当前位置:文档之家› 金属固态相变原理

金属固态相变原理

金属固态相变原理
金属固态相变原理

第2篇热处理原理及工艺

第7章钢的热处理

教学目标:

搞清奥氏体、珠光体、贝氏体、马氏体等基本概念;

掌握共析分解、马氏体相变、贝氏体相变基本知识

掌握相变产物的形貌和物理本质。

第8章金属固态相变原理

§8钢的热处理

一、热处理的作用

机床、汽车、摩托车、火车、矿山、石油、化工、航空、航天等各行各业用的大量零部件需要通过热处理工艺改善其性能。

拒初步统计,在机床制造中,约60% 70%的零件要经过热处理;在汽车、拖拉机制造中,需要热处理的零件多达70% 80%,而工模具及滚动轴承,则要100%进行热处理。

总之,凡重要的零件都必须进行适当的热处理才能投入使用。

热处理的定义:将固态金属或合金在一定介质中加热、保温和冷却, 以改变材料整体或表面组织,从而获得所需组织和性能的工艺过程。

热处理三大要素:加热、保温和冷却

通过以上三个环节,材料的内部组织发生了变化,因而性能也发生变化。

例如:碳素工具钢T8在市场购回的是球化退火的材料其硬度仅为20HRC,作为工具需经淬火并低温回火使硬度提高到60?63HRC,这是因为内部组织由淬火之前的粒状珠光体转变为淬火+低温回火的回火马氏体。

同一种材料,热处理工艺不一样其性能差别很大,导致性能差别如此大的原

因是不同的热处理后内部组织截然不同。

热处理工艺的选择要根据材料的成分来确定。材料内部组织的变化依赖于材料热处理和其他热加工工艺,材料性能的变化又取决于材料的内部组织变化。

所以,材料成分-加工工艺-组织结构-材料性能这四者相互依成的关系贯穿在材料制备的全过程之中。

我们的任务就是要了解和掌握其中的规律性。

二、热处理的基本要素

如上所述,热处理工艺中有三大基本要素:加热、保温、冷却。这三大基本要素决定了材料热处理后的组织和性能。

1、加热

按加热温度的高低,加热分为两种:一种是在临界点A i以下加热, 此时一般不发生相变;另一种是在A i以上加热,目的是为了获得均匀的奥氏体组织,这一过程称为奥氏体化。

2、保温

保温是热处理的中间工序,其目的是既要保证工件烧透”又要防止工件脱碳、氧化等。

保温时间和介质的选择与工件的尺寸和材质有直接的关系。

件越大,导热性越差,保温时间就越长。

3、冷却

冷却是热处理的最终工序,也是热处理过程中最重要的工序。钢在

不同冷却速度下可以转变为不同的组织形态。

三、热处理的分类1、根据加热、冷却方式的不同及组织、性能变化特点的不同,热处理可分为下列几类:

普通热处理:退火正火、淬火和回火。即所谓热处理的四把火”

表面热处理:感应加热表面淬火、火焰加热表面淬火、电接触加热表面淬火、激光表面淬火和涂覆、渗碳、氮化和碳氮共渗等。

其它热处理:可控气氛热处理、真空热处理和形变热处理等。

2、按照热处理在零件生产过程中的工序和作用不同,热处理工艺还可分为:

预备热处理:零件加工过程中的一道中间工序(也称为中间热处理), 其目的是改善锻、铸毛坯件组织、消除应力,为后续的机加工或进热处理作组织上的准备。

最终热处理:零件加工的最终工序。其目的是使经过成型工艺达到形状和尺寸要求的零件,通过热处理使零件具备最终的使用性能。

般工

是预备还是最终热处理在材料的生产过程中是相对的。

四、钢的临界转变温度

根据铁碳相图,共析钢缓慢加热到超过 A i 温度时,全部转变为奥氏 体;亚共析钢和过共析钢必须加热到A 3和A cm 以上才能获得单相奥氏体。

在实际热处理加热条件下,加热速度不可能是缓慢的 ,因此,相变是 在不平衡条件下进行的;其次,再考虑到过冷或过热现象的存在,相变 点与相图中的相变温度有一些差异。具体如下:

加热时相变温度偏向高温,冷却时偏向低温,这种现象称为滞后 (热滞或冷滞)。

在热处理工艺实施过程中,加热或冷却速度越快,则滞后现象越严 重。 通常把加热时的实际临界温度标以右下标字母 C”表示,如A C I 、 A C 3、Accm ;

而把冷却时的实际临界温度标以右下标字母

r ”表示,如Ar i 、

Ar 3、Arcm 等。

§8.1钢在加热时的转变

一般而言,钢的热处理多数需要先加热得到奥氏体 (奥氏体化、A 化),然后以不同速度冷却,使奥氏体转变为不同的组织,使钢具有不同 性能。

临界温度:

平衡时:

A1、 A3、Acm

加热时:

Ac1、Ac3、Accm

冷却时:

Ar1、Ar3、Arcm

加热时形成的奥氏体的质量(成分均匀性及晶粒大小等),对冷却转变后的组织、性能有极大的影响(组织遗传)。

因此,掌握热处理规律,首先要研究钢在加热时的变化—即奥氏体化过程。

§8.1.1奥氏体的形成过程

一、共析钢奥氏体的形成

共析碳钢加热前为珠光体组织,一般为铁素体与渗碳体交替排列的层片状组织,加热过程中珠光体转变为奥氏体过程可分为四步进行:奥氏体形核、晶核的长大、未溶碳化物(Fe3C)溶解、奥氏体成分均匀化。

①奥氏体晶核的形成

由Fe-Fe3C相图知,在P转变为A过程中,原F的bcc晶格改组为A的fee 晶格,原渗碳体的复杂斜方晶格转变为fee晶格。

所以,奥氏体的形成过程就是晶格的改组和Fe、C原子的扩散过程。

常将这一过程和奥氏体冷却过程的转变称为相变重结晶”。

基于能量与成分条件,奥氏体晶核在珠光体中的铁素体与渗碳体两相交界处产生,两相交界面越多,奥氏体晶核越多。

②奥氏体晶核的长大

奥氏体晶核形成后,它的一侧与渗碳体相接,另一侧与铁素体相接。

随着铁素体的转变(铁素体区域的缩小),以及渗碳体的溶解(渗碳体区域缩小),奥氏体不断向其两侧的原铁素体区域及渗碳体区域扩展长大,直至铁素体和渗碳体完全消失,奥氏体彼此相遇,形成一个个的奥氏体晶粒。

③ 剩余渗碳体的溶解

由于铁素体转变为奥氏体速度远高于渗碳体的溶解速度, 在铁素体 完全转变之后尚有不少未溶解的剩余渗碳体”存在,还需一定时间保 温,让渗碳体全部溶解并转变为奥氏体。

④ 奥氏体成分的均匀化

即使渗碳体全部溶解,奥氏体内的成分仍不均匀,在原铁素体区域形 成的奥氏体含碳量偏低,在原渗碳体区域形成的奥氏体含碳量偏高,还 需保温足够时间,让碳原子充分扩散,奥氏体成分才可能趋于均匀。

下图表示共析钢奥氏体形成的四个基本阶段:奥氏体晶核的形成;

