当前位置:文档之家› 一元一次不等式组计算题

一元一次不等式组计算题

一元一次不等式组计算题
一元一次不等式组计算题

4x+16>0 5x-15<5 3x-6≤02x-1>1

1. 5x-3>x-4 10x<5

1+2/3-x<=x-1/3 5x>10

2.x-2(x-1)<=3

(2x+5)/3>x

3.(3x-1)/4>3

(3x-1)/4<=7

4.2x-3>0

4-3x<0

5.2-5x<=3(1-x)

(x+2)/3>2x-1

2、2X<-1

X+2>0

3、5X+6<3X

8-7X>4-5X

4、2(1+X)>3(X-7)4(2X-3)>5(X+2)

5、2X<4

X+3>0

6、1-X>0

X+2<0

7、5+2X>3

X+2<8

8、2X+4<0

1/2(X+8)-2>0

9、5X-2≥3(X+1)1/2X+1>3/2X-3

10、1+1/2X>2

2(X-3)≤4

1.0.25x>100

2.-x-29+10<5

3.13x-15,330

4.2x>6

5.2x+9<3x3-33335

6.x=3333,求4x-m+1<38x-1

7.2x+5<34x-2310.13x+5<25

1. 6x+8>3x+8

2. 3x-7≥4x-4

3. 2x-19<7x+31

4. 2x-3x+1<6

5. 3x-2(9-x)>3(7+2x)-(11-6x)

6. 2(3x-1)-3(4x+5)≤x-4(x-7)

7. 2(x-1)-x>3(x-1)-3x-5

8. 3[y-2(y-7)]≤4y

9. 15-(7+5x)≤2x+(5-3x)

10. 20x-3≤5x+(x-5)

11. 7x-2(x-3)<16

12. 3(2x-1)<4(x-1)

13. 5-x(x+3)>2-x(x-1)

14. 3-4[1-3(2-x)] >59

15. 4x-10<15x-(8x-2) (1)2X+2>3

(2)3X+0.5<5

(3)5X*6>6

(4)9X-6>15

(5)9X/3+3<15

(6)10X/2-20>15

(7)15X/5-2*5-36+152/8>156

40道一元一次不等式组计算及答案

作品编号:DG13485201600078972981 创作者:玫霸* (1)2X-4≤X+2 与X≥3 解集为3≤X≤6 (2)2X-1>1 与4-2X≤0 解集为无解 (3)3X+2>5 与5-2≥1 解集为1<X≤2 (4)X﹣1<2 与2X+3>2+X 解集为-1<X<3 (5)X+3>1 与X﹢2(X-1)≤1 解集为-2<X≤1 (6)2X+1≤3 与X>-3 解集为1≤X>-3 (7)2X+5>1 与3X+7X≤10 解集为1≥X>2 (8)2X-1>X+1 与X+8<4X-1 解集为X>3 (9)1-2(X-1)≤5与2/(3X-2)<X+1/2解集为-1≤X<3 (10)2X≤4+X 与X+2<4X-1解集为1<X≤4 (11)2-X>0 与2/(5X+1)+1≥3/(2X-1)解集为-1≤X <2 (12)1-X<0 与2/(X-2)<1 解集为1<X<4 (13)2-X<3 与2-X≥0 解集为2≥X>1 (14)2X+10>-5 与6X-7≥10 解集为X>17/6 (15)6X+6>8 与3X+10<5 解集为-(3/5)>X>-3 (16)6X+6X24 与10X+(1/2)X<-42 解集为无解

(17)24X-20X>4 与8X+4X≤24解集为2≥X>1 (18)9X-5X<8 与15X+5X>80 解集为无解 (19)X+X≤1 与2X+(1/2)X>100 解集为无解 (20)2011X-2012X≤1 与2013X-2012X≥1 解集为1≤X (21)4X-X>6 与10X+5X<15 解集为无解 (22)-5X-6X≤-22 与5X-9X≥24 解集为无解(23)(1/5)X+(1/5)X>2/5 与X+10X>22 解集为X>2 (24)55X+55X<220 与66X+10X<38 解集为X<1/2 (25)70X+1≤71 与53X-13X≤40 解集为X≤1 (26)X+1<7 与X-1>10 解集为无解 (27)5X+5>5 与2X+3X>9 解集为X>9/5 (28)85X-5X <8 与50X+30X<5 解集为X<1/16 (29)2X≤14 与6X <6 解集为X<1 (30)15X+15≥30 与6X-8X≥4 解集为-2≥X≥1 (31)2X≥160 与4X≥316 解集为X≥80 (32)35X-27X >136 与20X+20X<800解集为20>X>17 (33)55X≤165 与56X>112 解集为2<X≤3 (34)20X+18X≥76 与2X≥2 解集为X≥2 (35)59X+X>600 与55X+35X<1350 解集为10<X<

