当前位置:文档之家› 《线性代数》同济大学第四版课后答案

《线性代数》同济大学第四版课后答案

《线性代数》同济大学第四版课后答案
《线性代数》同济大学第四版课后答案

线性代数同济大学第四版课后答案

习题一

(1)

(2)

(4)

(1)

(2)

(3)

(4)

(6)

(1)

(2)

(3)

(4)

习题二

同济大学线性代数第六版答案(全)

第一章 行列式 1. 利用对角线法则计算下列三阶行列式: (1)3811411 02---; 解 3 811411 02--- =2?(-4)?3+0?(-1)?(-1)+1?1?8 -0?1?3-2?(-1)?8-1?(-4)?(-1) =-24+8+16-4=-4. (2)b a c a c b c b a ; 解 b a c a c b c b a =acb +bac +cba -bbb -aaa -ccc =3abc -a 3-b 3-c 3. (3)2221 11c b a c b a ; 解 2 221 11c b a c b a =bc 2+ca 2+ab 2-ac 2-ba 2-cb 2 =(a -b )(b -c )(c -a ).

(4)y x y x x y x y y x y x +++. 解 y x y x x y x y y x y x +++ =x (x +y )y +yx (x +y )+(x +y )yx -y 3-(x +y )3-x 3 =3xy (x +y )-y 3-3x 2 y -x 3-y 3-x 3 =-2(x 3+y 3). 2. 按自然数从小到大为标准次序, 求下列各排列的逆序数: (1)1 2 3 4; 解 逆序数为0 (2)4 1 3 2; 解 逆序数为4: 41, 43, 42, 32. (3)3 4 2 1; 解 逆序数为5: 3 2, 3 1, 4 2, 4 1, 2 1. (4)2 4 1 3; 解 逆序数为3: 2 1, 4 1, 4 3. (5)1 3 ? ? ? (2n -1) 2 4 ? ? ? (2n ); 解 逆序数为2) 1(-n n : 3 2 (1个) 5 2, 5 4(2个) 7 2, 7 4, 7 6(3个)

同济大学高等数学习题答案共49页

习题一解答 1.在1,2,3,4,四个数中可重复地先后取两个数,写出这个随机事件的样本空间及事件A=“一个数是另一个数的2倍”,B=“两个数组成既约分数”中的样本点。 解Ω={(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1)(4,2),(4,3),(4,4)}; A={(1,2),(2,1),(2,4),(4,2)}; B={(1,2),(1,3},(1,4),(2,1),(2,3),(3,1),(3,2),(3,4),(4,1)(4,3)} 2. 在数学系学生中任选一名学生.设事件A={选出的学生是男生},B={选出的学生是三年级学生},C={选出的学生是科普队的}. (1)叙述事件ABC的含义. (2)在什么条件下,ABC=C成立? (3)在什么条件下,C?B成立? 解 (1)事件ABC的含义是,选出的学生是三年级的男生,不是科普队员. (2)由于ABC?C,故ABC=C当且仅当C?ABC.这又当且仅当C?AB,即科普队员都是三年级的男生. (3)当科普队员全是三年级学生时,C是B的子事件,即C?B成立. 3.将下列事件用A,B,C表示出来: (1)只有C发生;

(2)A 发生而B ,C 都不发生; (3)三个事件都不发生; (4)三个事件至少有一个不发生; (5)三个事件至少有一套(二个不发生)发生; (6)三个事件恰有二个不发生; (7)三个事件至多有二个发生; (8)三个事件中不少于一个发生。 解 (1)ABC ; (2)ABC : (3)ABC (4)A B C U U ; (5)AB BC AC U U ; (6)ABC ABC ABC U U ; (7)ABC ; (8)A B C U U 。 4.设 A , B , C 是三个随机事件,且 =====)()(,4 1)()()(CB P AB P C P B P A p 0,81 )(=AC P ,求A ,B ,C 中至少有 一个发生的概率. 解 设D ={A ,B ,C 中至少有一个发生},则D =A +B +C ,于是 P (D )=P (A +B +C ) =P (A )+P (B )+P (C )-P (AB )-P (BC )-P (AC )+P (ABC ). 又因为

