出现集中大气孔3)Al-mg合金比纯铝更易形成疏松而吸水强的厚氧化膜,而氧化膜中水分因受热而分解出氢,并在氧化膜上萌出气泡,由于气泡是附着在残留氧化膜上,不易脱离浮出,且因气泡是在熔化早期形成有条件长大,所以常造成集中大的气孔。因此al-mg合金更易形成集中的大气孔。

第六章铸铁焊接

拘束度:衡量焊接接头刚性大小的一个定量指标。拘束度有拉伸和弯曲两类:拉伸拘束度是焊接接头根部间隙产生单位长度弹性位移时,焊缝每单位长度上受力的大小;弯曲拘束度是焊接接头产生单位弹性弯曲角变形时,焊缝每单位长度上所受弯矩的大小。

对于机构复杂或厚大灰铸铁件上的缺陷焊补,焊接方向和顺序的合理安排非常重要,应本着拘束度大的部位向拘束度小的部位焊接的原则

为避免陶瓷与金属接头出现裂纹,除添加中间层或合理选用钎料外,可采取以下工艺措施:

(1)合理选择被焊陶瓷与金属,在不影响焊接接头使用性能的条件下,尽可能使两者的线膨胀系数相差最小。

(2)应尽可能地减少焊接部位及其附近温度梯度,控制加热和冷却温度;降低冷却速度,有利于应力松弛而使应力减少。

(3)采取缺口、突起和端部变薄等措施合理设计陶瓷与金属的接头结构。

珠光体-奥氏体异种钢焊接时,过渡区出现脆化是什么原因?如何防止?

金属焊接性试题

一、名词解释 1.工艺焊接性:在一定工艺焊接条件下,能否获得优质、无缺陷的焊接接头的能力。 2.碳当量:把钢中包括碳在内的合金元素对淬硬、冷裂及脆化等的影响折合成碳的相当含量。 3.晶间腐蚀:是起源于金属表面沿金属晶界发生的有选择的深入金属内部的腐蚀。 4.高温脆性:指钢在变形温度为0.4~0.6TT时所出现的高温塑形急剧下降的现象。 5.焊接性:金属材料对焊接加工的适应性和使用的可靠性。 6.半热焊:正焊前将铸件整体或局部预热到300℃~400℃,在焊补过程中保持这一温度,并在焊后采取缓 冷措施的工艺方法称为热焊。 7.σ相脆性:指不论母材还是焊缝,在ω(Cr)>21%,并且在520~820℃之间长期加热形成的硬而脆的铁铬 金属间化合物。 8.调质钢:含碳量在0.3-0.6%的中碳钢。 9.刀状腐蚀:简称刀蚀,它是焊接接头中特有的一种晶间腐蚀,只发生在含有Ti、Nb等稳定化元素的 奥氏体不锈钢焊接接头中。腐蚀部位沿熔合线发展,处于HAZ的过热区,由于区域很窄,形状有如刀削缺口,故称为刀状腐蚀。 10.使用焊接性:焊接接头或整体结构满足技术条件中所规定的使用性能的程度。 11.不锈钢:指主加元素铬的质量分数ω(Cr)>12%的钢。 12.奥氏体不锈钢:是指在常温下具有奥氏体组织的不锈钢。钢中含Cr约18%、Ni 8%~10%、C约0.1% 时,具有稳定的奥氏体组织。 13.沉淀硬化不锈钢:在不锈钢中单独或复合添加硬化元素,通过适当的热处理获得高强度、高韧性并具 有良好耐蚀性的一类不锈钢。 14.固溶处理:指将合金加热到高温单相区恒温保持,使过剩相充分溶解到固溶体中后快速冷却,以得到 过饱和固溶体的热处理工艺。 15.475℃脆性:铁素体钢在ω(Cr)≥15.5%,并在温度400~500℃长期加热后,常常出现强度升高而韧 性下降的现象。 16.耐热钢:在高温下具有较高的强度和良好的化学稳定性的合金钢。它包括抗氧化钢(或称高温不起皮 钢)和热强钢两类。 17.应力腐蚀开裂:在拉伸应力与腐蚀介质的共同作用下产生的断裂。 18.热裂纹:是指焊接过程中,焊缝和热影响区金属冷却到固相线附近的高温区间产生的焊接裂纹。 19.冷裂纹:指的是焊接接头冷却到较低温度时产生的焊接裂纹。 20.热焊:正焊前将铸件整体或局部预热到600℃~700℃,在焊补过程中保持这一温度,并在焊后采取缓冷 措施的工艺方法称为热焊。 21.高强度钢:屈服点TT≥295TTT、抗拉强度TT≥390TTT的钢。 22.热影响区:在焊接热循环作用下,焊缝两侧处于固态的母材发生明显的组织和性能变化的区域,称为 焊接热影响区。 二、填空 1.焊接性是金属材料的一种工艺性能,除了受材料本身性质影响外,还受到工艺条件、(结构条件)和(使用条件)的影响。 2.中、高碳钢焊后若(冷却)速度较快,则可能在焊缝和热影响区形成(马氏体)组织,导致裂纹倾向增大。 3.一根45钢,Φ75mm机轴,采用焊接方法连接,焊接接头处就、开坡口,预热温度为(200℃),采用(E5015)焊条。 4.热轧及正火钢随着合金元素的增加,焊接的问题主要来至于两方面,即:(热影响区的脆化)与(冷裂纹)。 5.焊接低温钢时所选用的焊接材料必须使焊缝金属具有与母材相近的(低温韧性)和(线膨胀系数)。

金属材料的焊接性能汇总

金属材料的焊接性能 (2014.2.27) 摘要:对各种常用金属材料的焊接性能进行研究,通过参考各类焊接丛书及焊接前辈多年的经验总结,对常用金属材料的焊接工艺可行性起指导作用。 关键词:碳当量;焊接性;焊接工艺参数;焊接接头 1 前言 随着中国特种设备制造业的不断发展,我们在制造产品时所用到的金属材料种类也在不断增加,相应地所必须掌握的各种金属材料的焊接性能也在不断研究和更新中,为了实际产品制造的焊接质量,熟悉金属材料的焊接性能,以制定正确的焊接工艺参数,从而获得优良的焊接接头起到至关重要的指导作用。 2 金属材料的焊接性能 2.1 金属材料焊接性的定义及其影响因素 2.1.1 金属材料焊接性的定义 金属材料的焊接性是指金属材料在采用一定的焊接工艺包括焊接方法、焊接材料、焊接规范及焊接结构形式等条件下,获得优良焊接接头的能力。一种金属,如果能用较多普通又简便的焊接工艺获得优良的焊接接头,则认为这种金属具有良好的焊接性能金属材料焊接性一般分为工艺焊接性和使用焊接性两个方面。 工艺焊接性是指在一定焊接工艺条件下,获得优良,无缺陷焊接接头的能力。它不是金属固有的性质,而是根据某种焊接方法和所采用的具体工艺措施来进行的评定。所以金属材料的工艺焊接性与焊接过程密切相关。 使用焊接性是指焊接接头或整个结构满足产品技术条件规定的使用性能的程度。使用性能取决于焊接结构的工作条件和设计上提出的技术要求。通常包括力学性能、抗低温韧性、抗脆断性能、高温蠕变、疲劳性能、持久强度、耐蚀性能和耐磨性能等。例如我们常用的S30403,S31603不锈钢就具有优良的耐蚀性能,16MnDR,09MnNiDR低温钢也有具备良好的抗低温韧性性能。

