当前位置:文档之家› 一元二次方程的根

一元二次方程的根

一元二次方程的根
一元二次方程的根

初中数学竞赛专题选讲(初三.1)

一元二次方程的根

一 、内容提要

1. 一元二次方程ax 2+bx+c=0(a ≠0)的实数根,是由它的系数a, b, c 的值确定的.

根公式是:x=a

ac b b 242-±-. (b 2-4ac ≥0) 2. 根的判别式

① 实系数方程ax 2+bx+c=0(a ≠0)有实数根的充分必要条件是:

b 2-4a

c ≥0.

② 有理系数方程ax 2+bx+c=0(a ≠0)有有理数根的判定是:

b 2-4a

c 是完全平方式?方程有有理数根.

③整系数方程x 2+px+q=0有两个整数根?p 2-4q 是整数的平方数.

3. 设x 1, x 2 是ax 2+bx+c=0的两个实数根,那么

① ax 12+bx 1+c=0 (a ≠0,b 2-4ac ≥0), ax 22+bx 2+c=0 (a ≠0, b 2-4ac ≥0);

② x 1=a ac b b 242-+-, x 2=a

ac b b 242--- (a ≠0, b 2-4ac ≥0); ③ 韦达定理:x 1+x 2= a b -, x 1x 2=a

c (a ≠0, b 2-4ac ≥0). 4. 方程整数根的其他条件

整系数方程ax 2+bx+c=0 (a ≠0)有一个整数根x 1的必要条件是:x 1是c 的因数.

特殊的例子有:

C=0?x 1=0 , a+b+c=0?x 1=1 , a -b+c=0?x 1=-1.

二、例题

例1. 已知:a, b, c 是实数,且a=b+c+1.

求证:两个方程x 2+x+b=0与x 2+ax+c=0中,至少有一个方程有两个不相等的实数根.

(1990年泉州市初二数学双基赛题)

证明 (用反证法)

设 两个方程都没有两个不相等的实数根,

那么△1≤0和△2≤0.

即??

???++=≤-≤ ③ ② ①-1040412c b a c a b

由①得b ≥

41,b+1 ≥4

5代入③,得 a -c=b+1≥45, 4c ≤4a -5 ④ ②+④:a 2-4a+5≤0,

即(a -2)2+1≤0,这是不能成立的.

既然△1≤0和△2≤0不能成立的,那么必有一个是大于0.

∴方程x 2+x+b=0与x 2+ax+c=0中,至少有一个方程有两个不相等的实数根.

本题也可用直接证法:当△1+△2>0时,则△1和△2中至少有一个是正数.

例2. 已知首项系数不相等的两个方程:

(a -1)x 2-(a 2+2)x+(a 2+2a)=0和 (b -1)x 2-(b 2+2)x+(b 2+2b)=0 (其中a,b 为正整数)

有一个公共根. 求a, b 的值.

(1989年全国初中数学联赛题)

解:用因式分解法求得:

方程①的两个根是 a 和12-+a a ; 方程②两根是b 和1

2-+b b . 由已知a>1, b>1且a ≠b.

∴公共根是a=12-+b b 或b=1

2-+a a . 两个等式去分母后的结果是一样的.

即ab -a=b+2, ab -a -b+1=3, (a -1)(b -1)=3.

∵a,b 都是正整数, ∴ ???=-3111b a =-; 或???=-1

131b a =-. 解得??

?=42b a =; 或???==24b a . 又解: 设公共根为x 0那么

?????=+++--=+++-- ②

( ①0)2()2()10)2()2()1(22202220b b x b x b a a x a x a 先消去二次项: ①×(b -1)-②×(a -1) 得

[-(a 2+2)(b -1)+(b 2+2)(a -1)]x 0+(a 2+2a)(b -1)-(b 2+2b)(a -1)=0.

整理得 (a -b )(ab -a -b -2)(x 0-1)=0.

∵a ≠b

∴x 0=1; 或 (ab -a -b -2)=0.

当x 0=1时,由方程①得 a=1,

∴a -1=0,

∴方程①不是二次方程.

∴x 0不是公共根.

当(ab -a -b -2)=0时, 得(a -1)(b -1)=3 ……解法同上.

例3. 已知:m, n 是不相等的实数,方程x 2+mx+n=0的两根差与方程y 2+ny+m=0的两根

差相等.

求:m+n 的值. (1986年泉州市初二数学双基赛题)

解:方程①两根差是

21x x -=221)x x -(=212214)(x x x x -+=n m 42-

同理方程②两根差是

21y y -=m n 42-

依题意,得n m 42-=m n 42-.

两边平方得:m 2-4n=n 2-4m.

∴(m -n )(m+n+4)=0

∵m ≠n ,

∴ m+n+4=0, m+n =-4.

例4. 若a, b, c 都是奇数,则二次方程ax 2+bx+c=0(a ≠0)没有有理数根.

证明:设方程有一个有理数根

n m (m, n 是互质的整数). 那么a(n m )2+b(n

m )+c=0, 即an 2+bmn+cm 2=0. 把m, n 按奇数、偶数分类讨论,

∵m, n 互质,∴不可能同为偶数.

① 当m, n 同为奇数时,则an 2+bmn+cm 2是奇数+奇数+奇数=奇数≠0;

② 当m 为奇数, n 为偶数时,an 2+bmn+cm 2是偶数+偶数+奇数=奇数≠0;

③ 当m 为偶数, n 为奇数时,an 2+bmn+cm 2是奇数+偶数+偶数=奇数≠0.

综上所述

不论m, n 取什么整数,方程a(n m )2+b(n

m )+c=0都不成立. 即 假设方程有一个有理数根是不成立的.

∴当a, b, c 都是奇数时,方程ax 2+bx+c=0(a ≠0)没有有理数根.

例5. 求证:对于任意一个矩形A ,总存在一个矩形B ,使得矩形B 与矩形A 的周长比和

面积比都等于k (k ≥1). (1983年福建省初中数学竞赛题)

证明:设矩形A 的长为a, 宽为b ,矩形B 的长为c, 宽为d.

根据题意,得 k ab

cd b a d c ==++. ∴c+d=(a+b)k, cd=abk.

由韦达定理的逆定理,得

c, d 是方程z 2-(a+b)kz+abk=0 的两个根.