个充要条件:一是温度条件,要在 Ac i 以上加热;二是时间条件,要求 在Ac i 以上温度保持足够时间。 在一定加热速度条件下,超过 Ac i 的温度越高,奥氏体的形成与成

分均匀化需要的时间愈短;在一定的温度(高于

Ac i )条件下,保温时 间越

长,奥氏体成分越均匀。

二、非共析钢奥氏体的形成

亚共析钢与过共析钢加热转变为 A 过程与共析钢转变过程是一样 的,即在Ac i 温度以上加热无论亚共析钢或是过共析钢中的 P 均要转变为

A 。不同的是亚共析钢的先析出F 的转变与过共析钢的 Fe 3C n 的溶解。 奥氏体晶核的长大; 剩余渗碳体的溶解;奥氏体成分的均匀化 上述分析表明, 珠光体转变为奥氏体并使奥氏体成分均匀必须有两

O

"八 A

(u+F^C) ¥ 晶核 残金沼解不均匀丫

均匀Y

Y 长犬 图8-4奥氏体形成的四个基本阶段 0

5

第一章金属固态相变

金 属 热 处 理 主讲 主讲 从善海从善海材冶学院金属材料工程系 1.热处理 热处理是将钢在固态下加热到预定的温度,保温一定的时间,然后以预定的方式冷却下来的一种热加工工艺,其工艺曲线如下图所示。 一、热处理及其作用 绪论 ℃ Ac 1 加热 Ac 3

●平衡脱熔沉淀 设A-B 二元合金,当成分为K 的合金被加热到t 1温度时,β相将全部溶入a 相中而成为单一的固溶体。若自t 1温度缓慢冷却至固溶度曲线MN 以下温度时,β相又将逐渐析出,这一过程称为平衡脱熔沉淀。 (二)平衡脱熔沉淀 在转变初期,新形成的两个微区之间并无明显的界面和成分的突变,上坡扩散,最终使一均匀固

二、不平衡转变 (一)伪共析转变 当奥氏体以较快冷速过冷到GS和ES的延 长线以下温度时(如图1-2中虚线),奥 氏体中同时析出铁素体和渗碳体。 亚共析钢或过共析钢从奥氏体状态快 温度以下,先共析相来不 速冷却到A r1 及析出,奥氏体直接转变为铁素体和 渗碳体(F+Fe C),这种转变称为伪 3 共析转变。 这种由非共析成分所获得的共析组织称为伪共析组织

期间过饱和固溶体便会自发地发生分解,从中逐渐析出不平衡脱熔沉淀或时效

b)伸缩型半共格(c)切变型半共格 (三)非共格晶面 当两相界面处的原子排列差异很大,即错配度很大时,其原子间的匹配关系便不再维持见,这种界面称为非共格界面。 (d、c )非共格界面 二、两相间的晶体学关系 惯习面 惯习面通常以母相的晶面指数表示,如马氏体总是在奥氏体的面上形成,故 固态相变时新相与母相间往往存在 一定的取向关系,而且新相往往又 是在母相一定的晶面族上形成,这 种品面称为惯习面。 {} α′ 011 {} γ 111 // {} α′ 011 {} γ 111 马氏体的密排面与奥氏体的密排面 记着:

(完整版)金属固态相变原理考试复习思考题

复习思考题 1.复习思考题 1.固态相变和液-固相变有何异同点? 相同点:(1)都需要相变驱动力(2)都存在相变阻力(3)都是系统自组织的过程 不同点:(1)液-固相变驱动力为自由焓之差△G 相变,阻力为新相的表面能△G表,基本能连关系为:△G = △G 相变+△G表,而固态相变多了一项畸变能△G畸,基本能连关系为:△G = △G 相变+△G界面+△G畸(2)固态相变比液-固相变困难,需要较大的过冷度。 2.金属固态相变有那些主要特征? 相界面;位向关系与惯习面;弹性应变能;过渡相的形成;晶体缺陷的影响;原子的扩散。 3. 说明固态相变的驱动力和阻力? 在固态相变中,由于新旧相比容差和晶体位向的差异,这些差异产生在一个新旧相有机结合的弹性的固体介质中,在核胚及周围区域内产生弹性应力场,该应力场包含的能量就是相变的新阻力—畸变自由焓△G畸。则有: △G = △G 相变+△G界面+△G畸 式中△G 相变一项为相变驱动力。它是新旧相自由焓之差。 当:△G 相变=G 新 -G 旧 <0 △G 相变小于零,相变将自发地进行 (△G界面+△G畸)两项之和为相变阻力。 (1)界面能△G界面 界面能σ由结构界面能σst和化学界面能σch组成。即:σ=σst+σch 结构界面能是由于界面处的原子键合被切断或被削弱,引起了势能的升高,形成的界面能。 (2)畸变能阻力—△G畸 4.为什么在金属固态相变过程中有时出现过渡相? 过渡相的形成有利于降低相变阻力, 5. 晶体缺陷对固态相变有何影响? 晶核在晶体缺陷处形核时,缺陷能将贡献给形核功,因此,晶体通过自组织功能在晶体缺陷处优先性核。 晶体缺陷对形核的催化作用体现在: (1)母相界面有现成的一部分,因而只需部分重建。 (2)原缺陷能将贡献给形核功,使形核功减小。 (3)界面处的扩散比晶内快的多。 (4)相变引起的应变能可较快的通过晶界流变而松弛。 (5)溶质原子易于偏聚在晶界处,有利于提高形核率。 6.扩散型相变和无扩散型相变各有那些特征? (1)扩散型相变 原子迁移造成原有原子邻居关系的破坏,在相变时,新旧相界面处,在化学位差驱动下,旧相原子单个而无序的,统计式的越过相界面进入新相,在新相中原子打乱重排,新旧相排列顺序不同,界面不断向旧相推移,此称为界面热激活迁移,是扩散激活能与温度的函数。 新相与母相的化学成分不同。 (2)无扩散型相变 相变的界面推移速度与原子的热激活跃迁因素无关。界面处母相一侧的原子不是单个而无序的,统计式的越过相界面进入新相,而是集体定向的协同位移。界面在推移的过程中保持宫格关系。 新相与母相的结构不同,化学成分相同态相变具有形核阶段? 固态相变分为有核相变与无核相变,大多数固态相变都是有核相变, 8.为什么金属固态相变复杂多样? 见4页。 9.晶粒长大的驱动力?晶粒长大时界面移动方向与晶核长大时的界面移动方向有何不同?为什么? 晶粒长大的驱动力:界面能或晶界能的降低。晶粒长大时界面移动方向与曲率中心相同,晶核长大时的界面移动方向与曲率中心相反。 10.什么是自组织?自组织的条件是什么? 如果系统在获得其空间结构,时间结构过程中没有特定的外界干预,而是一个自发的组织化,有序化,系统化的过程,称自组织。其条件是:(1)开放系统(2)远离平衡态(3)随机涨落(4)非线性相互作用

