当前位置:文档之家› 通信原理实验大全(完整版)

通信原理实验大全(完整版)

通信原理实验大全(完整版)
通信原理实验大全(完整版)

通信实验指导书电气信息工程学院

目录

实验一AM调制与解调实验???????? 1

实验二FM调制与解调实验??????????? 5 实验三ASK调制与解调实验?????????8 实验四FSK调制与解调实验?????????11

实验五时分复用数字基带传输??????14

实验六光纤传输实验???????????19 实验七模拟锁相环与载波同步????????27

实验八数字锁相环与位同步????????32

实验一AM 调制与解调实验

一、实验目的

理解AM 调制方法与解调方法。

二、实验原理

本实验中AM 调制方法:原始调制信号为 1.5V 直流+1KHZ 正弦交流信号,载波为20KHZ 正弦交流信号,两者通过相乘器实现调制过程。

本实验中AM 解调方法:非相干解调(包络检波法)。

三、实验所需部件

调制板、解调板、示波器、计算机(数据采集设备)。

四、实验步骤

1. 熟悉实验所需部件。

2. 按下图接线。

3. 用示波器(或计算机)分别测出上图所示的几个点的波形,并绘制于下面

各图中。

4. 结合上述实验结果深入理解AM 调制方法与解调方法。

实验一参考结果

实验二FM 调制与解调实验

一、实验目的

理解FM 调制方法与解调方法。

二、实验原理

本实验中FM 调制方法:原始调制信号为2KHZ 正弦交流信号,让其通过V/F (电压/频率转换,即VCO 压控振荡器)实现调制过程。

本实验中FM 解调方法:鉴频法(电容鉴频+包络检波+低通滤波)

三、实验所需部件

调制板、解调板、示波器、计算机(数据采集设备)。

四、实验步骤

1. 熟悉实验所需部件。

2. 按下图接线。

3. 用示波器(或计算机)分别测出上图所示的几个点的波形,并绘制于下面

各图中。

4. 结合上述实验结果深入理解FM 调制方法与解调方法。

实验二参考结果

实验三ASK 调制与解调实验

一、实验目的

理解ASK 调制方法与解调方法。

二、实验原理

本实验中ASK 调制方法:键控法(原始数字信号采用250HZ 方波信号代替,载波为2KHZ 正弦交流信号,利用方波信号切换开关电路实现调制过程。

本实验中ASK 解调方法:非相干解调(包络检波法)。

三、实验所需部件

调制板、解调板、示波器、计算机(数据采集设备)。

四、实验步骤

1. 熟悉实验所需部件。

2. 按下图接线。

3. 用示波器(或计算机)分别测出上图所示的几个点的波形,并绘制于下面

各图中。

4. 结合上述实验结果深入理解ASK 调制方法与解调方法。

实验三参考结果

实验四FSK 调制与解调实验

一、实验目的

理解FSK 调制方法与解调方法。

二、实验原理

本实验中FSK 调制方法:键控法(原始数字信号采用250HZ 方波信号代替,载波分别为2KHZ 和1KHZ 正弦交流信号,利用方波信号切换开关电路实现调制

过程。

本实验中FSK 解调方法:PLL 电路+低通滤波+抽样判决器。

三、实验所需部件

调制板、解调板、示波器、计算机(数据采集设备)。

四、实验步骤

1. 熟悉实验所需部件。

2. 按下图接线。

3. 用示波器(或计算机)分别测出上图所示的几个点的波形,并绘制于下面

各图中。

4. 结合上述实验结果深入理解FSK 调制方法与解调方法。

实验四参考结果

实验五时分复用数字基带传输

一、实验目的

掌握时分复用数字基带通信系统的基本原理及数字信号传输过程。

二、实验原理

本实验用数字信源模块、数字终端模块、位同步模块及帧同步模块连成一个理想信道时分复用数字基带通信系统,使系统正常工作。用示波器观察分接后的数据信号、用于数据分

接的帧同步信号、位同步信号。

三、实验所需部件

调制板、解调板、示波器、计算机(数据采集设备)。

四、实验步骤

1、熟悉实验所需部件。

2、按下图接线。

3、用示波器(或计算机)分别测出上图所示的几个点的波形,并绘制于下面

各图中。

4、结合上述实验结果深入理解PCM调制方法与解调方法。

实验五参考结果

实验六光纤传输实验

一、实验目的

掌握抽样定理,了解时分复用原理,了解光纤的基本原理及传输过程。

二、实验原理

本实验用PCM调制及解调板、光通信发射及接收板、光纤通信模块组成音乐光纤传输通信系统,使系统正常工作。用示波器观察各测试信号。

三、实验所需部件

调制板、解调板、发射板、接收板、光纤通信模块、示波器、计算机(数据采集设备)。

四、实验步骤

1、熟悉实验所需部件。

2、按下图接线。

通信原理实验指导书(完整)

