当前位置:文档之家› 紫外可见分子吸收光谱习题集及答案

紫外可见分子吸收光谱习题集及答案

紫外可见分子吸收光谱习题集及答案
紫外可见分子吸收光谱习题集及答案

第二章、紫外可见分子吸收光谱法

一、选择题 ( 共20题 )

1. 2 分

在吸收光谱曲线中,吸光度的最大值是偶数阶导数光谱曲线的 ( )

(1) 极大值 (2) 极小值 (3) 零 (4) 极大或极小值

2. 2 分

在紫外光谱中,?max 最大的化合物是 ( )

3. 2 分

用实验方法测定某金属配合物的摩尔吸收系数?,测定值的大小决定于( )

(1) 配合物的浓度 (2) 配合物的性质

(3) 比色皿的厚度 (4) 入射光强度

4. 2 分

1198

有下列四种化合物已知其结构,其中之一用 UV 光谱测得其?max 为 302nm , 问应是哪种化合物? ( )

5. 5 分

下列四种化合物中,在紫外光区出现两个吸收带者是 ( )

(1)乙烯 (2)1,4-戊二烯

(3)1,3-丁二烯 (4)丙烯醛

6. 2 分

助色团对谱带的影响是使谱带 ( )

(1)波长变长 (2)波长变短

(3)波长不变 (4)谱带蓝移

7. 5 分

对化合物 CH 3COCH=C(CH 3)2的n —?*跃迁,当在下列溶剂中测定,谱带波长最短的 是 ( )

(1)环己烷 (2)氯仿

(3)甲醇 (4)水

8. 2 分

紫外-可见吸收光谱主要决定于 ( )

(1) 分子的振动、转动能级的跃迁 (2) 分子的电子结构

(3) 原子的电子结构 (4) 原子的外层电子能级间跃迁

9. 1 分

下面哪一种电子能级跃迁需要的能量最高? ( )

(1) ?→? * (2) n →? *

(3) ?→? * (4) ?→? *

10. 2 分

化合物中CH 3--Cl 在172nm 有吸收带,而CH 3--I 的吸收带在258nm 处,CH 3--Br 的吸收 带在204nm ,三种化合物的吸收带对应的跃迁类型是( )

(1) ?→? * (2) n →? *

(3) n →? * (4)各不相同

11. 2 分

某化合物在乙醇中λmax 乙醇=287nm,而在二氧六环中λmax 二氧六环=295nm ,该吸收峰的跃

迁类型是( )

(1) ? →? * (2) ?→? *

(3) ?→? * (4) ?→? *

12. 2 分

一化合物溶解在己烷中,其λmax 己烷

=305 nm ,而在乙醇中时,λ乙醇=307nm ,引起该吸收的电子跃迁类型是( )

(1) ?→? * (2)n →? *

(3) ?→? * (4) n →? *

13. 2 分

在分子CH 3的电子能级跃迁中,下列哪种电子能级跃迁类型在该分子

中不发生

( ) (1) ? →? * (2) ?→? *

(3) n →? * (4) n →? *

14. 2 分

比较下列化合物的UV -VIS 光谱λmax 大小 ( )

(1)a>b>c (2)c>a>b (3)b>c>a (4)c>b>a

15. 2 分

比较下列化合物的UV -VIS 吸收波长的位置(λmax ) ( )

(1) a>b>c (2) c>b>a (3)b>a>c (4)c>a>b

16. 2 分

在紫外-可见光谱区有吸收的化合物是 ( )

(1) CH 3-CH=CH-CH 3 (2) CH 3-CH 2OH

(3) CH 2=CH-CH 2-CH=CH 2 (4) CH 2=CH-CH=CH-CH 3

17. 1 分

某化合物在乙醇中的?max =240nm ,?max =13000L/(moL·cm),则该UV -VIS 吸收谱带的跃迁类型是( )

(1) n →? * (2) n →? * (3) ? →? * (4) ? →? *

18. 5 分

化合物(1)的烯醇式乙酰化产物可能是(2)和(3),它的紫外吸收?max 为238nm(lg ? max =4.2)。指出这个乙酰化产物是属于哪一种结构?(Ac = CH 3C

) ( )

19. 5 分

在下列五个化合物的UV -VIS 吸收光谱中,?max 计算值为324nm 的是什么化合物?

( )

29. 5 分

在下列五个三烯的异构体中,请问UV -VIS 吸收光谱中?max =323nm 的化合物是( )

二、填空题 ( 共21题 )

1. 5 分

在紫外-可见吸收光谱中, 一般电子能级跃迁类型为:

(1)______________跃迁, 对应________________光谱区

(2)______________跃迁, 对应________________光谱区

(3)______________跃迁, 对应________________光谱区

(4)______________跃迁, 对应________________光谱区

2. 2 分

在分子(CH 3)2NCH=CH 2中, 它的发色团是_____________________________, 在分子中预计发生的跃迁类型为_________________________________________。

3. 2 分

乙醛(CH 3CHO)分子在160nm 处有吸收峰, 该峰相对应的电子跃迁类型为________,它在180nm 处的吸收峰, 相应的跃迁类型为______, 它在290nm 处的吸收峰, 相应的跃迁类型为______。

4. 2 分

共轭二烯烃在己烷溶剂中λmax 己烷

=219nm,改用乙醇作溶剂时λmax 比219nm______, 原因是该吸收是由_________跃迁引起,在乙醇中,该跃迁类型的激发态比基态的稳定性_______。

5. 2 分

一化合物溶解在己烷中,其λmax 己烷=305nm,溶解在乙醇中时,max 乙醇λ=307nm,该吸收是由于

_________跃迁引起的,对该跃迁类型, 激发态比基态极性_____, 因此, 用乙醇溶剂时, 激发态比基态的稳定性________,从而引起该跃迁红移。

6. 2 分

化合物CH 3-Cl 在172nm 的吸收谱带归属于__________跃迁;CH 3-I 在258nm 的吸收带是由于_________跃迁;CH 3-Br 在204nm 的吸收带是_________跃迁引起。

7. 2 分

丙酮分子中的发色团是_________.丙酮在280nm 的紫外吸收是_________跃迁引起; 而它在187nm 和154nm 的紫外吸收分别是由_________跃迁和__________跃迁引起。