△ =[-(a+b )k ]2-4abk

=(a 2+2ab+b 2)k 2-4abk

=k [(a 2+2ab+b 2)k -4ab ]

∵k ≥1,a 2+b 2≥2ab,

∴a 2+2ab+b 2≥4ab ,(a 2+2ab+b 2)k ≥4ab.

∴△≥0.

∴一定有c, d 值满足题设的条件.

即总存在一个矩形B ,使得矩形B 与矩形A 的周长比和面积比都等于k (k ≥1). 例6. k 取什么整数值时,下列方程有两个整数解?

①(k 2-1)x 2-6(3k -1)x+72=0 ; ②kx 2+(k 2-2)x -(k+2)=0.

解:①用因式分解法求得两个根是:x 1=112+k , x 2=1

6-k . 由x 1是整数,得k+1=±1, ±2, ±3, ±4, ±6, ±12.

由x 2是整数,得k -1=±1, ±2, ±3, ±6.

它们的公共解是:得k=0, 2, -2, 3, -5.

答:当k=0, 2, -2, 3, -5时,方程①有两个整数解.

②根据韦达定理

???

????--=+-=+-=--=+k k k k x x k k k k x x 2

22221221 ∵x 1, x 2, k 都是整数,

∴k=±1,±2. (这只是整数解的必要条件,而不是充分条件,故要进行检验.) 把k=1,-1, 2, -2, 分别代入原方程检验,只有当k=2和k=-2 时适合.

答:当k 取2和-2时,方程②有两个整数解.

三、练习

1. 写出下列方程的整数解:

① 5x 2-3x=0的一个整数根是___.

② 3x 2+(2-3)x -2=0的一个整数根是___.

③ x 2+(5+1)x+5=0的一个整数根是___.

2. 方程(1-m )x 2-x -1=0 有两个不相等的实数根,那么整数m 的最大值是____.

3. 已知方程x 2-(2m -1)x -4m+2=0 的两个实数根的平方和等于5,则m=___.

4. 若x ≠y ,且满足等式x 2+2x -5=0 和y 2+2y -5=0. 那么y

x 11+=___.(提示:x, y 是方程z 2+5z -5=0 的两个根.) 5. 如果方程x 2+px+q=0 的一个实数根是另一个实数根的2倍,那么p, q 应满足的关系

是:___________. (1986年全国初中数学联赛题)

6. 若方程ax 2+bx+c=0中a>0, b>0, c<0. 那么两实数根的符号必是______.

(1987年泉州市初二数学双基赛题)

7. 如果方程mx 2-2(m+2)x+m+5=0 没有实数根,那么方程(m -5)x 2-2mx+m=0实数根

的个数是( ).

(A)2 (B )1 ( C )0 (D )不能确定 (1989年全国初中数学联赛题)

8. 当a, b 为何值时,方程x 2+2(1+a)x+(3a 2+4ab+4b 2+2)=0 有实数根?

(1987年全国初中数学联赛题)

9. 两个方程x 2+kx -1=0和x 2-x -k=0有一个相同的实数根,则这个根是( )

(A)2 (B )-2 (C )1 (D )-1 (1990年泉州市初二数学双基赛题)

10. 已知:方程x 2+ax+b=0与x 2+bx+a=0仅有一个公共根,那么a, b 应满足的关系是:

___________.

11. 已知:方程x 2+bx+1=0与x 2-x -b=0有一个公共根为m ,求:m ,b 的值.

12. 已知:方程x 2+ax+b=0的两个实数根各加上1,就是方程x 2-a 2x+ab=0的两个实数根.

试求a, b 的值或取值范围. (1997年泉州市初二数学双基赛题)

13. 已知:方程ax 2+bx+c=0(a ≠0)的两根和等于s 1,两根的平方和等于s 2, 两根的立方和等

于s 3.

求证:as 3+bs 2+cs 1=0.

14. 求证:方程x 2-2(m+1)x+2(m -1)=0 的两个实数根,不能同时为负.

(可用反证法)

15. 已知:a, b 是方程x 2+mx+p=0的两个实数根;c, d 是方程x 2+nx+q=0

的两个实数根.

求证:(a -c )(b -c)(a -d)(b -d)=(p -q)2.

16. 如果一元二次方程的两个实数根的平方和等于5,两实数根的积是2,那么这个方程是:

__________. (1990年泉州市初二数学双基赛题)

17. 如果方程(x -1)(x 2-2x+m)=0的三个根,可作为一个三角形的三边长,那么实数m

的取值范围是 ( )

(A ) 0≤m ≤1 (B )m ≥43 (C )43

3≤m ≤1 (1995年全国初中数学联赛题)

18. 方程7x 2-(k+13)x+k 2-k -2=0 (k 是整数)的两个实数根为α,β且0<α<1,

1<β<2,那么k 的取值范围是( )

(A )3

(1990年全国初中数学联赛题)

练习题参考答案

1. ①0, ②1, ③-1

2. 0

3. 1(舍去-2)

4. 5

2 5. 9q=2p 2 6. 一正一负 7. D 8. a=1,b=-0.5 9. C

10. a+b+1=0, a ≠b 11. m=-1,b=2 12.???-=-=??

???≤=.1,241,1b a b a : 13. 左边=a(x 13+x 23)+b(x 12+x 22)+c(x 1+x 2)=……

14. 用反证法,设x 1<0,x 2<0,由韦达定理推出矛盾(m<-1, m>1)

15. 由韦达定理,把左边化为 p, q

16. x 2±3x+2=0 17. C 18. C

一元二次方程及根的定义

一元二次方程及根的定 义 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

一元二次方程及根的定义 1.已知关于的方程的一个根为2,求另一个根及 的值. 思路点拨:从一元二次方程的解的概念入手,将根代入原方程解的值,再代回原方程,解方程求出另一个根即可. 解:将代入原方程,得 即 解方程,得 当时,原方程都可化为 解方程,得. 所以方程的另一个根为4,或-1. 总结升华:以方程的根为载点.综合考查解方程的问题是一个常考问题,解这类问题关键是要抓住“根”的概念,并以此为突破口. 举一反三: 【变式1】已知一元二次方程的一个根是,求代数式 的值. 思路点拨:抓住为方程的一个根这一关键,运用根的概念解题. 解:因为是方程的一个根, 所以, 故, , 所以.