实验一:抽样定理实验 一、实验目的 1、熟悉TKCS—AS型通信系统原理实验装置; 2、熟悉用示波器观察信号波形、测量频率与幅度; 3、验证抽样定理; 二、实验预习要求 1、复习《通信系统原理》中有关抽样定理的内容; 2、阅读本实验的内容,熟悉实验的步骤; 三、实验原理和电路说明 1、概述 在通信技术中为了获取最大的经济效益,就必须充分利用信道的传输能力,扩大通信容量。因此,采取多路化制式是极为重要的通信手段。最常用的多路复用体制是频分多路复用(FDM)通信系统和时分多路复用(TDM)通信系统。频分多路技术是利用不同频率的正弦载波对基带信号进行调制,把各路基带信号频谱搬移到不同的频段上,在同一信道上传输。而时分多路系统中则是利用不同时序的脉冲对基带信号进行抽样,把抽样后的脉冲信号按时序排列起来,在同一信道中传输。 利用抽样脉冲把一个连续信号变为离散时间样值的过程称为“抽样”,抽样后的信号称为脉冲调幅(PAM)信号。在满足抽样定理的条件下,抽样信号保留了原信号的全部信息。并且,从抽样信号中可以无失真地恢复出原信号。 抽样定理在通信系统、信息传输理论方面占有十分重要的地位。数字通信系统是以此定理作为理论基础的。在工作设备中,抽样过程是模拟信号数字化的第一步。抽样性能的优劣关系到整个系统的性能指标。 作为例子,图1-1示意地画出了传输一路语音信号的PCM系统。从图中可以看出要实现对语音的PCM编码,首先就要对语音信号进行抽样,然后才能进行量化和编码。因此,抽样过程是语音信号数字化的重要环节,也是一切模拟信号数字化的重要环节。 图1-1 单路PCM系统示意图 为了让实验者形象地观察抽样过程,加深对抽样定理的理解,本实验提供了一种典型的抽样电路。除此,本实验还模拟了两路PAM通信系统,从而帮助实验者初步了解时分多路的通信方式。 2、抽样定理 抽样定理指出,一个频带受限信号m(t)如果它的最高频率为f H(即m(t)的频谱中没有f H以上的分量),可以唯一地由频率等于或大于2f H的样值序列所决定。因此,对于一个最高频率为3400Hz的语音信号m(t),可以用频率大于或等于6800Hz的样值序列来表示。抽样频率fs和语音信号m(t)的频谱如图1-2和图1-3所示。 由频谱可知,用截止频率为f H的理想低通滤波器可以无失真地恢复原始信号m(t),这就说明了抽样定理的正确性。 实际上,考虑到低通滤波器特性不可能理想,对最高频率为3400Hz的语音信号,通常采用8KHz抽样频率,这样可以留出1200Hz的防卫带,见图1-4。如果fs<2f H,就会出现频谱混迭的现象,如图1-5所示。 在验证抽样定理的实验中,我们用单一频率f H的正弦波来代替实际的语音信号,采用标准抽样频率fs=8KHz,改变音频信号的频率f H,分别观察不同频率时,抽样序列和低通滤波器的输出信号,体会抽样定理的正确性。

通信原理实验报告

通信原理实验报告

作者: 日期:

通信原理实验报告 实验名称:实验一—数字基带传输系统的—MATLAB方真 实验二模拟信号幅度调制仿真实验班级:10通信工程三班_________ 学号:2010550920 ________________ 姓名:彭龙龙______________

指导老师:王仕果______________

实验一数字基带传输系统的MATLA仿真 一、实验目的 1、熟悉和掌握常用的用于通信原理时域仿真分析的MATLAB函数; 2、掌握连续时间和离散时间信号的MATLAB产生; 3、牢固掌握冲激函数和阶跃函数等函数的概念,掌握卷积表达式及其物理意义,掌握卷积的计算方法、卷积的基本性质; 4、掌握利用MATLAB计算卷积的编程方法,并利用所编写的MATLAB程序验证卷积的常用基本性质; 5、掌握MATLAB描述通信系统中不同波形的常用方法及有关函数,并学会利用MATLAB求解系统功率谱,绘制相应曲线。 基本要求:掌握用MATLAB描述连续时间信号和离散时间信号的方法,能够编写 MATLAB程序,实现各种常用信号的MATLA实现,并且以图形的方式再现各种信号的波形。 二、实验内容 1、编写MATLAB程序产生离散随机信号 2、编写MATLAB程序生成连续时间信号 3、编写MATLAB程序实现常见特殊信号 三、实验原理 从通信的角度来看,通信的过程就是消息的交换和传递的过程。而从数学的角度来看,信息从一地传送到另一地的整个过程或者各个环节不外乎是一些码或信号的交换过程。例如信源压缩编码、纠错编码、AMI编码、扰码等属于码层次上的变换,而基带成形、滤波、调 制等则是信号层坎上的处理。码的变换是易于用软件来仿真的。要仿真信号的变换,必须解 决信号与信号系统在软件中表示的问题。 3.1信号及系统在计算机中的表示 3.1.1时域取样及频域取样 一般来说,任意信号s(t)是定义在时间区间(-R, +R)上的连续函数,但所有计算机的CPU都只能按指令周期离散运行,同时计算机也不能处理( -R, + R)这样一个时间段。 为此将把s(t)按区间T, T截短为 2 2 S T(t),再对S T(t)按时间间隔△ t均匀取样,得到取样 点数为: 仿真时用这个样值集合来表示信号 T Nt t s(t)。显然△ t反映了仿真系统对信号波形的分辨 率, (3-1) △ t越小则仿真的精确度越高。据通信原理所学,信号被取样以后,对应的频谱时频率的周期函数,其重复周期是—。如果信号的最高频率为f H,那么必须有f H W 丄才能保证不发 t 2 t 生频域混叠失真。设 1 B s 2 t 则称B s为仿真系统的系统带宽。如果在仿真程序中设定的采样间隔是△ (3-2) t,那么不能用

通信原理实验指导书

通信实验指导书电气信息工程学院

目录 实验一AM调制与解调实验 (1) 实验二FM调制与解调实验 (5) 实验三ASK调制与解调实验 (8) 实验四FSK调制与解调实验 (11) 实验五时分复用数字基带传输 (14) 实验六光纤传输实验 (19) 实验七模拟锁相环与载波同步 (27) 实验八数字锁相环与位同步 (32)

实验一 AM调制与解调实验 一、实验目的 理解AM调制方法与解调方法。 二、实验原理 本实验中AM调制方法:原始调制信号为1.5V直流+1KHZ正弦交流信号,载波为20KHZ正弦交流信号,两者通过相乘器实现调制过程。 本实验中AM解调方法:非相干解调(包络检波法)。 三、实验所需部件 调制板、解调板、示波器、计算机(数据采集设备)。 四、实验步骤 1.熟悉实验所需部件。 2.按下图接线。 3.用示波器(或计算机)分别测出上图所示的几个点的波形,并绘制于下面 各图中。 4.结合上述实验结果深入理解AM调制方法与解调方法。

实验一参考结果

实验二 FM调制与解调实验 一、实验目的 理解FM调制方法与解调方法。 二、实验原理 本实验中FM调制方法:原始调制信号为2KHZ正弦交流信号,让其通过V/F (电压/频率转换,即VCO压控振荡器)实现调制过程。 本实验中FM解调方法:鉴频法(电容鉴频+包络检波+低通滤波) 三、实验所需部件 调制板、解调板、示波器、计算机(数据采集设备)。 四、实验步骤 1.熟悉实验所需部件。 2.按下图接线。 3.用示波器(或计算机)分别测出上图所示的几个点的波形,并绘制于下面 各图中。 4.结合上述实验结果深入理解FM调制方法与解调方法。