高等数学同济第七版7版下册习题 全解

数,故 /, =Jj( x2 + y1)3d(j =2jj(x2+ y1) 3dcr. fh i)i 又由于D3关于;t轴对称,被积函数(/ +r2)3关于y是偶函数,故jj(x2 +j2)3dcr=2j(x2+y2)3da=2/2. Dy 1): 从而得 /, = 4/2. (2)利用对称性来计算二重积分还有以下两个结论值得注意: 如果积分区域关于^轴对称,而被积函数/(x,y)关于y是奇函数,即fix, -y) = -f(x,y) ,PJ jf/(x,y)da =0; D 如果积分区域D关于:K轴对称,而被积函数/(x,y)关于:c是奇函数,即/(~x,y)=-/(太,y),则 =0. D ?3.利用二重积分定义证明: (1)jj da=(其中(7为的面积); IJ (2)JJ/c/( X ,y)drr =Aj|y’(A:,y)do■(其中A:为常数); o n (3 )JJ/( x,y)clcr = JJ/( x,y)drr +jJ/( x ,y) dcr ,其中 /) = /)! U /)2,, A 为两个 I) b\ lh 尤公共内点的WK域. 证(丨)由于被枳函数./U,y)=1,故山二t积分定义得 n"

jj'ltr = Hm y^/( ,rji) A

高等数学同济第七版7版下册习题全解

第十章重积分9 5 y 2 D2 -1 O i T -2 图 10 - 1 数,故 /, = Jj( x 2 + y 1 ) 3 d(j = 2jj ( x2 + y 1 )3 dcr. fh i)i 又由于 D 3关于 ; t 轴对称,被积函数 ( / + r2) 3关于 y 是偶函数,故jj( x2 + j2 ) 3dcr = 2j( x2+ y2) 3 da =2/ 2 . Dy 1): 从而得 /, = 4/ 2 . ( 2)利用对称性来计算二重积分还有以下两个结论值得注意: 如果积分区域关于 ^ 轴对称,而被积函数 / ( x, y) 关于 y 是奇函数,即 fix, -y) = -f(x,y) , PJ jf/ ( x, y)da = 0; D 如果积分区域 D 关于: K 轴对称,而被积函数 / ( x, y) 关于: c 是奇函数,即 / ( ~x, y) = - / ( 太, y) ,则 = 0. D ? 3. 利用二重积分定义证明: ( 1 ) jj da = ( 其 中 ( 7 为的面积 ) ; IJ (2) JJ/c/( X , y) drr = Aj | y’ (

A: , y) do■ ( 其 中 A :为常数 ) ; o n (3 ) JJ/( x,y)clcr = JJ/( x,y)drr + jJ/( x ,y) dcr ,其中/) = /)! U /) 2,, A 为两个 I) b \ lh 尤公共内点的 WK 域 . 证 ( 丨 ) 由于被 枳函数. / U, y) = 1 , 故山 二 t 积分定义得n "

9 6 一、 《高等数学》 (第七版 )下册习题全解 jj'ltr = Hm y^/( ,rji) A

《线性代数》同济大学版-课后习题答案详解

《线性代数》同济大学版 课后习题答案详解 第一章 行列式 1. 利用对角线法则计算下列三阶行列式: (1)3811411 02---; 解 3 81141102--- =2′(-4)′3+0′(-1)′(-1)+1′1′8 -0′1′3-2′(-1)′8-1′(-4)′(-1) =-24+8+16-4=-4. (2)b a c a c b c b a 解 b a c a c b c b a =acb +bac +cba -bbb -aaa -ccc =3abc -a 3-b 3-c 3. (3)2 22111c b a c b a ; 解 2 22111c b a c b a =bc 2 +ca 2 +ab 2 -ac 2 -ba 2 -cb 2 (a -b )(b -c )(c -a ). (4)y x y x x y x y y x y x +++. 解 y x y x x y x y y x y x +++ =x (x +y )y +yx (x +y )+(x +y )yx -y 3 -(x +y )3 -x 3 =3xy (x +y )-y 3 -3x 2 y -x 3 -y 3 -x 3 =-2(x 3 +y 3 ). 2. 按自然数从小到大为标准次序, 求下列各排列的逆序数: (1)1 2 3 4; 解 逆序数为0 (2)4 1 3 2; 解 逆序数为4: 41, 43, 42, 32. (3)3 4 2 1; 解 逆序数为5: 3 2, 3 1, 4 2, 4 1, 2 1. (4)2 4 1 3; 解 逆序数为3: 2 1, 4 1, 4 3. (5)1 3 × × × (2n -1) 2 4 × × × (2n ); 解 逆序数为 2 ) 1(-n n :