(完整版)固态相变原理考试试题+答案

固态相变原理考试试题 一、(20分) 1、试对固态相变地相变阻力进行分析 固态相变阻力包括界面能和应变能,这是由于发生相变时形成新界面,比容不同都需要消耗能量. (1)界面能:是指形成单位面积地界面时,系统地赫姆霍茨自由能地变化值.与大小和化学键地数目、强度有关.共格界面地化学键数目、强度没有发生大地变化,最小;半共格界面产生错配位错,化学键发生变化,次之;非共格界面化学键破坏最厉害,最大. (2)应变能 ①错配度引起地应变能(共格应变能):共格界面由错配度引起地应变能最大,半共格 界面次之,非共格界面最小. ②比容差引起地应变能(体积应变能):和新相地形状有关,, 球状由于比容差引起地应变能最大,针状次之,片状最小. 2、分析晶体缺陷对固态相变中新相形核地作用 固相中存在各种晶体缺陷,如空位、位错、层错、晶界等,如果在晶体缺陷处形核,随着核地形成,缺陷将消失,缺陷地能量将给出一供形核需要,使临界形核功下降,故缺陷促进形核. (1)空位:过饱和空位聚集,崩塌形成位错,能量释放而促进形核,空位有利于扩散,有利于形核. (2)位错: ①形成新相,位错线消失,会释放能量,促进形核 ②位错线不消失,依附在界面上,变成半共格界面,减少应变能. ③位错线附近溶质原子易偏聚,形成浓度起伏,利于形核. ④位错是快速扩散地通道. ⑤位错分解为不全位错和层错,有利于形核. Aaromon总结: 刃型位错比螺型位错更利于形核;较大柏氏矢量地位错更容易形核;位错可缠绕,割阶处形核;单独位错比亚晶界上位错易于形核;位错影响形核,易在某些惯习面上形成. (3)晶界:晶界上易形核,减小晶界面积,降低形核界面能 二、(20分) 已知调幅分解 1、试分析发生调幅分解地条件 只有当R(λ)>0,振幅才能随时间地增长而增加,即发生调幅分解,要使R(λ)>0,得且. 令R(λ)=0得λc—临界波长,则λ<λc时,偏聚团间距小,梯度项很大,R(λ)>0,不能发生;λ>λc时,随着波长增加,下降,易满足,可忽略梯度项,调幅分解能发生. 2、说明调幅分解地化学拐点和共格拐点,并画出化学拐点、共格拐点和平衡成分点在温度 ——成分坐标中地变化轨迹 化学拐点:当G”=0时.即为调幅分解地化学拐点; 共格拐点:当G”+2η2Y=0时为共格拐点,与化学拐点相比共格拐点地浓度范围变窄了,温度范围也降低了. 3、请说明调幅分解与形核长大型相变地区别 1、阐明建立马氏体相变晶体学表象理论地实验基础和基本原理 (1)实验基础 1 / 3

金属固态相变原理

*本答案基本根据录音整理所得,课本有的标了页码* 金色固态相变原理 简答题 1.简述共析钢加热奥氏体化的过程。(P42) 答:(1)奥氏体形核奥斯体的形核是通过形核和长大完成的。奥氏体的晶核是依靠系统的能量起伏、浓度起伏和结构起伏形成的;(2 )奥氏体晶核长大奥氏体的长大过程是两个新旧界面向原来的铁素体和渗碳体中推移的过程,驱动力为奥氏体中的碳浓度差;(3)剩余碳化物的溶解奥氏体中铁素体的溶解速度大了渗碳体的溶解速度,使渗碳体过剩而逐渐溶入奥氏体中;(4)奥氏体的均匀化继续加热或保温,借助碳原子的扩散使碳原子的分布趋于均匀。 2.马氏体相变的主要特征有哪些?(P76) 答:(1)切变共格和表面浮突现象马氏体转变时奥氏体中的原子基集体有规则的向新相中迁移,形成切变共格界面,表面产生浮突效应;(2)无扩散性仅由面心立方点阵通过切边改组为体心立方点阵,而无成分的变化;(3)具有特定的位向关系和惯习面;(4)在一个温度范围内完成相变温度在Ms-Mf完成,但是转变不能完全进行,有一定量的残余奥氏体存在;(5)可逆性 3.什么是第一类回火脆性,避免其发生的方法有哪些?(P143) 答:在250-400°C之间出现的回火脆性称为第一类回火脆性,也称低温回火脆性,也称为不可逆回火脆性。 避免方法:(a)降低钢中杂质元素的含量;(b)用Al脱氧或加入Nb、V、Ti等合金元素以细化奥氏体晶粒;(c)加入Mo、W等能减轻第一类回火脆性的合金元素;(d)加入Cr、Si以调整发生第一类回火脆性的温度范围,使之避开所需的回火温度;(e)采用等温淬火工艺代替淬火加回火工艺。 4.板条马氏体和片状马氏体那种会出现显微裂纹,为什么?(根据录音所得) 答:片状马氏体。显微裂纹是片状马氏体形成是产生的,先形成的第一片马氏体贯穿整个晶粒,将奥氏体晶粒分成两个部分,而后形成的马氏体片大小受到限制,所以马氏体的大小是不同的。后形成的马氏体片不断的撞击先形成的马氏体。由于马氏体的形成速度非常快,所以相互撞击,同时还与奥氏体晶界撞击,产生较大的应力场,另外片状马氏体的含碳量比较高,不能通过滑移和孪晶等变形方式消除应力,所以片状马氏体容易出现显微裂纹。 板条马氏体之间的夹角比较小,基本上是平行的,相互撞击的几率较小,残余奥氏体的存在可以缓解应力,所以板条马氏体没有出现显微裂纹。 5.什么是材料的热处理?其目的是什么?常见的热处理工艺有哪些?(根据录音所得)答:材料的热处理是通过特定的加热保温和冷却方式来获得工程上所需的组织的一种工艺过程的总称。目的:改变金属及合金的内部组织结构使其满足服役条件所提出的性能要求。常见的热处理工艺有淬火、正火、退火和回火。 6.如何区别高碳钢中的回火马氏体与下贝氏体?(根据录音所得) 答:(1)高碳钢回火马氏体表面浮突呈锥字型,它的相变是通过共格切变机制完成的。而下贝氏体的表面浮突是不平行的相交成V字形,而且它的铁素体不是通过切变共格完成的;(2)高碳钢回火马氏体中存在位错和孪晶,而下贝氏体中的铁素体中只有位错盘结没有孪晶结构存在,其韧性较好。(3)下贝氏体中碳沿着与贝氏体长轴呈50-60°倾斜的直线规则排列与相间析出相似。回火马氏体中碳在铁素体中是均匀分布的。 7.奥氏体的晶核最容易在什么地方形成?为什么?(P40)