焊接冶金学习题总结

焊接冶金学(基本原理) 部分习题及答案 绪论 一、什么是焊接,其物理本质是什么? 1、定义:焊接通过加热或加压;或两者并用,使焊件达到原子结合,从而形成永久性连接工艺。 2、物理本质:焊接的物理本质是使两个独立的工件实现了原子间结合,对于金属而言,既实现了金属键结合。 二、怎样才能实现焊接,应有什么外界条件? 1、对被焊接的材质施加压力:目的是破坏接触表面的氧化膜,使结合处增加有效的接触面积,从而达到紧密接触。 2、对被焊材料加热(局部或整体):对金属来讲,使结合处达到塑性或熔化状态,此时接触面的氧化膜迅速破坏,降低金属变形的阻力,加热也会增加原于的振动能,促进扩散、再结晶、化学反应和结晶过程的进行。 三、试述熔焊、钎焊在本质上有何区别? 钎焊母材不溶化,熔焊母材溶化。 1.温度场定义,分类及其影响因素。 1、定义:焊接接头上某一瞬间各点的温度分布状态。 2、分类: 1)稳定温度场——温度场各点温度不随时间而变动; 2)非稳定温度场——温度场各点随时间而变动; 3)准稳定温度场——温度随时间暂时不变动,热饱和状态;或随热源一起移动。 3、影响因素: 1)热源的性质 2)焊接线能量 3)被焊金属的热物理性质

a.热导率 b.比热容 c.容积比热容 d.热扩散率 e.热焓 f.表面散热系数 4)焊件厚板及形状

第一章 二、焊接化学冶金分为哪几个反应区,各区有何特点? 1、药皮反应区:指焊条受热后,直到焊条药皮熔点前发生的一些反应。(100-1200℃) 1)水分蒸发:100 ℃吸附水的蒸发,200-400 ℃结晶水的去除,化合水在更高 温度下析出 2)某些物质分解:形成Co,CO2,H2O,O2等气体 3)铁合金氧化:先期氧化,降低气相的氧化性 2、熔滴反应区:指熔滴形成、长大、脱离焊条、过渡到整个熔池 1)温度高:1800-2400℃ 2)与气体、熔渣的接触面积大:1000-10000 cm2/kg 3)时间短速度快:;熔渣和熔滴金属进行强烈的搅拌,混合. 3、熔池反应区 1)反应速度低 熔池T 1600~1900℃低于熔滴T ;比表面积,接触面积小300~1300cm2/kg;时间长,手工焊3~8秒埋弧焊6~25s 2)熔池温度不均匀的突出特点 熔池前斗部分发生金属熔化和气体的吸收,利于吸热反应熔池后斗部分发生金属凝固和气体的析出,利于放热反应 3)具有一定的搅拌作用 促进焊缝成分的均匀化,有助于加快反应速度,有益于气体和夹渣物的排除。然而,没有熔滴阶段激烈。 三、焊接区内有那些气体?它们是怎样产生的? 1、种类:金属及熔渣蒸气 2、来源: 1)焊接材料 2)气体介质

金属焊接与切割试题Word版

山东省2008年安全培训机构师资培训班试卷 金属焊接与切割试题 一、单项选择题(将正确答案的代号填入括号内,每题1分,共40分) 1、我国安全生产方针的思想核心是( )。 A.安全第一 B.以人为本 C.预防为主 D.以人为主 2、只有掌握了安全生产( )知识,才能维护自己的合法安全生产权益不受侵害。 A.政策 B.法规 C.法律、法规 D. 操作技术 3、生产经营活动在谁的行政管辖范围内,即由谁负责管理其安全生产活动,这叫( )管理原则。 A.直辖 B.属地 C.垂直 D.直接 4、对从事特种作业人员的年龄要求是( )。 A.年满16周岁 B.年满20周岁 C.年满19周岁 D.年满18周岁 5、电流对人体的伤害分为( )两种类型。 A.烧伤与电伤 B. 电击与电伤 C.电击与触电 D. 电击与辐射 6、电焊机接地时,接地线路总电阻不应超过( )欧姆。 A.2 B. 4 C. 5 D.10 7、直接与空气形成爆炸性混合物的有:( )。 A.可燃性气体、可燃性固体、可燃性粉尘 B.可燃性气体、可溶性液体、可燃性粉尘 C.可燃性气体、可燃性液体、可燃性灰尘 D.可燃性气体、可燃性液体、不燃性粉尘 8、乙炔与氧气混合的爆炸极限范围是( )。 A.4.8~93% B.2.8~93% C.2.8~73% D.2.9~93% 9、焊补燃料容器和管道的常用安全措施有两种,称为:( )。 A.置换焊补、带压置换焊补 B.置换焊补、带压不置换焊补 C.大电流焊补、带压不置换焊补 D. 置换焊补、带料焊补 10、触电事故可分为直接电击和( )两种。 A.间接电伤 B.间接电击 C.间隔电击 D.意外电击 11、成人的感知电流约为( )mA 。 A.10 B.5 C. 1 D. 2 12、水下作业时的安全电压为( )。 A. 3.5伏 B. 2.5伏 C. 2.0伏 D. 2.8伏 13、置换焊补防爆的关键是( )。 A.用惰性介质多置换几遍 B.安全隔离 C.控制可燃物质的含量符合动火要求D 、用小电流焊接 14、带压不置换焊补的关键安全措施是( )。 A.调节好焊接参数, B.正压操作 C.可燃气体浓度较小 D. 操作者技术水平高 15、在焊接过程中,空气中的氧在( )的激发下大量地被破坏,生成臭氧。 A.电极 B. 红外线 C.短波紫外线 D.可见光 16、水射流切割利用的工作介质是( )。 A.高密度水 B.高压水 C. 气流 D.高压电 17、人体电阻值一般为( )Ω。 A.80 B.1000 C. 50 D. 10000 18、水下焊割时,气管与电缆每隔( )应扎牢。 山东大学安全技术培训中心试卷 姓名: 工作单位: 学号: 密 封 线 内 不 要 答 题 ………… 。。。。。。。。。。。。。。。 。。。………..