同济大学线性代数第五版课后习题答案

第一章 行列式 1 利用对角线法则计算下列三阶行列式 (1)3811 411 02--- 解 3 811411 02--- 2(4)30(1)(1)118 0 132(1)8 1( 4) (1) 248164 4 (2)b a c a c b c b a 解 b a c a c b c b a acb bac cba bbb aaa ccc 3abc a 3b 3c 3 (3)2 221 11c b a c b a

解 2 221 11c b a c b a bc 2ca 2ab 2ac 2ba 2cb 2 (a b )(b c )(c a ) (4)y x y x x y x y y x y x +++ 解 y x y x x y x y y x y x +++ x (x y )y yx (x y )(x y )yx y 3(x y )3x 3 3xy (x y )y 33x 2 y x 3y 3x 3 2(x 3 y 3) 2 按自然数从小到大为标准次序 求下列各排列的逆 序数 (1)1 2 3 4 解 逆序数为0 (2)4 1 3 2 解 逆序数为4 41 43 42 32 (3)3 4 2 1

解逆序数为5 3 2 3 1 4 2 4 1, 2 1 (4)2 4 1 3 解逆序数为3 2 1 4 1 4 3 (5)1 3 (2n1) 2 4 (2n) 解逆序数为 2)1 ( n n 3 2 (1个) 5 2 5 4(2个) 7 2 7 4 7 6(3个) (2n1)2(2n1)4(2n1)6 (2n1)(2n2) (n1个) (6)1 3 (2n1) (2n) (2n2) 2 解逆序数为n(n1) 3 2(1个) 5 2 5 4 (2个) (2n1)2(2n1)4(2n1)6

同济大学线性代数第五版课后习题答案

1 利用对角线法则计算下列三阶行列式 (1)3811 411 02--- 解 3 811411 02--- 2(4)30(1)(1)118 0 132(1)8 1( 4) (1) 248164 4 (2)b a c a c b c b a 解 b a c a c b c b a acb bac cba bbb aaa ccc 3abc a 3b 3c 3 (3)2221 11c b a c b a 解 2 221 11c b a c b a

bc 2ca 2ab 2ac 2ba 2cb 2 (a b )(b c )(c a ) (4)y x y x x y x y y x y x +++ 解 y x y x x y x y y x y x +++ x (x y )y yx (x y )(x y )yx y 3(x y )3x 3 3xy (x y )y 33x 2 y x 3y 3x 3 2(x 3 y 3) 2 按自然数从小到大为标准次序 求下列各排列的逆 序数 (1)1 2 3 4 解 逆序数为0 (2)4 1 3 2 解 逆序数为4 41 43 42 32 (3)3 4 2 1 解 逆序数为5 3 2 3 1 4 2 4 1, 2 1

(4)2 4 1 3 解逆序数为3 2 1 4 1 4 3 (5)1 3 (2n1) 2 4 (2n) 解逆序数为 2)1 ( n n 3 2 (1个) 5 2 5 4(2个) 7 2 7 4 7 6(3个) (2n1)2(2n1)4(2n1)6 (2n1)(2n2) (n1个) (6)1 3 (2n1) (2n) (2n2) 2 解逆序数为n(n1) 3 2(1个) 5 2 5 4 (2个) (2n1)2(2n1)4(2n1)6 (2n1)(2n2) (n1个)

高等数学同济第六版上册课后答案

2018年湖南省怀化市中考物理试卷 一、选择区 1. 下图中符合安全用电原则的是() A. 雷雨时在大树下躲雨 B. 在高压线下钓鱼 C. 在同一插座上同时使用多个大功率用电器 D. 发现有人触电时立即切断电源 【答案】D 【解析】A、雷雨时,不可以在大树下避雨,要注意防雷电,故A错误; B、高压线下钓鱼,鱼线很容易接触到高压线,容易发生触电事故,故B错误; C、在同一个插座上同时使用了多个大功率的用电器,由可得,会使干路中的电流过大,容易发生电路火灾,故C错误; D、当发现有人触电时,应该立即采取的措施是:迅速切断电源或用绝缘体挑开电线,因为人体是导体,不能用手拉开电线和触电的人,故D正确。 故选:D。 点睛:本题考查日常安全用电常识,关键是了解安全用电的基本原则“不接触低压带电体,不靠近高压带电体。” 2. 在北京8分钟的节目中,憨态可掬的大熊猫令人忍俊不禁。这只大熊猫是用一种特制的铝合金材料制成的,它的高度为2.35m,质量却只有10kg,它利用了铝合金的哪一种性质() A. 质量小 B. 密度小 C. 比热容小 D. 导热性能好 【答案】B 【解析】解:由题知,大熊猫是用一种特殊的铝合金材料制成的,它的高为2.35m,质量却只有10kg,也就是说它的体积很大,质量很小,根据ρ=可知,材料的体积相同时,质量越小,密度越小。所以它利用