. 总结升华:“方程”即是一个“等式”,在“等式”中,根据题目的需要,合理地变形,是一种对代数运算综合要求较高的能力,在这一方面注意丰富自己的经验. 类型二、一元二次方程的解法 2.用直接开平方法解下列方程: (1)3-27x2=0; (2)4(1-x)2-9=0. 解:(1)27x2=3 . (2)4(1-x)2=9 3.用配方法解下列方程: (1);(2). 解:(1)由, 得, ,

, 所以, 故. (2)由, 得, , , 所以 故 4.用公式法解下列方程: (1);(2);(3). 解:(1)这里 并且 所以, 所以,. (2)将原方程变形为, 则 , 所以,

所以. (3)将原方程展开并整理得, 这里, 并且, 所以. 所以. 总结升华:公式法解一元二次方程是解一元二次方程的一个重点,要求熟练掌握,它对我们的运算能力有较高要求,也是提高我们运算能力训练的好素材. 5.用因式分解法解下列方程: (1);(2); (3). 解:(1)将原方程变形为, 提取公因式,得, 因为,所以 所以或, 故 (2)直接提取公因式,得 所以或,(即 故. (3)直接用平方差公式因式分解得

一元二次方程计算题_解法练习题(四种方法)

一元二次方程解法练习题 一、用直接开平方法解下列一元二次方程。 1、0142=-x 2、2)3(2=-x 3、()162812 =-x 二、 用配方法解下列一元二次方程。 1、.0662=--y y 2、x x 4232=- 3 、9642=-x x 三、 用公式解法解下列方程。 1、0822=--x x 2、223 14y y -= 3、y y 32132=+ 4、01522=+-x x 5、1842-=--x x 6、02322=--x x

四、 用因式分解法解下列一元二次方程。 1、x x 22= 2、 x 2+4x -12=0 3、0862=+-x x 4、03072=--x x 五、用适当的方法解下列一元二次方程。(选用你认为最简单的方法) 1、()()513+=-x x x x 2、x x 5322=- 3、2 260x y -+= 4、01072=+-x x 5、()()623=+-x x 6、()()03342 =-+-x x x

7、()02152 =--x 8、0432=-y y 10、()()412=-+y y 11、()()1314-=-x x x 12、()025122 =-+x 13、22244a b ax x -=- 14、36 31352=+x x 15、()()213=-+y y 16、)0(0)(2≠=++-a b x b a ax 17、03)19(32 =--+a x a x 18、012=--x x 19 、02932=+-x x 20、02222=+-+a b ax x

一元二次方程公共根

一元二次方程公共根问题 若已知若干个一元二次方程有公共根,求方程系数的问题,叫一元二次方程的公共根问题, 两个一元二次方程只有一个公共根的解题步骤: 1.设公共根为α,则α同时满足这两个一元二次方程; 2.用加减法消去α2的项,求出公共根或公共根的有关表达式; 3.把共公根代入原方程中的任何一个方程,就可以求出字母系数的值或字母系数之间的关系式. 一、公共根问题 二次方程的公共根问题的一般解法:设公共根,代入原方程(两个或以上),然后通过恒等变形求出参数的值和公共根. 二、整数根问题 对于一元二次方程20ax bx c ++=(0)a ≠的实根情况,可以用判别式24b ac ?=-来判别,但是对于一个含参数的一元二次方程来说,要判断它是否有整数根或有理根,那么就没有统一的方法了,只能具体问题具体分析求解,当然,经常要用到一些整除性的性质. 方程有整数根的条件: 如果一元二次方程20ax bx c ++=(0)a ≠有整数根,那么必然同时满足以下条件: ⑴ 2?= ⑵ 2b ak -=或2b ak --,其中k 为整数. 以上两个条件必须同时满足,缺一不可. 另外,如果只满足判别式为完全平方数,则只能保证方程有有理根(其中a 、b 、c 均为有理数) 三、方程根的取值范围问题 先使用因式分解法或求根公式法求出两根,然后根据题中根的取值范围来确定参数的范围 1 已知一元二次方程x 2-4x +k =0有两个不相等的实数根, (1)求k 的取值范围. (2)如果k 是符合条件的最大整数,且一元二次方程x 2-4x +k =0与x 2+mx -1=0有一个相同的根,求此时m 的值. 2 若两个关于x 的方程x 2+x +a =0与x 2+ax +1=0只有一个公共的实数根,求a 的值 3 已知a >2,b >2,试判断关于x 的方程x 2-(a +b )x +ab =0与x 2-abx +(a +b )=0有没有公共根,请说明理由. 4求k 的值,使得一元二次方程210x kx +-=,2(2)0x x k ++-=有相同的根,并求两个方程的根. 5二次项系数不相等的两个二次方程222(1)(2)(2)0a x a x a a --+++=和 222(1)(2)(2)0b x b x b b --+++=(其中a ,b 为正整数)有一个公共根,求a b b a b a a a --++的值

一元二次方程根的分布情况归纳总结

一元二次方程02 =++c bx ax 根的分布情况 设方程()2 00ax bx c a ++=≠的不等两根为12,x x 且12x x <,相应的二次函数为()20f x ax bx c =++=, 方程的根即为二次函数图象与x 轴的交点,它们的分布情况见下面各表(每种情况对应的均是充要条件) 表一:(两根与0的大小比较即根的正负情况) 分 布情况 两个负根即两根都小于0 ()120,0x x << 两个正根即两根都大于0 ()120,0x x >> 一正根一负根即一个根小于0,一个大于0()120x x << 大致图象( >a ) 得出的结论 ()00200b a f ?>??? -?? ()0 0200 b a f ?>??? ->??>?? ()00??? -??? ->??f 综 合结论(不讨论 a ) ()00200b a a f ?>???-?? ()0 0200 b a a f ?>???->???>?? ()00

分 布情况 两根都小于k 即 k x k x <<21, 两根都大于k 即 k x k x >>21, 一个根小于k ,一个大于k 即 21x k x << 大致图象( >a ) 得出的结论 ()020b k a f k ?>??? -?? ()0 20 b k a f k ?>??? ->??>?? ()0??? -??? ->??k f 综 合结论(不讨论 a ) ()020b k a a f k ?>??? - ?? ()0 20 b k a a f k ?>??? - >???>?? ()0