金属的焊接性

金属的焊接性 一、金属焊接性 1.概念:金属焊接性就是金属是否能适应焊接加工而形成完整的、具备一定使用性能的焊接接头的特性。 含义:一是金属在焊接加工中是否容易形成缺陷;二是焊成的接头在一定的使用条件下可靠运行的能力。 评价标准:如果某种金属采用简单的焊接工艺就可获得优质焊接接头并且具有良好的使用性能或满足技术条件的要求,就称其焊接性好;如果只有采用特殊的焊接工艺才能不出缺陷,或者焊接热过程会使接头热影响区性能显著变坏以至不能满足使用要求,则称其焊接性差。 2.影响焊接性的因素 1)材料因素 材料是指用于制造结构的金属材料及焊接所消耗的材料。前者称为母材或基本金属,即被焊金属。后者称为焊接材料包括焊条、焊丝、焊剂、保护气体等。 材料因素包括化学成分、冶炼轧制状态、热处理状态、组织状态和力学性能等。其中化学成分(包括杂质的分布与含量)是主要的影响因素。碳对钢的焊接性影响最大。含碳量越高,焊接热影响区的淬硬倾向越大,焊接裂纹的敏感性越大。也就是说,含碳量越高焊接性越差。除碳外钢中的一些杂质如氧、硫、磷、氢、氮以及合金钢中常用的合金元素锰、铬、钴、铜、硅、钼、钛、铌、钒、硼等都不同程度地增加了钢的淬硬倾向使焊接性变差。 若焊接材料选择不当或成分不合格,焊接时也会出现裂纹、气孔等缺陷,甚至会使接头的强度、塑性、耐蚀性等使用性能变差。 2)设计因素 设计因素是指焊接结构在使用中的安全性不但受到材料的影响而且在很大程度上还受到结构形式的影响。例如结构刚度过大或过小,断面突然变化,焊接接头的缺口效应,过大的焊缝体积以及过于密集的焊缝数量,都会不同程度地引起应力集中,造成多向应力状态而使结构或焊接接头脆断敏感性增加。 3)工艺因素 工艺因素包括施焊方法(如手工焊、埋弧焊、气体保护焊等)、焊接工艺(包括焊接规范参数、焊接材料、预热、后热、装配焊接顺序)和焊后热处理等。在结构材料和焊接材料选择正确、结构设计合理的情况下工艺因素是对结构焊接质量起决定性作用的因素。 4)使用因素 使用因素指焊接结构的工作温度、负荷条件(动载、静载、冲击、高速等)和工作环境(化工区、沿海及腐蚀介质等)。一般来讲环境温度越低钢结构越易发生脆性破坏,承受交变载荷的焊接结构易发生疲劳破坏。 二、如何分析金属的焊接性 (一)从金属的特性分析焊接性 1.化学成分 1)碳当量法 钢材中的各种元素,碳对淬硬及冷裂影响最显著,所以有人将钢材中各种元素的作用按照相当于若干含碳量折合并迭加起来,求得所谓的“碳当量”(C eq),以C eq值的大小估价冷裂纹倾向的大小,认为C eq值越小,钢材的焊接性能越好。 碳当量公式没有考虑元素之间的交互作用,也没有考虑板厚、结构拘束度、焊接工艺、含氢量等因素的影响。因而用碳当量评价焊接性是比较粗略的,使用时应注意条件。 2)焊接冷裂纹敏感系数

材料焊接性考试重点试题及答案

3.5.分析低碳调质钢焊接时可能出现的问题?简述低碳调质钢的焊接工艺要点,典型的低碳调质钢如(14MnMoNiB、HQ70、HQ80)的焊接热输入应控制在什么范围?在什么情况下采用预热措施,为什么有最低预热温度要求,如何确定最高预热温度。 答:焊接时易发生脆化,焊接时由于热循环作用使热影响区强度和韧性下降。焊接工艺特点:焊后一般不需热处理,采用多道多层工艺,采用窄焊道而不用横向摆动的运条技术。。典型的低碳调质钢的焊接热输入应控制在Wc>0.18%时不应提高冷速,Wc<0.18%时可提高冷速(减小热输入)焊接热输入应控制在小于481KJ/cm当焊接热输入提高到最大允许值裂纹还不能避免时,就必须采用预热措施,当预热温度过高时不仅对防止冷裂纹没有必要,反而会使800~500℃的冷却速度低于出现脆性混合组织的临界冷却速度,使热影响区韧性下降,所以需要避免不必要的提高预热温度,包括屋间温度,因此有最低预热温度。通过实验后确定钢材的焊接热输入的最大允许值,然后根据最大热输入时冷裂纹倾向再来考虑,是否需要采取预热和预热温度大小,包括最高预热温度。 4.3. 18-8型不锈钢焊接接头区域在那些部位可能产生晶间腐蚀,是由于什么原因造成?如何防止?答:18-8型焊接接头有三个部位能出现

腐蚀现象:{1}焊缝区晶间腐蚀。产生原因根据贫铬理论,碳与晶界附近的Cr形成Cr23C6,并在在晶界析出,导致γ晶粒外层的含Cr量降低,形成贫Cr层,使得电极电位下降,当在腐蚀介质作用下,贫Cr层成为阴极,遭受电化学腐蚀;{2}热影响区敏化区晶间腐蚀。是由于敏化区在高温时易析出铬的碳化物,形成贫Cr层,造成晶间腐蚀;{3}融合区晶间腐蚀{刀状腐蚀}。只发生在焊Nb或Ti的18-8型钢的溶合区,其实质也是与M23C6沉淀而形成贫Cr有关,高温过热和中温敏化相继作用是其产生的的必要条件。防止方法:{1}控制焊缝金属化学成分,降低含碳量,加入稳定化元素Ti、Nb;{2} 控制焊缝的组织形态,形成双向组织{γ+15%δ};{3}控制敏化温度范围的停留时间;{4}焊后热处理:固溶处理,稳定化处理,消除应力处理。 4.7何为“脆化现象”?铁素体不锈钢焊接时有哪些脆化现象,各发生在 什么温度区域?如何避免?答:“脆化现象”就是材料硬度高,但塑性 和韧性差。现象与避免措施:{1}高温脆性:在900~1000℃急冷至 室温,焊接接头HAZ的塑性和韧性下降。可重新加热到750~850℃, 便可恢复其塑性。{2}σ相脆化:在570~820℃之间加热,可析出σ相 。σ相析出与焊缝金属中的化学成分、组织、加热温度、保温时间以 及预先冷变形有关。加入Mn、Nb使σ相所需Cr的含量降低,Ni能使形成σ相所需温度提高。{3}475℃脆化:在400~500℃长期加热后可出 现475℃脆化。适当降低含Cr量,有利于减轻脆化,若出现475℃脆