解一元一次不等式组

《9.3一元一次不等式组》(2)翻转课教学设计表(网上自主学习+课堂互助探究)

习 网上、网下 发布的任 务 任务一、认真观看微课《解不等式组》和《解含有字母的一元一次不等式组》, 弄清楚以下任务: 1)能正确地解一元一次不等式组。 2)解含有字母的一元一次不等式组。 任务二、认真阅读教材《9.3一元一次不等式组》相关的内容,勾画重点,并 提出你的问题。 任务三、看完微课后,认真完成预习小测(小牛试刀) 学生的完 成情况 1.认真完成作业客观题,拍照上传作业。 有42位同学全部提交课本预习,课本预习同学们都很认真,4位同学不合格,合格率90.4% 。 2.预习小测完成情况:

学生的问题归纳(共性问题和个性问题)个性问题: 1、去分母漏乘。 2.系数化为1时,当系数为负数时,学生易忘记不等号的改变。共性问题: 1、含参数的不等式组字母的取值范围。 五课堂互助探究教学目标 1.熟悉一元一次不等式组的解集规律; 2.几个一元一次不等式含有参数的字母的取值范围; 3.体会数形结合,类比,化归思想。 4.培养学生团队合作精神,不畏挫折勇于探究的精神。 教师活动学生活动设计意图 预设 时间 活 动 一 展示学生课前预习、任务完成情况 反思 让学生了解自己 是否预习到位, 表扬先进,激励 后进。 2 分 钟

活 动 二 知 识 回 顾 默读 唤醒学生对已有 知识的回顾,建 构知识网络,形 成解题方法。 3 分 钟 活 动 三 典 例 精 析 做一做,2 个学生上 黑板展示, 其他学生 独自作答。 找出学生的错 误,再纠正其错 误,调动学生参 与课堂活动的积 极性。从而培养 学生数形结合的 思想及化归的思 想。 6 分 钟

一元一次不等式组的概念及解法

《一元一次不等式组》说课稿 说课内容:《一元一次不等式组》 教材分析: 上节课学习了一元一次不等式,知道了一元一次不等式的有关概念,本节主要学习一元一次不等式组及其解集,这是学好利用一元一次不等式组解决实际问题的关键,同时要求学生会用数轴确定解集。并且本课也通过一元一次不等式,一元一次不等式的解集,解不等式的概念来类推学习一元一次不等式组的一些概念,尝试对学生类比推理能力进行培养。在情感态度、价值观方面要培养学生独立思考的习惯,也要培养学生的合作交流意识与创新意识,为学生在今后生活和学习中更好运用数学作准备。 教学重点:1、理解有关不等式组的概念。 2、会解由两个一元一次不等式组成的不等式组。 教学难点:在数轴上确定解集。 教学难点突破办法: 一般由两个一元一次不等式组成的不等式组由四种基本类型构成,它们的解集、数轴表示,学生很难确定,用顺口溜的方式解决问题,即:大大取大;小小取小;比小大,比大小,中间找;比小小,比大大,解不了(无解)。 学生分析: 学生已经学习了一元一次不等式,并会解简单的一元一次不等式,知道了用数轴表示一元一次不等式的解集分三步进行:画数轴、定界点、走方向。本节我们要学习一元一次不等式组,因此由一元一次不等式猜想一元一次不等式组的概念学生易于接受,同时能更好的培养学生的类比推理能力。本节所选例题也真正的实现了低起点小台阶,循序渐进,能使学生更好的掌握知识。 教学方法:

1、采用复习法查缺补漏,引导发现法培养学生类比推理能力,尝试指导法逐步培养学生独立思考能力及语言表达能力。充分发挥学生的主体作用,使学生在轻松愉快的气氛中掌握知识。 2、让学生充分发表自己的见解,给学生一定的时间和空间自主探究每一个问题,而不是急于告诉学生结论。 3、尊重学生的个体差异,注意分层教学,满足学生多样化的学习需要。 学习方法: 1、学生要深刻思考,把实际问题转化为数学模型,养成认真思考的好习惯。 2、学生做题要紧扣不等式基本性质,特别是不等式的两边都乘以(或除以)同一个负数时,要认真检查不等号的方向是否正确。 3、合作类推法:学习过程中学生共同讨论,并用类比推理的方法学习。 教学步骤设计如下: (一)创设问题情境,引入新课: 让学生从字面上来推断一下一元一次不等式和一元一次不等式组之间是否存在一定的关系。并由验证猜想是否正确引人课题。 学生活动:猜想和推断一元一次不等式和一元一次不等式组的关系。 (二)讲授新课 1、想一想: 出示一个实际问题,请大家先理解题意,搞清已知条件和未知元素,从而确定用那个知识点来解决问题,即把实际问转换为数学模型,从而求解。通过学生的分析和解答,让学生根据一元一次不等式的有关概念来类推一元一次不等式组的有关概念。 学生活动:找出已知条件,列出所有的不等关系。互相讨论,类推概念。

一元一次不等式组100道计算题

一元一次不等式组计算题 1. ???-≤+>+1 45321x x x x 2. 31422x x x ->??<+? 3. 512324x x x x ->+??+-??+<-? 5. 230 320x x -? 6. 23182x x x >-??-≤-? 7. 253(2)123x x x x +≤+??-?