金属固态相变原理名词解释

1.固态相变:金属盒陶瓷等固体材料在温度和压力改变时,其内部组织或结构会发生变化,即从一种相状态到另一种相状态的转变 2.平衡转变;在缓慢加热或冷却时所发生的能获得复合平衡状态图的平衡组织的相变。 3.共析相变;合金在冷却时由一个固相分解为两个不同固相的转变 4.平衡脱溶相变;在缓慢冷却条件下,由过饱和固溶体中析出过剩相的过程 5.扩散性相变;相变时相界面的移动是通过原子近程或远程扩散而进行的相变也称非协调型 6.无扩散性相变;相变过程中原子不发生扩散,参与转变的所有原子的运动是协调一致的相变也称协同型 7.均匀形核;晶核在母相中无择优地任意均匀分布 8.形核率;单位时间形成的晶核数 9.混晶;置换固溶体,两种或多种元素相互溶解而形成的均匀晶相 10.异常长大:正常晶粒长大过程被第二相微粒、织构、表面热蚀沟等阻碍,使得大多数晶粒不能长大,从而使少数较大的晶粒得以迅速长大。 11.奥氏体;碳及各种化学元素在γ-Fe中形成的固溶体 12.珠光体;共析碳钢加热奥氏体化后缓慢冷却,在稍低于A1温度时奥氏体将分解为铁素体和渗碳体的混合物称为珠光体 13.粒状珠光体;通过片状珠光体中渗碳体的球状化而获得的 14.贝氏体;钢在奥氏体化后被过冷到珠光体转变温度区间以下,马氏体转变温度区间以上这一中温度区间(所谓“贝氏体转变温度区间”)转变而成的由铁素体及其内分布着弥散的碳化物所形成的亚稳组织,即贝氏体转变的产物。 15.马氏体;对固态的铁基合金(钢铁及其他铁基合金)以及非铁金属及合金而言,是无扩散的共格切变型相转变,即马氏体转变的产物。就铁基合金而言,是过冷奥氏体发生无扩散的共格切变型相转变即马氏体转变所形成的产物。铁基合金中常见的马氏体,就其本质而言,是碳和(或)合金元素在α铁中的过饱和固溶体。就铁-碳二元合金而言,是碳在α铁中的过饱和固溶体。 16.屈氏体;通过奥氏体等温转变所得到的由铁素体与渗碳体组成的极弥散的混合物。是一种最细珠光体类型组织,其组织比索氏体组织还细 17.索氏体;马氏体于回火时形成的,在光学金相显微镜下放大五六百倍才能分辨出为铁素体内分布着碳化物(包括渗碳体)球粒的复相组织。 18.组织遗传;将晶界有序组织加热到Ac3,可能导致形成的奥氏体晶粒与原始晶粒具有相同的形状、大小和取向。 19.相变孪晶;相变过程中形成的孪晶。 20.热稳定化;淬火时因缓慢冷却或在冷却过程中因停留而引起奥氏体稳定性提高,使马氏体转变迟滞的现象。 21.反稳定化;当等温温度超过一定限度后,随等温温度升高,奥氏体稳定化程度反而下降的现象。 22.不变平面应变;相变过程中虽然发生了变形,但变形为均匀切变,且相变过程中惯习面为不变平面的应变。 23.惯习面;固态相变时,新相往往在母相的一定晶面开始形成,这个晶面称 24.热弹性马氏体;在冷却转变与加热逆转变时呈弹性长大与缩小的马氏体 25.形状记忆合金;具有这种形状记忆效应的金属发生较大变形后,经加热至某一温度之上,能恢复到变形前形状的合金。 26.正方度;c/a表示晶格畸变程度,具有体心正方点阵结构的马氏体的c/a值。 27.伪共析组织;过冷奥氏体以极快冷速转变形成的p组织,其成分因奥氏体含碳量不同而不同。 28.回火;淬火处理后将工件加热到低于临界点的某一温度,保温一定时间,然后冷却到室温的一种热处理操作。 29.回火屈氏体;铁素体加片状或者小颗粒状渗碳体的混合组织 30.回火马氏体;残余奥氏体向低碳马氏体和e-碳化物分解的过程,所得组织马氏体经分解后的立方马氏体+e-碳化物的混合组织。 31.回火索氏体;等轴铁素体加尺寸较大的粒状渗碳体的混合组织 32.回火脆性;随回火温度升高,冲击韧性反而下降的现象 33.二次硬化;当马氏体中含有足够量的碳化物形成元素时,在500°c以上回火是将会析出细小的特殊碳化物,导致因回火温度升高, -碳化物粗化而软化的刚再度硬化 34.二次淬火;在冷却回火是残余奥氏体转变为马氏体的现象叫二次淬火 35.时效;合金在脱溶过程中,其机械性能物理性能化学性能等均随之发生变化的现象 36.脱溶;从饱和固溶体中析出第二相(沉淀相)或形成溶质原子聚集区以及亚稳定过渡相

固态相变试题库及答案

固态相变课程复习思考题2012-5-17 1.说明金属固态相变的主要分类及其形式 2.说明金属固态相变的主要特点 3.说明金属固态相变的热力学条件与作用 4.说明金属固态相变的晶核长大条件和机制 5.说明奥氏体的组织特征和性能 6.说明奥氏体的形成机制 7.简要说明珠光体的组织特征 8.简要说明珠光体的转变体制 9.简要说明珠光体转变产物的机械性能 10.简要说明马氏体相变的主要特点 11.简要说明马氏体相变的形核理论和切边模型 12.说明马氏体的机械性能,例如硬度、强度和韧性 13.简要说明贝氏体的基本特征和组织形态 14.说明恩金贝氏体相变假说 15.说明钢中贝氏体的机械性能 16.说明钢中贝氏体的组织形态 17.分析合金脱溶过程和脱溶物的结构 18.分析合金脱溶后的显微组织 19.说明合金脱溶时效的性能变化 20.说明合金的调幅分解的结构、组织和性能 21.试计算碳含量为2.11%(质量分数)奥氏体中,平均几个晶胞有一个碳原子? 22.影响珠光体片间距的因素有哪些? 23.试述影响珠光体转变力学的因素。 24.试述珠光体转变为什么不能存在领先相 25.过冷奥氏体在什么条件下形成片状珠光体,什么条件下形成粒状珠光体 26.试述马氏体相变的主要特征及马氏体相变的判据 27.试述贝氏体转变与马氏体相变的异同点 28.试述贝氏体转变的动力学特点 29.试述贝氏体的形核特点 30.熟悉如下概念:时效、脱溶、连续脱溶、不连续脱溶。 31.试述Al-Cu合金的时效过程,写出析出贯序 32.试述脱溶过程出现过渡相的原因 33.掌握如下基本概念: 固态相变、平衡转变、共析相变、平衡脱溶、扩散性相变、无扩散型相变、均匀形核、形核率

固态相变原理

固态相变原理 1、相变的基础理论涉及三个方面的共性问题: 1)相变能否进行,相变的方向 2)相变进行的途径及速度 3)相变的结果,即相变时结构转变的特征。 分别对应相变热力学、相变动力学和相变晶体学。 相变是朝着能量降低的方向进行; 相变是选择阻力最小、速度最快的途径进行; 相变可以有不同的终态,但只有最适合结构环境的新相才易于生存下来。 2、固态相变的特殊性 (相界面、弹性应变能、位向关系与惯习面、亚稳过渡相、原子迁移率、晶体缺陷)。 固态相变除满足热力学条件外,还须获得额外能量来克服晶格改组时原子间的引力,即存在相变势垒。相变势垒由激活能决定,也与是否有外加机械应力有关。 3、相变驱动力和相变阻力 驱动力:体积自由能,来自晶体缺陷(点,线,面缺陷)的储存能。 储存能由大到小的排序:界面能,线缺陷,点缺陷。 界面能中界隅提供的能量最大,但体积分数小,界棱次之,界面最小,但体积分数最大。 相变阻力是界面能和弹性应变能。 弹性应变能与新旧相的比容差和弹性模量,及新相的几何外形有关。从能量的角度来看:共格界面的弹性应变能最大,非共格界面的界面能最大。球形新相界面能最小,但应变能最大,圆盘状新相相反,针状新相居中。 4、长大方式 新相晶核的长大分为协同(共格或半共格,切变)和非协同(非共格或扩散)两种,前者速度快,后者速度慢。原子只能短程扩散时,长大速度与过冷度(温度)存在极大值;长程扩散时,长大速度与扩散系数和母相的浓度梯度成正比,与相界面处两相的浓度差呈反比。 5、相变速率