金属焊接性复习总结

第一章: 1. 金属焊接性:金属能否适应焊接加工而形成完整的、具备一定使用性能的焊接接头的特性。它的内涵:1、是否适合焊接加工?--金属在焊接加工中是否容易形成缺陷2、焊后使用可靠性?--性能焊成的接头在一定的使用条件下可靠使用的能力。 2.影响金属焊接性的因素:1、材料本身因素—母材和焊接材料的成分及性能2、工艺条件—焊接方法、工艺措施;3、结构因素—刚度、应力集中、多轴应力;4、使用条件—工作温度、负荷条件、工作环境。3.金属的焊接性的分析方法:(一)从金属特性分析金属焊接性1、利用金属本身的化学成分分析(1)碳当量法:指将各种元素按相当于若干含碳量折合并叠加起来求得所谓碳当量(CE和Ccq),用其来估计冷裂倾向的大小。CE=C+Mn/6+Ni+Cu/15+Cr+Mo+V/ (2)焊接冷裂纹敏感指数Pc=C+Si/30+Mn/20+Ni/60+Cr/20+Mo/15+V/10+5B+δ/600+H/60(%)式中δ—板厚(mm)H—焊缝中扩散氢含量(ml/100g). 2、利用金属本身的物理性能分析: 3、利用金属本身的化学性能分析4、利用合金相图分析(二)从焊接工艺条件分析焊接性: 1、热源特点2、保护方法3、热循环控制4、其他工艺因素 4. 选择或制定焊接性试验方法的原则: 1、焊接性试验的条件尽量与实际焊接时的条件相一致。 2、焊接性试验的结果要稳定可靠,具有较好的再现性。 3、注意试验方法的经济性。 5.焊接性试验的内容:(一)焊缝金属抗热裂的能力(二)焊缝及热影响区金属抗冷裂纹的能力(三)焊接接头抗脆性转变的能力(四)焊接接头的使用性能 6. 常用焊接性试验方法: (一)斜Y坡口焊接裂纹试验法:此法主要用于评定碳钢和低合金高强钢焊接热影响区对冷裂纹的敏感性。 (二) 插销试验:此法是测定钢材焊接热影响区冷裂纹敏感性的一种定量试验方法。测定加载16~24 h而不断裂的最大应力σcr (三)压板对接焊接裂纹试验法 (四)可调拘束裂纹试验法 第二章: 1.合金结构钢:在碳素结构钢的基础上添加一定数量的合金元素来达到所需要求的钢材。包括:结构钢、碳素结构钢、合金结构钢。 2.高强钢:可分为三种类型:热轧及正火钢、低碳调质钢、中碳调质钢。 3.专用钢:除通常的力学性能外,还必须要求特殊性能主要用于一些特殊的条件下工作的机械零件和工程结构,如耐高温、低温和耐腐蚀。大致可分为:珠光体耐热钢、低温钢、低合金耐蚀钢。 4.钢的强韧化: 固溶强化(置换固溶、间隙固溶)细晶强化第二相强化位错强化: 5.钢的相变:成分和工艺(温度、时间)影响奥氏体的稳定性,通过控制冷却速度和第二次处理得到组织。※热轧及正火钢 1、热轧钢 供货状态:热轧态 性能特点:强度最低σs294~392MPa,具有满意的综合力学性能和加工工艺性能,价格便宜 成分特点:热轧钢属于C- Mn 或Mn-Si系的钢种,有时用一些V、Nb等代替部分Mn。 基本成分:C≤0.2%,Si≤0.55,Mn≤1.5% 强化机制:主要以固溶强化为主 典型钢种:Q345(16Mn)、14MnNb、Q294(09MnV) 2、正火钢 (1 )正火态供货的钢 性能特点:最低强度σs343~450MPa,具有比热轧钢更高的强度和塑韧性 成分特点:0.15~0.2%C,在C-Mn、Mn-Si系的基础上加入一些碳化物和氮化物生成元素V、N b、Ti等 强化机制:在固溶强化的基础上,通过沉淀强化和细化晶粒来进一步提高强度和保证韧性 典型钢种:Q390(15MnTi、15MnVN)等。

金属焊接性复习

1、工艺焊接性的影响因素? 答:1、材料因素:母材和焊接材料;2、工艺因素:焊接方法、焊接工艺措施 3、结构设计因素 4、使用条件 2、哪些焊接性试验测冷裂纹,哪些测热裂纹? 答:热裂纹:1、可调拘束度裂纹试验方法2、压板对接(FISCO)焊接裂纹试验3、鱼骨状裂纹试验法4、刚性固定对接裂纹试验4、窗形拘束裂纹试验 冷裂纹:1、斜Y坡口对接裂纹试验2、插销试验3、刚性固定对接裂纹试验4、窗形拘束裂纹试验 3、斜Y坡口对接裂纹试验和插鞘试验适用范围是什么? 答:斜Y坡口对接裂纹试验适用范围:1、评定低合金结构钢焊缝以及HAZ的冷裂倾向 2、确定防止冷裂纹的临界预热温度 插鞘试验适用范围:1、主要用来考核材料的氢致延迟裂纹敏感性 – 2、也可用来考核再热裂纹和层状撕裂等的敏感性 4、制定焊接性试验方法的原则? 答:1、应尽量使试验条件与实际焊接条件一致(一致性) 2、试验结果应稳定可靠,具有较好的再现性(可靠性) 3、应注意试验方法的经济性(经济性) 5、热轧钢、调质钢的强化机理? 答:热轧钢是固溶强化(Si、Mn);调质钢是热处理(淬火+回火)强化 6、热轧钢的典型牌号、使用状态? 答:典型钢种:16Mn,组织:细晶铁素体+珠光体 15MnV V细化晶粒和沉淀强化(392MPa) 使用状态:一般在热轧状态下使用,但在特殊情况下(要求↑冲击韧性或板厚),在正火状态下使用。 7、评定钢材层状撕裂敏感性主要指标:S含量、Z向断面收缩率 8、分析热轧及正火钢的焊接裂纹倾向。 热裂纹: 热轧及正火钢由于含碳量低(≤0.2%),含Mn量较高,Mn/S一般能达到防止发生热裂纹的要求,具有较好的抗热裂性能。但个别情况下,当材料成分不合格或因严重偏析使局部碳、硫含量偏高时,Mn/S比就可