8. 2 分

丙酮分子中的发色团是_________.丙酮在280nm 的紫外吸收是_________跃迁引起; 而它在187nm 和154nm 的紫外吸收分别是由_________跃迁和__________跃迁引起。

9. 2 分

在环戊一烯中(C 5H 8), 能量最低的能级跃迁是_________跃迁, 该跃迁是由________ 发色团引起的。

10. 2 分

在紫外-可见吸收光谱中, 溶剂的极性不同, 对吸收带影响不同. 通常, 极性大的溶剂使?→? *跃迁的吸收带_________; 而对n →? *跃迁的吸收带, 则__________。

11. 2 分

丙酮分子中呈现三种吸收带,其电子跃迁类型有____________、___________ 和 __________等三种。

12. 2 分

已知某化合物分子内有四个碳原子、一个溴原子和一个双键,在210nm 波长以上无特征紫外光谱数据,则此化合物的结构可能是____________________。

13. 2 分

区别分子中n →? *和 ?→? *电子跃迁类型可以采用吸收峰的_____________和___________ ____两种方法。

14. 2 分

化合物

o

紫外光谱中, n →л*跃迁最大吸收波长的计算值为_______nm 。

15. 5 分 (2666) 化合物O C CH 3O 紫外光谱最大吸收波长的计算值为_______nm 。

16. 5 分

化合物

O 紫外光谱最大吸收波长的计算值为_______nm 。

17. 2 分

化合物紫外光谱中, n →л*跃迁最大吸收波长的计算值为 _______nm 。

18. 2 分

化合物

COOH

紫外光谱中, n →л*跃迁最大吸收波长的计算值为_______nm 。 19. 2 分

化合物

COOH 紫外光谱最大吸收波长的计算值为_______ nm 。

20. 2 分 化合物

COOH

紫外光谱最大吸收波长的计算值为_______ nm 。 21. 2 分

化合物

α γ

β δ

O

COOH

紫外光谱最大吸收波长的计算值为_______ nm 。

三、计算题 ( 共6题 )

1. 5 分

请用 Woodward 规则计算下列化合物的最大吸收波长。

Woodward 规则:

链状共轭二烯母体基本值为 217nm

同环二烯母体基本值为 253nm

异环二烯母体基本值为 214nm

共轭系统每增加一个双键加30nm

烷基或环残余取代同共轭系统相连加5nm

2. 5 分

计算化合物(如下式)的紫外光区的最大吸收波长。

3. 10 分

一个化合物可能有A或B两种结构。在该化合物的光谱中。其λmax

乙醇=352nm。该化合物可能是哪一种结构?

A B

4. 5 分

计算下列化合物的λ

max

乙醇

5. 5 分

α-莎草酮的结构为下述A、B两种结构之一,已知α-莎草酮在酒精溶液中的?max为252nm,试利用Woodword规则判别它是属于哪种结构?

(A) (B)

6. 5 分

计算下列化合物UV光谱的?max值。

(A) (B)

提示:用于计算芳香族羰基衍生物的Scott经验定律:

COX

型的?max(nm)

X=烷基246

X=氢250

X=羟基、烷氧基230

型的?max(nm)

取代基Z 增量

邻位间位对位

R-(烷基) 3 3 10

-OH,-OR 7 7 25

-O-11 20 78

-Cl 0 0 10

-Br 2 2 15

-NH213 13 58

四、问答题( 共11题)

1. 10 分

试将下列六种异构体按紫外吸收峰波长递增次序排列,并简要说明理由。

2. 5 分

乙酰乙酸乙酯有酮式和烯醇式互变异构体,某实验室的一瓶乙酰乙酸乙酯用紫外光谱测得仅末端有一弱吸收,试问可能是哪种构型。

3. 5 分

共轭二烯在己烷溶剂中?max=219nm。如果溶剂改用己醇时, ?max比219nm大还是小? 并解释。

4. 5 分

化合物A 和B 的结构如下: 在同一跃迁类型中, 一个化合物?max=303nm, 另一个化合物?max=263nm, 指出观测到的吸收反应是哪种类型的跃迁? 哪一个化合物具有?max=303nm?

5. 5 分

在环戊烯( C5H8)分子中, 可能发生哪种类型的跃迁?

6. 5 分

具有n→?*和?→?*两种跃迁的化合物的光谱图如下, 给出每种类型跃迁所引起的谱带的大致?max,并解释。

7. 5 分

请将下列化合物的紫外吸收波长?max值按由长波到短波排列, 并解释原因。

(1) CH2=CHCH2CH=CHNH2(2) CH3CH=CHCH=CHNH2

(3) CH3CH2CH2CH2CH2NH2

8. 5 分

指出下列化合物的紫外吸收波长, 按由长波到短波吸收波长排列.

9. 2 分

指出下列化合物的紫外吸收波长(按由长波到短波吸收波长排列), 并解释原因。

10. 5 分

下面为香芹酮在乙醇中的紫外吸收光谱, 请指出二个吸收峰属于什么类型, 并根

据经验规则计算一下是否符合?

11. 5 分

A和B化合物的结构如下. 试比较两者产生荧光的能力, 并说明其原因。

A B

第二章、紫外可见分子吸收光谱答案

一、选择题( 共20题)

1. 2 分(4)

2. 2 分(4)

3. 2 分(2)

4. 2 分(1)

5. 5 分(4)

6. 2 分(1)

7. 5 分(4)

8. 2 分(2)

9. 1 分(1)

10. 2 分(3) 11. 2 分(4) 12. 2 分(3)

13. 2 分(4) 14. 2 分(2) 15. 2 分(4)

16. 2 分(4) 17. 1 分(3)

18. 5 分(2) 19. 5 分(5)

20. 5 分(3)

二、填空题( 共21题)

1. 5 分

[答] 1. ?─>?*, 真空紫外; 2. n─>?*, 远紫外;

3. ?─>?*, 紫外;

4. n─>?*, 近紫外, 可见.