相变速率满足Johnson-Mehl方程或Avrami经验方程。相变之初和相变结束其,相变速率最小,转变量约50%时,相变速度最大。扩散型相变的动力学曲线呈“C”形。是由驱动力和扩散两个矛盾因素共同决定的。 6、C曲线 “C”曲线建立的原理:一定外界条件下,只要发生了相变,宏观上就能检测出某种变化(组织,结构,性能等),确定该条件下这种变化与新相转变量的关系。相变进行的难以程度决定“C”曲线的位置。“C”曲线可分为六种类型,影响“C”曲线的因素有:化学成分,奥氏体化条件和奥氏体晶粒尺寸,原始组织及外界能量(塑性变形等)。凡是使过冷奥氏体稳定的因素均使“C”曲线右移(右移,说明相变所需要的临界冷却速率越小,相变越容易)。连续冷却时,“C”曲线“滞后”,即向右下方向漂移。 7、用TTT曲线和CCT曲线判断组织组成的原则。 只要过冷奥氏体经过或停留在那个区,就转变为该区对应的组织。过冷奥氏体全部转变完后,再经过任何区域都不会发现任何变化,是其自然冷却。冷速越快,硬度越高。冷速超过某临界值时(临界冷却速度),过冷奥氏体全部转变成马氏体。

金属固态相变原理

第2篇热处理原理及工艺 第7章钢的热处理 教学目标: 搞清奥氏体、珠光体、贝氏体、马氏体等基本概念; 掌握共析分解、马氏体相变、贝氏体相变基本知识; 掌握相变产物的形貌和物理本质。 第8章金属固态相变原理 §8 钢的热处理 一、热处理的作用 机床、汽车、摩托车、火车、矿山、石油、化工、航空、航天等各行各业用的大量零部件需要通过热处理工艺改善其性能。 拒初步统计,在机床制造中,约60%~70%的零件要经过热处理;在汽车、拖拉机制造中,需要热处理的零件多达70%~80%,而工模具及滚动轴承,则要100%进行热处理。 总之,凡重要的零件都必须进行适当的热处理才能投入使用。 热处理的定义:将固态金属或合金在一定介质中加热、保温和冷却,以改变材料整体或表面组织,从而获得所需组织和性能的工艺过程。 热处理三大要素:加热、保温和冷却 通过以上三个环节,材料的内部组织发生了变化,因而性能也发生变化。

例如:碳素工具钢T8在市场购回的是球化退火的材料其硬度仅为20HRC,作为工具需经淬火并低温回火使硬度提高到60~63HRC,这是因为内部组织由淬火之前的粒状珠光体转变为淬火+低温回火的回火马氏体。 同一种材料,热处理工艺不一样其性能差别很大,导致性能差别如此大的原因是不同的热处理后内部组织截然不同。 表8-1 45号钢经不同热处理后的性能(试样直径15mm) 热处理工艺的选择要根据材料的成分来确定。材料内部组织的变化依赖于材料热处理和其他热加工工艺,材料性能的变化又取决于材料的内部组织变化。 所以,材料成分-加工工艺-组织结构-材料性能这四者相互依成的关系贯穿在材料制备的全过程之中。 我们的任务就是要了解和掌握其中的规律性。 二、热处理的基本要素 如上所述,热处理工艺中有三大基本要素:加热、保温、冷却。这三大基本要素决定了材料热处理后的组织和性能。 1、加热 按加热温度的高低,加热分为两种:一种是在临界点A1以下加热,此时一般不发生相变;另一种是在A1以上加热,目的是为了获得均匀的奥氏体组织,这一过程称为奥氏体化。

金属固态相变

第一章金属固态相变的基本规律 1.固态相变:指在金属陶瓷等固态材料中,当温度或压力改变时,内部组织或结构发生变化,即由一种相状态转变为另一种相状态。 2.平衡转变:在极为缓慢的加热或者冷却条件下形成符合状态图的平衡组织的相得转变。 3.非平衡转变:在非平衡加热或冷却的条件喜爱,平衡转变受到抑制,将发生平衡图上不能反映的转变类型,获得不平衡组织或平稳状态的组织。 4.纯金属的同素异构转变:纯金属在温度压力改变时,由一种晶体结构转变为另一种晶体结构的过程。 5.多形性转变:固溶体的同素异构转变。 6.共析转变:冷却时,固溶体同时析出分解为两个不同成分和结构的相的固态相变。 7.包析转变:冷却时,由俩个固相合并转变为一个固相的固态相变过程。 8.钢种的马氏体相变:将A以较大的冷却速度过冷到低温区,替代原子难以扩散,则A以无扩散方式发生转变,即在Ms点以下进行的马氏体转变,即称为马氏体转变。 9.平衡脱溶:在高温相中固溶了一定量合金元素,当温度降低时,溶解度下降,在缓慢冷却的条件下,过饱和固溶体将析出新相的过程。 10.非平衡脱溶:合金固溶体在高温下溶入了较多的合金元素,在快速冷却条件下,固溶体中来不及析出新相,一直冷却到较低温度下,得到过饱和固溶体的过程。 11.按原子迁移特征分为:(1)扩散型相变:原子的迁移造成原有原子的邻居关系的破坏。 ①界面控制扩散型相变②体扩散控制扩散型相变;(2)原子的迁移没有破坏原有原子的邻居关系,原子位移不超过原子间距。 12.按热力学分:(1)一级相变:在相变温度下,两相得自由焓及化学位均相等,但是化学位一级偏导数不等;(2)二级相变:相变时,化学位的一级偏导数相等,但是二级偏导数不等。 13.相变的驱动力和阻力: 相变过程驱动力阻力热力学条件 相结晶成固相△G相变=G固-G液新相表面能△G表驱动力>阻力 固态相变△G相变=G新-G旧△G界面+△G畸变 14.界面能△G界面:由结构界面能和化学界面能组成:(1)δSt结构界面能:由于界面处的原子键合被切断或被削弱,引起了势能的升高而形成的界面能:(2)δCh化学界面能:由于原子的结合键与两相内部原子键合的差别而导致的界面能量的升高。 15.新旧相界面分为:(1)非共格界面;(2)半共格界面;(3)共格界面 16.畸变能分为:(1)共格畸变能;(2)非共格畸变能。 17.固态相变形核要求有一个临界过冷度△Tc,只有当过冷度△T>△Tc时才满足相变热力学条件。这是固态相变形核与液-固相变的根本区别。 18.晶体缺陷对形核的催化作用:(1)母相界面有现成的一部分,因而只需部分重建;(2)原缺陷能跨越贡献给形核功,形核功变小;(3)界面处扩散速率比晶内快的多;(4)相变引起的应变能可较快的通过晶界流变而松弛;(5)溶质原子易于偏聚在晶界处,这有利于提高形核率。 19.晶界形核与界面,界核,界隅有关。界隅>界核>界面 20.形核率:单位时间,单位体积母相中形成新相晶核的数目。(N=C*f)C-临界核胎浓度;f-临界核胎成核频率。 21.长大速度:单位时间新相长大的线长度。 22.P27相变动力学曲线。等温转变图(C曲线)