常用金属焊接性之高温合金的钎焊复习过程

常用金属焊接性之高温合金的钎焊 高温合金是在高温下具有较好的力学性能、抗氧化性和抗腐蚀性的合金。这类合金可分为镍基、铁基和钴基三类;在钎焊结构中用得最多的是镍基合金。镍基合金按强化方式分为固溶强化、实效沉淀强化和氧化物弥散强化三类。固溶强化镍基合金为面心立方点阵的固溶相,通过添加铬、钴、钨、钼、铝、钛、铌等元素提高原子间结合力,产生点阵畸变,降低堆垛层错能,阻止位错运动,提高再结晶温度来强化固溶体。沉淀强化镍基合金钢是在固溶强化的基础上添加较多的铝、钛、铌、钽等元素而形成的。这些元素除形成强化固溶体外,还与镍形成Ni3(Al、Ti)γ’或Ni3(NbAlTi)γ”金属间化合物相;同时钨、铜、硼等元素与碳形成各种碳化物。TD-Ni和TD-NiCr合金是在镍或镍铬基体中加入2%左右弥散分布的ThO2颗粒,产生弥散强化效果的新型高温合金。 一:钎焊性 高温合金均含有较多的铬,加热时表面形成稳定的Cr2O3,比较难以去除;此外镍基高温合金均含铝和钛,尤其是沉淀强化高温合金和铸造合金的铝和钛含量更高。铝和钛对氧的亲和力比铬大得多,加热时极易氧化。因此,如何防止或减少镍基高温合金加热时的氧化以及去除其氧化膜是镍基高温合金钎焊时的首要任务。镍基高温合金钎焊时不建议用钎剂来去除氧化物,尤其是在高的钎焊温度下,因为钎剂中的硼砂或硼酸在钎焊温度下与母材起反应,降低母材表面的熔化温度,促使钎剂覆盖处的母材产生溶蚀;并且硼砂或硼酸与母材发生反应后析出的硼可能渗入母材,造成晶间渗入。对薄的工件来说是很不利的。所以镍基高温合金一般都在保护气氛,尤其是在真空中钎焊。母材表面氧化物的形成和去除与保护气氛的纯度以及真空度密切相关。对于含铝和钛低的合金,热态真空度不应低于10-2Pa;对于含铝钛较高的合金,表面氧化物的去除不仅与真空度有关,而且还与加热温度有关。 无论是固溶强化,还是沉淀强化的镍基高温合金,都必须将其合金元素及其化合物充分固溶于基体内,才能取得良好的高温性能。沉淀强化合金固溶处理后还必须进行时效处理,已达到弥散强化的目的。因此钎焊热循环应尽可能与合金的热处理相匹配,即钎焊温度尽量与热处理的加热温度相一致,以保证合金元素的充分溶解。钎焊温度过低不能使合金元素完全溶解;钎焊温度过高将使母材的晶粒长大,这些均对母材

金属焊接性试题

金属焊接性试题 Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】

一、名词解释 1.工艺焊接性:在一定工艺焊接条件下,能否获得优质、无缺陷的焊接接头的能力。 2.碳当量:把钢中包括碳在内的合金元素对淬硬、冷裂及脆化等的影响折合成碳的相 当含量。 3.晶间腐蚀:是起源于金属表面沿金属晶界发生的有选择的深入金属内部的腐蚀。 4.高温脆性:指钢在变形温度为~时所出现的高温塑形急剧下降的现象。 5.焊接性:金属材料对焊接加工的适应性和使用的可靠性。 6.半热焊:正焊前将铸件整体或局部预热到300℃~400℃,在焊补过程中保持这一温 度,并在焊后采取缓冷措施的工艺方法称为热焊。 7.σ相脆性:指不论母材还是焊缝,在ω(Cr)>21%,并且在520~820℃之间长期加热 形成的硬而脆的铁铬金属间化合物。 8.调质钢:含碳量在的中碳钢。 9.刀状腐蚀:简称刀蚀,它是焊接接头中特有的一种晶间腐蚀,只发生在含有Ti、Nb 等稳定化元素的奥氏体不锈钢焊接接头中。腐蚀部位沿熔合线发展,处于HAZ的过热区,由于区域很窄,形状有如刀削缺口,故称为刀状腐蚀。 10.使用焊接性:焊接接头或整体结构满足技术条件中所规定的使用性能的程度。 11.不锈钢:指主加元素铬的质量分数ω(Cr)>12%的钢。 12.奥氏体不锈钢:是指在常温下具有奥氏体组织的不锈钢。钢中含Cr约18%、Ni 8%~10%、C约%时,具有稳定的奥氏体组织。 13.沉淀硬化不锈钢:在不锈钢中单独或复合添加硬化元素,通过适当的热处理获得高 强度、高韧性并具有良好耐蚀性的一类不锈钢。 14.固溶处理:指将合金加热到高温单相区恒温保持,使过剩相充分溶解到固溶体中后 快速冷却,以得到过饱和固溶体的热处理工艺。 15. 475℃脆性:铁素体钢在ω(Cr)≥%,并在温度400~500℃长期加热后,常常出现 强度升高而韧性下降的现象。 16.耐热钢:在高温下具有较高的强度和良好的化学稳定性的合金钢。它包括抗氧化钢 (或称高温不起皮钢)和热强钢两类。 17.应力腐蚀开裂:在拉伸应力与腐蚀介质的共同作用下产生的断裂。 18.热裂纹:是指焊接过程中,焊缝和热影响区金属冷却到固相线附近的高温区间产生 的焊接裂纹。 19.冷裂纹:指的是焊接接头冷却到较低温度时产生的焊接裂纹。 20.热焊:正焊前将铸件整体或局部预热到600℃~700℃,在焊补过程中保持这一温度, 并在焊后采取缓冷措施的工艺方法称为热焊。 21.高强度钢:屈服点≥295、抗拉强度≥390的钢。 22.热影响区:在焊接热循环作用下,焊缝两侧处于固态的母材发生明显的组织和性能 变化的区域,称为焊接热影响区。 二、填空 1.焊接性是金属材料的一种工艺性能,除了受材料本身性质影响外,还受到工艺条件、(结构条件)和(使用条件)的影响。 2.中、高碳钢焊后若(冷却)速度较快,则可能在焊缝和热影响区形成(马氏体)组织,导致裂纹倾向增大。 3.一根45钢,Φ75mm机轴,采用焊接方法连接,焊接接头处就、开坡口,预热温度为(200℃),采用(E5015)焊条。