2. 2 分

[答] ¨

-N-C=C<

?→?*

n→?*

n→?*

?→?*

3. 2 分

[答] ?→?* n→?* n→?*

4. 2 分

大;?→? *;大。

5. 2 分?→?*; 更大;大。

6. 2 分n→? *;n→? *;n→? *。

7. 2 分

>C=O(或羰基)

n→? *;

n→? *;

?→? *。

8. 2 分

? →? *、? →? *、? →? *、? →? *。

9. 2 分

?→?*;

10. 2 分

体系中各组分间互相不发生作用时,吸光度具有加和性;

各组分吸光度之和;

A总=?1bc1+?2bc2+……+?ibci

11. 2 分

π→π*、n→π*、n→? *。

12. 2 分

C=C-C-C-Br

13. 2 分

摩尔吸收系数;

分别在极性和非极性溶剂中测吸收曲线比较。

14. 2 分249

15. 5 分353

16. 5 分385

17. 2 分234

18. 2 分223

19. 2 分222

20. 2 分222

21. 2 分285

三、计算题( 共6题)

1. 5 分

[答] A. 同环二烯母体基本值为253 nm

加一个共轭双键30

加三个环外双键15

五个烷基同共轭体系相连25

_____________________________________

323 nm

B. 同环共轭二烯母体基本值253 nm

加一个共轭双键30

八个烷基同共轭体系相连40

____________________________________

323 nm

2. 5 分

[答]根据WoodWard─Fieser 规则计算

母体基214 nm

环外双键×5 25

烷基取代×7 35

延长一个共轭双键30

_______________________

304 nm

3. 10 分

解: A B

母体215nm 215nm

同环共轭二烯39nm 39nm

取代基? 10(1)nm 10(1)nm

? 12(1)nm 12(1)nm

? 18(1)nm

? 18(1)nm 18(1)nm 环外双键15(3)nm

共轭延长30nm 30nm

357nm 324nm 该化合物最可能的结构是A

4. 5 分

解:母体215nm

取代基? 12(1)nm

? 18(1)nm

环外双键5nm

共轭延长30nm

280nm

5. 5 分

a的母体值215nm b的母体值215nm 一个β取代+12nm 二个β取代基+2×12nm 计算?max ≈227nm 一个α取代基+10nm

一个环外双键+5nm

计算?max 254nm 所以α-莎草酮应属b 结构

6. 5 分

(A)芳酮母体246nm

邻位烷基+3nm

间位氯+0nm

邻位羟基+7nm

计算值(?max) 256nm

(B)芳酮母体246nm

对甲氧基增量+25nm

邻烷基增量+3nm

计算值(?max) 274nm

四、问答题( 共11题)

1. 10 分

[答] 首先区分同环二烯( 1,3,4,5 ) 和异环二烯( 2,6 ) ;

再计算取代基和环外双键数目:

(1) 4 个取代基,2 个环外双键总计数6

(2) 5 个取代基,3 个环外双键总计数8

(3) 8 个取代基总计数8

(4) 6 个取代基总计数6

(5) 5 个取代基,3 个环外双键总计数8

(6) 7 个取代基,5 个环外双键总计数12

在同环二烯中排列次序为?3= ?5>?1= ?4

在异环二烯中排列次序为?6> ?2

具体计算值:?3= ?5= 323 nm ?1= ?4= 313 nm

2. 5 分

[答]

酮式烯醇式

它没有共轭双键它有共轭双键

故仅在末端204 nm 故在245 nm 处

处有一弱吸收有强的K 吸收带

据此可知该实验室的一瓶乙酰乙酸乙酯为酮式结构。

3. 5 分

[答] ?max比219nm大。因为己醇比己烷的极性更大, 而大多数?→?*跃迁中, 激发态比基态有更大的极性,因此在已醇中?*态比?态( 基态)更稳定, 从而?→?*跃迁吸收将向长波方向移动。

4. 5 分

[答]观察到的吸收谱带是?→?*类型跃迁. 化合物B 具有?max=303nm。较长的共轭系统吸收较长波长的光。

5. 5 分

[答]可能的跃迁类型有?→?*,?→?*,?→?*,?→?*。

6. 5 分

[答]n─→?* ?max =230nm,?─→?* ?max =190nm,由于n─→?*跃迁的能量比?─→?*跃迁能量低, 故吸收发生在波长较长的吸收带, 而?─→?*跃迁的吸收强度总是大于n─→?*吸收强度的10到100倍, 故?─→?*跃迁对应图中波长较短, 吸收强度大的谱带.

7. 5 分

[答] CH3CH=CHCH=CHNH2 > CH2=CHCH2CH=CHNH2 > CH3CH2CH2CH2CH2NH2

8. 5 分

[答]

9. 2 分

[答]

10. 5 分

[答] 吸收较大的峰为C=C的?─→?*跃迁, 较小的吸收峰为C=O的n─→?*跃迁.

215nm + 10nm + 12nm =237nm(C=C-C=O) (?-取代) (?-取代)计算结果谱图吻合.

11. 5 分

两者结构很相似, 但A没有荧光, B有很强荧光. 这是因为B结构中的氧桥使此分子成为具有刚性平面结构的分子. 这种刚性结构使分子的振动减弱, 因而减小了体系间跨越到三重态的可能性, 以及碰撞去活化的可能性。

紫外可见吸收光谱习题集及答案(20200925103547)

专业资料 值得拥有 一、选择题(共85题) 1. 2 分(1010) 在紫外-可见光度分析中极性溶剂会使被测物吸收峰 () (1) 消失 (2) 精细结构更明显 (3) 位移 (4) 分裂 2. 2 分(1019) 用比色法测定邻菲罗啉-亚铁配合物时 ,配合物的吸收曲线如图 1所示,今有a 、b 、 c 、 d 、 e 滤光片可供选用,它们的透光曲线如图 2所示,你认为应选的滤光片为 () 3. 2 分(1020) 欲测某有色物的吸收光谱,下列方法中可以采用的是 () (1) 比色法 (2) 示差分光光度法 (3)光度滴定法 (4) 分光光度法 4. 2 分(1021) 按一般光度法用空白溶液作参比溶液,测得某试液的透射比为 10% ,如果更改参 比溶液,用一般分光光度法测得透射比为 20%的标准溶液作参比溶液,则试液的透 光率应等于 () (1) 8% (2) 40% (3) 50% ⑷ 80% 5. 1 分(1027) 邻二氮菲亚铁配合物,其最大吸收为 510 nm ,如用光电比色计测定应选用哪一种 滤光片? () (1)红色 (2) 黄色 (3) 绿色 (4) 蓝色 6. 2 分(1074) 下列化合物中,同时有 n →d , τ→d , C →