金属固态相变原理习题及解答

第二章 奥氏体是碳在丫-Fe中的固溶体,碳原子在丫-Fe点阵中处于Fe原子组成的八面体间隙中心位置,即面心立方晶胞的中心或棱边中点。八面体间隙:4个 2、以共析碳钢为例说明奥氏体的形成过程,并讨论为什么奥氏体全部形成后还会有部分渗碳体未溶解?—| 奥氏体的形成是由四个基本过程所组成:形核、长大、剩余碳化物的溶解和成分均匀化。按 相平衡理论,从Fe-Fe3C相图可以看出,在高于AC1温度,刚刚形成的奥氏体,靠近Cem 的C浓度高于共析成分较少,而靠近F处的C浓度低于共析成分较多(即ES线的斜率较大,GS线的斜率较小)。所以,在奥氏体刚刚形成时,即F全部消失时,奥氏体的平均C浓度低于共析成分,这就进一步说明,共析钢的P刚刚形成的A的平均碳含量降低,低于共析成分,必然有 钢中添加合金元素并不影响珠光体向奥氏体的转变机制,但影响碳化物的稳定性及碳原子在 奥氏体中的扩散系数。另一方面,多数合金元素在碳化物和基体相中的分布是不均匀的,故合金元素将影响奥氏体的形核与长大、剩余碳化物的溶解、奥氏体成分均匀化的速度。 ①通过对碳扩散速度影响奥氏体的形成速度。②通过改变碳化物稳定性影响奥氏体的形成 速度。③对临界点的影响:Ni、Mn Cu等降低A1温度;Cr、Mo Ti、Si、Al、W V 等升高A1温度。④通过对原始组织的影响进而影响奥氏体的形成速度:Ni、Mn等往往使珠光体细化,有利于奥氏体的形成。 在其它条件相同的情况下,合金元素在奥氏体中的扩散速度比碳在奥氏体中的扩散速度 小100-10000倍。此外,碳化物形成元素还会减小碳在奥氏体中的扩散速度,这将降低碳的均匀化速度,因此,合金钢均匀化所需时间常常比碳钢长得多。 4、钢在连续加热时珠光体奥氏体转变有何特点。 ①在一定的加热速度范围内,临界点随加热速度增大而升高。 ②相变是在一个温度范围内 完成的加热速度越快奥氏体的温度范围越宽,但形成速度确加快,奥氏体形成时间缩短。 ③可以获得超细晶粒。④钢中原始组织的不均匀使连续加热时的奥氏体化温度升高。⑤快 速连续加热时形成的奥氏体成分不均匀性增大C Y - a降低,C Y -cem升高。⑥在超快速加 热条件下,铁素体转变为奥氏体的点阵改组属于无扩散型相变。 5、何谓奥氏体的本质晶粒度、起始晶粒度和实际晶粒度。钢中弥散析出的第二相对奥氏体 晶粒的长大有何影响。 起始晶粒度:指临界温度以上奥氏体形成刚刚完成,其晶粒边界刚刚互相接触时的晶粒大小。 实际晶粒度:指在某一热处理加热条件下,所得到的晶粒尺寸。本质晶粒度:根据标准实验条件,在930± 10C,保温足够时间(3~8小时)后,测定的钢中奥氏体晶粒的大小。 在晶粒边界及晶粒内部。往往存在着很多细小难熔的第二相颗粒,推移的晶界遇到第二相粒子将会发生弯曲,导致晶界面积增大,界面能上升,它们将阻碍晶界移动,起着钉扎晶界的 作用。界面能弥散析出的第二相颗粒越细粒子附近晶界弯曲的曲率就越大,晶界增加的面积

固态相变_(考试必备)

固态相变:金属和陶瓷等固态材料在温度和压力改变时,其内部组织或结构会发生变化,即发生从一种状态到另一种相态的转变,这种转变称之为固态相变。 固态相变的阻力有哪些:金属固态相变时的相变阻力应包括界面能和弹性应变能两项。当界面共格时,可以降低界面能,但使弹性应变能增大。当界面不共格时,盘(片)状新相的弹性应变能最低,但界面能较高;而球状新相的界面能最低,但弹性应变能却最大。 为什么固态相变中出现过渡相?晶体缺陷对固态相变形核有什么影响?1.当稳定的新相与母相的晶体结构差异较大时,母相往往不直接转变为自由能最低的稳定新相,而是先形成晶体结构或成分与母相比较接近,自由能比母相稍低些的亚稳定的过渡相。此时,过渡相往往具有界面能较低的共格界面或半共格界面,以降低形核功,使形核容易进行。2.晶体缺陷是能量起伏、结构起伏和成分起伏最大的区域,在这些区域形核时,原子扩散激活能低,扩散速度快,相变应力容易被松弛。在固态相变中,从能量的观点来看,均匀形核的形核功最大,空位形核次之,位错形核更次之,晶界非均匀形核的形核功最小。 为什么新相形成的时候,常常呈薄片状或针状?如果新相呈球状,新相与母相之间是否存在位相关系?①金属固态相变时,因新相与母相恶比容不同,可能发生体积变化,但由于受到周围母相的约束,新相不能自由膨胀产生弹性应变能。而片状或针状的弹性应变能最小,所以新相形成时常常呈片状或针状 ②存在位相关系。许多情况下,金属固态相变时,新相与母相之间往往存在一定的位相关系,且新相呈球状时与母相的弹性应变能最大,是由新、母相的比容不同或两相界面共格或半共格关系造成的,所以必然存在一定的位相关系。 TTT 曲线的建立:将不同温度下的等温转变开始时间和终了时间以及某些特定的转变量所对应的时间绘制在温度—时间半对数坐标系中,并将不同温度下的转变开始点和转变终了点以及转变50%点分别连接成曲线,则可得到过冷奥氏体等温转变图,即TTT 曲线。 TTT 图的作用:TTT 图反映了在临界点以下温度等温或以一定冷却速度冷却时过冷奥氏体的转变规律,综合显示了合金元素等对转变动力学的影响以及等温温度或冷却速度对转变产物和性能的影响。可清楚的看出:①某相过冷到临界点以下某一温度保温时,相变何时开始,何时转变能量达50%,何时转变终止 ②相变速率最初是随温度下降而逐渐增大,达到一最大值后又逐渐减小。TTT 图可以为正确选择钢的热处理工艺、分析热处理后的组织和性能以及合理选用钢材等提供依据。 奥氏体的形成过程可分为四个阶段:①奥氏体形核 ②奥氏体晶核向 及C Fe 3两个方向长大 ③剩余碳化物溶解 ④ 奥氏体均匀化。 影响奥氏体形成速度的因素:①加热温度的影响,即加热温度越高,奥氏体形成速度就越快②碳含量的影响,钢中碳含量越高,奥氏体形成速度就越快 ③原始组织的影响,在钢的成分相同的情况下,原始组织中碳化物的分散度越大,则相界面就越多,形核率也就越大,刚的原始组织也越细,奥氏体的形成速度就越快 ④合金元素的影响,强碳化物形成元素降低碳在奥氏体中的扩散系数,并形成特殊碳化物且不易溶解,所以显著减慢奥氏体的形成速度。非碳化物则加速奥氏体的形成速度。 本质细晶粒钢与本质粗晶粒钢的区别:奥氏体晶粒度在5~8级者称为本质细晶粒钢,而奥氏体晶粒度在1~4级者称为本质粗晶粒钢。对于本质细晶粒钢,当加热温度超过950~1000摄氏度时也可能得到十分粗大的实际晶粒。对于本质粗晶粒钢,当加热温度略高于临界点时也可能得到比较细的奥氏体晶粒。 影响奥氏体晶粒长大的因素:①加热温度和保温时间的影响,加热温度越高,加热时间越长,奥氏体晶粒将越粗大 ②加热速度的影响,加热速度越大,过热度就越大,奥氏体实际形成温度就越高,快速加热时可以获得细小的奥氏体起始晶粒 ③钢中碳含量的影响,在钢中碳含量不足以形成过剩碳化物的情况下,加热时奥氏体晶粒随钢中碳含量增加而增大。当碳含量超过一定限度时,反而阻碍奥氏体晶粒的长大 ④合金元素的影响,钢中加入适量形成难溶化合物的合金元素,将强烈地阻碍奥氏体晶粒长大,使奥氏体晶粒粗化温度显著提高。加入适量形成易溶化合物的合金元素,则阻碍程度中等。⑤冶炼方法的影响⑥原始组织的影响,原始组织越细,碳化物弥散度越大,所得到的奥氏体起始晶粒就越细小。 片状与粒状珠光体性能的比较:在成分相同的情况下,与片状珠光体相比,粒状珠光体的强度、硬度稍低,而塑性较高。粒状珠光体的切削性好,对刀具的磨损小,冷挤压时的成形性也好。粒状珠光体的性能还取决于碳化物颗粒的形态、