通信原理实验一、二实验报告

通信原理 实验一 实 验 报 告 实验日期: 学院: 班级: 学号: 姓名: 指导老师:

实验一数字基带传输系统的MA TLAB仿真 一、实验目的 1、熟悉和掌握常用的用于通信原理时域仿真分析的MATLAB函数; 2、掌握连续时间和离散时间信号的MATLAB产生; 3、牢固掌握冲激函数和阶跃函数等函数的概念,掌握卷积表达式及其物理意义,掌握 卷积的计算方法、卷积的基本性质; 4、掌握利用MATLAB计算卷积的编程方法,并利用所编写的MA TLAB程序验证卷积的 常用基本性质; 5、掌握MATLAB描述通信系统中不同波形的常用方法及有关函数,并学会利用 MATLAB求解系统功率谱,绘制相应曲线。 基本要求:掌握用MATLAB描述连续时间信号和离散时间信号的方法,能够编写 MATLAB程序,实现各种常用信号的MA TLAB实现,并且以图形的方式再现各种信号的波形。 二、实验内容 1、编写MATLAB 程序产生离散随机信号 2、编写MATLAB 程序生成连续时间信号 3、编写MATLAB 程序实现常见特殊信号 三、实验原理 从通信的角度来看,通信的过程就是消息的交换和传递的过程。而从数学的角度来看, 信息从一地传送到另一地的整个过程或者各个环节不外乎是一些码或信号的交换过程。例如 信源压缩编码、纠错编码、AMI编码、扰码等属于码层次上的变换,而基带成形、滤波、调 制等则是信号层次上的处理。码的变换是易于用软件来仿真的。要仿真信号的变换,必须解 决信号与信号系统在软件中表示的问题。 四、实验步骤 (1)分析程序program1_1 每条指令的作用,运行该程序,将结果保存,贴在下面的空白 处。然后修改程序,将dt 改为0.2,并执行修改后的程序,保存图形,看看所得图形的效果 怎样。 dt=0.01 时的信号波形 Sinusoidal signal x(t) -2-1.5-1-0.500.51 1.52 Time t (sec) dt=0.2 时的信号波形

通信原理实验报告2

通信原理 实验报告 课程名称:通信原理 实验三:二进制数字信号调制仿真实验实验四:模拟信号数字传输仿真实验姓名: 学号: 班级: 2012年12 月

实验三二进制数字信号调制仿真实验 一、实验目的 1.加深对数字调制的原理与实现方法; 2.掌握OOK、2FSK、2PSK功率谱密度函数的求法; 3.掌握OOK、2FSK、2PSK功率谱密度函数的特点及其比较; 4.进一步掌握MATLAB中M文件的调试、子函数的定义和调用方法。 二、实验内容 1. 复习二进制数字信号幅度调制的原理 2. 编写MATLAB程序实现OOK调制; 3. 编写MATLAB程序实现2FSK调制; 4. 编写MATLAB程序实现2PSK调制; 5. 编写MATLAB程序实现数字调制信号功率谱函数的求解。 三、实验原理 在数字通信系统中,需要将输入的数字序列映射为信号波形在信道中传输,此时信源输出数字序列,经过信号映射后成为适于信道传输的数字调制信号。数字序列中每个数字产生的时间间隔称为码元间隔,单位时间内产生的符号数称为符号速率,它反映了数字符号产生的快慢程度。由于数字符号是按码元间隔不断产生的,经过将数字符号一一映射为响应的信号波形后,就形成了数字调制信号。根据映射后信号的频谱特性,可以分为基带信号和频带信号。 通常基带信号指信号的频谱为低通型,而频带信号的频谱为带通型。 调制信号为二进制数字基带信号时,对应的调制称为二进制调制。在二进制数字调制中,载波的幅度、频率和相位只有两种变化状态。相应的调制方式有二进制振幅键控(OOK/2ASK)、二进制频移键控(2FSK)和二进制相移键控(2PSK)。 下面分别介绍以上三种调制方法的原理,及其MATLAB实现: 本实验研究的基带信号是二进制数字信号,所以应该首先设计MATLAB程序生成二进制数字序列。根据实验一的实践和第一部分的介绍,可以很容易的得到二进制数字序列生成的MATLAB程序。 假定要设计程序产生一组长度为500的二进制单极性不归零信号,以之作为后续调制的信源,并求出它的功率谱密度,以方便后面对已调信号频域特性和基带信号频域特性的比较。整个过程可用如下程序段实现: %定义相关参数 clear all; close all; A=1 fc=2; %2Hz; N_sample=8; N=500; %码元数 Ts=1; %1 Baud/s dt=Ts/fc/N_sample; %波形采样间隔 t=0:dt:N*Ts-dt; Lt=length(t);

通信原理实验报告

实验一常用信号的表示 【实验目的】 掌握使用MATLAB的信号工具箱来表示常用信号的方法。 【实验环境】 装有MATLAB6.5或以上版本的PC机。 【实验内容】 1. 周期性方波信号square 调用格式:x=square(t,duty) 功能:产生一个周期为2π、幅度为1 ±的周期性方波信号。其中duty表示占空比,即在信号的一个周期中正值所占的百分比。 例1:产生频率为40Hz,占空比分别为25%、50%、75%的周期性方波。如图1-1所示。 clear; % 清空工作空间内的变量 td=1/100000; t=0:td:1; x1=square(2*pi*40*t,25); x2=square(2*pi*40*t,50); x3=square(2*pi*40*t,75); % 信号函数的调用subplot(311); % 设置3行1列的作图区,并在第1区作图plot(t,x1); title('占空比25%'); axis([0 0.2 -1.5 1.5]); % 限定坐标轴的范围 subplot(312); plot(t,x2); title('占空比50%'); axis([0 0.2 -1.5 1.5]); subplot(313); plot(t,x3); title('占空比75%'); axis([0 0.2 -1.5 1.5]);