9. ?? ???-≤-+>+31 2214513x x x x )( 10. ?????>+-≥+x x x x 4121213)( )( 11. ?? ? ??+<-<->+4 120520 13x x x x 12. ?????+<++≤--->+3.22.05.02832)1(42x x x x x x 13. ? ??-≤+>+145321x x x x 14. 314,2 2.x x x ->??<+? 15. 230320x x -? 16. 512,324.x x x x ->+??+

17. 21, 24 1.x x x x >-??+<-? 18. 2 51,3311.48x x x x ?+>-????-<-?? 19. 3(2)451312 x x x x x -+? 21. ?????-≥-->+35663 4)1(513x x x x 22. ??? ??-≤-+>+3122145)1(3x x x x

一元一次不等式组的概念及其解法

一元一次不等式组的概念及其解法 班级________ 姓名________ 【例1】下列四个不等式组,哪一个是一元一次不等式组,并写出这个不等式组的解集. A .53x x <-??->? B .11x y x y +>??-??-???+>? 【例2】(2005·南平市)解下列不等式组. (1)532,314;2x x x -???-??->??-+??<-? 元解,求a 的取值范围. 【例6】已知关于x 、y 的方程组39,51x y a x y a +=+??-=-? 的解是一对正数. (1)求a 的取值范围;(2)化简445a a +--. 【例7】若不等式组0,1x a x a ->??-? 的解集是_________. 2.(2004·绵阳市)不等式组310,27x x +??? …无解,则a 的取值范围为_________.

40道一元一次不等式组计算及答案

(1)2X-4≤X+2 与X≥3 解集为3≤X≤6 (2)2X-1>1 与 4-2X≤0 解集为无解 (3)3X+2>5 与 5-2≥1 解集为1<X≤2 (4)X﹣1<2 与 2X+3>2+X 解集为-1<X<3 (5)X+3>1 与 X﹢2(X-1)≤1 解集为-2<X≤1 (6)2X+1≤3 与 X>-3 解集为1≤X>-3 (7)2X+5>1 与3X+7X≤10 解集为1≥X>2 (8)2X-1>X+1 与 X+8<4X-1 解集为X>3 (9)1-2(X-1)≤5与2/(3X-2)<X+1/2解集为-1≤X<3 (10)2X≤4+X 与 X+2<4X-1解集为1<X≤4 (11)2-X>0 与 2/(5X+1)+1≥3/(2X-1)解集为-1≤X<2 (12)1-X<0 与 2/(X-2)<1 解集为1<X<4 (13)2-X<3 与 2-X≥0 解集为2≥X>1 (14)2X+10>-5 与 6X-7≥10 解集为X>17/6 (15)6X+6>8 与 3X+10<5 解集为-(3/5)>X>-3 (16)6X+6X24 与 10X+(1/2)X<-42 解集为无解 (17)24X-20X>4 与8X+4X≤24解集为2≥X>1 (18)9X-5X<8 与 15X+5X>80 解集为无解

(19)X+X≤1 与 2X+(1/2)X>100 解集为无解 (20)2011X-2012X≤1 与 2013X-2012X≥1 解集为1≤X (21)4X-X>6 与 10X+5X<15 解集为无解 (22)-5X-6X≤-22 与 5X-9X≥24 解集为无解(23)(1/5)X+(1/5)X>2/5 与 X+10X>22 解集为X>2 (24)55X+55X<220 与 66X+10X<38 解集为X<1/2 (25)70X+1≤71 与 53X-13X≤40 解集为X≤1 (26)X+1<7 与 X-1>10 解集为无解 (27)5X+5>5 与 2X+3X>9 解集为X>9/5 (28)85X-5X<8 与 50X+30X<5 解集为X<1/16 (29)2X≤14 与 6X<6 解集为X<1 (30)15X+15≥30 与 6X-8X≥4 解集为-2≥X≥1 (31)2X≥160 与4X≥316 解集为X≥80 (32)35X-27X>136 与 20X+20X<800解集为20>X>17 (33)55X≤165 与 56X>112 解集为2<X≤3 (34)20X+18X≥76 与2X≥2 解集为X≥2 (35)59X+X>600 与 55X+35X<1350 解集为10<X<15 (36)60X<120 与 5X+5X<10 解集为X<1 (37)100X<20X+1200 与 2X<30X+10 解集为X<5/14 (