(完整版)一元二次方程解法及其经典练习题

一元二次方程解法及其经典练习题 方法一:直接开平方法(依据平方根的定义) 平方根的定义:如果一个数 的平方等于a ( ),那么这个数 叫做a 的平方根 即:如果 a x =2 那么 a x ±= 注意;x 可以是多项式 一、 用直接开平方法解下列一元二次方程。 1.0142=-x 2、2)3(2=-x 3、()162812=-x 4..25)1(412=+x 5.(2x +1)2=(x -1)2. 6.(5-2x )2=9(x +3)2. 7..063)4(22 =--x 方法二:配方法解一元二次方程 1. 定义:把一个一元二次方程的左边配成一个 ,右边为一个 ,然后利用开平方数求解,这种解一元二次方程的方法叫做配方法。 2. 配方法解一元二次方程的步骤:(1) (2) (3) 4) (5) 二、用配方法解下列一元二次方程。 1、.0662=--y y 2、x x 4232=- 39642=-x x 、 4、0542=--x x 5、01322=-+x x 6、07232=-+x x

方法三:公式法 1.定义:利用求根公式解一元二次方程的方法叫做公式法 2.公式的推导:用配方法解方程ax 2+bx +c = 0(a ≠0) 解:二次项系数化为1,得 , 移项 ,得 , 配方, 得 , 方程左边写成平方式 , ∵a ≠0,∴4a 2 0,有以下三种情况: (1)当b 2-4ac>0时,=1x , =2x (2)当b 2-4ac=0时,==21x x 。 (3)b 2-4ac<0时,方程根的情况为 。 3.由上可知,一元二次方程ax 2+bx+c=0(a ≠0)的根由方程的系数a 、b 、c 而定,因 (1)式子ac b 42-叫做方程ax 2+bx +c = 0(a ≠0)根的 ,通常用字母 “△” 表示。当△ 0时, 方程ax 2+bx+c=0(a ≠0)有 实数根; 当△ 0时, 方程ax 2+bx+c=0(a ≠0)有 实数根; 当△ 0时, 方程ax 2+bx+c=0(a ≠0) 实数根。 (2)解一元二次方程时,可以先将方程化为一般形式ax 2+bx +c = 0,当ac b 42-≥0时,?将a 、b 、c 代入式子=x 就得到方程的根.这个式子叫做一元二次方程的求根公式,利用求根公式解一元二次方程的方法叫公式法. 4.公式法解一元二次方程的步骤:(1) (2) (3) (4) (5) 二、用公式解法解下列方程。 1、0822=--x x 2、22 314y y -= 3、y y 32132=+

一元二次方程求根公式

一元二次方程求解 一、一周知识概述 1、一元二次方程的求根公式 将一元二次方程ax2+bx+c=0(a≠0)进行配方,当b2-4ac≥0时的根为 . 该式称为一元二次方程的求根公式,用求根公式解一元二次方程的方法称为求根公式法,简称公式法. 说明:(1)一元二次方程的公式的推导过程,就是用配方法解一般形式的一元二次方程ax2+bx+c=0(a≠0); (2)由求根公式可知,一元二次方程的根是由系数a、b、c的值决定的; (3)应用求根公式可解任何一个有解的一元二次方程,但应用时必须先将其化为一般形式. 2、一元二次方程的根的判别式 (1)当b2-4ac>0时,方程有两个不相等的实数根; (2)当b2-4ac=0时,方程有两个相等的实数根; (3)当b2-4ac<0时,方程没有实数根. 二、重难点知识 1、对于一元二次方程的各种解法是重点,难点是对各种方法的选择,突破这一难点的关键是在对四种方法都会使用的基础上,熟悉各种方法的优缺点。 (1) “开平方法”一般解形如“”类型的题目,如果用“公式

法”就显得多余的了。 (2)“因式分解法”是一种常用的方法,一般是首先考虑的方法。 (3) “配方法”是一种非常重要的方法,一般不使用,但若能恰当地使用,往往能起到简化作用,思考于“因式分解法”之后,“公式法”之前。如方程;用因式分解,则6391这个数太大,不易分解;用公式法,也太繁;若配方,则方程化为,就易解,若一次项系数中有偶因数,一般也应考虑运用。 (4)“公式法”是一般方法,只要明确了二次项系数、一次项系数及常数项,若方 程有实根,就一定可以用求根公式求出根,但因为要代入(≥0)求值,所以对某些特殊方程,解法又显得复杂了。 2、在运用b2-4ac的符号判断方程的根的情况时,应注意以下三点: (1)b2-4ac是一元二次方程的判别式,即只有确认方程为一元二次方程时,才能确定a、b、c,求出b2-4ac; (2)在运用上述结论时,必须先将方程化为一般形式,以便确认a、b、c; (3)根的判别式是指b2-4ac,而不是 三、典型例题讲解 例1、解下列方程: (1); (2); (3). 分析:用求根公式法解一元二次方程的关键是找出a、b、c的值,再代入公式计算,

15道九年级一元二次方程计算题【附详细过程】

15道九年级一元二次方程计算题1、解方程:x2—2x—1=0. 2、解方程: 3、解方程:x2+x-+1=0. 4、解方程: 5、用配方法解方程: 6、解方程:3 ( x - 5 )2 = 2 ( 5- x ) 7、解方程:. 8、 9、解方程:(x -1)2 + 2x (x - 1) = 0 10、解方程:. 11、用配方法解方程:。 12、解方程:. 13、解方程:x2-6x+1=0. 14、用配方法解一元二次方程: 15、解方程:.

参考答案 一、计算题 1、解:a=1,b=-2,c=-1 B2-4ac=(-2)2-4*1*(-1)=8 X= 方程的解为x=1+ x=1- 2、原方程化为 ∴ 即 ∴, 3、解:设x2+x=y,则原方程变为y-+1=0. 去分母,整理得y2+y-6=0, 解这个方程,得y1=2,y2=-3. 当y=2 时,x2+x=2,整理得x2+x-2=0, 解这个方程,得x1=1,x2=-2. 当y=-3 时,x2+x=-3,整理得x2+x+3=0, ∵△=12-4×1×3=-11<0,所以方程没有实数根.经检验知原方程的根是x1=1,x2=-2.