图1-1 周期性方波 2. 非周期性矩形脉冲信号rectpuls 调用格式:x=rectpuls(t,width) 功能:产生一个幅度为1、宽度为width、以t=0为中心左右对称的矩形波信号。该函数横坐标范围同向量t决定,其矩形波形是以t=0为中心向左右各展开width/2的范围。Width 的默认值为1。 例2:生成幅度为2,宽度T=4、中心在t=0的矩形波x(t)以及x(t-T/2)。如图1-2所示。 t=-4:0.0001:4; T=4; % 设置信号宽度 x1=2*rectpuls(t,T); % 信号函数调用 subplot(121); plot(t,x1); title('x(t)'); axis([-4 6 0 2.2]); x2=2*rectpuls(t-T/2,T); % 信号函数调用

光通信原理实验指导书

实验一模拟信号光调制实验 一、实验目的 1、了解模拟信号光纤通信原理。 2、了解不同频率不同幅度的正弦波、三角波、方波等模拟信号的系统光传输性能情况。 二、实验内容 1、测量不同的正弦波、三角波和方波的光调制系统性能。 三、实验器材 1、主控&信号源、25号模块各1块 2、双踪示波器1台 3、连接线若干 4、光纤跳线1根 四、实验原理 1、实验原理框图 光调制功率检测框图 模拟信号光调制传输系统框图 2、实验框图说明 本实验是输入不同的模拟信号,测量模拟光调制系统性能。如模拟信号光调制传输系统框图所示,不同频率不同幅度的正弦波、三角波和方波等信号,经25号模块的光发射机单元,完成电光转换,然后通过光纤跳线传输至25号模块的光接收机单元,进行光电转换处理,从而还原出原始模拟信号。实验中利用光功率计对光发射机的功率检测,了解模拟光调制系统的性能。 注:根据实际模块配置情况不同,自行选择不同波长(比如1310nm、1550nm)的25号光收发模块进行实验。 五、注意事项 1、在实验过程中切勿将光纤端面对着人,切勿带电进行光纤的连接。 2、不要带电插拔信号连接导线。 六、实验步骤 1、系统关电,参考系统框图,依次按下面说明进行连线。 (1)用连接线将信号源A-OUT,连接至25号模块的TH1模拟输入端。

(2)用光纤跳线连接25号模块的光发端口和光收端口,此过程是将电信号转换为光信号,经光纤跳线传输后再将光信号还原为电信号。注意,连接光纤跳线时需定位销口方向且操作小心仔细,切勿损伤光纤跳线或光收发端口。 (3)用同轴连接线将25号模块的P4光探测器输出端,连接至23号模块的P1光探测器输入端。 2、设置25号模块的功能初状态。 (1)将收发模式选择开关S3拨至“模拟”,即选择模拟信号光调制传输。 (2)将拨码开关J1拨至“ON”,即连接激光器;拨码开关APC此时选择“ON”或“OFF”都可,即APC功能可根据需要随意选择。 (3)将功能选择开关S1拨至“光功率计”,即选择光功率计测量功能。 3、进行系统联调和观测。 (1)打开系统和各实验模块电源开关。设置主控模块的菜单,选择【主菜单】→【光纤通信】→【模拟信号光调制】。此时系统初始状态中A-OUT输出为1KHz正弦波。调节信号源模块的旋钮W1,使A-OUT输出正弦波幅度为1V。 (2)选择进入主控&信号源模块的【光功率计】功能菜单,根据所选模块波长类型选择波长【1310nm】或【1550nm】。 (3)保持信号源频率不变,改变信号源幅度测量光调制性能:调节信号源模块的W1,改变输入信号的幅度,记录不同幅度时的光调制功率变化情况。 (4)保持信号源幅度不变,改变信号源频率测量光调制性能:改变输入信号的频率,自行设计表格记录不同频率时的光调制功率变化情况。 (5)拆除23号模块和25号模块之间的同轴连接线,适当调节25号模块的W5接收灵敏度旋钮,用示波器对比观察光接收机的模拟输出端TH4和光发射机的模拟输入端TH1,了解模拟光调制系统线性度。 (6)改变信号源的波形,用三角波或方波进行上述实验步骤,进行相关测试,表格自拟。 七、实验报告 1、画出实验框图,并阐述模拟信号光调制基本原理。

通信原理SystemView仿真实验指导书

实验一图符库的使用 一、实验目的 1、了解SystemVue图符库的分类; 2、掌握SystemVue各个功能库常用图符的功能及其使用方法。 二、实验内容 按照实例使用图符构建简单的通信系统,并了解每个图符的功能。 三、基本原理 SystemVue的图符库功能十分丰富,一共分为以下几个大类 1.基本库 SystemView的基本库包括信源库、算子库、函数库、信号接收器库等,它为该系统仿真提供了最基本的工具。 (信源库):SystemView为我们提供了16种信号源,可以用它来产生任意信号 (算子库)功能强大的算子库多达31种算子,可以满足您所有运算的要求 (函数库)32种函数尽显函数库的强大库容! (信号接收器库)12种信号接收方式任你挑选,要做任何分析都难不倒它 2.扩展功能库 扩展功能库提供可选择的能够增加核心库功能的用于特殊应用的库。它允许通信、DSP、射频/模拟和逻辑应用。 (通信库):包含有大量的通信系统模块的通信库,是快速设计和仿真现代通信系统的有力工具。这些模块从纠错编码、调制解调、到各种信道模型一应俱全。 (DSP库):DSP库能够在你将要运行DSP芯片上仿真DSP系统。该库支持大多DSP芯片的算法模式。例如乘法器、加法器、除法器和反相器的图标代表真正的DSP算法操作符。 还包括高级处理工具:混合的Radix FFT、FIR和IIR滤波器以及块传输等。 (逻辑运算库):逻辑运算自然离不开逻辑库了,它包括象与非门这样的通用器件的图标、74系列器件功能图标及用户自己的图标等。 (射频/模拟库):射频/模拟库支持用于射频设计的关键的电子组件,例如:混合器、放大器和功率分配器等。 3.扩展用户库