了铝合金密度小的性质。故ACD错误,B正确。 故选:B。 点睛:密度是物质的一种特性,不同物质密度一般不同,常用密度来鉴别物质。解答本题时,要紧扣大熊猫高度大,质量小的特点进行分析。 3. 下列事例中不是利用大气压工作的是() A. 用塑料吸管吸饮料 B. 用抽水机抽水 C. 用注射器将药液注入病人体内 D. 钢笔吸墨水 【答案】C 【解析】解:A、用吸管吸饮料时,吸管内的气压小于外界大气压,饮料在外界大气压的作用下,被压入口腔内。利用了大气压。故A不合题意; B、抽水机抽水,通过活塞上移或叶轮转动使抽水机内水面上方的气压减小,水在外界大气压的作用下,被压上来,利用了大气压,故B不合题意。 C、用注射器将药液注入病人体内是利用人的压力将药液注入人体肌肉的,不是利用大气压来工作的,故C 符合题意。 D、用力一按橡皮囊,排出了里面的空气,当其恢复原状时,橡皮囊内部气压小于外界大气压,在外界大气压的作用下,墨水被压入钢笔内,利用了大气压。故D不合题意。 故选:C。 点睛:本题考查了大气压的应用,此类问题有一个共性:通过某种方法,使设备内部的气压小于外界大气压,在外界大气压的作用下出现了这种现象。 4. 自然界中有些能源一旦消耗就很难再生,因此我们要节约能源。在下列能源中,属于不可再生的能源的是 A. 水能 B. 风能 C. 太阳能 D. 煤炭 【答案】D D、煤炭属于化石燃料,不能短时期内从自然界得到补充,属于不可再生能源,故D符合题意。

高等数学同济课后答案

总习题一 1、 在“充分”、“必要”与“充分必要”三者中选择一个正确的填入下列空格内: (1)数列{x n }有界就是数列{x n }收敛的________条件、 数列{x n }收敛就是数列{x n }有界的________的条件、 (2)f (x )在x 0的某一去心邻域内有界就是 )(lim 0 x f x x →存在的________条件、 )(lim 0 x f x x →存在就是f (x ) 在x 0的某一去心邻域内有界的________条件、 (3) f (x )在x 0的某一去心邻域内无界就是 ∞=→)(lim 0 x f x x 的________条件、 ∞=→)(lim 0 x f x x 就是f (x ) 在x 0的某一去心邻域内无界的________条件、 (4)f (x )当x →x 0时的右极限f (x 0+)及左极限f (x 0-)都存在且相等就是)(lim 0 x f x x →存在的________条件、 解 (1) 必要, 充分、 (2) 必要, 充分、 (3) 必要, 充分、 (4) 充分必要、 2、 选择以下题中给出的四个结论中一个正确的结论: 设f (x )=2x +3x -2, 则当x →0时, 有( ). (A )f (x )与x 就是等价无穷小; (B )f (x )与x 同阶但非等价无穷小; (C )f (x )就是比x 高阶的无穷小; (D )f (x )就是比x 低阶的无穷小. 解 因为x x x x x f x x x x x x x x 13lim 12lim 232lim ) (lim 0000-+-=-+=→→→→ 3ln 2ln ) 1ln(lim 3ln )1ln(lim 2ln 00+=+++=→→u u t t u t (令2x -1=t , 3x -1=u ) . 所以f (x )与x 同阶但非等价无穷小, 故应选B . 3. 设f (x )的定义域就是[0, 1], 求下列函数的定义域: (1) f (e x ); (2) f (ln x ); (3) f (arctan x ); (4) f (cos x )、 解 (1)由0≤e x ≤1得x ≤0, 即函数f (e x )的定义域为(-∞, 0]. (2) 由0≤ ln x ≤1得1≤x ≤e , 即函数f (ln x )的定义域为[1, e ]、 (3) 由0≤ arctan x ≤1得0≤x ≤tan 1, 即函数f (arctan x )的定义域为[0, tan 1]、 (4) 由0≤ cos x ≤1得2 222π πππ+≤≤- n x n (n =0, ±1, ±2, ? ? ?), 即函数f (cos x )的定义域为[2 ,2 2ππππ+-n n ], (n =0, ±1, ±2, ? ? ?)、 4、 设