紫外可见吸收光谱习题集及答案

五、紫外可见分子吸收光谱法(277题) 一、选择题( 共85题) 1、 2 分(1010) 在紫外-可见光度分析中极性溶剂会使被测物吸收峰( ) (1) 消失(2) 精细结构更明显 (3) 位移(4) 分裂 2、 2 分(1019) 用比色法测定邻菲罗啉-亚铁配合物时,配合物的吸收曲线如图1所示,今有a、b、c、d、e滤光片可供选用,它们的透光曲线如图2所示,您认为应选的滤光片为( ) 3、 2 分(1020) 欲测某有色物的吸收光谱,下列方法中可以采用的就是( ) (1) 比色法(2) 示差分光光度法 (3) 光度滴定法(4) 分光光度法 4、 2 分(1021) 按一般光度法用空白溶液作参比溶液,测得某试液的透射比为10%,如果更改参 比溶液,用一般分光光度法测得透射比为20% 的标准溶液作参比溶液,则试液的透 光率应等于( ) (1) 8% (2) 40% (3) 50% (4) 80% 5、 1 分(1027) 邻二氮菲亚铁配合物,其最大吸收为510 nm,如用光电比色计测定应选用哪一种 滤光片?( ) (1) 红色(2) 黄色(3) 绿色(4) 蓝色 6、 2 分(1074) 下列化合物中,同时有n→π*,π→π*,σ→σ*跃迁的化合物就是( ) (1) 一氯甲烷(2) 丙酮(3) 1,3-丁二烯(4) 甲醇 7、 2 分(1081) 双波长分光光度计的输出信号就是( ) (1) 试样吸收与参比吸收之差(2) 试样在λ1与λ2处吸收之差 (3) 试样在λ1与λ2处吸收之与(4) 试样在λ1的吸收与参比在λ2的吸收之差8、 2 分(1082) 在吸收光谱曲线中,吸光度的最大值就是偶数阶导数光谱曲线的( ) (1) 极大值(2) 极小值(3) 零(4) 极大或极小值 9、 2 分(1101) 双光束分光光度计与单光束分光光度计相比,其突出优点就是( ) (1) 可以扩大波长的应用范围(2) 可以采用快速响应的检测系统 (3) 可以抵消吸收池所带来的误差(4) 可以抵消因光源的变化而产生的误差

紫外 可见分光光度法标准操作程序

紫外-可见分光光度法标准操作程序 1 简述 紫外-分光光度法是通过被测物质在特定波长处或一定波长长范围内的吸光度或发光强度,对该物质进行定性和定量分析的方法。本法的在药品检验中主要用于药品的鉴别、检查和含量测定。 定量分析通常选择物质的最大吸收波长处测出吸光度,然后用对照品或百分吸收系数求算出被测物质的含量,多用于制剂的含量测定;对已知物质定性可用吸收峰波长或吸光度比值作为鉴别方法;若化合物本身在紫外光无吸收,而杂质在紫外光区有相当强度的吸收,或杂质的吸收峰化合物无吸收,则可用本法作检查。物质对紫外辐射的吸收是由于分子中原子的外层电子跃迁所产生的。因此,紫外吸收主要决定于分子的电子结构,故紫外光谱又称电子光谱。有机化合物分子结构中如含有共轭体系、芳香环或发色基团,均可在近紫外区(200-400nm)或可见光区(400-850nm)产生吸收。通常使用紫外分光光度计的工作波长范围为 190-900nm,因此又称紫外-可见分光光度计。 紫外吸收光谱为物质对紫外区辐射的能量吸收图。朗伯-比尔(Lambert-beer)定律为光的吸收定律,它是紫外分光光度法定量分析的依据,其数学表达式为:A=log1/T=ECL 式中A为吸光度; T为透光率; E为吸收系数; C溶液浓度; L为光路长度。 如溶液的浓度(C)为1%(g/ml),光路长度(L)为1cm,相应的吸收系数为百分吸收系数,以E表示。如溶液的浓度(C)为摩尔浓度(mol/L),液 层厚度为1cm时,则相应有吸收系数为摩尔吸收系数,以ε表示。 2 仪器 紫外-可见分光光度计:主要由光源、单色器,样品室、检测器、记录仪、显示系统和数据处理系统等部分组成。 可见光区全波长范围的测定,仪器备有二种光源,即氘灯-为了满足紫外 和碘钨灯,前者用于紫外区,后者用于可见光区。 单色器通常由进光狭缝、出光狭缝、平行光装置、色散元件、聚焦透镜或反射镜等组成。色散元件有棱镜和光栅二种,棱镜多用天然石英或熔融硅石制成,对200~400nm波长光的色散能力很强,对600nm以上波长的光色散能力较差,棱镜色散所得的光谱为非匀排光谱。光栅系将反射或透光经衍射而达到色散作用,故常称为衍射光栅,光栅光谱是按波长作线性排列,故为匀排光谱,双光束仪器多用光栅为色散元件。 检测器有光电管和光电倍增管二种。 紫外-可见分光光度计依据其结构和测量操作方式的不同可分为单光束和双光束 分光光度计二类。单光束分光光度计有些仍为手工操作,即固定在某一波长,分别测量比较空白、样品或参比的透光率或吸收度,操作比较费时,用于绘制吸收