通信原理实验报告

通信原理实验报告 一.实验目的 熟悉掌握MATLAB软件的应用,学会对一个连续信号的频谱进行仿真,熟悉sigexpand(x2,ts2/ts1)函数的意义和应用,完成抽样信号对原始信号的恢复。 二.实验内容 设低通信号x(t)=cos(4pi*t)+1.5sin(6pi*t)+0.5cos(20pi*t); (1)画出该低通信号的波形 (2)画出抽样频率为fs=10Hz(亚采样)、20Hz(临界采样)、50Hz(过采样)的抽样序列 (3)抽样序列恢复出原始信号 (4)三种抽样频率下,分别分析对比模拟信号、离散采样信号、恢复信号的时域波形的差异。 原始信号与恢复信号的时域波形之差有何特点?有什么样的发现和结论? (5)三种抽样频率下,分别分析对比模拟信号、离散采样信号、恢复信号的频域特性的差异。 原始信号与恢复信号的频域波形之差有何特点?有什么样的发现和结论? 实验程序及输出结果 clear; close all; dt=0.05; t=-2:dt:2 x=cos(4*pi*t)+1.5*sin(6*pi*t)+0.5*cos(20*pi*t); N=length(t); Y=fft(x)/N*2; fs=1/dt; df=fs/(N-1); f=(0:N-1)*df; subplot(2,1,1) plot(t,x) title('抽样时域波形') xlabel('t') grid; subplot(2,1,2) plot(f,abs(Y)); title('抽样频域信号 |Y|'); xlabel('f'); grid;

定义sigexpand函数 function[out]=sigexpand(d,M) N=length(d); out=zeros(M,N); out(1,:)=d; out=reshape(out,1,M*N); 频域时域分析fs=10Hz clear; close all; dt=0.1; t0=-2:0.01:2 t=-2:dt:2 ts1=0.01 x0=cos(4*pi*t0)+1.5*sin(6*pi*t0)+0.5*cos(20*pi*t0); x=cos(4*pi*t)+1.5*sin(6*pi*t)+0.5*cos(20*pi*t); B=length(t0); Y2=fft(x0)/B*2; fs2=1/0.01; df2=fs2/(B-1); f2=(0:B-1)*df2; N=length(t); Y=fft(x)/N*2;

通信原理2DPSK调制与解调实验报告

通信原理课程设计报告

一. 2DPSK基本原理 1.2DPSK信号原理 2DPSK方式即是利用前后相邻码元的相对相位值去表示数字信息的一种方式。现假设用Φ表示本码元初相与前一码元初相之差,并规定:Φ=0表示0码,Φ=π表示1码。则数字信息序列与2DPSK信号的码元相位关系可举例表示如2PSK信号是用载波的不同相位直接去表示相应的数字信号而得出的,在接收端只能采用相干解调,它的时域波形图如图2.1所示。 图1.1 2DPSK信号 在这种绝对移相方式中,发送端是采用某一个相位作为基准,所以在系统接收端也必须采用相同的基准相位。如果基准相位发生变化,则在接收端回复的信号将与发送的数字信息完全相反。所以在实际过程中一般不采用绝对移相方式,而采用相对移相方式。 定义?Φ为本码元初相与前一码元初相之差,假设: ?Φ=0→数字信息“0”; ?Φ=π→数字信息“1”。 则数字信息序列与2DPSK信号的码元相位关系可举例表示如下: 数字信息: 1 0 1 1 0 1 1 1 0 1

DPSK信号相位:0 π π 0 π π 0 π 0 0 π 或:π 0 0 π 0 0 π 0 π π 0 2. 2DPSK信号的调制原理 一般来说,2DPSK信号有两种调试方法,即模拟调制法和键控法。2DPSK 信号的的模拟调制法框图如图1.2.1所示,其中码变换的过程为将输入的单极性不归零码转换为双极性不归零码。 图1.2.1 模拟调制法 2DPSK信号的的键控调制法框图如图1.2.2所示,其中码变换的过程为将输入的基带信号差分,即变为它的相对码。选相开关作用为当输入为数字信息“0”时接相位0,当输入数字信息为“1”时接pi。 图1.2.2 键控法调制原理图 码变换相乘 载波 s(t)e o(t)

通信原理实验报告一

实验一信号源实验 一、实验目的 1、了解通信系统的一般模型及信源在整个通信系统中的作用。 2、掌握信号源模块的使用方法。 二、实验内容 1、对应液晶屏显示,观测DDS信源输出波形。 2、观测各路数字信源输出。 3、观测正弦点频信源输出。 4、模拟语音信源耳机接听话筒语音信号。 三、实验仪器 1、信号源模块一块 2、20M双踪示波器一台 四、实验原理 信号源模块大致分为DDS信源、数字信源、正弦点频信源和模拟语音信源几部分。 1、DDS信源 DDS直接数字频率合成信源输出波形种类、频率、幅度及方波B占空比均可通过“DDS信源按键”调节(具体的操作方法见“实验步骤”),并对应液晶屏显示波形信息。 正弦波输出频率范围为1Hz~200KHz,幅度范围为200mV~4V。 三角波输出频率范围为1Hz~20KHz,幅度范围为200mV~4V。 锯齿波输出频率范围为1Hz~20KHz,幅度范围为200mV~4V。 方波A输出频率范围为1Hz~50KHz,幅度范围为200mV~4V,占空比50%不变。 方波B输出频率范围为1Hz~20KHz,幅度范围为200mV~4V,占空比以5%步进可调。 输出波形如下图1-1所示。

正弦波:1Hz-200KHz 三角波:1Hz-20KHz 锯齿波:1Hz-20KHz 方波A:1Hz-50KHz(占空比50%) 方波B:1Hz-20KHz(占空比0%-100%可调) 图1-1 DDS信源信号波形 2、数字信源 (1)数字时钟信号 24.576M:钟振输出时钟信号,频率为24.576MHz。 2048K:类似方波的时钟信号输出点,频率为2048 KHz。64K:方波时钟信号输出点,频率为64 KHz。 32K:方波时钟信号输出点,频率为32KHz。 8K:方波时钟信号输出点,频率为8KHz。 输出时钟如下图1-2所示。