金属焊接性总结

1.金属焊接性:指同质材料或异质材料在制造工艺条件下,能够形成完整接头并满足预期使用要求的能力。包括(工艺焊接性和使用焊接性)。 2.工艺焊接性:金属或材料在一定的焊接工艺条件下,能否获得优质致密无缺陷和具有一定使用性能的焊接接头能力。 3.使用焊接性:指焊接接头和整体焊接结构满足各种性能的程度,包括常规的力学性能。 4.影响金属焊接性的因素:1、材料本因素2、设计因素3、工艺因素4、服役环境 5.评定焊接性的原则:(1)评定焊接接头中产生工艺缺陷的倾向,为制定合理的焊接工艺提供依据;(2)评定焊接接头能否满足结构使用性能的要求。 6.实验方法应满足的原则:1、可比性2、针对性3、再现性4、经济性 7.常用焊接性试验方法 A:斜Y坡口焊接裂纹试验法: 此法主要用于评定碳钢和低合金高强钢焊接热影响区对冷裂纹的敏感性。B:插销试验 C:压板对接焊接裂纹试验法 D:可调拘束裂纹试验法 一问答:“小铁研”实验的目的是什么,适用于什么场合?了解其主要实验步骤,分析影响实验结果稳定性的因素有哪些? 答:1、目的是用于评定用于评定碳钢和低合金高强钢焊接热影响区对冷裂纹的敏感性。评定碳钢和低合金高强钢焊接热影响区对冷裂纹的敏感性时,影响结果稳定因素焊接接头拘束度预热温度角变形和未焊透。(一般认为低合金钢“小铁研实验”表面裂纹率小雨20%时。用于一般焊接结构是安全的) 三合金结构钢的焊接 低碳调质钢的焊接性分析 低碳调质钢主要是作为高强度的焊接结构用钢,因此含碳量限制的较低,在合金成分的设计上考虑了焊接性的要求。低碳调质钢碳的质量分数不超过0.18%,焊接性能远优于中碳调质钢。由于这类钢的焊接热影响区是低碳马氏体,马氏体转变温度Ms较高,所形成的马氏体具有“自回火”特性,使得焊接冷裂纹倾向比中碳调质钢小。 焊缝强韧性匹配: 焊缝强度匹配系数S=(σb)w/(σb)b,是表征接头力学非均质性的参数之一,(σb)w为焊缝强度,(σb)b为母材强度。当(σb)w/(σb)b>1时,为高强匹配;=1为等强匹配。<1为低强匹配低碳调质钢热影响区获得细小的低碳马氏体(ML)组织或下贝氏体(B L)组织时,韧性良好,而韧性最佳的组织为ML与低温转变贝氏体组织(B L)的混合组织下贝氏体的板条间结晶位相差较大,有效晶粒直径取决于板条宽度,比较微细,韧性良好,当ML与B L混合生成时,原奥氏体晶粒被先析出的B L有效地分割,促使ML有更多的形核位置,且限制了ML的生长,因此ML+B L混合组织有效晶粒最为细小。 Ni是发展低温钢的一个重要元素。为了提高钢的低温性能,可加入Ni元素,形成含Ni的铁素体低温钢,如1.5Ni钢等在提高Ni的同时,应降低含碳量和严格限制S、P的含量及N、H、O的含量,防止产生时效脆性和回火脆性等。这类钢的热处理条件为正火、正火+回火和淬火+回火等。 ○1在低温钢中由于含碳量和杂质S、P的含量控制的都很严格,所以液化裂纹在这类钢中不是很明显。○2另一个问题是回火脆性,要控制焊后回火温度和冷却速度。 低温钢焊接的工艺特点:除要防止出现裂纹外,关键是要保证焊缝和热影响区的低温韧性,这是制定低温钢焊接工艺的一个根本出发点。 9Ni钢具有优良的低温韧性但用与9Ni钢相似的铁素体焊材时所得焊缝的韧性很差。这除了与铸态焊缝组

金属焊接性

金属焊接性 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

2012太原科技大学期末考试试题 金属焊接性:是金属是否能适应焊接加工而形成完整的,具备一定使用性能的焊接接头的特性。 含义:一是金属在焊接加工中是否容易形成缺陷;二是焊成的接头在一定的使用条件下可靠运行能力。 影响金属焊接性的因素:1、材料本因素2、设计因素3、工艺因素4、服役环境 评定焊接性的原则:(1)评定焊接接头中产生工艺缺陷的倾向,为制定合理的焊接工艺提供依据;(2)评定焊接接头能否满足结构使用性能的要求。 1.实验方法应满足的原则:1、可比性2、针对性3、再现性4、经济性 中碳调质钢的焊接有冷裂纹,热裂纹热影响区性能的变化(脆化,软化)等问题。 特殊性能的低合金钢分为低温刚,耐候钢,低合金耐蚀钢三类。 珠光体耐热钢提高高温强度的途径是碳含量低,合金元素少(不超过3%-5%)热膨胀系数小导热性好,并有良好的冷热加工性,加入Cr,Mo,W,V,等主要强化铁素体,提高钢的高温强度。 不锈钢空冷后室温组织分为铁素体钢,奥氏体钢,马氏体钢,奥氏体-铁素体双相钢,沉淀硬化型或时效硬化型钢。 耐热钢的脆化形式淬火脆化,回火脆化,时效脆化,二次淬火脆化或高铬铁素体钢的晶粒长大脆化,及铬镍奥氏体钢沿晶界析出碳化物脆化,475℃脆化和σ相脆化。珠光体耐热钢以Cr,Mo,W,V,为主加元素的中低合金钢。 铝及铝合金焊接时会出现氢气孔,还存在强的氧化能力,热导率和比热容大,热裂纹倾向大,容易形成气孔,焊接接头容易软化,合金元素蒸发和烧损,焊接接头的耐腐蚀性低于母材,固态和液态无色泽变化等问题。