紫外吸收光谱法测定苯的含量

江南大学实验报告 实验名称紫外吸收光谱法测定苯的含量 一、实验目的 1、了解紫外光谱法测定苯的原理及方法。 2、了解TU-1901双光束紫外可见分光光度计的使用。 3、学习利用吸收光谱曲线进行化合物鉴定和纯度检查。 二、实验原理 许多有机化合物或其衍生物,在可见光或紫外光区有吸收光谱,各种物质分子有其特征的吸收光谱。吸收光谱的形状和物质的特性有关,可作为定型鉴定的依据,而在某选定的波长下,测量其吸收光度即可对物质进行定量分析。紫外吸收光谱用于定量分析时,符合朗伯比尔定律,即A=κbc,式中A为吸光度,κ为摩尔吸收系数,b为液层厚度。 三、仪器和试剂 1、仪器 TU-1901型紫外-可见分光光度计,1cm石英比色皿,5ml吸量管,10ml容量瓶。 2、试剂 苯(色谱纯),乙醇(AR、95%),0.1g/L苯标准溶液。 四、实验步骤 1、吸收曲线的绘制 将装有参比溶液和标准试样的比色皿放入光路中,在紫外分光光度计上,从波长200-300nm,每隔0.5nm扫描出苯的吸收曲线。指出苯的B吸收带,找出B吸收带的最大吸收波长。2、试样中苯含量的测定 (1)苯标准曲线的绘制分别吸取1.0ml、2.0ml、3.0ml、4.0ml、5.0ml0.1g/l的苯标准溶液于5只10ml容量瓶中,用乙醇稀释至刻度,摇匀。用1ml石英比色皿,以乙醇做参比溶液,在最大吸收波长处分别测定其吸光度。 以吸光度为纵坐标,苯的含量为横坐标绘制标准曲线。 (2)测定乙醇试样中苯的含量准确吸取含苯的试样5ml于10ml容量瓶中,用乙醇稀释至刻度,摇匀,用1cm石英比色皿,以乙醇做参比溶液,在最大吸收波长处测定试样溶液的吸光度,根据苯标准曲线查的相应的样品浓度。 3、结束工作 (1)实验结束,关闭紫外工作软件、电脑电源。 (2)取出吸收池,清洗晾干放入盒内保存。 (3)清理台面,填写仪器使用记录。 五、实验结果 最大吸收波长λmax=254.50nm

实验1紫外-可见吸收光谱实验报告

实验一:紫外-可见吸收光谱 一、实验目的 1.熟悉和掌握紫外-可见吸收光谱的使用方法 2.用紫外-可见吸收光谱测定某一位置样品浓度 3.定性判断和分析溶液中所含物质种类 二、实验原理 紫外吸收光谱的波长范围在200~400,可见光吸收光谱的波长在400~800,两者都属于电子能谱,两者都可以用朗伯比尔(Lamber-Beer’s Law)定律来描述 A=ε bc 其中A为吸光度;ε为光被吸收的比例系数;c为吸光物质的浓度,单位mol/L; b为吸收层厚度,单位cm 有机化合物的紫外-可 见吸收光谱,是其分子中外 层价电子跃迁的结果,其中 包括有形成单键的σ电子、 有形成双键的π电子、有未 成键的孤对n电子。外层 电子吸收紫外或者可见辐 射后,就从基态向激发态(反键轨道)跃迁。主要有四种跃迁,所需能量ΔE 大小顺序为σ→σ*>n→σ*>π→π>n→π*

三、实验步骤 1、开机 打开紫外-可见分光光度计开关→开电脑→软件→联接→M(光谱方法)进行调节实验需要的参数:波长范围700-365nm 扫描速度高速;采样间隔:0.5nm 2、甲基紫的测定 (1)校准基线 将空白样品(水)放到比色槽中,点击“基线”键,进行基线校准 (2)标准曲线的测定 分别将5ug/ml、10ug/ml 、15ug/ml 、20ug/ml甲基紫溶液移入比色皿(大约2/3处),放到比色槽中,点击“开始”键,进行扫描,保存 (3)测定试样 将试样甲基紫溶液移入比色皿(大约2/3处),放到比色槽中,点击“开始” 键,进行扫描,保存 3、甲基红的测定 (1)校准基线

将空白样品(乙醇)放到比色槽中,点击“基线”键,进行基线校准 (2)测定试样 将试样甲基紫溶液移入比色皿(大约2/3处),放到比色槽中,点击“开始” 键,进行扫描,保存 四、实验结果 1.未知浓度的测定 分别测定了5μg/ml,10μg/ml,15μg/ml,20μg/ml和未知浓度的甲基紫溶液的紫外吸收光谱,紫外吸收谱图如下: 甲基紫在580nm是达到最大吸收见下表: 浓度/μg*ml-1吸光度 50.665 10 1.274 15 2.048 20 2.659

苯和苯衍生物紫外吸收光谱的测定

苯和苯衍生物紫外吸收光谱的测定

实验三苯和苯衍生物紫外吸收光谱的测定 一、实验目的 1.了解紫外可见光光度计的结构、用途及使用方法 2.了解紫外吸收光谱在有机化合物结构鉴定中的作用及原理。 3.了解溶剂极性及pH对吸收光谱的影响及原理。 4. 了解紫外-可见吸收光谱的产生及不同助色团对苯的紫外吸收光谱的影响,。 二、实验原理 作为有机化合物结构解析四大光谱之一,紫外吸收光谱具有方法简单、仪器普及率高、操作简便,紫外吸收光谱吸收强度大检出灵敏度高,可进行定性、定量分析的特点。尽管紫外光谱谱带数目少、无精细结构、特征性差,只能反映分子中发色团和助色团及其附近的结构特征,无法反映整个分子特性,单靠紫外光谱数据去推断未知物的结构很困难,但是紫外光谱对于判断有机物中发色团和助色团种类、位置、数目以及区别饱和与不饱和化合物,测定分子中共轭程度进而确定未知物的结构骨架等方面有独到之处。因此

苯、甲苯、苯酚、苯胺、硝基苯、苯甲醛、苯甲酸的环己烷溶液,用环己烷稀释至刻度,摇匀。用1 cm石英吸收池,以环己烷作参比溶液,在紫外区200-400nm进行波长扫描,得8种物质的紫外吸收光谱。观察比较苯及其衍生物的吸收光谱,讨论取代基对苯原有的吸收带的影响。 3、溶剂极性对紫外吸收光谱 (1)溶剂极性对n →Π*跃迁的影响 在3个10mL 具塞比色管中各加0.04mL丁酮,分别用水、乙醇、氯仿稀释至刻度,摇匀。用带盖的1cm石英吸收池相对各自的溶剂作参比在200-320nm波长范围内绘制紫外吸收光谱。观察比较不同极性溶剂对n →Π*跃迁的影响,讨论原因。 (2)溶剂极性对Π→Π*跃迁的影响 在3个10mL具塞比色管各加0.20 mL异亚丙基丙酮溶液,分别用正己烷、氯仿、水稀释至刻度摇匀。用带盖的1cm石英吸收池相对各自的溶剂做参比溶液,在200-320nm波长范围内绘制紫外吸收光谱。观察比较不同极性溶剂对Π→Π*跃迁的影响,讨论原因。 (3)溶剂极性对β-羰基化合物酮式和烯醇式互变异构体的影响: 在3个5 mL具塞比色管中分别加入0.5mL乙

紫外-可见吸收光谱与红外光谱.