通信原理实验指导书

通信原理实验指导书 实验准备步骤 在进行通信原理实验之前,请同学们按照下面的步骤进行实验准备: 1.通过串口线、程序下载线连接PC机与实验平台; 2.打开稳压电源,调节电压输入值为12V; 3.检查电源线连接是否正确,白黑相间线连接正极,纯黑线连接负极,切 勿接反; 4.连接无误后,打开实验板电源; 5.打开通信原理实验界面,如下图所示配置并打开串口; 6.将实验板上的拨码开关全部拨到ON; 7.下载程序到实验板上: 打开quartusⅡ5.0软件,选择Tools/programmer,设置Hardware Setup为ByteBlasterll[LPT1],Mode为Passive Serial,单击Add File,选择文件路径E:\实验平台程序与文档\通信原理实验平台程序与文档 \FPGA\toplevel.sof,文件选择完毕后,单击Start 进行程序下载,当 程序下载完毕,且在实验板下载指示灯(LED后四位)未灭时,拔掉实 验板上下载线,如果此过程中指示灯灭了,显示程序下载过程失败,请 重新单击Start进行下载。 完成以上操作步骤后,同学们可以开始进行以下实验内容。

实验一、实验平台基础实验 实验步骤: 通信原理实验界面,选择基础实验,开始以下实验步骤:串口收发及其测温实验 1.点击测温按钮,查看并分析实验结果; 2.发送两位16进制数字,观察LED的变化是否与设定值相同; 3.改变拨码开关并接收数据,查看并分析返回数值。 单片机波形发生器实验 1.填入合适的峰峰值和频率值,选择要生成的波形,单击开始; (由于实验箱问题,输入的峰峰值和示波器测出来的峰峰值有误差) 2.用示波器观察TP13点的输出波形。 语音录放实验 暂时不做 实验结果: 整理实验数据,画出各测试点的波形。 实验二、直接数字频率合成和数字调制实验 实验步骤: DDS频率合成实验 1.进入数字调制技术界面,选择直接数字频率合成; 2.在左方文本框中填入合适的频率值并发送; 3.用示波器观察TP35的DDS输出波形,修改输入值,观察DDS所产生 的频率。 FSK调制实验 1.在两个文本框中分别填写合适的频率值并发送; 2.用示波器观察TP35波形,验证是否为原输入信号相对应的FSK信号。 BPSK、DPSK、ASK调制实验操作均同FSK操作

通信原理实验报告

通信原理 实 验 报 告

实验一 数字基带信号实验(AMI/HDB3) 一、 实验目的 1、了解单极性码、双极性码、归零码、不归零码等基带信号波形特点 2、掌握AMI 、HDB 3的编码规则 3、掌握从HDB 3码信号中提取位同步信号的方法 4、掌握集中插入帧同步码时分复用信号的帧结构特点 5、了解HDB 3(AMI )编译码集成电路CD22103 二、 实验内容 1、用示波器观察单极性非归零码(NRZ )、传号交替反转码(AMI )、三阶高密度 双极性码(HDB 3)、整流后的AMI 码及整流后的HDB 3码 2、用示波器观察从HDB 3/AMI 码中提取位同步信号的波形 3、用示波器观察HDB 3、AMI 译码输出波形 三、 基本原理 本实验使用数字信源模块(EL-TS-M6)、AMI/HDB 3编译码模块(EL-TS-M6)。 BS S5S4S3S2S1 BS-OUT NRZ-OUT CLK 并 行 码 产 生 器 八选一 八选一八选一分 频 器 三选一 NRZ 抽 样 晶振 FS 倒相器 图1-1 数字信源方框图 010×0111××××××××× ×××××××数据2 数据1 帧同步码 无定义位 图1-2 帧结构 四、实验步骤 1、 熟悉信源模块和HDB3/AMI 编译码模块的工作原理。 2、 插上模块(EL-TS-M6),打开电源。用示波器观察数字信源模块上的各种信号波形。 用FS 作为示波器的外同步信号,进行下列观察: (1) 示波器的两个通道探头分别接NRZ-OUT 和BS-OUT ,对照发光二极管的发光状态,判断数字信源单元是否已正常工作(1码对应的发光管亮,0码对应的发光管熄);

通信原理实验报告89077

实验一、PCM编译码实验 实验步骤 1. 准备工作:加电后,将交换模块中的跳线开关KQ01置于左端PCM编码位置,此时MC145540工作在PCM编码状态。 2. PCM串行接口时序观察 (1)输出时钟和帧同步时隙信号观测:用示波器同时观测抽样时钟信号(TP504)和输出时钟信号(TP503),观测时以TP504做同步。分析和掌握PCM编码抽样时钟信号与输出时钟的对应关系(同步沿、脉冲宽度等)。 (2)抽样时钟信号与PCM编码数据测量:用示波器同时观测抽样时钟信号(TP504)和编码输出数据信号端口(TP502),观测时以TP504做同步。分析和掌握PCM编码输出数据与抽样时钟信号(同步沿、脉冲宽度)及输出时钟的对应关系。 3. PCM编码器 (1)方法一: (A)准备:将跳线开关K501设置在测试位置,跳线开关K001置于右端选择外部信号,用函数信号发生器产生一个频率为1000Hz、电平为2Vp-p的正弦波测试信号送入信号测试端口J005和J006(地)。 (B)用示波器同时观测抽样时钟信号(TP504)和编码输出数据信号端口(TP502),观测时以TP504做同步。分析和掌握PCM编码输出数据与抽样时钟信号(同步沿、脉冲宽度)及输出时钟的对应关系。分析为什么采用一般的示波器不能进行有效的观察。 (2)方法二: (A)准备:将输入信号选择开关K501设置在测试位置,将交换模块内测试信号选择开关K001设置在内部测试信号(左端)。此时由该模块产生一个1KHz的测试信号,送入PCM编码器。(B)用示波器同时观测抽样时钟信号(TP504)和编码输出数据信号端口(TP502),观测时以内部测试信号(TP501)做同步(注意:需三通道观察)。分析和掌握PCM编码输出数据与帧同步时隙信号、发送时钟的对应关系。 4. PCM译码器 (1)准备:跳线开关K501设置在测试位置、K504设置在正常位置,K001置于右端选择外部信号。此时将PCM输出编码数据直接送入本地译码器,构成自环。用函数信号发生器产生一个频率为1000Hz、电平为2Vp-p的正弦波测试信号送入信号测试端口J005和J006(地)。 (2) PCM译码器输出模拟信号观测:用示波器同时观测解码器输出信号端(TP506)和编码器输入信号端口(TP501),观测信号时以TP501做同步。定性的观测解码信号与输入信号的关系:质量、电平、延时。 5. PCM频率响应测量:将测试信号电平固定在2Vp-p,调整测试信号频率,定性的观测解码恢复出的模拟信号电平。观测输出信号信电平相对变化随输入信号频率变化的相对关系。