一元一次不等式组100道计算题37674

1. ???-≤+>+1 45321x x x x 31422x x x ->??<+? 512324x x x x ->+??+-??+<-? 5. 230320x x -? 23182x x x >-??-≤-? 253(2)12 3x x x x +≤+??-?+31 22 14513x x x x )( ?????>+-≥+x x x x 4121213)()( ?????+<-<->+412052013x x x x . ?? ? ??+<++≤--->+3 .22.05.02832)1(42x x x x x x ???-≤+>+145321x x x x 314,2 2.x x x ->??<+?

230320x x -? 512,324.x x x x ->+??+-??+<-? 2 51,3311.48x x x x ?+>-????-<-?? 19. 3(2)451312 x x x x x -+? ?????-≥-->+356634)1(513x x x x ?????-≤-+>+3122145)1(3x x x x ???????-<-+<-.3212 112)2(31x x x x . 253(2)123x x x x +≤+??-?-? ? ???≤+-<+51148x x x 270≤523x -≤1 -1<213-x ≤4

一元一次不等式组有解无解整数解求参问题

一元一次不等式组有解、无解、整数解的求参问题 【一元一次不等式组有解、无解、整式解的数轴表示】 1.一元一次不等式组有解 (1) (2) (3) (4) 2.一元一次不等式组无解 (1) (2) (3) 3.一元一次不等式组整数解 4.验证端点的取舍 【总结】①解一元一次不等式 ②数形结合,画数轴分析 ③验证端点的取 舍 例1-a .一个一元一次不等式组的解集在数轴上表示如图所示,则该不等式组的解集为( )

A .x <﹣3 B .x ≥2 C .﹣3<x ≤2 D .无解 例2-a .如图表示的是某个关于x 的一元一次不等式组解集,则此不等式组的解集是( ) A .x ≥﹣3 B .﹣3≤x <1 C .x <1 D .无解 例3-b .若关于x 的一元一次不等式组 无解,则m 的取值范围为( ) A .m >﹣ B .m ≤ C .m <﹣ D .m ≥﹣ 例4-b .一元一次不等式组 的解集是x >1,则m 的取值范围是( ) A .m ≥0 B .m ≤0 C .m >0 D .m <0 例5-b .一元一次不等式组的整数解的个数是 . 例6-b .若关于x 的一元一次不等式组有解,则m 的取值范围是 . 例7-b .一元一次不等式组 有5个整数解,则a 的取值范围是 . 例8-a .关于x 的一元一次不等式组? ??>

例9-c .关于x 的一元一次不等式组? ??-≥-≥-1230x a x ,(1)有解,求a 的取值范围. 变式:(2)有五个整数解,求a 的取值范围. 例10-b .关于x 的一元一次不等式组???>-≥+m x x x 148无解,求m 的取值范围. 例11-b .关于x 的一元一次不等式组? ??->+<121m x m x 无解,求m 的取值范围. 例12-b .关于x 的一元一次不等式组?????>+<--x x a x x 422)2(3有解,求a 的取值范围.

一元一次不等式组计算题

4x+16>0 5x-15<5 3x-6≤02x-1>1 1. 5x-3>x-4 10x<5 1+2/3-x<=x-1/3 5x>10 2.x-2(x-1)<=3 (2x+5)/3>x 3.(3x-1)/4>3 (3x-1)/4<=7 4.2x-3>0 4-3x<0 5.2-5x<=3(1-x) (x+2)/3>2x-1

2、2X<-1 X+2>0 3、5X+6<3X 8-7X>4-5X 4、2(1+X)>3(X-7)4(2X-3)>5(X+2) 5、2X<4 X+3>0 6、1-X>0 X+2<0

7、5+2X>3 X+2<8 8、2X+4<0 1/2(X+8)-2>0 9、5X-2≥3(X+1)1/2X+1>3/2X-3 10、1+1/2X>2 2(X-3)≤4 1.0.25x>100 2.-x-29+10<5 3.13x-15,330

4.2x>6 5.2x+9<3x3-33335 6.x=3333,求4x-m+1<38x-1 7.2x+5<34x-2310.13x+5<25 1. 6x+8>3x+8 2. 3x-7≥4x-4 3. 2x-19<7x+31

4. 2x-3x+1<6 5. 3x-2(9-x)>3(7+2x)-(11-6x) 6. 2(3x-1)-3(4x+5)≤x-4(x-7) 7. 2(x-1)-x>3(x-1)-3x-5 8. 3[y-2(y-7)]≤4y 9. 15-(7+5x)≤2x+(5-3x)