4、解:移项,得配方,得 ∴∴ (注:此题还可用公式法,分解因式法求解,请参照给分)5、)解:移项,得x2 +5x=-2, 配方,得 整理,得()2= 直接开平方,得= ∴x1=,x2= 6、解: 7、解: ∴或 ∴, 8、

9、解法一: ∴, 解法二: ∵a = 3,b = 4,c = 1 ∴ ∴ ∴, 10、解:- -两边平方化简, 两边平方化简. -- 解之得--- 检验:将. 当 所以原方程的解为- 11、解:两边都除以2,得。

(完整word版)100道一元二次方程计算题

(1)x 2 =64 (2)5x 2 - 5 2 =0 (3)(x+5)2=16 (4)8(3 -x )2 –72=0 (5)2y=3y 2 (6)2(2x -1)-x (1-2x=0 (7)3x(x+2)=5(x+2) (8)(1-3y )2+2(3y -1)=0 (9)x 2+ 2x + 3=0 (10)x 2+ 6x -5=0 (11) x 2-4x+ 3=0 (12) x 2 -2x -1 =0 (13) 2x 2 +3x+1=0 (14) 3x 2 +2x -1 =0 (15) 5x 2 -3x+2 =0 (16) 7x 2 -4x -3 =0 (17) x 2 -x+12 =0

x 2-6x+9 =0 0142 =-x 2、2)3(2 =-x 3、()512 =-x 4、()162812 =-x 0662 =--y y 2、x x 4232=- 3、9642=-x x 4 、0542=--x x 5、01322 =-+x x 6、07232=-+x x 0822=--x x 4、01522 =+-x x 1、x x 22= 2、0)32()1(2 2 =--+x x 3、0862 =+-x x 4、 2 2)2(25)3(4-=+x x 5、0)21()21(2=--+x x 6、0)23()32(2=-+-x x

1、()()513+=-x x x x 2、x x 5322 =- 3、2 260x y -+= 4、01072 =+-x x 5、()()623=+-x x 6、()()03342 =-+-x x x 7、()02152 =--x 8、0432=-y y 9、03072 =--x x 10、()()412=-+y y 11、()()1314-=-x x x 12、()025122 =-+x 17、()()213=-+y y 20、012 =--x x 21、02932 =+-x x 23、 x 2+4x -12=0 25、01752 =+-x x 26、1852 -=-x x

用图象法求一元二次方程的根

用图象法求一元二次方程的根 学习了二次函数之后,可以利用图象求一元二次方程的根。下面介绍几种具体的方法: 方法一:直接画出函数y=ax2+bx+c 的图象,则图象与x 轴交点的横坐标就是方程ax2+bx+c=0的根.其步骤一般为:(1)作出二次函数y=ax2+bx+c 的图象;(2)观察图象与x 轴交点的个数;(3)若图象与x 轴有交点,估计出图象与x 轴交点的横坐标即可得到一元二次方程的近似根. 方法二:先将方程变形为ax2+bx=-c ,再在同一坐标系中画出抛物线y=ax2+bx 和直线y=-c 的图象,则图象交点的横坐标就是方程的根. 方法三:可将方程化为 a c x a b x ++ 2=0,移项后为 a c x a b x --=2.设y=x2和y=a c x a b --,在同一坐标系中画出抛物线y=x2和直线y=a c x a b - - 的图象,则图象交点的横坐标就是方程的根.这种方法显然要比方法一快捷得多,因为画抛物线远比画直线困难得多. 例:二次函数2 (0)y ax bx c a =++≠的图象如图1所示,根 据图象解答下列问题: (1)写出方程2 0ax bx c ++=的两个根. (2)写出不等式20ax bx c ++>的解集. (3)写出y 随x 的增大而减小的自变量x 的取值范围. (4)若方程2 ax bx c k ++=有两个不相等的实数根,求k 的取值范围. 解:(1)观察图象,抛物线与x 轴交于两点(1,0)、(3,0)故方程 20ax bx c ++=的两个根 11 x =, 23 x = . (2)不等式2 0ax bx c ++>,反映在函数图象上,应为图象在x 轴上方的部分,因此不等式2 0ax bx c ++>的解集应为13x <<. (3)因为抛物线的对称轴为x=2且开口向下,所以在对成轴的右侧y 随x 的增大而减小故自变量x 的取值范围为2x > (4)若使方程2 ax bx c k ++=有两个不相等的实数根,也就是抛物线 2(0)y ax bx c a =++≠的图象与直线y=k 有2 个不同的交点,观察图象可知抛物线的顶点

一元二次方程的根的判别式练习题

一元二次方程的根的判别式 1、方程2x 2+3x -k=0根的判别式是 ;当k 时,方程有实根。 2、关于x 的方程kx 2+(2k+1)x -k+1=0的实根的情况是 。 3、方程x 2+2x+m=0有两个相等实数根,则m= 。 4、关于x 的方程(k 2+1)x 2-2kx+(k 2+4)=0的根的情况是 。 5、当m 时,关于x 的方程3x 2-2(3m+1)x+3m 2-1=0有两个不相等的实数根。 6、如果关于x 的一元二次方程2x(ax -4)-x 2+6=0没有实数根,那么a 的最小整数值是 。 7、关于x 的一元二次方程mx 2+(2m -1)x -2=0的根的判别式的值等于4,则m= 。 8、设方程(x -a)(x -b)-cx=0的两根是α、β,试求方程(x -α)(x -β)+cx=0的根。 9、不解方程,判断下列关于x 的方程根的情况: (1)(a+1)x 2-2a 2x+a 3=0(a>0) (2)(k 2+1)x 2-2kx+(k 2+4)=0 10、m 、n 为何值时,方程x 2+2(m+1)x+3m 2+4mn+4n 2+2=0有实根? 11、求证:关于x 的方程(m 2+1)x 2-2mx+(m 2+4)=0没有实数根。 12、已知关于x 的方程(m 2-1)x 2+2(m+1)x+1=0,试问:m 为何实数值时,方程有实数根? 13、 已知关于x 的方程x 2-2x -m=0无实根(m 为实数),证明关于x 的方程x 2+2mx+1+2(m 2-1)(x 2+1)=0 也无实根。 14、已知:a>0,b>a+c,判断关于x 的方程ax 2+bx+c=0根的情况。 15、m 为何值时,方程2(m+1)x 2+4mx+2m -1=0。 (1)有两个不相等的实数根; (2)有两个实数根; (3)有两个相等的实数根; (4)无实数根。 16、当一元二次方程(2k -1)x 2-4x -6=0无实根时,k 应取何值? 17、已知:关于x 的方程x 2+bx+4b=0有两个相等实根,y 1、y 2是关于y 的方程y 2+(2-b)y+4=0的两实根,求以1y 、2y 为根的一元二次方程。 18、若x 1、x 2是方程x 2+ p x+q=0的两个实根,且23x x x x 222121=++,25x 1x 12221=+求p 和q 的值。 19、设x 1、x 2是关于x 的方程x 2+px+q=0(q ≠0)的两个根,且x 2 1+3x 1x 2+x 2 2=1, 0)x 1(x )x 1(x 2211=+++,求p 和q 的值。 20、已知x 1、x 2是关于x 的方程4x 2-(3m -5)x -6m 2=0的两个实数根,且23x x 21=,求常数m 的值。 21、已知α、β是关于x 的方程x 2+px+q=0的两个不相等的实数根,且α3-α2β-αβ2+ β3=0,求证:p=0,q<0 22、已知方程(x -1)(x -2)=m 2(m 为已知实数,且m ≠0),不解方程证明: (1)这个方程有两个不相等的实数根;