紫外-可见吸收光谱与红外光谱 基本概念 紫外-可见吸收光谱:让不同波长的光通过待测物,经待测物吸收后,测量其对不同波长光的吸收程度(吸光度A),以吸光度A为纵坐标,辐射波长为横坐标作图,得到该物质的吸收光谱或吸收曲线,即为紫外—可见吸收光谱。 红外光谱:又称为分子振动转动光谱,属分子吸收光谱。样品受到频率连续变化的红外光照射时,分子吸收其中一些频率的辐射,分子振动或转动引起偶极矩的净变化,使振-转能级从基态跃迁到激发态,相应于这些区域的透射光强减弱,记录百分透过率T%对波数或波长的曲线,即为红外光谱。 两者都是红分了的吸收光谱图。 区别--起源不同 1.紫外吸收光谱由电子能级跃迁引起紫外线波长短、频率高、光子能量大,能引起分子外层电子的能级跃迁。电子跃迁虽然伴随着振动及转动能级跃迁,但因后者能级差小,常被紫外曲线所淹没。除某些化合物蒸气(如苯等)的紫外吸收光谱会显现振动能级跃起迁外,一般不显现。因此,紫外吸收光谱属电子光谱。光谱简单。 2.中红外吸收光谱由振—转能级跃迁引起? 红外线的波长比紫外线长,光子能量比紫外线小得多,只能收起分子的振动能级并伴随转动能级的跃迁,因而中红外光谱是振动—转动光谱,光谱复杂。 适用范围 紫外吸收光谱法只适用于芳香族或具有共轭结构的不饱和脂肪族化合物及某些无物的定性分析,不适用于饱和有机化合物。红外吸收光谱法不受此限,在中红外区,能测得所有有机化合物的特征红外光谱,用于定性分析及结构研究,而且其特征性远远高于紫外吸收光谱,除此之外,红外光谱还可以用于某些无机物的研究。 紫外分光光度法测定对象的物态以溶液为主,以及少数物质的蒸气;而红外分光光度法的测定对象比紫外分光光度法广泛,可以测定气、液、固体样品,并以测定固体样品最为方便。 红外分光光度法主要用于定性鉴及测定有机化合物的分子结构,紫外分光光度法主要用于定量分析及测定某些化合物的类别等。 特性 红外光谱的特征性比紫外光谱强。因为紫外光谱主要是分子的∏电子或n电子跃迁所产生的吸收光谱。因此,多数紫外光谱比较简单,特征性差。 UV-Vis主要用于分子的定量分析,但紫外光谱(UV)为四大波谱之一,是

紫外可见吸收光谱仪原理及使用

紫外可见吸收光谱仪 分光光度法分析的原理是利用物质对不同波长光的选择吸收现象来进行物质的定性和定量分析,通过对吸收光谱的分析,判断物质的结构及化学组成。本仪器是根据相对测量原理工作的,即选定某一溶剂(蒸馏水、空气或试样)作为参比溶液,并设定它的透射比(即透过率T)为100%,而被测试样的透射比是相对于该参比溶液而得到的。透射比(透过率T)的变化和被测物质的浓度有一定函数关系,在一定的范围内,它符合朗伯—比耳定律。 T=I/Io A=KCL=‐㏒I/Io 其中T 透射比(透过率) A 吸光度 C 溶液浓度K 溶液的吸光系数L 液层在光路中的长度 I 光透过被测试样后照射到光电转换器上的强度 Io 光透过参比测试样后照射到光电转换器上的强度 1. 液晶显示器:用于显示测量信息、参数及数据。 2. 键盘:共有八个触摸式按键,用于控制和操作仪器 3. 样品室:用于放置被测样品。

基本操作步骤: 连接仪器电源线,确保仪器供电电源有良好的接地性能。接通电源,使仪器预热30分钟。若要实现精确测试或作全性能检查,请再执行一次自动校正功能。在仪器与电脑非连接状态时,按<方式>键5秒左右,待显示器显示“SELFTESTING FILTER”后松手,至仪器自动校正后,显示器显示“XXX..Xnm 0.000A”即可进行测试。用<方式>键设置测试方式,透射比(T),吸光度(A)用<设置>键和<∧>键或< ∨>键设置您想要的分析波长。如没有进行上步操作,仪器将不会变换到您想要的分析波长。根据分析规程,每当分析波长改变时,必须重新调整0ABS/100%T。 UV-2102C/PC/PCS型紫外可见分光光度计根据这一规程,特别设计了防误操作功能:当波长改变时,显示器第二列会显示“WL=×××.×nm”字样,(设置波长)与第一列左侧显示“×××.×nm”(当前波长)不一致时,提示您下步必须按<确认>键,显示器第一列右侧会显示“BLANKING”,即仪器变换到您所设置的波长及调0ABS/100%T。 根据设置的分析波长,选择正确的光源。光源的切换位置在340.0nm处。正常情况下,仪器开机后,钨灯和氘灯同时点亮。为延长光源灯的使用寿命,仪器特别设置了光源灯开关控制功能,当您的分析波长在340.0nm-1000nm时,应选用钨灯。将您的参比样品溶液和被测样品溶液分别倒入比色皿中,打开样品室盖,将盛有溶液的比色皿分别插入比色皿槽中,盖上样品室盖。一般情况下,参比样品放在第一个槽位中。仪器所附的比色皿,其透射比是经过配对测试的,未经配对处理的比色皿将影响样品的测试精度。比色皿透光部分表面不能有指印、溶液痕迹,被测溶液中不能有气泡、悬浮物,否则也将影响样品测试的精度。将参比样品推(拉)入光路中,按<0ABS/100%T>键调0ABS/100%T。此时显示器显示的“BLANKING”,直至显示“100.0”%T或“0.000A”为止。 当仪器显示器显示出“100.0%T”或“0.000A”后,将被测样品推(或拉)入光路,这时,您便可以从显示器上得到被测样品的测试参数。根据您设置的方式,可得到样品的透射比或吸光度参数。