10. 20x-3≤5x+(x-5) 11. 7x-2(x-3)<16 12. 3(2x-1)<4(x-1) 13. 5-x(x+3)>2-x(x-1) 14. 3-4[1-3(2-x)] >59 15. 4x-10<15x-(8x-2) (1)2X+2>3 (2)3X+0.5<5

人教版初一数学下册解含参数的一元一次不等式组的解集

《解含字母的一元一次不等式组的解集》教学设计 抚顺市第五十六中学尹丽红教材分析:本章内容是人教版七年级数学(下)第九章,是在学习了《二元一次方程组》和《一元一次不等式(组)》后的基础上安排的内容,是为今后学习一次函数打下基础。上节课学习了《一元一次不等式组》,知道了一元一次不等式组的有关概念及求一元一次不等式组的解集的方法,并会用数轴直观的得到一元一次不等式组的解集,它是解决本节课内容《含字母的一元一次不等式组的解集》的基础和关键。通过本节课知识的学习,学生能对初中数学中的分类讨论、数形结合的思想方法有进一步的认识,养成独立思考的习惯,也能加强与同学的合作交流意识与创新意识,为今后生活和学习中更好运用数学作准备。 教学目标: (1)知识目标:使学生加深对一元一次不等式组和它的解集的概念的理解,掌握一元一次不等式组的解法,会应用数轴确定含参数的一元一次不等式组的参数范围。 (2)能力目标:培养探究、独立思考的学习习惯,感受数形结合的作用,逐步熟悉和掌握数形结合的思想方法,提高分析问题和解决问题的能力。 (3)德育目标:加强同学之间的合作交流与探讨,体验数学发现带来的乐趣。 学习重点: (1)加深对一元一次不等式组的概念与解集的理解。 (2)通过含参数不等式的分析与讨论,让学生理解掌握分类讨论和数形结合的数学思想。学习难点: (1)一元一次不等式组中字母参数的讨论。 (2)运用数轴分析不等式组中参数的范围。 教学难点突破办法: (1)借助数轴,数型结合,让学生直观理解不等式组中几个不等式解集的公共部分。(2)和学生一起探讨解决问题的一般方法:先运用口诀定大小,再考虑特殊情况定等号。

2017初一一元一次不等式组练习题

2017初一一元一次不等式组练习题(含答案) 一、选择题 1.不等式组的最小整数解为( ) A.﹣1?B。0?C.1?D.2 2.不等式组的整数解是() A.﹣1,0,1B.0,1?C.﹣2,0,1?D.﹣1,1 3。适合不等式组的全部整数解的和是() A.﹣1B。0 C.1 D.2 4。西峰城区出租车起步价为5元(行驶距离在3千米内),超过3千米按每千米加收1.2元付费,不足1千米按1千米计算,小明某次花费14.6元.若设他行驶的路为x千米,则x应满足的关系式为( ) A.14.6﹣1。2〈5+1.2(x﹣3)≤14。6? B.14.6﹣1。2≤5+1.2(x﹣3)<14.6 C.5+1。2(x﹣3)=14。6﹣1。2?D.5+1。2(x﹣3)=14。6 5.定义[x]为不超过x的最大整数,如[3.6]=3,[0.6]=0,[﹣3。6]=﹣4.对于任意实数x,下列式子中错误的是( ) A.[x]=x(x为整数)?B.0≤x﹣[x]<1 C.[x+y]≤[x]+[y]D.[n+x]=n+[x](n为整数) 6.不等式组的整数解共有() A。1个B.2个C.3个D。4个 7.一元一次不等式组的解集中,整数解的个数是( ) A.4 B.5?C。6?D。7 8.不等式组的整数解有()个。 A。1 B.2?C.3? D.4

9.不等式组的最小整数解是() A。1 B.2? C.3 D。4 10.△ABC的两条高的长度分别为4和12,若第三条高也为整数,则第三条高的长度是( ) A.4?B.4或5? C.5或6? D.6 二、填空题 11.不等式的最小整数解是. 12.不等式组的所有整数解的和为. 13.求不等式组的整数解是. 14.不等式组的所有整数解的和是 . 三、解答题 15.自学下面材料后,解答问题. 分母中含有未知数的不等式叫分式不等式。如:<0等.那么如何求出它们的解集呢? 根据我们学过的有理数除法法则可知:两数相除,同号得正,异号得负.其字母表达式为: (1)若a>0,b〉0,则>0;若a<0,b〈0,则>0; (2)若a>0,b<0,则<0;若a<0,b〉0,则<0。 反之:(1)若>0,则或 (2)若<0,则或. 根据上述规律,求不等式>0的解集.