《通信原理》实验设计报告

中南大学《通信原理》 实验设计报告 学院: 专业班级: 姓名: 学号: 指导老师: 设计时间:

目录 第一部分硬件部分实验报告 实验一:模拟锁相环与载波同步 (1) 实验五:数字锁相环与位同步 (6) 实验六:帧同步 (13) 实验七:时分复用数字基带通信系统 (17) 第二部分实验设计部分 设计任务与要求 (22) 方案设计与论证 (22) 源程序与仿真结果 (24) 系统性能分析 (29) 程序调试 (29) 结论与心得 (30) 参考文献 (31)

第一部分硬件部分实验报告 实验一:模拟锁相环与载波同步 一、实验目的 1. 掌握模拟锁相环的工作原理,以及环路的锁定状态、失锁状态、同步带、捕捉带等基本概念。 2. 掌握用平方环法从2DPSK信号中提取相干载波的原理及模拟锁相环的设计方法。 3. 了解相干载波相位模糊现象产生的原因。 二、实验内容 1. 观察模拟锁相环的锁定状态、失锁状态及捕捉过程。 2. 观察环路的捕捉带和同步带。 3. 用平方环法从2DPSK信号中提取载波同步信号,观察相位模糊现象。 三、基本原理 通信系统中常用平方环或同相正交环(科斯塔斯环)从2DPSK信号中提取相干载波。本实验系统的载波同步提取模块用平方环,原理方框图如图3-1所示,电原理图如图3-2所示(见附录)。模块内部使用+5V、+12V、-12V电压,所需的2DPSK输入信号已在实验电路板上与数字调制单元2DPSK输出信号连在一起。 图3-1 载波同步方框图 本模块上有以下测试点及输入输出点: ? MU平方器输出测试点,VP-P>1V ? VCO VCO输出信号测试点,VP-P>0.2V ? Ud鉴相器输出信号测试点 ? CAR-OUT 相干载波信号输出点/测试点 图3-1中各单元与电路板上主要元器件的对应关系如下: ? 平方器 U25:模拟乘法器MC1496

通信原理实验指导书161702

通 信 原 理 实 验 指 导 书 (2017版) 编者 张水英 汪泓 浙 江 理 工 大 学 2017年3月

目 录 实验一 常规双边带幅度调制系统设计及性能分析 (1) 实验二 模拟信号数字化传输系统的建模与分析 (6) 实验三 BPSK调制、解调实验 (9)

实验一 常规双边带幅度调制系统设计及性能分析 一、实验目的 1、熟悉常规双边带幅度调制系统各模块的设计; 2、研究常规双边带幅度调制系统的信号波形、信号频谱、信号带宽、输入信噪比、输出信噪比及两者之间的关系; 3、掌握 MATLAB 和SIMULINK 开发平台的使用方法; 4、熟悉 Matlab 与Simulink 的交互使用。 二、实验仪器 带有MATLAB 和SIMULINK 开发平台的微机。 三、实验原理 AM 信号产生的原理图如图1所示。AM 信号调制器由加法器、乘法器和带通滤波器(BPF )组成。图中带通滤波器的作用是让处在该频带范围内的调幅信号顺利通过,同时抑制带外噪声和各次谐波分量进入下级系统。 图1 AM 信号的产生 3.1 AM 信号时域表达式及时域波形图 AM 信号时域表达式为 0()[()]cos AM c s t A m t t ω=+ 式中0A 为外加的直流分量;为输入调制信号,它的最高频率为 ()m t

m f ,无直流分量;c ω为载波的频率。为了实现线性调幅,必须要求 0max ()m t A ≤ 否则将会出现过调幅现象,在接收端采用包络检波法解调时,会产生严重的失真。如调制信号为单频信号时,常定义0(/)AM m A A β1=≤为调幅指数。 AM 信号的波形如图2所示,图中认为调制信号是单频正弦信号,可以清楚地看出AM 信号的包络完全反应了调制信号的变化规律。 t t t t ()m t 0(A m t +cos c t ω s ()AM t 图2 AM 信号波形 3.2 AM 信号频域表达式及频域波形图 对AM 信号进行傅里叶变换,就可以得到AM 信号的频域表达式 ()ω如下: AM S 0()[(AM ()] 1 [)()][()()]2 AM c c c c S s t M M A ωωωωωπδωωδωω==++?+++?F 式中,()M ω是调制信号的频谱。 ()m t

通信原理实验报告——xxx

通信原理 实验报告 实验名称:实验一码型变换实验 姓名:xxxx 专业班级:电信xxxxx班 学号:xxxxxxxxxxxxx 中南大学物理与电子学院 X2013年下学期 xx月xx号

码型变换实验: 一、实验目的 1、了解几种常用的数字基带信号。 2、掌握常用数字基带传输码型的编码规则。 3、掌握常用CPLD实现码型变换的方法。 二、实验内容 1、观察NRZ码、RZ码、AMI码HDB3码CMI 码BPH码的波形。 2、观察全0码或者全1码时各码型的波形。 3、观察HDB3码、AMI码的正负极性波形。 4、观察RZ码、AMI码、HDB3码、CMI码、 BPH码经过码型反变换后的输出波形。5、自行设计码型变换电路,下载并观察波 形。 三、实验器材 1、信号源模块 2、编码、译码模块 3、20M双示踪示波器 4、连接线 四、实验结果分析 1、CMI、RZ、BPH码遍解码电路观测

信号源: S1:01110010 S2:01010101 S3:00110011 CMI码: DOUT1波形:1110010 NRZ-OUT输出波形:01010101001100110111 RZ码: DOUT1:11001101