固态相变作业

1.推导Johnson-Mehl方程。(已布置,此题不需做) 2.奥氏体形核时需要过热度△T,那么金属熔化时(S-L),要不要过热度,为什么?答:由热力学可知,在某种条件下,结晶能否发生,取决于固相的自由度是否低于液相的自由度,即?G =GS-GL<0;只有当温度低于理论结晶温度 Tm 时,固态金属的自由能才低于液态金属的自由能,液态金属才能自发地转变为固态金属,因此金属结晶时一定要有过冷度。影响过冷度的因素:影响过冷度的因素:1)金属的本性,金属不同,过冷度大小不同;2)金属的纯度,金属的纯度越高,过冷度越大;3)冷却速度,冷却速度越大,过冷度越大。固态金属熔化时会出现过热度。原因:由热力学可知,在某种条件下,熔化能否发生,取决于液相自固态金属熔化时会出现过热度。原因:由度是否低于固相的自由度,即?G = GL-GS<0;只有当温度高于理论结晶温度 Tm 时,液态金属的自由能才低于固态金属的自由能,固态金属才能自发转变为液态金属,因此金属熔化时一定要有过热度。 3.相变热力学条件是什么? 答:金属固态相变的热力学条件: (1)相变驱动力:相变热力学指出,一切系统都有降低自由能以达到稳定状态的自发趋势。若具备引起自由能降低的条件,系统将由高能到低能转变转变,称为自发转变。金属固态相变就是自发转变,则新相自由能必须低于旧相自由能。新旧两相自由能差既为相变的驱动力,也就是所谓的相变热力学条件。 (2)相变势垒:要使系统有旧相转变为新相除了驱动力外,还要克服相变势垒。所谓相变势垒是指相变时改组晶格所必须克服的原子间引力。 金属固态相变的热力学作用:①为相变的发生提供动力;②明确相变发生所要克服的势垒,即激活能。 4.简述固态相变的主要特征。 答:⑴相界面:根据界面上新旧两相原子在晶体学上匹配程度的不同,可分为共格界面、半共格界面和非共格界面。⑵位向关系与惯习面:在许多情况下,金属固态相变时新相与母相之间往往存在一定的位向关系,而且新相往往在母相一定的晶面上开始形成,这个晶面称为惯习面通常以母相的晶面指数来表示。 ⑶弹性应变能:金属固态相变时,因新相和母相的比容不同可能发生体积变化。但由于受到周围母相的约束,新相不能自由膨胀,因此新相与其周围母相之间必将产生弹性应变和应力,使系统额为地增加了一项弹性应变能。⑷过渡相的形成:当稳定的新相与母相的晶体结构差异较大时,母相往往不直接转变为自由能最低的稳定新相,而是先形成晶体结构或成分与母相比较接近,自由能比母相稍低些的亚稳定的过渡相。 ⑸晶体缺陷的影响:固态晶体中存在着晶界、亚晶界、空位及位错等各种晶体缺陷,在其周围点阵发生畸变,储存有畸变能。一般地说,金属固态相变时新相晶核总是优先在晶体缺陷处形成。 ⑹原子的扩散:在很多情况下,由于新相和母相的成分不同,金属固态相变必须通过某些组织的扩散才能进行,这时扩散便成为相变的控制因素。 5.固态相变的阻力是哪几项? 答:新相与母相基体间形成界面所增加的界面能、新相与母相体积差所引起的弹性应变能、新相中亚结构的形成所需要的能量 6.什么是共格界面,根据其共格性界面有哪几类?请比较它们的界面能和弹性应变能的大小。

金属固态相变原理试题A卷

山东科技大学2009—2010学年第二学期 《金属固态相变原理》考试试卷(A卷) 班级姓名学号 一、名词解释(每题3分,共15分) 1、共格界面 2、回火脆性 3、起始晶粒度 4、淬透性 5、时效 二、填空题(每空1分,共15分) 1、共析钢淬火后回火,根据回火温度可分为回火、回火、回火,分别得到、和组织。 2、调质处理的钢与正火钢相比,不仅强度较高而且、也高于正火钢,这是由于调质处理后钢中渗碳体呈,而正火后的渗碳体呈。 3、化学热处理通常可分为、、三个基本过程。 4、淬火冷却时产生的组织应力是由于工件的和发生马氏体转变的不同时性而造成的内应力。 三、判断题(每题3分,共12分) 1、低碳马氏体可以在淬火状态下使用。 2、正火的冷却速度比退火稍慢,故正火钢的组织比较粗大,它的强度、硬度比退火低。 3、淬透性是钢材的固有属性,它取决于钢的淬火冷速的大小。 4、本质细晶粒钢加热后的实际晶粒一定比本质粗晶粒钢小。 四、论述题(共34分) 1、试分析下贝氏体中碳化物排布规律的形成原因。(10分) 2、马氏体转变为什么需要深度过冷?(6分) 3、根据奥氏体形成规律讨论细化奥氏体晶粒的途径。(8分)

4、试分析珠光体转变与贝氏体转变有哪些主要异同点?(10分) 五、分析题(每题12分,共24分) 1、有一批丝锥原定有T12钢制造,要求硬度为HRC60~64,但材料中混入了少量的35钢,问混入的35钢仍按T12钢的工艺进行淬火处理,这些35钢制成的丝锥能否达到性能要求?为什么? 2、T8钢的过冷奥氏体等温转变C曲线如图所示,若使该钢的过冷奥氏体在620℃进行等温转变,并经不同时间的保温后,按图示1、2、 3、4线的方式冷却至室温,试分析: ①这四种冷却方式分别得到什么组织? ②哪种冷却方式所得到的组织硬度最高?那种结果最低?为什么?