解一元一次不等式组练习题

一元一次不等式组练习题 一.解下列一元一次不等式组 1.?????? >-<-322,352x x x x 2.?????->---->-.6)2(3)3(2,132x x x x 3.?????+>-≤+).2(28,142x x x 4.()324 2+1 1 3x x x x --???≥-??< 5.()()281043141126x x x x +≤--???-+-??< 6. ???????<+->+--.1)]3(2[21,312233x x x x x 7.?????????? >-->-->-24,2 55, 13x x x x x x 8. 32472x -≤-< 9..234512x x x -≤-≤-

二.解答题: 10.求不等式组 () 324 12 1 4 x x x x --≤ ? ? ?- - ? ? < 的整数解. 11.求不等式组 () 1 212 3 73+4 34 25 x x x x ? --≤ ?? ?? ?? ? - ?-- ?? > 的负整数 解 12.求不等式组 5 13 2 2110+15 5 364 x x x x x + ? - ?? ? - ?-≥- ?? < 的非负整数解. 三..列不等式组解应用题 13.一工厂要将100吨货物运往外地,计划租用某运输公司甲、乙两种型号的汽车共6辆一次将货物全部运动,已知每辆甲型汽车最多能装该种货物16吨,租金800元,每辆乙型汽车最多能装该种货物18吨,租金850元,若此工厂计划此次租车费用不超过5000元,通过计算求出该公司共有几种租车方案?请你设计出来,并求出最低的租车费用.

一元一次不等式组100道计算题

1. ? ??-≤+>+145321x x x x 314 22x x x ->??<+? 512324x x x x ->+??+-??+<-? 5. 230320x x -? 23182x x x >-??-≤-? 253(2)12 3x x x x +≤+??-?+31 22 14513x x x x )( ?????>+-≥+x x x x 4121213)()( ?????+<-<->+412052013x x x x . ?? ? ??+<++≤--->+3 .22.05.02832)1(42x x x x x x ???-≤+>+145321x x x x 314,2 2.x x x ->??<+? 230320x x -? 512,324.x x x x ->+??+-??+<-? 2 51,3311.48x x x x ?+>-????-<-?? 3(2)45x x -++)1(513x x

?????-≤-+>+3122145)1(3x x x x ???????-<-+<-.3212 112)2(31x x x x . 253(2)123x x x x +≤+??-?-? ? ???≤+-<+51148x x x 270≤523x -≤1 -1<213-x ≤4 29. ???>-<-21312x x ???>-≤-01202x x ??? ??>-≤--x x x x 22 1 58)2(3 ???+<->-22413x x x 3?????+-<>+23201x x x ?????->+≥--13214)2(3x x x x ???<+≤+53201x x ???>-<-212823x x 37. ?????<---≥5.0)1(431427-5x x x 512+≤-+<-023032x x ???>-<+965732x x ?????->+≤--122 314)12(23x x x x

一元一次不等式组的解集

一元一次不等式组的解集 组成一元一次不等式组的几个不等式的解集的公共部分叫做一元一次不等式组的解集. 要点 (1)求几个一元一次不等式的解集的公共部分,通常是利用数 轴来确定的,公共部分是指数轴上被各个不等式解集的区域都覆盖的部分。 (2)用数轴表示由两个一元一次不等式组成的不等式组的 解集,一般可分为以下四种情况: 列不等式解应用题的基本步骤 列不等式解应用题的基本步骤与列方程解应用题的步骤相

类似,即 (1)审:认真审题,分清已知量、未知量; (2)设:设出适当的未知数; (3)找:找出题中的不等关系,要抓住题中的关键字,如“大于”“小于”“不大于”“至少”“不 超过”“超过”等关键词的含义; (4)列:根据题中的不等关系,列出不等式或不等式组; (5)解:解出所列的不等式或不等式组的解集; (6)答:检验是否符合题意,写出答案。 总结 知识要点总结注意问题 1.一元一次不等式组的解法2.一元一次不等式组的应用1.一元一次不等式组的解题 步骤: ①先整理一元一次不等式组; ②分别求两个不等式的解集; ③利用数轴找到解集的公共 部分; ④写出不等式组的解集 2.一元一次不等式组的应用: ①先根据题意列出一元一次 1.解不等式组时, 容易出现两个解 集不符合符号方 向的错误 2.利用数轴来确 定解集时,两个端 点处是空心还是 实心容易出现错 误

不等式组; ②解这个一元一次不等式组; ③根据实际意义找出符合题意的相关整数解; ④下结论.3.利用一元一次不等式组解决实际问题时,容易忽视实际问题的意义 解题方法总结1.能利用数轴找解集的尽可能应用2.利用数轴找整数解应找全面

一元一次不等式组100道计算题91662

一元一次不等式组计算题 1. ? ??-≤+>+145321x x x x 2. 31422x x x ->??<+? 3. 512324x x x x ->+??+-??+<-? 5. 230 320x x -? 6. 23182x x x >-??-≤-? 7. 253(2)123x x x x +≤+??-?