金属材料焊接性知识要点

金属材料焊接性知识要点 1. 金属焊接性:指同质材料或异质材料在制造工艺条件下,能够形成完整接头并满足预期使用要求的能力。包括(工艺焊接性和使用焊接性)。 2. 工艺焊接性:金属或材料在一定的焊接工艺条件下,能否获得优质致密无缺陷和具有一定使用性能的焊接接头能力。 3. 使用焊接性:指焊接接头和整体焊接结构满足各种性能的程度,包括常规的力学性能。 4. 影响金属焊接性的因素:1、材料本因素2、设计因素3、工艺因素4、服役环境 5. 评定焊接性的原则:(1)评定焊接接头中产生工艺缺陷的倾向,为制定合理的焊接工艺提供依据;(2)评定焊接接头能否满足结构使用性能的要求。 6. 实验方法应满足的原则:1可比性 2针对性 3再现性 4经济性 7. 常用焊接性试验方法: A:斜Y坡口焊接裂纹试验法: 此法主要用于评定碳钢和低合金高强钢焊接热影响区对冷裂纹的敏感性。 B:插销试验 C:压板对接焊接裂纹试验法 D:可调拘束裂纹试验法 一问答:1、“小铁研”实验的目的是什么,适用于什么场合了解其主要实验步骤,分析影响实验结果稳定性的因素有哪些 答:1、目的是用于评定用于评定碳钢和低合金高强钢焊接热影响区对冷裂纹的敏感性。评定碳钢和低合金高强钢焊接热影响区对冷裂纹的敏感性时,影响结果稳定因素焊接接头拘束度预热温度角变形和未焊透。(一般认为低合金钢“小铁研实验”表面裂纹率小于20%时。用于一般焊接结构是安全的) 2、影响工艺焊接性的主要因素有哪些 答:影响因素:(1)材料因素包括母材本身和使用的焊接材料,如焊条电弧焊的焊条、埋弧焊时的焊丝和焊剂、气体保护焊时的焊丝和保护气体等。 (2)设计因素焊接接头的结构设计会影响应力状态,从而对焊接性产生影响。 (3)工艺因素对于同一种母材,采用不同的焊接方法和工艺措施,所表现出来的焊接性有很大的差异。 (4)服役环境焊接结构的服役环境多种多样,如工作温度高低、工作介质种类、载荷性质等都属于使用条件。 3、举例说明有时工艺焊接性好的金属材料使用焊接性不一定好。 答:金属材料使用焊接性能是指焊接接头或整体焊接结构满足技术条件所规定的各种使用性能主要包括常规的力学性能或特定工作条件下的使用性能,如低温韧性、断裂韧性、高温蠕变强度、持久强度、疲劳性能以及耐蚀性、耐磨性等。而工艺焊接性是指金属或材料在一定的焊接工艺条件下,能否获得优质致密、无缺陷和具有一定使用性能的焊接接头的能力。比如低碳钢焊接性好,但其强度、硬度却没有高碳钢好。 4、为什么可以用热影响区最高硬度来评价钢铁材料的焊接冷裂纹敏感性焊接工艺条件对热影响区最高硬度有什么影响 答:因为(1).冷裂纹主要产生在热影响区; (2)其直接评定的是冷裂纹产生三要素中最重要的,接头淬硬组织,所以可以近似用来评价冷裂纹。 一般来说,焊接接头包括热影响区,它的硬度值相对于母材硬度值越高,证明焊接接头的

金属材料焊接性知识要点精选版

金属材料焊接性知识要 点 Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】

金属材料焊接性知识要点 1.金属焊接性:指同质材料或异质材料在制造工艺条件下,能够形成完整接头并满足预期使用要求的能力。包括(工艺焊接性和使用焊接性)。 2.工艺焊接性:金属或材料在一定的焊接工艺条件下,能否获得优质致密无缺陷和具有一定使用性能的焊接接头能力。 3.使用焊接性:指焊接接头和整体焊接结构满足各种性能的程度,包括常规的力学性能。 4.影响金属焊接性的因素:1、材料本因素2、设计因素3、工艺因素4、服役环境 5.评定焊接性的原则:(1)评定焊接接头中产生工艺缺陷的倾向,为制定合理的焊接工艺提供依据;(2)评定焊接接头能否满足结构使用性能的要求。 6.实验方法应满足的原则:1可比性2针对性3再现性4经济性 7.常用焊接性试验方法: A:斜Y坡口焊接裂纹试验法:此法主要用于评定碳钢和低合金高强钢焊接热影响区对冷裂纹的敏感性。B:插销试验C:压板对接焊接裂纹试验法D:可调拘束裂纹试验法 一问答:1、“小铁研”实验的目的是什么,适用于什么场合了解其主要实验步骤,分析 影响实验结果稳定性的因素有哪些 答:1、目的是用于评定用于评定碳钢和低合金高强钢焊接热影响区对冷裂纹的敏感性。评定碳钢和低合金高强钢焊接热影响区对冷裂纹的敏感性时,影响结果稳定因素焊接接头拘束度预热温度角变形和未焊透。(一般认为低合金钢“小铁研实验”表面裂纹率小于20%时。用于一般焊接结构是安全的) 2、影响工艺焊接性的主要因素有哪些? 答:影响因素:(1)材料因素包括母材本身和使用的焊接材料,如焊条电弧焊的焊条、埋弧焊时的焊丝和焊剂、气体保护焊时的焊丝和保护气体等。 (2)设计因素焊接接头的结构设计会影响应力状态,从而对焊接性产生影响。 (3)工艺因素对于同一种母材,采用不同的焊接方法和工艺措施,所表现出来的焊接性有很大的差异。 (4)服役环境焊接结构的服役环境多种多样,如工作温度高低、工作介质种类、载荷性质等都属于使用条件。 3、举例说明有时工艺焊接性好的金属材料使用焊接性不一定好。 答:金属材料使用焊接性能是指焊接接头或整体焊接结构满足技术条件所规定的各种使用性能主要包括常规的力学性能或特定工作条件下的使用性能,如低温韧性、断裂韧性、高温蠕变强度、持久强度、疲劳性能以及耐蚀性、耐磨性等。而工艺焊接性是指金属或材料在一定的焊接工艺条件下,能否获得优质致密、无缺陷和具有一定使用性能的焊接接头的能力。 比如低碳钢焊接性好,但其强度、硬度却没有高碳钢好。

金属焊接性

2012太原科技大学期末考试试题 金属焊接性:是金属是否能适应焊接加工而形成完整的,具备一定使用性能的焊接接头的特性。 含义:一是金属在焊接加工中是否容易形成缺陷;二是焊成的接头在一定的使用条件下可靠运行能力。 影响金属焊接性的因素:1、材料本因素2、设计因素3、工艺因素4、服役环境 评定焊接性的原则:(1)评定焊接接头中产生工艺缺陷的倾向,为制定合理的焊接工艺提供依据;(2)评定焊接接头能否满足结构使用性能的要求。 1.实验方法应满足的原则:1、可比性2、针对性3、再现性4、经济性 中碳调质钢的焊接有冷裂纹,热裂纹热影响区性能的变化(脆化,软化)等问题。 特殊性能的低合金钢分为低温刚,耐候钢,低合金耐蚀钢三类。 珠光体耐热钢提高高温强度的途径是碳含量低,合金元素少(不超过3%-5%)热膨胀系数小导热性好,并有良好的冷热加工性,加入Cr,Mo,W,V,等主要强化铁素体,提高钢的高温强度。 不锈钢空冷后室温组织分为铁素体钢,奥氏体钢,马氏体钢,奥氏体-铁素体双相钢,沉淀硬化型或时效硬化型钢。 耐热钢的脆化形式淬火脆化,回火脆化,时效脆化,二次淬火脆化或高铬铁素体钢的晶粒长大脆化,及铬镍奥氏体钢沿晶界析出碳化物脆化,475℃脆化和σ相脆化。珠光体耐热钢以Cr,Mo,W,V,为主加元素的中低合金钢。 铝及铝合金焊接时会出现氢气孔,还存在强的氧化能力,热导率和比热容大,热裂纹倾向大,容易形成气孔,焊接接头容易软化,合金元素蒸发和烧损,焊接接头的耐腐蚀性低于母材,固态和液态无色泽变化等问题。 铜及铜合金焊接时易出现难融合及易变形,焊缝易产生热裂纹,易生成气孔,焊缝塑形下降,导电性下降,耐蚀性下降等问题。 焊接紫铜常会出现哪些问题答:1难融合及易变形2产生热裂纹3产生气孔4接头塑形导电性耐蚀性下降。 出现问题的原因1热导率大使热量很快消失,线胀系数和收缩率大,易变形。2铜在融化状态易与其中杂质氧反应生成Cu2O,Cu2O与Cu形成低熔点共晶,且共晶温度低于铜的熔点,使焊缝形成热裂纹,S与O相同。3焊缝为单质α组织,易生成粗大的晶粒加剧热裂纹生成,收缩率及线胀系数大,应力较大促使热裂纹生成。4氢及水蒸气在焊接时形成氢气孔.5焊缝及热影响区出现粗大晶粒,加入一定量的脱氧元素,降低了焊缝塑性与导电性,合金元素的氧化和蒸发,接头的各种缺陷。晶界上脆性共晶存在导致耐蚀性下降。 如何防止1使用大功率的热源,在焊前或焊中采取预热或保温措施,提高加工刚度,增加防变形。2对融化金属进行脱氧,且严格控制焊缝中S的含量3控制焊接时氢的来源,降低熔池的冷却速度,使气体容易逸出使气体容易析出减少氧氢来源和对熔池进行适当的脱氧使熔池慢冷。4采用埋弧焊或惰性气体保护焊提高焊缝 金属的纯度。 铸铁与低合金钢产生裂纹的原因有何不同论述产生裂纹的特点。答:铸铁产生裂纹主要是冷裂纹(热应力超过其塑性变形能力而发生突然断裂)和热裂纹(焊缝C,S,P含量不均形成低熔点共晶在奥氏体间分布),低合金钢产生的裂纹主要是冷裂纹(淬硬组织引起)和热裂纹(随碳及合金元素增加结晶偏析倾向形成),再热裂纹(焊后消除应力热处理或焊后高温加热)。