实验10 紫外可见吸收光谱测试

实验10紫外可见吸收光谱测试 140604班 C组胡晓玲 3214001700 【实验目的】 本实验的目的是利用紫外光区和可见光区的光学特性的检测方法测试甲基橙的光学特性,同时培养分析和运用材料紫外光区和可见光区光谱特性的能力。 【仪器用具】 UV-2550岛津紫外可见分光光度计 【实验原理】 研究甲基橙在紫外-可见光区的分子吸收光谱的。其中所利用的紫外-可见分光光度法是利用某些物质的分子吸收200~900 nm光谱区的辐射来进行分析测定的方法,这种方法广泛用于无机和有机物质的定性和定量测定。 当光作用在物质上时,一部分被表面反射,一部分被物质吸收。改变入射光的波长时,不同物质对每种波长的光都有对应的吸收程度(A)或透过程度(T),可以做出这种物质在实验波长范围内的吸收光谱曲线或透过光谱曲线。用紫外-可见分光光度计可以作出材料在紫外光区和可见光区的对紫外光和可见光的吸收光谱曲线或透过光谱曲线。利用的是朗伯-比尔定律: (10-1) A abc A为吸光度,a为吸光系数,b为光路长度,c为物质浓度。 通过吸收光谱曲线或透过光谱曲线可以判断材料在紫外光区和可见光区的光学特性,为材料的应用作指导。例如,具有较高的紫外光吸收性能,可作为保温吸热等材料;如具有较高的紫外光反射特性,则可作为好的抗老化材料。除此以外,紫外-可见吸收光谱还可用于物质的定量分析、定性分析、纯度鉴定和结构分析等。 【实验步骤与结果分析】 1.实验步骤 ①以去离子水为测试参比溶液进行基线校正。 ②以去离子水为参比液,不同浓度的甲基蓝溶液为测试样品,测试不同浓度的溶液的紫外 可见吸收光谱图。 2.实验结果分析

仪器分析 紫外-可见分光光度法单元测验题及参考答案

紫外-可见分光光度法单元测验题参考答案 一、填空题(共20分,1分/空) 1、朗伯定律是说明在一定条件下,光的吸收与光径长度成正比;比尔定律是说明在一定条件下,光的吸收与溶液浓度成正比,二者合为一体称为朗伯-比尔定律,其数学表达式为A=Kbc。 2、摩尔吸光系数的单位是L·mol-1·cm-1,它表示物质的浓度为1mol·L-1,液层厚度为1cm时,在一定波长下溶液的吸光度,常用符号ε表示。 3、分子的运动包括三种,它们是电子运动、分子振动和分子转动。其中能量最大的是电子运动,能量最低的是分子转动。 4、多组分分光光度法可用解方程组的方法来求得各组分的含量,这是基于吸光度的加和性。 5、在紫外可见分光光度计中,在可见光区使用的光源是钨灯,用的棱镜和比色皿的材质可以是玻璃;而在紫外光区使用的光源是氢或氘灯,用的棱镜和比色皿的材质一定是石英。 6、影响有色配合物的摩尔吸收系数的因素是波长。 二、单选题(共20分,2分/题) 1、人眼能感觉到的光称为可见光,其波长范围是(A)。 A.400~780nm B.200~400nm C.200~1000nm D.400~1000nm 2、物质吸收光辐射后产生紫外-可见吸收光谱,这是由于(C)。 A.分子的振动 B.分子的转动 C.原子核外层电子的跃迁 D.分子的振动和转动 3、物质的颜色是由于选择吸收了白光中的某些波长的光所致。CuSO 溶液呈 4 蓝色是由于它吸收了白光中的(C)。 A.蓝色光波 B.绿色光波 C.黄色光波 D.青色光波 4、符合吸收定律得溶液稀释时,其最大吸收峰波长位置(D)。

A.向长波移动 B.向短波移动 C.不移动 D.不移动,吸收峰值降低 5、当吸光度A=0时,τ为(C)。 A.0 B.10% C.100% D.∞ 6、高吸光度差示法和一般的分光光度法不同点在于参比溶液不同,前者的参比溶液为(D)。 A.溶剂 B.试剂空白 C.比被测试液浓度稍高的待测组分标准溶液 D.比被测试液浓度稍低的待测组分标准溶液 7、双波长分光光度计的输出信号是(B)。 A.试样在λ 1吸收和参比在λ 2 吸收之差 B.试样在λ 1 和λ 2 吸收之差 C.试样在λ 1和λ 2 吸收之和 D.试样在λ 1 吸收和参比在λ 2 吸收之和 8、在分光光度分析中,常出现工作曲线不过原点的情况,下列说法中不会引起这一现象的是(C)。 A.测量和参比溶液所用吸收池不对称 B.参比溶液选择不当 C.显色反应灵敏度太低 D.显色反应的检测下限太高 9、在符合朗伯-比尔定律的范围内,有色物的浓度、最大吸收波长、吸光度三者的关系是(B)。 A.增加,增加,增加 B.减小,不变,减小 C.减小,增加,增加 D.增加,不变,减小 10、双波长分光光度计与单波长分光光度计的主要区别在于(D)。 A.光源的种类 B.检测器的个数 C.吸收池的个数 D.使用的单色器的个数 三、简答题(共25分,5分/题) 1、紫外-可见分光光度法具有什么特点? 答:①具有较高的灵明度,适用于微量组分的测定; ②分析速度快,操作简便; ③仪器设备不复杂,价格低廉; ④应用广泛,大部分无机离子和许多有机物质的微量成分都可以用这种方法测定。

紫外可见吸收光谱在生物方面的应用

1.概述 人们在实践中早已总结出不同颜色的物质具有不同的物理和化学性质。根据物质的这些特性可对它进行有效的分析和判别。由于颜色本就惹人注意,根据物质的颜色深浅程度来对物质的含量进行估计,可追溯到古代及中世纪。1852年,比尔(Beer)参考了布给尔(Bouguer)1729年和朗伯(Lambert)在1760年所发表的文章,提出了分光光度的基本定律,即液层厚度相等时,颜色的强度与呈色溶液的浓度成比例,从而奠定了分光光度法的理论基础,这就是著名的比尔朗伯定律。1854年,杜包斯克(Duboscq)和奈斯勒(Nessler)等人将此理论应用于定量分析化学领域,并且设计了第一台比色计。到1918年,美国国家标准局制成了第一台紫外可见分光光度计。此后,紫外可见分光光度计经不断改进,又出现自动记录、自动打印、数字显示、微机控制等各种类型的仪器,使光度法的灵敏度和准确度也不断提高,其应用范围也不断扩大。 紫外可见分光光度法从问世以来,在应用方面有了很大的发展,尤其是在相关学科发展的基础上,促使分光光度计仪器的不断创新,功能更加齐全,使得光度法的应用更拓宽了范围。目前,分光光度法已为工农业各个部门和科学研究的各个领域所广泛采用,成为人们从事生产和科研的有力测试手段。我国在分析化学领域有着坚实的基础,在分光光度分析方法和仪器的制造方面国际上都已达到一定的水平[1][2] 2.原理