一元二次方程根的差别式

典型例题一 例 求证:如果关于x 的方程922+=+m x x 没有实数根,那么,关于y 的方程0522=+-+m my y 一定有两个不相等的实数根. 分析:由已知,可根据一元二次方程的根的判别式证之. 证明 设方程922+=+m x x 即0922=--+m x x 的根的判别式为1?,方程 0522=+-+m my y 的根的判别式为2?,则 . 36)4( 208)25(4. 440)9(42222221-+=-+=--=?+=++=?m m m m m m m ∵方程922+=+m x x 无实数根, 01+∴m ,即036)4(2>-+m . 故方程0522=+-+m my y 有两个不相等的实数根. 说明:上述证明中,判定02>?用到了01

分析:运用根的判别式判定根的情况时,要首先把方程变形为一元二次方程的一般形式,然后从求出的判别式的值来判定根的判别式的符号,尤其是当方程系数中含有字母时,一般利用配方法将“?”化成完全平方式或完全平方式加上(或减去)一个常数,再根据完全平方式的非负性判断“?”的符号,从而判定方程的根的情况,有时还需要对字母进行讨论.这是不解方程判别根的情况的关键. 解:(1)),1(4,2,1-=-==k c k b a )1(414)2(422-??--=-=?∴k k ac b )2(4)44(416 16422 2≥-=+-=+-=k k k k k ∴方程有两个实数根. (2)0≠a , ∴方程02=+bx ax 是一元二次方程,此方程是缺少常数项的不完全的一元二次方程,将常数项,将常数项看作零. ∴2204b a b =?-=?. ∴不论b 取任何实数,2b 均为非负数, 02≥=?b 恒成立. ∴方程有两个实数根. (3)0≠a , ∴方程02=+c ax 是缺少一次项的不完全的一元二次方程,它的一次项系数0=b . ac a 40402-=?-=?, ∴需要讨论a 、c 的符号,才能确定?的符号. 当0=c 时,0=?,方程有两个相等的实数根; 当a 、c 异号时,0>?,方程有两个不相等的实数根; 当a 、c 同号时,0

一元二次方程根的分布情况归纳(完整版)

二次方程根的分布与二次函数在闭区间上的最值归纳 1、一元二次方程02 =++c bx ax 根的分布情况 设方程()200ax bx c a ++=≠的不等两根为12,x x 且12x x <,相应的二次函数为()20f x ax bx c =++=, 方程的根即为二次函数图象与x 轴的交点,它们的分布情况见下面各表(每种情况对应的均是充要条件) 表一:(两根与0的大小比较即根的正负情况) a

根在区间上的分布还有一种情况:两根分别在区间()n m ,外,即在区间两侧 12,x m x n <>,(图形分别如下)需满足的条件是 (1)0a >时,()()00f m f n ???>?? 对以上的根的分布表中一些特殊情况作说明: (1)两根有且仅有一根在()n m ,内有以下特殊情况: 若()0f m =或()0f n =,则此时()()0f m f n

一元二次方程200道计算题练习

一元二次方程200道计算题练习 1、)4(5)4(2+=+x x 2、x x 4)1(2=+ 3、22)21()3(x x -=+ 4、31022=-x x 5、(x+5)2=16 6、2(2x -1)-x (1-2x )=0 7、x 2 =64 8、5x 2 - 5 2=0 9、8(3 -x )2 –72=0 10、3x(x+2)=5(x+2) 11、(1-3y )2+2(3y -1)=0 12、x 2+ 2x + 3=0 13、x 2+ 6x -5=0 14、x 2-4x+ 3=0 15、x 2 -2x -1 =0 16、2x 2+3x+1=0 17、3x 2+2x -1 =0 18、5x 2-3x+2 =0 19、7x 2-4x -3 =0 20、 -x 2-x+12 =0 21、x 2-6x+9 =0 22、(3x+2)2=(2x-3)2 23、x 2-2x-4=0 24、x 2-3=4x 25、3x 2+8 x -3=0 26、(3x +2)(x +3)=x +14 27、(x+1)(x+8)=-12 28、2(x -3) 2=x 2-9 29、-3x 2+22x -24=0 30、(2x-1)2 +3(2x-1)+2=0 31、2x 2-9x +8=0 32、3(x-5)2 =x(5-x) 33、(x +2) 2=8x 34、(x -2) 2=(2x +3)2 35、2720x x += 36、24410t t -+= 37、()()24330x x x -+-= 38、2631350x x -+= 39、()2 231210x --= 40、2223650x x -+= 41. (x -2) 2=(2x-3)2 42. 43. 3(1)33x x x +=+ 44. x 2 45. ()()0165852=+---x x 46. 47. 4(x-3)2=25 48. 24)23(2=+x 49. 25220x x -+= 50. 51. 52. 01072=+-x x 53. -x 2+11x -24=0 54. 2x (x -3)=x -3. 55. 3x 2+5(2x+1)=0 56. (x +1) 2-3 (x +1)+2=0 57. 22(21)9(3)x x +=- 58. 59.. 60. 21302x x ++= 61. 4 )2)(1(13)1(+-=-+x x x x 62. 2)2)(113(=--x x 63. x (x +1)-5x =0 .64. 3x (x -3) =2(x -1) (x +1). 65. (x+1)2﹣9=0. 042=-x x 51)12(2 12=-y 012632=--x x 2230x x --=