9. ? ????-≤-+>+31 22 14513x x x x )( 10. ???? ?>+-≥+x x x x 4121213)( )( 11. ?? ? ??+<-<->+4120520 13x x x x 12. ?? ? ??+<++≤--->+3.22.05.028 32)1(42x x x x x x 13. ? ??-≤+>+145321x x x x 14. 314,2 2.x x x ->??<+? 15. 230320x x -? 16. 512, 324.x x x x ->+??+

17. 21, 24 1.x x x x >-??+<-? 18. 2 51,3311.48x x x x ?+>-????-<-?? 19. 3(2)451312 x x x x x -+? 21. ?????-≥-->+35663 4)1(513x x x x 22. ??? ??-≤-+>+3122145)1(3x x x x

(完整版)一元一次不等式组100道计算题

(完整版)一元一次不 等式组100道计算题-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

1. ? ??-≤+>+145321x x x x 31422x x x ->??<+? 512324x x x x ->+??+-??+<-? 5. 230320x x -? 23182x x x >-??-≤-? 253(2) 12 3x x x x +≤+?? -?+31 22 14513x x x x )( ?????>+-≥+x x x x 4121213)()( ?????+<-<->+412052013x x x x

. ?? ? ??+<++≤--->+3 .22.05.02832) 1(42x x x x x x ???-≤+>+145321x x x x 314,2 2.x x x ->??<+? 230320x x -? 512,324.x x x x ->+??+-??+<-? 2 51,3311.48x x x x ?+>-????-<-?? 19. 3(2)451312 x x x x x -+? ?????-≥-->+356634)1(513x x x x

?????-≤-+>+3122 145)1(3x x x x ???? ???-<-+<-.3 212 112)2(3 1x x x x . 253(2)12 3x x x x +≤+?? -?-? ? ???≤+-<+51148x x x 270≤523x -≤1 -1<213-x ≤4 29. ???>-<-21312x x ???>-≤-01202x x ??? ??>-≤--x x x x 22 1 58)2(3 ???+<->-22413x x x 3?????+-<>+23201x x x ?????->+≥--13 214)2(3x x x x ???<+≤+53201x x ?? ?>-<-2128 23x x

一元一次不等式与一元一次不等式组练习及答案

北师大版八年级下册《第2章一元一次不等式与一元一次不等式组》2014年单 元检测卷A(一) 一、选择题(每小题4分,共48分) 1.(4分)(2013?湘西州)若x>y,则下列式子错误的是() A.x﹣3>y﹣3 B.﹣3x>﹣3y C.x+3>y+3 D. > 2.(4分)下面列出的不等式中,正确的是() A.a不是负数,可表示成a>0 B.x不大于3,可表示成x<3 C.m与4的差是负数,可表示成m﹣4<0 D.x与2的和是非负数,可表示成x+2>0 3.(4分)(2013?)已知ab=4,若﹣2≤b≤﹣1,则a的取值围是() A.a≥﹣4 B.a≥﹣2 C.﹣4≤a≤﹣1 D.﹣4≤a≤﹣2 4.(4分)(2013?)不等式组的解集在数轴上表示正确的是()A.B.C.D. 5.(4分)(2004?)已知点M(3a﹣9,1﹣a)在第三象限,且它的坐标是整数,则a等于() A.1B.2C.3D.0 6.(4分)(2009?达州)函数y=kx+b的图象如图所示,则当y<0时x的取值围是()

A.x<﹣2 B.x>﹣2 C.x<﹣1 D.x>﹣1 7.(4分)(2011?北仑区一模)若不等式组的解集是x>3,则m的取值围是 () A.m≤3 B.m>3 C.m<3 D.m=3 8.(4分)(2013?)已知实数x,y,m满足,且y为负数,则m的取 值围是() A.m>6 B.m<6 C.m>﹣6 D.m<﹣6 9.(4分)(2012?州)某大型超市从生产基地购进一批水果,运输过程中质量损失10%,假设不计超市其它费用,如果超市要想至少获得20%的利润,那么这种水果的售价在进价的基础上应至少提高() A.40% B.33.4% C.33.3% D.30% 10.(4分)(2011?)已知一次函数y=ax+b的图象过第一、二、四象限,且与x轴交于点(2,0),则关于x的不等式a(x﹣1)﹣b>0的解集为() A.x<﹣1 B.x>﹣1 C.x>1 D.x<1 11.(4分)(2013?潍坊)对于实数x,我们规定[x]表示不大于x的最大整数,例如[1.2]=1, [3]=3,[﹣2.5]=﹣3,若[]=5,则x的取值可以是() A.40 B.45 C.51 D.56 12.(4分)(2010?)若关于x的不等式的整数解共有4个,则m的取值围是 () A.6<m<7 B.6≤m<7 C.6≤m≤7 D.6<m≤7 二、填空题(每小题4分,共24分) 13.(4分)根据“y的与x的5倍的差是非负数”,列出的不等式为_________ .14.(4分)(2013?)不等式组的解集是_________ . 15.(4分)(2012?凉山州)某商品的售价是528元,商家出售一件这样的商品可获利润是进价的10%~20%.设进价为x元,则x的取值围是_________ .