{教育管理}工程数学线性代数课后答案同济五版

{教育管理}工程数学线性代数课后答案同济五版

第五章相似矩阵及二次型 1.试用施密特法把下列向量组正交化: (1) ; 解根据施密特正交化方法, , , . (2) . 解根据施密特正交化方法, , , . 2.下列矩阵是不是正交阵: (1); 解此矩阵的第一个行向量非单位向量,故不是正交阵. (2) . 解该方阵每一个行向量均是单位向量,且两两正交,故为正交阵. 3.设x为n维列向量,x T x=1,令H=E-2xx T,证明H是对称的正交阵.证明因为 H T=(E-2xx T)T=E-2(xx T)T=E-2(xx T)T =E-2(x T)T x T=E-2xx T,

所以H是对称矩阵. 因为 H T H=HH=(E-2xx T)(E-2xx T) =E-2xx T-2xx T+(2xx T)(2xx T) =E-4xx T+4x(x T x)x T =E-4xx T+4xx T =E, 所以H是正交矩阵. 4.设A与B都是n阶正交阵,证明AB也是正交阵. 证明因为A,B是n阶正交阵,故A-1=A T,B-1=B T, (AB)T(AB)=B T A T AB=B-1A-1AB=E, 故AB也是正交阵. 5.求下列矩阵的特征值和特征向量: (1); 解, 故A的特征值为λ=-1(三重). 对于特征值λ=-1,由 , 得方程(A+E)x=0的基础解系p1=(1,1,-1)T,向量p1就是对应于特征值λ=-1的特征值向量. (2); 解,

故A的特征值为λ1=0,λ2=-1,λ3=9. 对于特征值λ1=0,由 , 得方程Ax=0的基础解系p1=(-1,-1,1)T,向量p1是对应于特征值λ1=0的特征值向量. 对于特征值λ2=-1,由 , 得方程(A+E)x=0的基础解系p2=(-1,1,0)T,向量p2就是对应于特征值λ2=-1的特征值向量. 对于特征值λ3=9,由 , 得方程(A-9E)x=0的基础解系p3=(1/2,1/2,1)T,向量p3就是对应于特征值λ3=9的特征值向量. (3). 解, 故A的特征值为λ1=λ2=-1,λ3=λ4=1. 对于特征值λ1=λ2=-1,由 , 得方程(A+E)x=0的基础解系p1=(1,0,0,-1)T,p2=(0,1,-1,0)T,向量p1和p2是对应于特征值λ1=λ2=-1的线性无关特征值向量. 对于特征值λ3=λ4=1,由 ,

同济版高数课后习题答案1-9

习题1-9 1. 求函数6 33)(2 2 3-+--+= x x x x x x f 的连续区间, 并求极限)(lim 0 x f x →, )(lim 3 x f x -→及)(lim 2 x f x →. 解 ) 2)(3()1)(1)(3(6 33)(2 2 3 -++-+= -+--+= x x x x x x x x x x x f , 函数在(-∞, +∞)内除点x =2和x =-3外是连续 的, 所以函数f (x )的连续区间为(-∞, -3)、(-3, 2)、(2, +∞). 在函数的连续点x =0处, 2 1)0()(lim 0 = =→f x f x . 在函数的间断点x =2和x =-3处, ∞ =-++-+=→→) 2)(3()1)(1)(3(lim )(lim 2 2 x x x x x x f x x , 5 82 ) 1)(1(lim )(lim 3 3 - =-+-=-→-→x x x x f x x . 2. 设函数f (x )与g (x )在点x 0连续, 证明函数 ?(x )=max{f (x ), g (x )}, ψ(x )=min{f (x ), g (x )} 在点x 0也连续. 证明 已知)()(lim 00 x f x f x x =→, )()(lim 00 x g x g x x =→. 可以验证 ] |)()(|)()([21 )(x g x f x g x f x -++=?, ] |)()(|)()([2 1 )(x g x f x g x f x --+=ψ. 因此 ] |)()(|)()([2 1 )(00000x g x f x g x f x -++=?, ] |)()(|)()([2 1 )(00000x g x f x g x f x --+=ψ. 因为 ] |)()(|)()([2 1lim )(lim 0 x g x f x g x f x x x x x -++=→→? ] |)(lim )(lim |)(lim )(lim [210 x g x f x g x f x x x x x x x x →→→→-++= ] |)()(|)()([2 1 0000x g x f x g x f -++==?(x 0), 所以?(x )在点x 0也连续. 同理可证明ψ(x )在点x 0也连续. 3. 求下列极限: (1)5 2lim 2 +-→x x x ;