常用焊接方法办法

常用焊接方法手册 一、什么是钎焊?钎焊是如何分类的?钎焊的接头形式有何特点? 钎焊是利用熔点比母材低的金属作为钎料,加热后,钎料熔化,焊件不熔化,利用液态钎料润湿母材,填充接头间隙并与母材相互扩散,将焊件牢固的连接在一起。 依照钎料熔点的不同,将钎焊分为软钎焊和硬钎焊。 (1)软钎焊:软钎焊的钎料熔点低于450°C,接头强度较低(小于70 MPa)。 (2)硬钎焊:硬钎焊的钎料熔点高于450°C,接头强度较高(大于200 MPa)。 钎焊接头的承载能力与接头连接面大小有关。因此,钎焊一般采纳搭接接头和套件镶接,以弥补钎焊强度的不足。 二、电弧焊的分类有哪些,有什么优点?

利用电弧作为热源的熔焊方法,称为电弧焊。可分为手工电弧焊、埋弧自动焊和气体爱护焊等三种。手工自动焊的最大优点是设备简单,应用灵活、方便,适用面广,可焊接各种焊接位置和直缝、环缝及各种曲线焊缝。尤其适用于操作不变的场合和短小焊缝的焊接;埋弧自动焊具有生产率高、焊缝质量好、劳动条件好等特点;气体爱护焊具有爱护效果好、电弧稳定、热量集中等特点。 三、焊条电弧焊时,低碳钢焊接接头的组成、各区域金属的组织与性能有何特点? (1)焊接接头由焊缝金属和热阻碍区组成。 1)焊缝金属:焊接加热时,焊缝处的温度在液相线以上,母材与填充金属形成共同熔池,冷凝后成为铸态组织。在冷却过程中,液态金属自熔合区向焊缝的中心方向结晶,形成柱状晶组织。由于焊条芯及药皮在焊接过程中具有合金化作用,焊缝金属的化学成分往往优于母材,只要焊条和焊接工艺参数选择合理,焊缝金属的强度一般不低于母材强度。 2)热阻碍区:在焊接过程中,焊缝两侧金属因焊接热作用而产生组织和性能变化的区域。

金属材料焊接试题

金属材料焊接试题 一、填空题 1.金属材料焊接性的好坏,主要取决于材料的(),且与结构的复杂程度、()和焊接方法,采用的焊接材料、焊接工艺条件及结构的()也有密切的关系。 2.判断焊接性最简单的间接法是法()。 3.()焊接裂纹试验,又称小铁研法,主要用于碳素钢和低合金钢焊接接头的冷裂纹抗裂性能试验。 4.焊接性的评价主要包括两方面容:一是评定焊接接头(),为制定合理的焊接工,提供依据;二是评定焊接接头()。 5.焊后为改善焊接接头的组织和性能或消除残余应力而进行的热处理,称()。6.碳当量只考虑对焊接性的影响,没有考虑()、()、()、()、()和构件使用要求等因素的影响。 7.金属的焊接性包括()和()两方面的容。 8.低合金钢的主要特点是()、()和良好,()及其他性能较好。 9.含碳量为()一的碳素钢称为中碳钢。中碳钢与低碳钢相比较,含碳量较高,()较高,焊接性较()差。 10.高碳钢导热性比低碳钢差,致使焊接区和未加热部分之间产生显著的(),因此在焊接中,引起很大的(),熔池急剧冷却,产生裂纹的倾向较大。 11.低合金结构钢焊接过程中一个重要的特点是热影响区有较大的淬硬倾向,其主要的影响因素是()和()。 12.低合金结构钢焊接时,易出现()、()、()等问题。13.Q345钢在低温下或在刚度和厚度均较大的结构上进行小工艺参数、小焊道的焊接时,有可能出现()或()。 14.Q390钢属于()MPa级的低合金结构钢,当钢板厚度大于()mm或在0℃以下施焊时,则应预热至()℃,焊后采用()℃的消除应力热处理。 15.我国的低合金结构钢可分为四类,即()、()、()和()。 16.低碳钢焊接时,焊接方法或焊接材料选择不当,焊接热影响区会出现()组织,降低热影响区的()。 17.按空冷后室温组织的不同,不锈钢可分为()、()、()、()和()五大类,其中()应用最广泛。 18.在施焊中,若焊接工艺选择不当,奥氏体不锈钢会产生()和()等问题。 19.奥氏体不锈钢最危险的一种破坏形式是(),它既可产生在焊缝或热影响区,又会产生在熔合线上,如产生在熔合线上又称为()。 20.不锈钢具有抗腐蚀能力的必要条件是含铬量为()组织。 21.为避免晶间腐蚀,奥氏体不锈钢中加入的稳定剂元素有()和()。22.对奥氏体不锈钢焊接接头进行固溶处理的加热温度为(),使碳重新溶入奥氏体中,然后迅速冷却,从而稳定()。

相关主题
文本预览
相关文档 最新文档