一元一次不等式组解题技巧

一元一次不等式组解题技巧 一、重点难点提示 重点:理解一元一次不等式组的概念及解集的概念。 难点:一元一次不等式组的解集含义的理解及一元一次不等式组的几个基本类型解集的确定。 二、学习指导: 1、几个一元一次不等式合在一起,就组成了一个一元一次不等式组。但这“几个一元一次不等式” 2、前面学习过的二元一次方程组是由二个一次方程联立而成,在解方程组时,两个方程不是独立存在的(代入法和加减法本是独立的,而且组成不等式组的不等式的个数可以是三个或多个。(课本上主要学习由两个一元一次不等式组成的不等式组)。 3、在不等式组中,几个一元一次不等式的解集的公共部分,叫做由它们组成的一元一次不等式组的解集。(注意借助于数轴 4、一元一次不等式组的基本类型(以两个不等式组成的不等式组为例) 类型(设a>b)不等式组的解集数轴表示 )(同大型,同大取大) 2)(同小型,同小取小) 3)(一大一小型,小大之间) 4)(比大的大,比小的小空集)无解 三、一元一次不等式组的解法

例1.解不等式组并将解集标在数轴上 分析:解不等式组的基本思路是求组成这个不等式组的各个不等式的解集的公共部分,在解的过程中各个不等式彼此之间无关“组”的角度去求“组”的解集,在此可借助于数轴用数形结合的思想去分析和解决问题。 步骤: 解:解不等式(1)得x> (1)分别解不等式组的每 解不等式(2)得x≤4 一个不等式 ∴(2)求组的解集 (借助数轴找公共部分) (利用数轴确定不等式组的解集) ∴原不等式组的解集为

例2.解不等式组 解:解不等式(1)得x>-1, 解不等式(2)得x≤1, 解不等式(3)得x<2, ∴∵在数轴上表示出各个解为: ∴原不等式组解集为-1-1, 解不等式(2), ∵≤5, ∴ -5≤x≤5, ∴ 将(3)(4)解在数轴上表示出来如图,

一元一次不等式组计算题专项练习

? ??-≤+>+145321x x x x 314,2 2.x x x ->??<+? 512,324.x x x x ->+??+-??+<-? 230320x x -? 23182x x x >-??-≤-? 、 2 51,3 3 1 1. 48x x x x ?+>-????-<-?? ()324,12 1.3x x x x --≥???+>-?? 253(2)123x x x x +≤+??-?+???--?? ① ≤ ② ?????-≥-->+356634)1(513x x x x 312(1)2(1)4x x x x +≥-??+>? 3(2)451312x x x x x -+

(2008)(本题满分6分)解不等式组255432x x x x - 5 ① 3x +12 -1≥x ② ,并在数轴上表示出不等式组的解集. 【 (2015).(5分)解不等式组:??? ??-≥-->32213 12232x x x x (2016). (满分5分)解不等式21+x ≥3(x-1)-4

一元一次不等式和一元一次不等式组基础练习

一元一次不等式和一元一次不等式组基础练习 一. 填空题 1. 用不等式表示:x 的2倍与1的和大于-1为__________,y 的1 3与t 的差的一半是负数为 _________。 2. 有理数a 、b 在数轴上的对应点如图所示,根据图示,用“>”或“<”填空。 b 0 a (1)a +3______b +3;(2)b -a_______0 (3)- a 3______- b 3;(4)a +b________0 3. 若0?? ?的解集是-<<11x ,则()()a b +-11的值为___________ 10. 如果不等式20x m -≥的负整数解是-1,-2,则m 的取值范围是_________ 二. 选择题(每小题3分,共24分) 11. 若a>b ,则下列不等式中一定成立的是( ) A. b a <1 B. a b >1 C. ->-a b D. a b ->0 12. 与不等式325 1-≤-x 的解集相同的是( ) A. 325-≥x B. 325-≤x C. 235x -≥ D. x ≤4 13. 不等式x x --< -32 131 3的负整数解的个数有( ) A. 0个 B. 2个 C. 4个 D. 6个 14. 不等式组124 1 323-<-≤-??? ??x x x 的整数解的和是( ) A. 1 B. 0 C. -1 D. -2

相关主题
文本预览
相关文档 最新文档