《线性代数》同济大学版-课后习题答案详解

《线性代数》同济大学版 课后习题答案详解 第一章行列式 1.利用对角线法则计算下列三阶行列式: (1)381141102---; 解3 81141102--- =2?(-4)?3+0?(-1)?(-1)+1?1?8 -0?1?3-2?(-1)?8-1?(-4)?(-1) =-24+8+16-4=-4. (2)b a c a c b c b a ; 解b a c a c b c b a =acb +bac +cba -bbb -aaa -ccc =3abc -a 3-b 3-c 3. (3)2 22111c b a c b a ; 解2 22111c b a c b a =bc 2+ca 2+ab 2-ac 2-ba 2-cb 2 =(a -b )(b -c )(c -a ). (4)y x y x x y x y y x y x +++. 解 y x y x x y x y y x y x +++ =x (x +y )y +yx (x +y )+(x +y )yx -y 3-(x +y )3-x 3 =3xy (x +y )-y 3-3x 2y -x 3-y 3-x 3 =-2(x 3+y 3). 2.按自然数从小到大为标准次序,求下列各排列的逆序数: (1)1 2 3 4; 解逆序数为0 (2)4 1 3 2; 解 逆序数为4: 41, 43, 42, 32. (3)3 4 2 1; 解 逆序数为5: 3 2, 3 1, 4 2, 4 1, 2 1. (4)2 4 1 3; 解 逆序数为3: 2 1, 4 1, 4 3. (5)1 3 ??? (2n -1) 2 4 ??? (2n ); 解 逆序数为 2 ) 1(-n n :

高等数学同济课后答案

总习题一 1. 在“充分”、“必要”和“充分必要”三者中选择一个正确的填入下列空格: (1)数列{x n }有界是数列{x n }收敛的________条件. 数列{x n }收敛是数列{x n }有界的________的条件. (2)f (x )在x 0的某一去心邻域有界是)(lim 0 x f x x →存在的________条件. )(lim 0 x f x x →存在是 f (x )在x 0 的某一去心邻域有界的________条件. (3) f (x )在x 0的某一去心邻域无界是∞=→)(lim 0x f x x 的________条件. ∞=→)(lim 0 x f x x 是f (x )在x 0 的某一去心邻域无界的________条件. (4)f (x )当x →x 0时的右极限f (x 0+)及左极限f (x 0-)都存在且相等是)(lim 0 x f x x →存在的________条件. 解 (1) 必要, 充分. (2) 必要, 充分. (3) 必要, 充分. (4) 充分必要. 2. 选择以下题中给出的四个结论中一个正确的结论: 设f (x )=2x +3x -2, 则当x →0时, 有( ). (A )f (x )与x 是等价无穷小; (B )f (x )与x 同阶但非等价无穷小; (C )f (x )是比x 高阶的无穷小; (D )f (x )是比x 低阶的无穷小. 解 因为x x x x x f x x x x x x x x 13lim 12lim 232lim )(lim 0000-+-=-+=→→→→ 3ln 2ln ) 1ln(lim 3ln )1ln(lim 2ln 00+=+++=→→u u t t u t (令2x -1=t , 3x -1=u ) . 所以f (x )与x 同阶但非等价无穷小, 故应选B . 3. 设f (x )的定义域是[0, 1], 求下列函数的定义域: (1) f (e x ); (2) f (ln x ); (3) f (arctan x ); (4) f (cos x ). 解 (1)由0≤e x ≤1得x ≤0, 即函数f (e x )的定义域为(-∞, 0]. (2) 由0≤ ln x ≤1得1≤x ≤e , 即函数f (ln x )的定义域为[1, e ]. (3) 由0≤ arctan x ≤1得0≤x ≤tan 1, 即函数f (arctan x )的定义域为[0, tan 1]. (4) 由0≤ cos x ≤1得2 222π πππ+≤≤- n x n (n =0, ±1, ±2, ? ? ?), 即函数f (cos x )的定义域为[2 ,2 2ππππ+-n n ], (n =0, ±1, ±2, ? ? ?). 4. 设