物质的吸收光谱本质上就是物质中的分子和原子吸收了入射光中的某些特定波长的光能量,相应地发生了分子振动能级跃迁和电子能级跃迁的结果。由于各种物质具有各自不同的分子、原子和不同的分子空间结构,其吸收光能量的情况也就不会相同,因此,每种物质就有其特有的、固定的吸收光谱曲线,可根据吸收光谱上的某些特征波长处的吸光度的高低判别或测定该物质的含量,这就是分光光度定性和定量分析的基础。分光光度分析就是根据物质的吸收光谱研究物质的成分、结构和物质间相互作用的有效手段。 紫外可见分光光度法的定量分析基础是朗伯-比尔(Lambert-Beer)定律。即物质在一定浓度的吸光度与它的吸收介质的厚度呈正比,其数学表示式如下: A=錬c 式中:A—吸光度(又称光密度、消光值), ?—摩尔吸光系数(其物理意义为:当吸光物质浓度为1摩尔/升,吸收池厚为1厘米,以一定波长原光通过时,所引起的吸光值A),b—吸收介质的厚度(厘米),c—吸光物质的浓度(摩尔/升)。 物质的颜色和它的电子结构有密切的关系,当辐射(光子)引起电子跃迁使分子(或离子)从基态上升到激发态时,分子(或离子)就会在可见区或紫外呈现吸光,颜色的发生或变化是和分子的正常电子结构的变形联系的。当分子中含有一个或更多的生色基因(即具有不饱和键的原子基团),辐射就会引起分子中电子能量的改变。常见的生色团有:CO,-N=N-,-N=O,-C N,CS

紫外-可见吸收光谱自测题

紫外-可见吸收光谱自测题 1.分子的紫外-可见吸收光谱呈带状光谱,其原因是[ ] A:分子中价电子运动的离域性;B:分子中振动能级的跃迁伴随着转动能级的跃迁;C:分子中价电子能级的相互作用;D:分子中价电子的跃迁伴随振动和转动能级的跃迁2.紫外-可见分子吸收光谱主要用于研究[ ] A:具有共轭双键的化合物;B:有颜色的化合物; C:有杂原子的化合物;D:极性分子 3、下列化合物能产生σ-σ*、π-π*、n-π*跃迁的是[ ] A:一氯甲烷;B:丙酮;C:丁二烯;D:二甲苯 4、下列跃迁能够在200nm以上产生一强吸收带(ε >100 L?mol-1?cm-1)的是[ ] A:σ-σ*;B:n-σ*;C:n-π*;D:π-π* 5、某化合物在正己烷中测得λmax = 305nm,在乙醇中测得λmax = 307nm,该吸收峰是由以下哪种跃迁引起的[ ] A:n→π*;B:π→σ*;C:π→π*;D:σ→σ* 6、以下分子中能同时产生R、K和B带吸收的是[ ] A:CH2=CH-CH=CH-CH=CH2;B:CH2=CH-CH=CH-CHO; C:;D: 7、下列化合物中,哪一个化合物的紫外吸收波长最长[ ] A:CH3(CH2)4CH3;B:CH2=CH(CH2)3CH3; C:CH2=CH(CH2)3CH=CH2;D:CH2=CH-CH=CH-CH=CH2 8、比较下列化合物的紫外吸收波长(λmax )的大小[ ] A:a>b>c;B:c>b>a;C:b>a>c;D:c>a>b 9、某化合物在220-400nm范围内没有吸收,该化合物可能属于以下哪一类[ ] A:芳香族化合物;B:含共轭双键化合物;C:醛类;D:醇类

实验1、紫外可见光谱实验报告

一、实验目的 1、学会使用UV-2550型紫外-可见光分光光度计。 2、掌握紫外—可见分光光度计的定量分析方法。 3、学会利用紫外可见光谱技术进行有机化合物特征和定量分析 的方法。 二、实验原理 基于物质对200-800nm光谱区辐射的吸收特性建立起来的分析测定方法称为紫外—可见吸收光谱法或紫外—可见分光光度法。紫外—可见吸收光谱是由分子外层电子能级跃迁产生,同时伴随着分子的振动能级和转动能级的跃迁,因此吸收光谱具有带宽。紫外—可见吸收光谱的定量分析采用朗伯-比尔定律,被测物质的紫外吸收的峰强与其浓度成正比,即: 其中A是吸光度,I、I0分别为透过样品后光的强度和测试光的强度,ε为摩尔吸光系数,b为样品厚度,c为浓度。 紫外吸收光谱是由于分子中的电子跃迁产生的。按分子轨道理论,在有机化合物分子中这种吸收光谱取决于分子中成键电子的种类、电子分布情况,根据其性质不同可分为3种电子:(1)形成单键的σ电子;(2)形成不饱和键的π电子;(3)氧、氮、硫、卤素等杂原子上的未成键的n电子。 图1. 基团中的σ,π,n成键电子 当它们吸收一定能量ΔE后,将跃迁到较高的能级,占据反键轨道。分子内部结构与这种特定的跃迁是有着密切关系的,使得分子轨道分为成键σ轨道、反键σ*轨道、成键π轨道、反键π* 轨道和n轨道,其能量由低到高的顺序为:σ<π

图2.分子轨道中的能量跃迁示意图 仪器原理是光源发出光谱,经单色器分光,然后单色光通过样品池,达到检测器,把光信号转变成电信号,再经过信号放大、模/数转换,数据传输给计算机,由计算机软件处理。 三、仪器与溶液准备 1、UV-2550型紫外—可见分光光度计 2、1cm石英比色皿一套 3、UVprobe电脑软件 4、配置好的10μg/mL、15μg/mL、20μg/mL以及未知浓度的甲基 紫溶液,甲基红溶液 5、仪器的基本构成: 紫外可见分光光度计的基本结构如下:

相关主题
文本预览
相关文档 最新文档