已知一元二次方程的一个根

已知一元二次方程的一个根,求出另一个根以及字母系数的值。 例2:已知方程的一个根为2,求另一个根及的 值。 分析:此题通常有两种解法:一是根据方程根的定义,把代入原方程, 先求出的值,再通过解方程办法求出另一个根;二是利用一元二次方程的根与系数的关系求出另一个根及的值。 解法一:把代入原方程,得: 即 解得当时,原方程均可化为: ,解得: ∴方程的另一个根为4,的值为3或—1。 解法二:设方程的另一个根为,根据题意,利用韦达定理得: , ∵,∴把代入,可得: ∴把代入,可得:, 即解得 ∴方程的另一个根为4,的值为3或—1。 说明:比较起来,解法二应用了韦达定理,解答起来较为简单。

例3:已知方程有两个实数根,且两个根的平方和比两根的积大21,求的值。 分析:本题若利用转化的思想,将等量关系“两个根的平方和比两根的积大21”转化为关于的方程,即可求得的值。 解:∵方程有两个实数根,∴△ 解这个不等式,得≤0 设方程两根为 则, ∵ ∴ ∴ 整理得: 解得: 又∵,∴ 说明:当求出后,还需注意隐含条件,应舍去不合题意的。 四、运用判别式及根与系数的关系解题。 例5:已知、是关于的一元二次方程的两个非 零实数根,问和能否同号?若能同号,请求出相应的的取值范围;若不能同号,请说明理由,

解:因为关于的一元二次方程有两个非零实数根, ∴则有 ∴ 又∵、是方程的两个实数根,所以由一元二次方程根与系数的关系,可得: 假设、同号,则有两种可能: (1)(2) 若,则有:; 即有: 解这个不等式组,得 ∵时方程才有实树根,∴此种情况不成立。 若,则有:

即有: 解这个不等式组,得; 又∵,∴当时,两根能同号 说明:一元二次方程根与系数的关系深刻揭示了一元二次方程中根与系数的内在联系,是分析研究有关一元二次方程根的问题的重要工具,也是计算有关一元二次方程根的计算问题的重要工具。知识的运用方法灵活多样,是设计考察创新能力试题的良好载体,在中考中与此有联系的试题出

一元二次方程根与系数的关系各种类型题及训练

一元二次方程根与系数的关系应用例析及训练 一、根据判别式,讨论一元二次方程的根。 例1:已知关于的方程(1)有两个不相等的实数根,且关于的方程(2)没有实数根,问取什么整数时,方程(1)有整数解? 分析:在同时满足方程(1),(2)条件的的取值范围中筛选符合条件的的整数值。 解:∵方程(1)有两个不相等的实数根, ∴ 解得; ∵方程(2)没有实数根, ∴ 解得; 于是,同时满足方程(1),(2)条件的的取值范围是 其中,的整数值有或 当时,方程(1)为,无整数根; 当时,方程(1)为,有整数根。 解得: 所以,使方程(1)有整数根的的整数值是。 总结:熟悉一元二次方程实数根存在条件是解答此题的基础,正确确定的取值范围,并依靠熟练的解不等式的基本技能和一定的逻辑推理,从而筛选出 ,这也正是解答本题的基本技巧。 二、判别一元二次方程两根的符号。 例1:不解方程,判别方程两根的符号。

分析:对于来说,往往二次项系数,一次项系数,常数项皆为已知,可据此求出根的判别式△,但△只能用于判定根的存在与否,若 判定根的正负,则需要确定或的正负情况。因此解答此题的关键是:既要求出判别式的值,又要确定或的正负情况。 解:∵,∴△=—4×2×(—7)=65>0 ∴方程有两个不相等的实数根。 设方程的两个根为, ∵<0 ∴原方程有两个异号的实数根。 总结:判别根的符号,需要把“根的判别式”和“根与系数的关系”结合起来进行确定,另外由于本题中<0,所以可判定方程的根为一正一负;倘若>0,仍需考虑的正负,方可判别方程是两个正根还是两个负根。 三、已知一元二次方程的一个根,求出另一个根以及字母系数的值。 例2:已知方程的一个根为2,求另一个根及的值。 分析:此题通常有两种解法:一是根据方程根的定义,把代入原方程,先求出的值,再通过解方程办法求出另一个根;二是利用一元二次方程的根与系数的关系求出另一个根及的值。 解法一:把代入原方程,得: 即 解得 当时,原方程均可化为: ,

一元二次方程根的两个特性及简单运用

一元二次方程根的两个特性及简单运用 我们知道方程的解是由方程的系数(包括常数项)决定的。因此,一元二次方程的根与其系数有着密切的联系。教材中我们探索了一元二次方程的二次项系数为1的情况下的两根之和、两根之积与系数的关系。现在我们接着来探索一般形式下的一元二次方程20(0) ax bx c a ++=≠的两根之和、两根之积与系数的关系。 例1、先阅读,再填空解题: (1)方程:x2-4x-12=0 的根是:x 1=6, x 2 =-2,则x 1 +x 2 =4,x 1 ·x 2 =-12; (2)方程2x2-7x+3=0的根是:x 1= 1 2 , x 2 =3,则x 1 +x 2 = 7 2 ,x 1 ·x 2 = 3 2 ; (3)方程3x2+6x-2=0的根是:x 1= , x 2 = .则x 1 +x 2 = , x 1·x 2 = ; 根据以上(1)(2)(3)你能否猜出:如果关于x的一元二次方程ax2+bx+c=0 (a≠0且a、b、c为常数)的两根为x 1、x 2 ,那么x 1 +x 2 、x 1 x 2 与系数a、b、c有 什么关系?请写出来你的猜想并说明理由。 解析:方程3x2+5x-2=0的根是:x 1= 1 3 x 2 =-2。则x 1 +x 2 = 5 3 -,x1·x2= 2 3 -。 能猜出:如果关于x的一元二次方程ax2+bx+c=0(a≠0且a、b、c为常数) 的两根为x 1、x 2 ,那么x 1 +x 2 a b - =、x1x2 a c =。理由如下: 根据求根公式可知,关于x的一元二次方程ax2+bx+c=0(a≠0且a、b、c 为常数)的两根为: a ac b b x 2 4 2 1 - + - =, a ac b b x 2 4 2 2 - - - = 所以x 1+x 2 = a ac b b 2 4 2- + - + a ac b b 2 4 2- - - a b - = x 1x 2 = a ac b b 2 4 2- + - · a ac b b 2 4 2- - - a c = 也就是说,对于任何一个有实数根的一元二次方程,这个方程的两个根与系数的关系是:两根之和,等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积,等于常数项除以二次项系数所得的商.