《线性代数》同济大学版 课后习题答案详解

文档来源为:从网络收集整理.word 版本可编辑.欢迎下载支持. 《线性代数》同济大学版 课后习题答案详解 第一章 行列式 1. 利用对角线法则计算下列三阶行列式: (1)3 81141102---; 解 3 811411 02--- =2?(-4)?3+0?(-1)?(-1)+1?1?8 -0?1?3-2?(-1)?8-1?(-4)?(-1) =-24+8+16-4=-4. (2)b a c a c b c b a ; 解 b a c a c b c b a =acb +bac +cba -bbb -aaa -ccc =3abc -a 3-b 3-c 3. (3)2 22111c b a c b a ; 解 2 22111c b a c b a =bc 2+ca 2+ab 2-ac 2-ba 2-cb 2 =(a -b )(b -c )(c -a ). (4)y x y x x y x y y x y x +++. 解 y x y x x y x y y x y x +++ =x (x +y )y +yx (x +y )+(x +y )yx -y 3-(x +y )3-x 3 =3xy (x +y )-y 3-3x 2 y -x 3-y 3-x 3 =-2(x 3+y 3). 2. 按自然数从小到大为标准次序, 求下列各排列的逆序数: (1)1 2 3 4; 解 逆序数为0 (2)4 1 3 2; 解 逆序数为4: 41, 43, 42, 32. (3)3 4 2 1; 解 逆序数为5: 3 2, 3 1, 4 2, 4 1, 2 1. (4)2 4 1 3; 解 逆序数为3: 2 1, 4 1, 4 3. (5)1 3 ? ? ? (2n -1) 2 4 ? ? ? (2n ); 解 逆序数为2 ) 1(-n n : 3 2 (1个)

最新同济大学第六版高等数学上下册课后习题答案9-1

同济大学第六版高等数学上下册课后习题 答案9-1

仅供学习与交流,如有侵权请联系网站删除 谢谢5 习题9-1 1. 设有一平面薄板(不计其厚度), 占有xOy 面上的闭区域D , 薄板上分布有密度为μ =μ(x , y )的电荷, 且μ(x , y )在D 上连续, 试用二重积分表达该板上全部电荷Q . 解 板上的全部电荷应等于电荷的面密度μ(x , y )在该板所占闭区域D 上的二重积分 ??=D d y x Q σμ),(. 2. 设??+=1 3221)(D d y x I σ, 其中D 1={(x , y )|-1≤x ≤1, -2≤y ≤2}; 又??+=2 3222)(D d y x I σ, 其中D 2={(x , y )|0≤x ≤1, 0≤y ≤2}. 试利用二重积分的几何意义说明I 1与I 2的关系. 解 I 1表示由曲面z =(x 2+y 2)3与平面x =±1, y =±2以及z =0围成的立体V 的体积. I 2表示由曲面z =(x 2+y 2)3与平面x =0, x =1, y =0, y =2以及z =0围成的立体V 1的体积. 显然立体V 关于yOz 面、xOz 面对称, 因此V 1是V 位于第一卦限中的部分, 故 V =4V 1, 即I 1=4I 2. 3. 利用二重积分的定义证明: (1)??=D d σσ (其中σ为D 的面积);

仅供学习与交流,如有侵权请联系网站删除 谢谢5 证明 由二重积分的定义可知, ??∑=→?=D n i i i i f d y x f 10),(lim ),(σηξσλ 其中?σi 表示第i 个小闭区域的面积. 此处f (x , y )=1, 因而f (ξ, η)=1, 所以, σσσσλλ==?=→=→??∑0 10lim lim D n i i d . (2)????=D D d y x f k d y x kf σσ),(),( (其中k 为常数); 证明 ∑??∑=→=→?=?=n i i i i D n i i i i f k kf d y x kf 1010),(lim ),(lim ),(σηξσηξσλλ ??∑=?==→D n i i i i d y x f k f k σσηξλ),(),(lim 10. (3)??????+=2 1),(),(),(D D D d y x f d y x f d y x f σσσ, 其中D =D 1?D 2, D 1、D 2为两个无公共内点的闭区域. 证明 将D 1和D 2分别任意分为n 1和n 2个小闭区域1i σ?和2i σ?, n 1+n 2=n , 作和 ∑∑∑===?+?=?2 222211111111),(),(),(n i i i i n i i i i n i i i i f f f σηξσηξσηξ. 令各1i σ?和2i σ?的直径中最大值分别为λ1和λ2, 又λ=ma x (λ1λ2), 则有 ∑=→?n i i i i f 10),(lim σηξλ∑∑=→=→?+?=2222221111111 010),(lim ),(lim n i i i i n i i i i f f σηξσηξλλ,