NRZ-OUT输出波形:001100110111001001 DOUT1:10111001001010101

NRZ-OUT输出波形:010110010110011 2、AMI、HDB3码编解码电路观测 S1:01110010 S2:00011000 S3:01000011 AMI码: DOUT1:

DOUT2: AMI-OUT:101001100100110111010011001

通信原理实验报告

AM调制和解调的仿真原理:1)AM调制的原理是,发射信号的一侧将信号加到高频振荡上,然后通过天线发射出去。在此,高频振荡波是载波信号,也称为载波。调幅是通过调制信号来控制高频载波的幅度,直到其随调制信号线性变化。在线性调制系列中,第一幅度调制是全幅度调制或常规幅度调制,称为am。在频域中,调制频谱是基带调制信号频谱的线性位移;在时域中,调制包络与调制信号波形具有线性关系。设正弦载波为:C(T)= ACOS (WCT +φ0),其中a为载波幅度;WC是载波角频率;φ0是载波的初始相位(通常假设φ0 = 0)。调制信号(基带信号)为m(T)。根据调制的定义,幅度调制信号(调制信号)通常可以表示为:如果调制信号M(T)的频谱为m(W),则SM(T)= am(T)cos(WCT),则调制信号的频谱SM(T):SM(W)= a [M(W + WC)+ m(w﹥6 ﹣1wc)] /22。从高频调制信号中恢复调制信号的过程称为解调。)也称为检测。对于幅度调制信号,解调是从幅度变化中提取调制信号的过程。解调是调制的逆过程。产品类型的同步检波器可用于解调振幅。可以将调制信号与本地恢复载波信号相乘,并且可以通过低通滤波来获得解调信号。下图显示了AM解调的原理:原理图和仿真结果:参数设置:正弦波WAVE1和正弦波WAVE2

模块分别在发送器和接收器处生成载波信号,并且角频率ωC设置为60 rad / s,并且调幅系数为1;调制信号M(T)由正弦波模块产生,为正弦波信号,角频率为5rad / s,幅度为1V。直流分量A0恒定。低通滤波器模块的截止频率设置为6rad / s。承运人:sin60t;调制信号:sin(5T)sin(60t)2 2. B DSB调制和解调模拟调制原理:在幅度调制的一般模型中,如果滤波器是全通网络(= 1),则滤波器中没有DC分量。调制信号,则输出调制信号是没有载波分量(DSB)的双边带调制信号。当源信号的极性改变时,调制信号的相位将突然改变π。SDSB (T)= m(T)coswct调制的目的是将调制信号的频谱移动到所需位置,从而提高系统信息传输的有效性和可靠性。DSB调制原理的框图如图4-3所示:图1:DSB信号本质上是基带信号和载波的乘法,而卷积在频域中。表达式为:调制后,s DSB(W)= [M(W + WC)+ m (W?6?1 WC)] / 2(1),已调制信号的带宽变为原始基带信号带宽的两倍:模拟基带信号的带宽为W。则调制信号的带宽为2W;(2)在调制信号中没有离散的载波频率分量,因为原始的模拟基带信号不包含离散的DC分量。(3)(4)某个信号的频谱或随机信号的功率谱是基带信号的频谱/功率谱的线性位移。因此,它称为线性调制。解调原理:DSB只能进

通信原理课程三级项目指导书及课程考核

路漫漫其修远兮,吾将上下而求索 - 百度文库 《通信原理》课程三级项目说明书远距离通信系统设计 2015年春季学期 2014年9月

一、项目概览 本课程的三级项目是要求学生设计一个从A地到B地的语音或数据通信系统,通过该项目的实施使学生加深对通信原理基础知识的理解,了解相关技术标准以及最新技术成果。初步具备运用所学知识进行资料检索及进行通信系统设计的能力。引导学生积极思考、主动学习,锻炼和提高学生的交流、沟通和表达能力以及团队合作能力,培养学生的责任感和职业道德。 二、实训目的 1、加深对通信原理基础知识的理解; 2、了解相关技术标准以及最新技术成果; 3、掌握运用所学知识进行资料检索及进行通信系统设计的能力; 4、掌握项目设计报告的撰写方法; 5、培养团队合作精神、项目组织与管理、交流表达能力; 6、培养责任感和职业道德。 三、主要内容 本课程设有一个三级项目,该项目将与通信原理以及数字信号处理课程设计相结合,最终构成二级项目。 本三级项目要求学生根据给定的场景条件,完成一个通信系统的设计方案报告,并对报告进行答辩。在这个设计方案中,要包含总体设计论证、主要设备选型以及参数计算、可行性分析、经济性分析等内容。具体要求如下: 1) 总体设计论证:要根据给定的场景条件,选择模拟或数字通信系统、选择信道传输方式、频谱与带宽配置、调制方式、链路传输损耗预算、收发信机结构组成,提出系统总的技术指标要求。

2) 主要设备选型以及参数计算:根据总体设计论证给出的技术指标要求,检索查询可用的设备。对需要配置参数的设备计算配置参数。 3) 可行性分析:从性能指标、设备供应、施工要求等方面论述方案是否可行。 4) 经济性分析:计算工程总造价。 四、项目研究小组的主要分工 (1) 三级项目采用分组的方式进行。2~4名同学组成1组,每组设组长1人,每组1题。 (2) 每个小组要在项目报告中标明每个人在总体工作中的贡献、工作量权重或者每个人负责的内容; (3) 研究内容的质量会影响到每组的最终成绩,鼓励学生自己在项目框架内选取感兴趣的研究内容进行创新设计和深入研究。 五、项目进程安排 三级项目采用分组的方式进行。2~3名同学组成1组,每组设组长1人,每组1题。 各组的三级项目题目将在通信原理第7章授课开始时下发。由组长负责组织本组同学依据三级项目题目及同学的实际情况进行工作分配。 学生应根据项目题目及课程的进度,按时完成资料的查阅及系统方案的设计。 项目的课内学时要求学生必须集中进行项目的研究讨论工作。 三级项目将以答辩的形式进行验收。 答辩结束后,学生需及时上交项目研究报告和PPT。项目实训内容及时间规划见表1。 表1 项目实训内容及时间安排

相关主题
文本预览
相关文档 最新文档