金属固态相变原理习题及解答

第二章 1、钢中奥氏体的点阵结构,碳原子可能存在的部位及其在单胞中的最大含量。 奥氏体是碳在γ-Fe中的固溶体,碳原子在γ-Fe点阵中处于Fe原子组成的八面体间隙中心位置,即面心立方晶胞的中心或棱边中点。八面体间隙:4个 2、以共析碳钢为例说明奥氏体的形成过程,并讨论为什么奥氏体全部形成后还会有部分渗碳体未溶解? 奥氏体的形成是由四个基本过程所组成:形核、长大、剩余碳化物的溶解和成分均匀化。按相平衡理论,从Fe-Fe3C相图可以看出,在高于AC1温度,刚刚形成的奥氏体,靠近Cem 的C浓度高于共析成分较少,而靠近F处的C浓度低于共析成分较多(即ES线的斜率较大,GS线的斜率较小)。所以,在奥氏体刚刚形成时,即F全部消失时,奥氏体的平均C浓度低于共析成分,这就进一步说明,共析钢的P刚刚形成的A的平均碳含量降低,低于共析成分,必然有部分碳化物残留,只有继续加热保温,残留碳化物才能逐渐溶解。 3、合金元素对奥氏体形成的四个阶段有何影响。 钢中添加合金元素并不影响珠光体向奥氏体的转变机制,但影响碳化物的稳定性及碳原子在奥氏体中的扩散系数。另一方面,多数合金元素在碳化物和基体相中的分布是不均匀的,故合金元素将影响奥氏体的形核与长大、剩余碳化物的溶解、奥氏体成分均匀化的速度。 ①通过对碳扩散速度影响奥氏体的形成速度。②通过改变碳化物稳定性影响奥氏体的形成 速度。③对临界点的影响:Ni、Mn、Cu等降低A1温度;Cr、Mo、Ti、Si、Al、W、V 等升高A1温度。④通过对原始组织的影响进而影响奥氏体的形成速度:Ni、Mn等往往使珠光体细化,有利于奥氏体的形成。 在其它条件相同的情况下,合金元素在奥氏体中的扩散速度比碳在奥氏体中的扩散速度小100-10000倍。此外,碳化物形成元素还会减小碳在奥氏体中的扩散速度,这将降低碳的均匀化速度,因此,合金钢均匀化所需时间常常比碳钢长得多。 4、钢在连续加热时珠光体奥氏体转变有何特点。 ○1在一定的加热速度范围内,临界点随加热速度增大而升高。○2相变是在一个温度范围内完成的加热速度越快奥氏体的温度范围越宽,但形成速度确加快,奥氏体形成时间缩短。○3可以获得超细晶粒。○4钢中原始组织的不均匀使连续加热时的奥氏体化温度升高。○5快速连续加热时形成的奥氏体成分不均匀性增大Cγ-α降低,Cγ-cem升高。○6在超快速加 热条件下,铁素体转变为奥氏体的点阵改组属于无扩散型相变。 5、何谓奥氏体的本质晶粒度、起始晶粒度和实际晶粒度。钢中弥散析出的第二相对奥氏体晶粒的长大有何影响。 起始晶粒度:指临界温度以上奥氏体形成刚刚完成,其晶粒边界刚刚互相接触时的晶粒大小。实际晶粒度:指在某一热处理加热条件下,所得到的晶粒尺寸。本质晶粒度:根据标准实验条件,在930±10℃,保温足够时间(3~8小时)后,测定的钢中奥氏体晶粒的大小。 在晶粒边界及晶粒内部。往往存在着很多细小难熔的第二相颗粒,推移的晶界遇到第二相粒子将会发生弯曲,导致晶界面积增大,界面能上升,它们将阻碍晶界移动,起着钉扎晶界的作用。界面能弥散析出的第二相颗粒越细粒子附近晶界弯曲的曲率就越大,晶界增加的面积上升的幅度就越大。显然,这个使体系自由能增加的过程是非自发的。第二相颗粒的体积百分数一定时,粒子半径越小则其数量越多(颗粒的分散度越高),对晶界推移的阻力也就越大。

金属固态相变原理试题A卷附答案

贵州大学2014—2015学年第一学期 《金属固态相变原理》考试试卷(A卷)班级姓名学号 一、名词解释(每题3分,共15分) 1、共格界面: 2、回火脆性: 3、起始晶粒度: 4、淬透性: 5、时效: 二、填空题(每空1分,共15分) 1、共析钢淬火后回火,根据回火温度可分为回火、回火、回火,分别得到、和组织。 2、调质处理的钢与正火钢相比,不仅强度较高而且、也高于正火钢,这是由于调质处理后钢中渗碳体呈,而正火后的渗碳体呈。 3、化学热处理通常可分为、、三个基本过程。 4、淬火冷却时产生的组织应力是由于工件的和发生马氏体转变的不同时性而造成的内应力。 三、判断题(每题3分,共12分) 1、低碳马氏体可以在淬火状态下使用。 2、正火的冷却速度比退火稍慢,故正火钢的组织比较粗大,它的强度、硬度比退火低。

3、淬透性是钢材的固有属性,它取决于钢的淬火冷速的大小。 4、本质细晶粒钢加热后的实际晶粒一定比本质粗晶粒钢小。 四、论述题(共34分) 1、试分析下贝氏体中碳化物排布规律的形成原因。(10分) 2、马氏体转变为什么需要深度过冷?(6分) 3、根据奥氏体形成规律讨论细化奥氏体晶粒的途径。(8分) 4、试分析珠光体转变与贝氏体转变有哪些主要异同点?(10分)

五、分析题(每题12分,共24分) 1、有一批丝锥原定有T12钢制造,要求硬度为HRC60~64,但材料中混入了少量的35钢,问混入的35钢仍按T12钢的工艺进行淬火处理,这些35钢制成的丝锥能否达到性能要求?为什么? 2、T8钢的过冷奥氏体等温转变C曲线如图所示,若使该钢的过冷奥氏体在620℃进行等温转变,并经不同时间的保温后,按图示1、2、 3、4线的方式冷却至室温,试分析: ①这四种冷却方式分别得到什么组织? ②哪种冷却方式所得到的组织硬度最高?那种结果最低?为什么?

相关主题
文本预览
相关文档 最新文档