同济大学版高等数学课后习题答案第2章

习题2-1 1. 设物体绕定轴旋转, 在时间间隔[0, t ]内转过的角度为θ, 从而转角θ是t 的函数: θ=θ(t ). 如果旋转是匀速的, 那么称t θω=为该物体旋转的角速度, 如果旋转 是非匀速的, 应怎样确定该物体在时刻t 0的角速度? 解 在时间间隔[t 0, t 0+?t ]内的平均角速度ω为 t t t t t ?-?+=??=) ()(00θθθω, 故t 0时刻的角速度为 )() ()(lim lim lim 000000t t t t t t t t t θθθθωω'=?-?+=??==→?→?→?. 2. 当物体的温度高于周围介质的温度时, 物体就不断冷却, 若物体的温度T 与时间t 的函数关系为T =T (t ), 应怎样确定该物体在时刻t 的冷却速度? 解 物体在时间间隔[t 0, t 0+?t ]内, 温度的改变量为 ?T =T (t +?t )-T (t ), 平均冷却速度为 t t T t t T t T ?-?+=??) ()(, 故物体在时刻t 的冷却速度为 )() ()(lim lim 00t T t t T t t T t T t t '=?-?+=??→?→?. 3. 设某工厂生产x 单位产品所花费的成本是f (x )元, 此函数f (x )称为成本函数, 成本函数f (x )的导数f '(x )在经济学中称为边际成本. 试说明边际成本f '(x )的实际意义. 解 f (x +?x )-f (x )表示当产量由x 改变到x +?x 时成本的改变量. x x f x x f ?-?+) ()(表示当产量由x 改变到x +?x 时单位产量的成本. x x f x x f x f x ?-?+='→?) ()(lim )(0表示当产量为x 时单位产量的成本. 4. 设f (x )=10x 2, 试按定义, 求f '(-1). 解 x x x f x f f x x ?--?+-=?--?+-=-'→?→?2 200)1(10)1(10lim )1()1(lim )1( 20)2(lim 102lim 1002 0-=?+-=??+?-=→?→?x x x x x x .

同济大学线性代数课后答案 第四章

第四章向量组的线性相关性 1.设v 1=(1,1,0)T ,v 2=(0,1,1)T ,v 3=(3,4,0)T ,求v 1?v 2及3v 1+2v 2?v 3. 解v 1?v 2=(1,1,0)T ?(0,1,1)T =(1?0,1?1,0?1)T =(1,0,?1)T . 3v 1+2v 2?v 3=3(1,1,0)T +2(0,1,1)T ?(3,4,0)T =(3×1+2×0?3,3×1+2×1?4,3×0+2×1?0)T =(0,1,2)T . 2.设3(a 1?a )+2(a 2+a )=5(a 3+a ),求a ,其中a 1=(2,5,1,3)T ,a 2=(10,1,5,10)T ,a 3=(4,1,?1,1)T . 解由3(a 1?a )+2(a 2+a )=5(a 3+a )整理得 )523(6 1321a a a a ?+=])1 ,1 ,1 ,4(5)10 ,5 ,1 ,10(2)3 ,1 ,5 ,2(36 1T T T ??+==(1,2,3,4)T . 3.已知向量组 A :a 1=(0,1,2,3)T ,a 2=(3,0,1,2)T ,a 3=(2,3,0,1)T ; B :b 1=(2,1,1,2)T ,b 2=(0,?2,1,1)T ,b 3=(4,4,1,3)T , 证明B 组能由A 组线性表示,但A 组不能由B 组线性表示. 证明由

???????????=312123111012421301402230) ,(B A ???? ?????????????971820751610402230421301 ~r ????????????????531400251552000751610421301 ~r ???? ???????????000000531400751610421301 ~r 知R (A )=R (A ,B )=3,所以B 组能由A 组线性表示. 由 ???????????????????? ???????????????=000000110201110110220201312111421402~~r r B 知R (B )=2.因为R (B )≠R (B ,A ), 所以A 组不能由B 组线性表示. 4.已知向量组A :a 1=(0,1,1)T ,a 2=(1,1,0)T ; B :b 1=(?1,0,1)T ,b 2=(1,2,1)T ,b 3=(3,2,?1)T , 证明A 组与B 组等价. 证明由 ,??? ?????????????????????????=000001122010311112201122010311011111122010311) ,(~~r r A B 知R (B )=R (B ,A )=2.显然在A 中有二阶非零子式,故R (A )≥2,又R (A )≤R (B ,A )=2,所以R (A )=2,从而R (A )=R (B )=R (A ,B ).因此A 组与B 组等价.

相关主题
文本预览
相关文档 最新文档