一元二次方程计算题及答案

6X2-7X+1=0 6X2-7X=-1 X2-﹙7/6﹚X+﹙7/12﹚2=-1/6﹢﹙7/12﹚2﹙X-7/12﹚2=25/144 ∴X-7/12=±5/12 ∴X1=1,X2=1/6 5X2-18=9X 5X2-9X=18 X2-1.8X=3.6 ﹙X-0.9﹚2=4.41 ∴X-.9=±2.1 ∴X1=3,X2=-1.2 4X2-3X=52 解:X2-﹙3/4﹚X=13 ﹙X-3/8﹚2=13 ∴X-3/8=±29/8 ∴X1=4,X2 =-13/4 5X2=4-2X 5X2+2X=4 X2+0.2X=0.8 ﹙X+0.1﹚2=0.81 X+0.1=±0.9

X1=-1,X2=0.8 就这么几道,最好去百度搜索,那多1)x^2-9x+8=0 答案:x1=8 x2=1 (2)x^2+6x-27=0 答案:x1=3 x2=-9 (3)x^2-2x-80=0 答案:x1=-8 x2=10 (4)x^2+10x-200=0 答案:x1=-20 x2=10 (5)x^2-20x+96=0 答案:x1=12 x2=8 (6)x^2+23x+76=0 答案:x1=-19 x2=-4 (7)x^2-25x+154=0 答案:x1=14 x2=11 (8)x^2-12x-108=0 答案:x1=-6 x2=18 (9)x^2+4x-252=0 答案:x1=14 x2=-18 (10)x^2-11x-102=0 答案:x1=17 x2=-6 (11)x^2+15x-54=0 答案:x1=-18 x2=3 (12)x^2+11x+18=0 答案:x1=-2 x2=-9 (13)x^2-9x+20=0 答案:x1=4 x2=5 (14)x^2+19x+90=0 答案:x1=-10 x2=-9 (15)x^2-25x+156=0 答案:x1=13 x2=12 (16)x^2-22x+57=0 答案:x1=3 x2=19 (17)x^2-5x-176=0 答案:x1=16 x2=-11 (18)x^2-26x+133=0 答案:x1=7 x2=19 (19)x^2+10x-11=0 答案:x1=-11 x2=1 (20)x^2-3x-304=0 答案:x1=-16 x2=19 (21)x^2+13x-140=0 答案:x1=7 x2=-20 (22)x^2+13x-48=0 答案:x1=3 x2=-16

一元二次方程的根与系数的关系

一元二次方程的根与系数的关系 一、目标认知 学习目标 1.掌握一元二次方程的根与系数的关系; 2.能够利用一元二次方程的根与系数的关系求简单的关于根的对称式的值; 3.能够利用一元二次方程的根与系数的关系判断两个数是否是方程的根; 4.能够利用一元二次方程的根与系数的关系求出以两个已知数为根的一元二次方程. 重点 对一元二次方程的根与系数的关系的掌握,以及在各类问题中的运用. 难点 一元二次方程的根与系数的关系的运用. 二、知识要点梳理 一元二次方程根与系数的关系 如果一元二次方程ax2+bx+c=0的两个实根是x1,x2,那么. 注意它的使用条件为a≠0,Δ≥0. 三、规律方法指导 一元二次方程根与系数的关系的用法: ①不解方程,检验两个数是否为一元二次方程的根; ②已知方程的一个根,求另一个根及未知系数; ③不解方程,求已知一元二次方程的根的对称式的值; ④已知方程的两根,求这个一元二次方程; ⑤已知两个数的和与积,求这两数; ⑥已知方程的两根满足某种关系,确定方程中字母系数的值; ⑦讨论方程根的性质。 四、经典例题透析 1.已知一元二次方程的一个根,求出另一个根以及字母系数的值. 1.已知方程x2-6x+m2-2m+5=0一个根为2,求另一个根及m的值. 思路点拨:本题通常有两种做法,一是根据方程根的定义,把x=2代入原方程,先求出m的值,再通过解方程求另一个根;二是利用一元二次方程的根与系数的关系求出另一个根及m的值. 解:法一:把x=2代入原方程,得 22-6×2+m2-2m+5=0 即m2-2m-3=0 解得m1=3,m2=-1 当m1=3,m2=-1时,原方程都化为 x2-6x+8=0

一元二次方程100道计算题练习附答案资料26300

一元二次方程100道计算题练习 1、)4(5)4(2+=+x x 2、x x 4)1(2=+ 3、22)21()3(x x -=+ 4、31022=-x x 5、(x+5)2=16 6、2(2x -1)-x (1-2x )=0 7、x 2 =64 8、5x 2 - 52=0 9、8(3 -x )2 –72=0 10、3x(x+2)=5(x+2) 11、(1-3y )2+2(3y -1)=0 12、x 2+ 2x + 3=0

13、x2+ 6x-5=0 14、x2-4x+ 3=0 15、x2-2x-1 =0 16、2x2+3x+1=0 17、3x2+2x-1 =0 18、5x2-3x+2 =0 19、7x2-4x-3 =0 20、-x2-x+12 =0 21、x2-6x+9 =0 22、22 -=-23、x2-2x-4=0 24、x2-3=4x x x (32)(23) 25、3x 2+8 x-3=0(配方法)26、(3x+2)(x+3)=x+14 27、(x+1)(x+8)=-12

28、2(x -3) 2=x 2-9 29、-3x 2+22x -24=0 30、(2x-1)2 +3(2x-1)+2=0 31、2x 2-9x +8=0 32、3(x-5)2=x(5-x) 33、(x +2) 2=8x 34、(x -2) 2=(2x +3)2 35、2720x x += 36、24410t t -+= 37、()()24330x x x -+-= 38、2631350x x -+= 39、()2231210x --= 40、2223650x x -+=

一元二次方程根与系数的关系习题(配答案) - 副本

一元二次方程根与系数的关系习题 一、单项选择题: 1.关于x 的方程0122 =+-x ax 中,如果0

相关主题
文本预览
相关文档 最新文档